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ABSTRACT A plethora of information is now readily available for traffic prediction, making an effective

use of them enables better traffic planning. With data coming from multiple sources, and their features

spanning spatial and temporal dimensions, there is an increasing demand to exploit them for accurate traffic

prediction. Existing methods, however, do not provide a solution for this, as they tend to require expertise

feature engineering. In this paper, we propose a general architecture for SpatioTemporalDataFusion (STDF)

with parameter efficiency. Tomake heterogeneousmulti-source data fusion effectiveness, we separate all data

into traffic directly related data and traffic indirectly related data. With traffic indirectly related data as the

input to Spatial Embedding by Temporal convolutiON (SETON) that simultaneously encodes each feature

in both space and time dimensions and traffic directly related data as the input to the graph convolutional

network(GCN), we designed a fine-grained feature transformer to match the ones generated by GCN. This

is then followed by a fusion module to combine all features to make final prediction. Compared to using

GCNs training with only traffic directly related data, experimental results show that our model can achieve

a 6.1% improvement in prediction accuracy measured by Root Mean Squared Error.

INDEX TERMS Data fusion, graph convolutional networks, multi-source data, traffic prediction.

I. INTRODUCTION

The traffic is playing a vital role of human life and sig-

nificantly influenced every aspect of life. With the rapid

increase of vehicles, the traffic jam has attracted a national

concern for urban management. Smart city is considered as

a potential solution, which uses intelligent technologies to

predict the traffic flow, and smooth the peaks and valleys

by offering residents travel guidance [1]. Traffic prediction

is of great importance for smart cities and has attracted

The associate editor coordinating the review of this manuscript and

approving it for publication was Keli Xiao .

attention from research to industry for many years. Accurate

real-time road traffic prediction is critical for the realization

of intelligent cities [2], [3]. Traffic authorities require reliable

prediction to facilitate the related process of policy-making,

regulatory, and implementation. With the development of

sensors, the traffic data is collected by sensors equipped

within vehicles or installed along the roads. Examples of

traffic data include license number of vehicles, GPS data

of vehicles, video or image records of surveillance devices,

temperature, wind speed and level of sunlight data of weather

sensors [4]. These multi-source data converge to the data

center by vehicle ad hoc networks (VANET), or the upcoming
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5G cellular network [5]. Many traffic prediction algorithms

have proposed to guide convenient travel for citizens based

on these mass traffic data, and there have been some works

showing the advantages of multi-source data fusion in the

spatio-temporal data prediction tasks [6].

Unlike traditional data fusionmethods, multi-source traffic

data includes not only traffic directly related data, e.g., vehi-

cle speed, vehicle density, traffic flow, but also indirectly

related data, e.g., weather, points of interests (PoIs), etc.. All

these data span both spatial and temporal dimensions [4],

[7]. As shown in Figure 1, our goal is to predict traffic

condition at each road segment. The residence areas in the

morning tend to have many people going out for fun or work,

while in the evening many people go home, or to a place of

entertainment. These information therefore must be incorpo-

rated in the model for accurate traffic prediction. However,

merging all these data straightforwardly could not explore the

semantics changing of traffic indirectly related data over time.

To tackle this, in this paper we propose a SpatioTemporal

Data Fusion (STDF) framework, which is a general architec-

ture to improve traffic prediction performance in metro-city

scales by using data fusion.

Traffic prediction using data fusion needs to consider both

spatial and temporal features from multi-source data. It is

notable that the distribution of urban traffic exhibit high

variability both in spatial and temporal domain. Traffic pre-

diction in urban cities is challenging because of their complex

environment. It is thus essential to find an efficient and effec-

tive way to make traffic prediction more accurate by using

them jointly. There have been many works on data fusion.

According to the model parameters size, the work in traffic

prediction by data fusion can be classified into two categories,

i.e., traditional machine learning method and deep neural net-

works. Many effective methods have been proposed, such as

XGBOOST [8], random forest [9], LightGBM [10], embed-

ding learning [11]. Although these methods can find the

relationship between traffic prediction and traffic indirectly

related data, they require significant human effort because

the features extracted from multi-source data play a vital

role in the prediction accuracy. Meanwhile, it is computa-

tion consuming if we apply these methods into large scale

data fusion for urban cities. To overcome it, an end-to-end

learning method is thus a desirable alternative at the cost

of computation power. For example, some works use deep

neural networks [12]–[14] to automate the processing of

multi-source data fusion and extraction of useful features.

They merge multi-source data straightforwardly into a vector

and treat traffic directly related and indirectly related data

equally. As a result, they ignore the semantics changing of

traffic indirectly related data. In this paper, we explore an

effective and efficient way to fuse multi-domain data con-

sidering both the spatial and temporal properties based on

the GCN.

Multi-source data fusion with the consideration of its spa-

tial and temporal properties is challenging for the follow-

ing reasons. The first challenge is the large scale feature

representation. It is infeasible to encode each node at dif-

ferent time into a unified vector in metro-city scales. For

example, the parameter size is over 10G for a Small city

containing 10,000 road segment and 100 external factors

for each node on average if each factor is represented by a

10-tuple vector at one time interval, which will easily result in

an over-parameterized model and over-fitting when training.

Second, an automated but efficient facility is urgently needed

to find the spatio-temporal representation for all multi-source

data. Third, fusing traffic indirectly related data into traffic

prediction may cause negative effect on prediction accuracy.

Besides, there are practical concern when applied into the real

traffic prediction in metro city scales.

To tackle the aforementioned challenges, we proposed

a general STDF framework. STDF adopts branching-

transfer-fuse strategy. STDF first separates the prediction

model into two branches with each branch processing traffic

directly related data and traffic indirectly related data cor-

respondingly. The traffic directly realted data is processed

by GCN to get the spatio-temporal representation from the

middle layer of GCN. While the traffic indirectly related

data is process by two parts successively. The first part is

called static Spatial Embedding by Temporal convolutiON

(SETON). SETON first encodes each feature in both space

and time dimensions simultaneously, followed by an con-

volutional operation with spatial embeddings as input and

temporal embeddings as convolutional kernel to get the

spatio-temporal representation. Meanwhile, all nodes share

the same spatial and temporal embeddings, which are tranin-

able in the model as well as to avoid the overparameterized

problem. The second part is a feature transformmodulewhich

is to map the spatio-temporal representation generated by

SETON to the feature map space generated by GCN. At last,

the feature map generated by GCN and feature transform

module are fused together followed by several full connec-

tion output layers. In summary, this paper has the following

contributions.

• Generic Architectures for Deep Spatio-temporal Data

Fusion - The STDF framework is a general neu-

ral network architectures, which can efficiently fuse

multi-source data both in spatial domain and temporal

domain in large scales.

• Deep Spatio-temporal Data Fusion Operator- We

designed a new type of deep spatio-temporal data fusion

operator i.e.SETON. The operator has the ability to

capture both the spatial representation and temporal rep-

resentation simultaneously.

• Computation Efficiency and Practical - Both the compo-

nents in the STDF framework have the parameter shar-

ing strategy to avoid model over-parameterized, which

is applicable in the complex urban computing with high

computation efficiency.

• Performance Improvement in Spatiotemporal Data Pre-

diction - We apply our method into real traffic speed

prediction and human flow prediction in metro. Experi-

mental results demonstrate that our spatiotemporal data
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FIGURE 1. Semantics changing over time. Multi-source data fusion will benefit the traffic prediction accuracy.
At the same time, the representation of different factors is changing over time. Traffic prediction using data fusion
needs to consider both the spatial and temporal representation simultaneously.

fusion method performs significantly better than the one

without data fusion or only spatial data fusion.
The rest of this paper is organized as follows. Section II gives

a brief literature review of related work from traffic prediction

and data fusion perspective. Section III formulates the traffic

prediction problem and an overview of the architecture of

solution. Section IV details the process of spatiotemporal rep-

resentation with parameter efficiency. With the extracted fea-

tures, a feature transformer module and data fusion method

are introduced at Section V. We conduct comprehensive

experiments in section VI and give a discussion of our model.

Section VII offers the conclusion of our work and outlines our

future work.

II. RELATED WORK

In this section, we review the recent studies that are relevant to

traffic prediction and data fusion.Wefirst introduce the traffic

prediction methods from mathematical model perspective.

Then data fusion methods are detailed both in feature level

and semantic level.

A. TRAFFIC PREDICTION

There are many achievements made in traffic predic-

tion, including traffic flow, vehicle speed, vehicle den-

sity, etc. Traffic prediction can be models as a time series

data prediction. The statistical modes including history

average (HA), Autoregressive Integrated Moving Average

(ARIMA) [15], Seasonal Autoregressive Integrated Mov-

ing Average (SARIMA) [16] and spatiotemporal correla-

tions [17] are widely used in real traffic condition prediction

for its computation efficiency. However, all these methods

require the input data to meet a certain condition, which

consequently perform poorly in the complex urban traffic

prediction.

To make traffic prediction model have the ability to deal

with complex data, there are continuous applying trying

machine learning methods into the urban traffic prediction,

such as XGBOOST [8], random forest [9], LightGBM [10],

embedding learning [11]. Although these methods have the

inherent advantage to deal with multi-source data, they need

a lot of domain knowledge and careful feature engineering,

which is not only computation consuming but also has some

scalability issues.

Because of the strong self-adapting and self-learning abil-

ity of artificial neural network, deep learning has been used in

different domains, such as computer vision [18], natural lan-

guage processing and auto driving, and brings many signifi-

cant breakthroughs. At the same time, a great deal of studies

have been done on improving traffic prediction performance

by using different types of neural network architectures, such

as multi-layers perception [19], long short-term memory [20]

and auto encoders [21]. Although these works can effectively

extract the local patterns of data, they can only be applied

for the standard structure data and are lack of awareness

of the global prediction. With the ability of processing data

of graph structures, the graph convolutional networks are

widely used to deal with complex graph data in a global

perspective. Yu proposed a Spatio-Temporal Graph Convo-

lutional Networks (STGCN) with the ability to capture com-

prehensive spatial and temporal dependencies for long-term

traffic prediction [22]. Guo applies attention strategy into

GCN to predict traffic flow with considering the dynamic

spatial-temporal correlations of traffic data [23]. Li proposed

a diffusion convolutional recurrent neural network (DCRNN)

to model the traffic flow as a diffusion process [24]. Dif-

ferent from our work, these models did not deal with the

multi-source data problem.

B. DATA FUSION

Data fusion [25] in traffic scenario often implies the com-

bination of traffic related data sets that present an enor-

mous diversity on the basis of location, weather, points of

interests, traffic flow, density and speed. These data sets

are differently represented in different perspective, but they

represent the same real world object and complement each

other. A straightforwardmethod [26], [27] in the feature level

is that all the object-related features are extracted equally and

all features are concatenated sequentially into a equal-sized
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or unequal-sized vector to be injected into the kernel task.

The low-level representation might exist redundancies and

the sampled data may be not independent, it is easy to lead

to model instability.

Feature engineering is an especially good idea that makes

machine learning algorithms work. Lakhinaet analyzed the

distributions of packet features in flow traces in details, which

showed significant advantages for anomalies detection [28].

Samant and Adeli extracted traffic incident related features

by using wavelet transform and linear discriminant analy-

sis [29]. The two-stage feature extraction algorithm made

the traffic incidents detection model more robust. Although a

good feature engineering can get better performance, it needs

a deep understanding of domain knowledge. Besides, it is

time consuming and computation consuming for large scale

data fusion. An end-to-end learning technology with better

flexibility provides a consistent alternative for the ability of

auto feature extraction.

Deep neural networks (DNN) is an excellent solution for

end-to-end learning when geta unified feature representa-

tion from disparate data sets. An end-to-end structure of

ST-ResNet [12] was proposed to predict citywide crowd

flows, where the input with unique properties of spatiotem-

poral data is feed into ST-ResNet simultaneously. Bojarski

trained a convolutional neural network (CNN) to map raw

pixels from three cameras directly to steering commands [30].

The system automatically learns internal representations of

the necessary processing steps such as detecting useful road

features. With the ability to self-learn feature representation,

these end-to-end based data fusion methods need lots of com-

putation cost. At the same time, the feature representations

are extracted in a grid scale, but not in the road segments level.

Different from them, we are more interested in the graph

structure data.

Feature based data fusion approaches take all the feature

equally and ignore the semantic meaning of each feature.

On the contrary, semantics based data fusion methods try to

understand the meaning of each feature and find the rela-

tionships between features by mining the insight of each

data. For example, many works tried to find the relationship

between emotion and audio signals in the emotion recogni-

tion [31]–[33]. The fusion results combining the acoustic

and facial emotion recognition were achieved in the semantic

level. DeepFM [34] is an end-to-end deep learning framework

for click-through rate prediction, where data representation is

realized by feature embedding. DeepFM fuses the feature by a

factorization-machine with a deep neural network. However,

all these feature representation are static and only related to

its input data correspondingly. In this paper, we will tackle

the spatiotemporal data fusion problem in traffic prediction

scenarios because the spatial features in semantics level are

dynamically changing with time.

III. PRELIMINARIES

Definition 1: (Spatial Network): The traffic network G is

a weighted directed graph G = (V ,E,A), where set |V | = N

is a set of nodes that can represent road segments or metro

stations, N is the number of nodes, and E denotes the set

of edges, A ∈ R
N×N is the weighted adjacent matrix of

network G.

Definition 2: (Multi-Source Data): The multi-source data

includes two types of data, traffic directly related data and

traffic indirectly related data. The traffic directly related data

means the graph signal matrix X tG ∈ R
N×C , where C is the

number of traffic condition of interests (e.g., traffic speed,

traffic flow, traffic density, etc.). The traffic indirectly related

data represents external factors that can influence traffic con-

dition indirectly, which is denoted by FG ∈ R
N×M , where M

is the number of fields including categorical fields (e.g., res-

idential area, hi-tech zones, entertainment place, rain, etc.)

and continuous fields (e.g., PoI density, PoI number).

A. PROBLEM STUDIED

The problem of traffic prediction by data fusion can be

described as: given the observations at N nodes of historical

P time steps X = (X t−P+1
G ,X t−P+2

G , · · · ,X tG) ∈ R
P×N×C

and the external factors FG collected from other domain,

we aim to learn a mapping function f which can map the

input data into the future observation of traffic condition

Y = (X t+1
G ,X t+2

G , · · · ,X
t+Q
G ), i.e., Y = f (X ,FG), where Q

denotes the length of the target of traffic condition to predict.

Figure 2 illustrates the architecture of STDF framework to

solve the problem. As the studies about GCN have gotten

state-of-the-art performance in spatio-temporal data predic-

tion and there have been many completed GCN architectures

widely used in time series data prediction, we select one type

of GCN [22] to demonstrate the framework of STDF.

FIGURE 2. STDF architecture. The SETON operator aims to getting the
low-level spatio-temporal features from the input including spatial
features and temporal factors. The feature transformer component is to
map the low-level features to a high level feature that has the same size
with the high-level features generated by GCN. The ST-Conv Block is the
basic block for GCN.

B. GRAPH CONVOLUTIONAL NETWORK

Graph convolutional network (GCN) is a neural network

that operates on graphs, which is able to extract local fea-

tures with different reception fields from translation variant
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non-Euclidean structure [35]. As depicted in [22], GCN is

designed to solve the time-series prediction problem, i.e., pre-

dicting the future trafficmeasurements under given input with

a fixed temporal length, which is written as

Ŷ = GCN (X t−P+1
G ,X t−P+2

G , · · · ,X tG).

The feature map FMg generated by the second ST-Conv

Block in GCN as demonstrated in Figure 2 is denoted by

FMg = fg(X
t−P+1
G , S t−P+2

G , · · · , S tG).

However, there are many external factors that have influ-

ence on traffic pattern. For each node v, the external factors

are written as a vector Fv. Spatio-temporal data fusion is not

a simple data integration process. STDF is designed to find

an efficient and effective data fusion strategy that is one kind

of practical methods for large scale traffic data prediction

in real world. STDF consists of three parts: SETON and

Feature Matching. The SETON is to find a computation

efficient spatio-temporal representation for external traffic

related variables. Feature transformer maps spatio-temporal

representation to a feature space that has the same feature

shape with the feature map FMg for each node. Then a fusion

module is followed to combine the two features into one

tensor. We introduce the three parts in details as follows.

IV. SETON

The STEON consists of three components: spatial feature

embedding layer, temporal feature embedding layer and

embedding vector fusion layer. The spatial feature embedding

layer maps the external factors to a fixed sized embedding

vector. The vector length k is determined in advance. Sim-

ilarly, the temporal feature embedding layer maps the time

interval to a 3-D tensor, with the length of the first and second

dimension equal to k and the length of the third dimension

equal to the number of time slots, and embedding vector

fusion layer is to get the spatio-temporal embedding vectors

using the output of the aforementioned two components as

input, which is the spatio-temporal representation of traf-

fic indirect related data in low level. At the same time, all

vectors in SETON can be self-learned without any feature

engineering.

A. SPATIAL FEATURE EMBEDDING

Because the traffic network is complex and the environment

around each node is different from each other, the size of

external data related to traffic prediction is too large if we

give each factor a spatiotemporal representation in neural net-

works, which may cause over-parameterized and overfitting

when training. To overcome the over-parameterized problem,

we proposed a data sharing strategy for all nodes.

We first classify the indirect traffic data into an m-fields

data according to the way how the PoI will influence

people travel pattern. They may include categorical fields

(e.g., residential area, hi-tech zones, entertainment place) and

continuous fields (e.g., PoI density, PoI number). Different

categorical fields may contains different size of data denoted

by an one hot encoding. The continuous fields are represented

FIGURE 3. SETON architecture. The STEON consists of spatial feature
embedding layer, temporal feature embedding layer and spatiotemporal
feature product layer. SETON is designed to get the feature representation
of indirect traffic data both in spatial and temporal dimension
simultaneously with parameter efficiency.

by the value itself. The instance for node v is written as

Fv = {ffield1 , ffield2 , · · · , ffieldm}, where ffieldj stands for the

j-th field of Fv. Then the instance for all node V is F =

{F1,F2, · · · ,Fn}. The task for spatial feature embedding is to

find a parameter efficient method to allocate each value in F

to a equal sized embedding vector. The length of embedding

vector is a predefined as k .

FIGURE 4. Spatial feature embedding. All nodes share a same latent
feature vectors W . The tensor W serves as network weights which are
trainable and acts as a role in mapping the input data to fixed sized
embedding vectors, which makes our model salable when appled into
large urban computing.

Figure 4 highlights the detail of spatial feature embedding

from the input layer F to the embedding layer for all nodes,
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where the length of embedding vector is set to 5. The left

part stands for the embedding process for node 1 and the

right part stands for the same process for node n. All nodes

share a same latent feature vectors W . By the way, there is

no need of pre-training for the latent feature vectors W . The

tensor W serves as network weights, which can be learned

by the network itself. Besides, the tensor W acts as a role

in mapping the input data to fixed sized embedding vectors,

which denoted as:

ai = [ei,1, ei,2, · · · , ei,m],

where ei,j stands for the embedding vector of j-th field for

node i and m is the number of fields. More specifically,

the embedding output for each node is a k × m tensor. The

parameter that needs to be learned is of a size of M × k ,

where M is equal to
∑m

j=1 |ffieldj |. The parameter size has no

relationship with the node number, which is the foundation

for large scale data fusion in urban cities.

B. TEMPORAL FEATURE EMBEDDING

In the application of traffic prediction, time factor plays an

important role in understanding people travel patterns [7].

For example, people would like to go out in the morning

and get back home in the evening. So the embedding vector

for residential area is different at different time. Meanwhile,

the spatial semantics changing is also needed for other kinds

of categories. Because the characteristics of traffic data has

a property of cyclical, we divide the time in one day into

T time intervals. As we all know, urban traffic has different

patterns and people travel patterns also differs from each

other at different time. So each time interval has a distinct

transmission matrix in our model, which is used to transfer

the spatial embedding vector to a corresponding vector.

We use a tensor W to represent the temporal embeddings

for all time intervals. At the same time,W serves as network

weights which can be learned by the network itself. To make

the temporal embeddings matching with the spatial embed-

dings, the tensor W is of a 3-D shape T × k × k .

Taking k = 5 as an example, we highlight the tempo-

ral feature embedding process from the input layer to the

embedding layer as shown in Figure 5. For the time factor t ,

we encode it to a one hot vector after discretization, where

the vector length is equal to T . Similarly, the latent feature

vectorsW for temporal embedding process serves as network

weights which can be learned by the network itself. After the

embedding process, we get the temporal embedding matrix

αt corresponding to the time interval t .

αt = f (W, t) = W[t, :, :],

where f is a look up function to get its corresponding vector.

And the output matrix αt has a shape of k × k , which stands

for how the spatial meaning of each categories changes over

its corresponding time t . The size of parameters W has

relationship only with time intervals and embedding size but

not determined by node number n, which benefits large scale

data fusion in urban cities. Therefore, the spatial embeddings

FIGURE 5. Temporal feature embedding. The temporal embeddings
serves as network weights with a size of T × k × k . Each time interval t

has its own temporal embedding.

and temporal embeddings make our model scalable without

the influence from graph size.

C. SPATIO-TEMPORAL FEATURE REPRESENTATION

IN LOW LEVEL

To get both the spatial and temporal feature representation,

we apply temporal embedding matrix αt to every field of spa-

tial embedding vector for all nodes. For a node i at time t , its

spatiotemporal feature embedding vectors is calculated by:

ati = [αt ∗ ei,1, αt ∗ ei,2, · · · , αt ∗ ei,m]

= [eti,1, e
t
i,2, · · · , eti,m], (1)

where ∗ means the convolutional operator.

In summary, the number of parameters learned by the

network itself is only M × k + T × k × k . And the output

spatiotemporal feature embedding vectors A0t after SETON

operation is of a shape of n×k×m. As similar to the concept

in convolutional neural network for computer vision task, this

feature representation is in low level.

V. FEATURE TRANSFORMER AND DATA FUSION

This section introduces a feature transformer method that is

to get the representation in high level and match the feature

map FMg calculated by GCN.

A. EXTRACT SPATIOTEMPORAL REPRESENTATION

IN HIGH LEVEL

As illustrated in Figure 2, the feature transformer component

is a bridge between SETON and the feature map FMg, which

achieves shape alignment between the two layers. The feature

transformer part stacks q convolutional layers. Each con-

volutional layer contains a 1-D convolutional kernel which

enables all nodes in graph G share the same convolutional

VOLUME 8, 2020 76637
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kernel, rectified linear units and batch normalization except

the last layer containing only convolutional operation.

Alt = bn(relu(conv(Al−1
t , k l))),

where k l is a 1-D vector that can be learned by network itself,

l ∈ {1, 2, · · · , q} stands for the layer number. All nodes share

the same convolutional kernel k l at layer l, which not only

makes parameters efficient but also avoid overfitting when

training. What’s more, the padding operation, incidentally,

depends on whether up-sampling is necessary. For example,

the feature map FMg ∈ R
n×kg×cg with cg channels generated

by GCN is regarded as a representation for the objective

traffic data in high level. If k < kg, up-sampling is neces-

sary and experimental results tell us will cause performance

degradation sharply. So it is better to keep the value of kg
is less than k . After the node-wised convolutional operation,

the output feature map A
q
t is denoted by FM

st , which has the

same size with FMg.

B. FEATURE MAP FUSION

There are many feature map fusion methods widely used in

neural networks. But in the large urban cities computing,

we prefer to directly merge the feature map FM st generated

by STDF with that of GCN as shown in Figure 2, which is

denoted by FM followed by rectified linear units and batch

normalization and written as:

FM = FMg + FM st
.

This type of feature map fusion method has two benefits used

in large scale data fusion. The first is to reduce the compu-

tation overload when add more data into traffic prediction.

Besides it would not bring more parameters into our model,

thus it can avoid overfitting problem.

To get the predicted value, several full connected layers are

stacked to map the feature map to the object value.

C. LOSS FUNCTION

In the training process, the goal is to minimize the gap

between the real traffic conditionY and the predicted valueŶ .

Different from other tasks, traffic prediction has data incom-

plete and data bias problem. In statistics, the Huber loss is a

loss function used in robust regression, that is less sensitive to

outliers in data than the squared error loss. To minimize the

influence of traffic outliers, we select Huber loss as the loss

function.

L(Y , Ŷ ) =





1

2
(Y − Ŷ )2 for |Y − Ŷ | ≤ δ

δ|Y − Ŷ | otherwise.
(2)

where δ is a threshold parameter which controls the range of

squared error loss.

VI. EXPERIMENTS

In this section, we present the experiment and comparison

results. We first present the experiment settings with base-

line algorithms and datasets introduced, then demonstrate the

overall performance of STDF with its components analysis.

Finally we detail the training process, testing performance

and hyperparameters selection.

FIGURE 6. Physical map in Shenzhen: (a) metro station; (b) road network.

A. EXPERIMENT SETUPS

1) DATESETS

• Metro: The dataset used in this study is the smart card

transaction records and train operation logs in Shenzhen,

China. The metro system has 5 metro lines by 2015 as

shown in Figure 6(a). The whole data collected from

around 4million smart cards have more than 300million

smart card transaction records, covering 184 consecutive

days from January 1, 2015 to July 30, 2015. We use

144 days of data to train the network and 20 days for

cross validation and 20 days for testing. The standard

time interval is set to 30-minutes. The prediction task for

Metro is to forecast the passenger number at each metro

station.

• TaxiSZ: We collect the data from City Traffic Bureau

of Shenzhen (China) for as long as one year from

January 1, 2015 to December 31, 2015. There are about

15,000 taxis equipped with high-resolution GPS devices

reporting 32,205,000 records per day on average. There

are 341 days of valid data, where 281 days of data is used

for training, 30 days for cross validation and 30 days for

testing. The standard time interval is set to 15 minutes.

We use this data to predict the traffic speed at every road

segment as shown in Figure 6(b).
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TABLE 1. Statistics on datasets.

• Traffic indirectly related data: We collect the traffic

indirectly related data at Shenzhen. It includes weather

conditions and PoIs. The weather conditions consist

of 16 types, such as sunny, rainy, etc. The PoIs has

659,494 records. Each record includes name, longi-

tude, latitude, primary category, secondary category and

address. The primary category has 20 types, such as

incorporated business, real estate, financial area, educa-

tion zone, etc. Each primary category includes different

number of secondary category. For example, there are

three secondary categories for real estate and twelve sec-

ondary categories for education zone. There are 135 sec-

ondary categories all together.

2) BASELINES

For evaluation, we use the Root Mean Squared Error (RMSE)

and Mean Absolute Errors (MAE). We compare our model

with the following baselines:
• HA:We predict traffic condition by the average value of

history value in the corresponding periods, e.g., 6:00am-

6:15am on Monday, its corresponding time spans are all

historical time intervals from 6:00am to 6:15am on all

historical Monday.

• ARIMA: Auto-Regressive Integrated Average is fitted to

time series data either to better understand the data or to

predict future points in the series [15]

• SARIMA: The SARIMA is an extension of ARIMA that

explicitly supports univariate time series data with a

seasonal component [36].

• GCN:We use STGCN [22] as an example. The channels

of three layers in STGCN are 64, 32, 128 respectively.
To evaluate each component of our model, we also com-

pare it the difference of fusion layers.
• GCN-SDF-logits: GCN-SDF-logits only considers data

fusion in spatial domain and the fusion layer is located

at the logits layer.

• GCN-SDF-FM: GCN-SDF-FM only considers data

fusion in spatial domain and the fusion operation is

located at the middle layer as depicted in Section III-B.

• GCN-STDF-logits: GCN-STDF-logits considers data

fusion both in spatial domain and temporal domain. But

the fusion layer is located at the logits layer.

• GCN-STDF-FM: GCN-STDF-FM considers data

fusion both in spatial domain and temporal domain.

The fusion layer is located at themiddle layer as depicted

in Section III-B.
All above methods are evaluated and compared using

datasets: Metro and TaxiSZ. All GCN-based networks are

trained using fine-tuned hyper-parameters. We use five-fold

cross validation for calculating its average performance. All

networks have been trained using 50 epochs under the same

settings with TensorFlow implementations. We use Adam

optimizer [37] to train all networks. For each node, the traf-

fic indirectly related data contains all the features within

one-kilometer radius.

TABLE 2. Overall performance.

B. OVERALL COMPARISONS

Table 2 demonstrates the results of STDF and the base-

lines on the datasets Metro and TaxiSZ. ARIMA gets

the worst results because of its low capacity in handling

spatio-temporal data prediction. GCN get a better perfor-

mance thanARIMA.However, GCN-SDF-logits gets a worse

results compared with GCN only. Although data fusion is

believed to bemore effective than the one without data fusion,

we can see that data fusion by putting more data into one

model may bring negative effects on the model performance.

GCN-SDF-FM and GCN-SDF-logits, which only consider

the spatial property but ignore the temporal dependency,

have much higher RMSE. We call this phenomenon as nega-

tive fusion. GCN-SDF-FM and GCN-STDF-FM get a better

performance than GCN-SDF-logits and GCN-STDF-logits,

which suggests it is better to locate the fusion layer at the

middle layer but not at the logits layer. Our proposed model

GCN-STDF-FM consistently achieves the best performance

on the datasets Metro and TaxiSZ, which shows the effective-

ness of using spatial property and temporal property simulta-

neously. The intuition is that STDF gives themodel the ability

to capture the dynamic traffic demands and relationships

between the node and its surroundings.

C. TRAINING EFFICIENCY AND GENERALIZATION

In order to further investigate the overload caused by adding

more data when predicting, we calculate the parameters size

and training time consumption (second per epoch) as shown

in Table 3. For TaxiSZ dataset, the GCN only model has

1,090,824 parameters and consumes 21.950s seconds per

epoch on the training process. Meanwhile, our model only

consume 64,640 more parameters, i.e., it cause only 5.59%

VOLUME 8, 2020 76639



B. Zhao et al.: STDF in GCNs for Traffic Prediction

TABLE 3. Training efficiency.

of parameters increasing. And the training time of our model

only cause 0.909 seconds longer than GCN per epoch, which

is practical for the real traffic prediction. Similar observations

have been also obtained for Metro dataset. GCN has been

improved with 6.1% lower testing error by using the method

STDF.

D. CASE STUDIES

To understand the performance of STDF, we conduct the

following case studies.

FIGURE 7. Training process.

1) FITTING CAPACITY

Figure 7 demonstrates the comparison of training process of

GCN, GCN-STDF-FM, GCN-STDF-logits, GCN-SDF-FM

and GCN-SDF-logits. We randomly select one of five-fold

cross validation to show the training process. Each network

is trained for 50 epoches. The X axis stands for the epoch

number. and the Y axis is the loss value. Taking the metro

data as an example, we can see that GCN-STDF-FM achieves

the lowest training loss and GCN-SDF-logits with the highest

training loss. Similar phenomenon can be seen at the test-

ing performance demonstrated at Figure 8 corresponding to

Figure 7. It can be clearly observed that STDF provides GCN

both (1) enhanced capacity to fit training data as well as

(2) the generalizability to adapt testing samples.

2) LEARNING RATE

Configuring the learning rate is challenging and time-

consuming. We use five-fold cross validation for search-

ing the best configurations of the learning rate for each

experiment by grid search. We set the learning rate to be

0.00001, 0.0001, 0.001, 0.01, 0.1. As observed from Figure 9,

the test RMSE reaches to the best performance 68.49 when

the learning rate is set to 0.001. The learning rate is fixed to

0.001 in all experiments for STDF.

FIGURE 8. Testing performance.

FIGURE 9. Learning rate curve.

VII. CONCLUSION

In this paper, we propose a novel framework STDF for traf-

fic prediction to handle multi-source data fusion. A split-

transform-merge strategy is used in STDF. We first separate

multi-source data into directly related data and indirectly

related data, which are input to GCN and SETON, corre-

spondingly. The feature transformer module is designed to

extract spatiotemporal representation for traffic indirectly

related data. We get the spatiotemporal representation for

traffic directly related data from the middle layer of GCN.

This is then followed by a fusion module to combine all

features to make final prediction. By using a data sharing

strategy, our model is scalable and the overload caused by

fusing traffic indirectly related data is acceptable in the real

traffic prediction. Experimental results show that our model

achieves the best performance compared with other state-

of-the-art methods on two real world datasets. In summary,

STDF can successfully capture the spatial features changing

over time from multi-domain data, which not only can be

used into traffic prediction, but also can be applied into other

spatiotemporal data prediction. In the future, we will predict

the traffic congestion diffusion via representation learning,

where the representation vectors are extracted from the fusion

layer of STDF. A traffic congestion control policy will be

made according to the traffic congestion diffusion model.
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