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Abstract

Deformable part models have achieved impressive perfor-

mance for object detection, even on difficult image datasets.

This paper explores the generalization of deformable part

models from 2D images to 3D spatiotemporal volumes to

better study their effectiveness for action detection in video.

Actions are treated as spatiotemporal patterns and a de-

formable part model is generated for each action from a

collection of examples. For each action model, the most

discriminative 3D subvolumes are automatically selected

as parts and the spatiotemporal relations between their lo-

cations are learned. By focusing on the most distinctive

parts of each action, our models adapt to intra-class varia-

tion and show robustness to clutter. Extensive experiments

on several video datasets demonstrate the strength of spa-

tiotemporal DPMs for classifying and localizing actions.

1. Introduction

Action recognition in video continues to attract signif-

icant attention from the computer vision community, with

the bulk of the research focusing primarily on whole-clip

video classification, where approaches derived from bag-

of-words dominate [13, 14, 20, 24]. This paper focuses on

the related problem of action detection [7, 21], sometimes

termed action localization [12] or event detection [8, 9],

where the goal is to detect every occurrence of a given ac-

tion within a long video, and to localize each detection both

in space and time. As observed by others [1, 8, 28], the

action detection problem can be viewed as a spatiotempo-

ral generalization of 2D object detection in images; thus,

it is fruitful to study how successful approaches pertaining

to the latter could be extended to the former. Analogous to

the manner in which Ke et al. [8] investigate spatiotemporal

extensions of Viola-Jones [23], we study how the current

state-of-the-art method for object detection in images, the

deformable part model (DPM) [6] should best be general-

ized to spatiotemporal representations (see Fig. 1).

Deformable part models for object detection in images

(a) training (b) testing

Figure 1. An example of “Swing Bench” SDPM (left) and its lo-

calization result in a test video from UCF Sports (right). This

model consists of several parts across three temporal stages (mid-

dle frame of each stage shown in each row). The large yellow

rectangle indicates the area under the root filter and the small red,

magenta, and green ones denote parts. Although trained in videos

with cluttered background at a different scale, the SDPM success-

fully localizes the target action in both space and time.

were proposed by Felzenszwalb et al. [6] and are not de-

tailed here due to space limitations. Niebles et al. explored a

temporal (but not spatiotemporal) extension for video [15].

Two straightforward spatiotemporal generalizations of the

DPM approach to action detection in video would be to: 1)

treat action detection as a set of image-level detection prob-

lems addressed using DPMs, and 2) detect actions as spa-

tiotemporal volumetric patterns that can be captured by a

global template and set of 2D parts, each represented using

the standard histograms of oriented gradients (HOG) fea-

tures [4]. Unfortunately, the first is not sufficiently expres-

sive to distinguish between similar actions and the second is
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(b) Testing: the action is detected with root denoted by yellow rect-

angle and parts indicated by green rectangles.

Figure 2. The SDPM framework retains the overall structure of

DPM but the volumetric parts are organized in temporal stages.

unable to capture the intra-class spatiotemporal variation of

many actions [12]. Clearly, a more sophisticated approach

is warranted and in this paper, we propose a spatiotemporal

deformable part model (SDPM) that stays true to the struc-

ture of the original DPM (see Fig. 2) while generalizing the

parts to capture spatiotemporal structure. In SDPM, both

the global (yellow rectangle) and the part (smaller green

rectangles) templates employ the volumetric HOG3D de-

scriptor [10]. Our automatically selected parts are orga-

nized into multiple temporal stages (seen in Fig. 1) that en-

able SDPM to capture how the appearance of parts changes

through time during an action. A key difference between

SDPM and earlier approaches is that our proposed model

employs volumetric parts that displace in both time and

space; this has important implications for actions that ex-

hibit significant intra-class variation in terms of execution

and also improves performance in clutter.

The primary aim of this paper is to comprehensively

evaluate spatiotemporal extensions of the deformable part

model to understand how well the DPM approach for object

detection generalizes to action detection in video. For this

reason, we restrict ourselves to HOG-like features and re-

sist the temptation of augmenting our method with features

such as person detection, dense flow, or trajectories [2, 24]

or enhancements like the mixture model. Although SDPM

achieves state-of-the-art performance on both controlled

and real-world datasets, we stress that it was not engineered

for that goal. We believe that a hybrid action detection sys-

tem that incorporates our ideas could achieve further gains.

2. Related Work

Bag-of-words representations [13, 14, 20, 24] have

demonstrated excellent results in action recognition. How-

ever, such approaches typically ignore the spatiotemporal

distribution of visual words, preventing localization of ac-

tions within a video. With bag-of-words representations,

Neibles et al. [16] and Wong et al. [27] apply pLSA to cap-

ture the spatiotemporal relationship of visual words. Al-

though some examples of action localization are shown, the

localization is performed in simple or controlled settings

and no quantitative results on action detection are presented.

Earlier work proposes several strategies for template

matching approaches to action localization. Rodriguez et

al. [18] generalize the traditional MACH filter to video and

vector-valued data, and detect actions by analyzing the re-

sponse of such filters. Kläser et al. [11] localize human

actions by a track-aligned HOG3D action representation,

which (unlike our method) requires human detection and

tracking. Ke et al. [9] introduce the notion of parts and

efficiently match the volumetric representation of an event

against oversegmented spatiotemporal video volumes; how-

ever, these parts are manually specified using prior knowl-

edge and exhibit limited robustness to intra-class variation.

There has been recent interest in learning parts directly

from data. Lan et al. [12] detect 2D parts frame-by-frame

followed by a CRF with tracking constraints. Brendel and

Todorovic [2] construct spatiotemporal graphs over tubes

to represent the structure of primitive actions. Raptis et

al. [17] embed parts obtained by grouping trajectories into

graphical model. However, SDPM differs from these in

the following four respects. First, SDPM includes an ex-

plicit model to capture intra-class variation as a deformable

configuration of parts. By contrast, the model in [2] is not

flexible enough to handle speed variation within an action.

Second, both the global template and set of part templates

in SDPM are spatiotemporal volumes, and we search for

the best fit across scale, space and time. As a 3D subvol-

ume, each part jointly considers appearance and motion in-

formation spanning several frames, which is better suited

for actions than 2D parts in a single frame [12] that pri-

marily capture pose. Third, we employ a dense scanning

approach that matches parts to a large state space, avoid-

ing the potential errors caused by hard decisions on video

segmentation, which are then used for matching parts [17].

Finally, we focus explicitly on demonstrating the effective-

ness of action detection within a DPM framework, without



resorting to global bag-of-words information [12, 17], tra-

jectories [17] or expensive video segmentation [2, 9].

3. Generalizing DPM from 2D to 3D

Generalizing deformable part models from 2D images

to 3D spatiotemporal volumes involves some subtleties that

stem from the inherent asymmetry between space and time

that is often ignored by volumetric approaches. Briefly:

1) Perspective effects, which cause large variation in ob-

served object/action size do not affect the temporal dimen-

sion; similarly, viewpoint changes affect the spatial config-

uration of parts while leaving their temporal orderings un-

changed. 2) The units of space (pixels) and time (frames) in

a video are different and should not be treated interchange-

ably. Additionally, we make several observations that are

specific to deformable part models.

First, consider the difference between a bounding box

circumscribing an object in a 2D image and the correspond-

ing cuboid enclosing an action in a video. In the former,

unless the object is unusually shaped or wiry, the majority

of pixels contained in the bounding box correspond to the

object. By contrast, for actions — particularly those that

involve whole-body translation, such as walking, or large

limb articulations such as kicking or waving — the bound-

ing volume is primarily composed of background pixels.

This is because enclosing the set of pixels swept during even

a single cycle of the action requires a large spatiotemporal

box (see Fig. 3). The immediate consequence of this phe-

nomenon, as confirmed in our experiments, is that a detector

without parts (solely using the root filter on the enclosing

volume) is no longer competitive. Finding discriminative

parts is thus more important for action detection than learn-

ing the analogous parts for DPMs for 2D objects.

To quantify the severity of this effect, we analyze the

masks in the Weizmann dataset and see that for nine out of

ten actions, the percentage of pixels occupied by the actor in

a box bounding a single cyle of the action is between 18%

to 30%; the highest is ‘pjump’ with 35.7%. These are all

dramatically smaller than 80%, which is the fraction of the

bounding box image occupied by object parts in DPM [6].

This observation drives our decision during training to se-

lect a set of parts such that in total they occupy 50% of the

action cycle volume.1 Naively using the same settings as

DPM would force SDPM to form parts from background or

unreliable regions, impairing its overall accuracy.

Second, in the construction of spatiotemporal feature

pyramids that enable efficient search across scale, we treat

space and time differently. This is because, unlike its size,

the duration of an action does not change with its distance

1Since SDPM parts are themselves rigid cuboids that contain back-

ground pixels, the total volume they occupy in the bounding volume should

be higher than the fraction of pixels that correspond solely to the actor.

from the camera. The variation in action duration is prin-

cipally caused by differences between actors, is relatively

small and better handled by shifting parts. Thus, our feature

pyramids employ multiple levels in space but not in time.

Finally, the 2D HOG features in the original DPM must

be replaced with their volumetric counterparts. To maxi-

mize reproducibility, rather than proposing our own gener-

alization of HOG, we employ Kläser et al.’s HOG3D [10].

4. Deformable Part Models

Inspired by the 2D models in [6], we propose a spa-

tiotemporal model with deformable parts for action detec-

tion. The model we employ consists of a root filter F0

and several part models. Each part model is defined by a

part filter Fi, an anchor position (xi,yi,ti) and coefficients

of deformation cost di = [di1, di2, di3, di4, di5, di6]. Here

i ∈ (1, N), where N is the number of parts.

4.1. HOG3D feature descriptor

Kläser et al. propose the HOG3D [10] descriptor based

on a histogram of oriented spatiotemporal gradients as a

volumetric generalization of the popular HOG [4] descrip-

tor. The effectiveness of HOG3D as a feature is evidenced

in [25]. We briefly summarize the HOG3D descriptor that

we use to build fixed-length representations of each volume,

along with our minor modifications.

We divide each video volume into a fixed number of

non-overlapping cuboid cells. First, gradients are computed

along x, y and t directions at every pixel. For each pixel,

gradient orientation is quantized to a 20-dimensional vector

by projecting the (dx, dy, dt) vector on to a regular icosa-

hedron with the gradient magnitude as its weight. Then for

each cell, a 3D Gaussian filter (σ is determined by the size

of cell) placed at the centre of the cell is used to smooth the

weighted gradients. These gradients are then accumulated

into histograms with 20 bins (corresponding to the 3D gra-

dient directions defined by the icosahedron) and normalized

using L2 norm within each cell. The final descriptor is ob-

tained by concatenating the histograms of all cells, which

is different with the interest point based HOG3D descriptor

in [10]. Thus, the dimension of the computed descriptor is

determined by the number of cells, but is independent of the

dimensions of the input volume.

This spatiotemporal feature jointly encodes both appear-

ance and motion information, but is invariant to changes

in illumination and robust to small deformations. During

training, we extract HOG3D features over an action cycle

volume to train root filter and part filters. During detection,

HOG3D features of the whole test video volume are used to

form feature maps and construct a feature pyramid to enable

efficient search through scale and spatiotemporal location.



4.2. Root filter

We follow the overall DPM training paradigm, as influ-

enced by the discussion in Section 3: During training, for

positive instances, from each video we select a single box

enclosing one cycle of the given action. Volumes of other

actions are treated as negative examples. These negatives

are supplemented with random volumes drawn at different

scales from videos that do not contain the given action to

help better discriminate the given action from background.

The root filter captures the overall information of the

action cycle and is obtained by applying an SVM on the

HOG3D features of the action cycle volume. How to divide

the action volume is important for good performance. Too

few cells will decrease the distinctiveness of the feature in

each cell. On the other hand, dividing the volume into too

many cells, means that each cell cannot capture enough ap-

pearance or motion information since it contains too few

pixels or frames. In our experiments, to train the root filter,

we have experimentally determined that dividing the spa-

tial extent of an action cycle volume into 3×3 works well.

However, the temporal division is critical since cycles for

different actions may vary from only 6 frames (short ac-

tions) to more than 30 frames (long actions). This is an in-

stance of the asymmetry between space and time discussed

in Section 3 since the observed spatial extent of an action

varies greatly with camera pose but is similar across actions,

while temporal durations are invariant to camera pose but

very dependent on the type of action.2 Dividing all of them

into the same number of temporal stages would, of course,

be too brittle. Thus, the number of stages T is determined

automatically for each action type according to its distribu-

tion of durations computed over its positive examples, such

that each stage of the model contains 5–10 frames. In sum-

mary, we adopt a 3×3×T scheme and the resulting root

filter F0 is a vector with 3×3×T×20 weights. Fig. 3 shows

an example root filter with 3×3×3 cells.

4.3. Deformable parts

As discussed in Section 3 and seen in Fig. 3(a), only a

small fraction of the pixels in a bounding action volume

correspond to the actor. The majority of pixels correspond

to background and can detrimentally impact detection ac-

curacy, particularly in dynamic environments with cluttered

backgrounds. As confirmed by our experiments, these is-

sues are more serious in volumetric action detection than

in images, so the role of automatically learned deformable

parts in SDPM to address them is consequently crucial.

The same training examples, including random nega-

tives, and the same number of temporal stages T is em-

2As observed by [19], the correlation between action type and duration

can cause researchers to overestimate the accuracy of action recognition

when testing on temporally segmented video, since features inadvertently

encode duration. This supports our decision to detect actions in raw video.
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Figure 3. Example of computing HOG3D features for root filter.

Left: 12 consecutive frames consisting one cycle of walking (an-

notations in yellow). Right: spatial area corresponding to the

bounding volume, which (for this action type) is divided into 3

cells in x (yellow), 3 cells in y (red), 3 cells in t (green) to com-

pute the HOG3D features for the root filter. The resulting feature

descriptor is a 3×3×3×20 vector. (Part filters not shown here.)

ployed for training part models. Our experiments confirm

that extracting HOG3D features for part models at twice

the resolution and with more cells in space (but not time)

enables the learned parts to capture important details; this

is consistent with Felzenszwalb et al.’s observation [6] for

DPMs in images. Analogous to the parts in DPM, we allow

the parts selected by SDPM to overlap in space.

After applying SVM to the extracted features, subvol-

umes with higher weights, which means they are more dis-

criminative for the given action type, are selected as parts,

while those with lower weights are ignored. In our setting,

the action volume is divided into 12×12×T cells to extract

HOG3D features and each part is a subvolume occupying

3×3×1 cells. Then, we greedily select the N parts with the

highest energy such that their union fills 50% of the action

cycle volume. Here we define energy as the sum of positive

weights in all cells of a subvolume. The weights in a sub-

volume are cleared after that subvolume has been selected

as a part, and this process continues until all N parts are

determined.

In our model, each part represents a spatiotemporal vol-

ume. It captures both appearance and motion information

spanning several frames. Weights for each part filter are

initialized by weights from corresponding cells forming this

part. So each part filter is a vector with 3×3×1×20 weights.

In addition, an anchor position (xi,yi,ti) for the ith part is

determined, where xi, yi and ti are indices of the cell in the

middle of the ith part. Anchor positions define spatiotem-

poral configuration of parts. For example, xi < xj means

that the ith part occurs to the left of the jth part, and ti < tj
means that the ith part occurs before the jth part in time.

Additionally, to address the high degree of intra-class

variability in each action type, we allow each part of the

model to shift within a certain spatiotemporal region. The

cost for the ith part’s deformation is a quadratic function of

the distance between the placement (x′
i, y

′
i, t

′
i) and the an-



chor position (xi, yi, ti): ε(i,Xi) = di ·X
T
i , where Xi =

[|x′
i−xi|, |y

′
i− yi|, |t

′
i− ti|, |x

′
i−xi|

2, |y′i− yi|
2, |t′i− ti|

2]
records the displacement of the ith part. di is the learned

coefficient of deformation cost for the ith part, and is ini-

tialized to [0, 0, 0, 0.1, 0.1, 0.1].
Fig. 4 illustrates an example model for “lifting” trained

on UCF Sports (on clean background for clarity). An action

cycle is divided into three temporal stages, with each stage

containing several frames. In this case, HOG3D features for

root filter are computed by dividing the action cycle volume

into 3×3×3 cells. (a), (b) and (c) show middle frames of

the first, second and third stage in time, respectively. The

large yellow rectangle indicates the region covered by the

root filter; the small red, magenta, and green ones are the

selected parts in each temporal stage. Each part’s index is

shown at the top left corner of its corresponding rectangle.

A low index denotes that the part was selected early and is

therefore more discriminative. We observe that our learned

parts cover the essential portions of the action, both in terms

of appearance and motion, and that SDPM eliminates the

majority of the background. Crucially, these results hold in

complex scenes (e.g., Fig. 1) because the background clutter

is not consistently discriminative for the given action.

4.4. Model update using latent SVM

After obtaining our initial model, we train it using latent

SVM with hard negative mining, as in a standard DPM. The

exact position of the ith part (x′
i, y

′
i, t

′
i) is treated as latent

information. Thus, filters and deformation cost coefficients

di are updated to better capture action characteristics.

5. Action detection with SDPM

Given a test video volume, we build a spatiotemporal

feature pyramid by computing HOG3D features at differ-

ent scales, enabling SDPM to efficiently evaluate models in

scale, space and time. As discussed in Section 3, the pyra-

mid has multiple scales in space but only one in time. We

denote the HOG3D features at level l of the pyramid as φ(l).
We employ a sliding window approach for template

matching during detection (where the sliding window is ac-

tually a sliding subvolume). The aspect ratio of the tem-

plate is determined by the mean of aspect ratios of positive

training examples. Score maps for root and part filters are

computed at every level of the feature pyramid using tem-

plate matching. For level l, the score map S(l) of each filter

can be obtained by correlation of filter F with features of

the test video volume φ(l),

S(l, i, j, k) =
∑

m,n,p

F (i, j, k) φ(i+m, j + n, k + p, l).

(1)

At level l in the feature pyramid, the score of a detection

volume centered at (x, y, t) is the sum of the score of the

root filter on this volume and the scores from each part filter

on the best possible subvolume:

score(x, y, t, l) = F0 · α(x, y, t, l) +
∑

1≤i≤n

max
(x′,y′,t′)∈Z

[Fi · β(x
′
i, y

′
i, t

′
i, l)− ε(i,Xi)] , (2)

where F0 is the root filter and Fi are part filters. α(x, y, t, l)
and β(x′, y′, t′, l) are features of a 3×3×T volume cen-

tered at (x, y, t) and 3×3×1 volume centered at part loca-

tion (x′
i, y

′
i, t

′
i) respectively, at level l of the feature pyra-

mid. Z is the set of all possible part locations and ε(i,Xi) is

the corresponding deformation cost. We choose the highest

score from all possible placements in the detection volume

as the score of each part model, and for each placement, the

score is computed by the filter response minus deformation

cost. If a detection volume scores above a threshold, then

that action is detected at the given spatiotemporal location.

We perform a scanning search with a step stride equal to

the cell size. This strikes an effective balance between ex-

haustive search and computational efficiency, covering the

target video volume with sufficient spatiotemporal overlap.

As with DPM, our root filter expresses the overall struc-

ture of the action while part filters capture the finer details.

The scores of part filters are computed with different cell

size for HOG3D features and at twice the resolution com-

pared with the root filter. This combination of root and part

filters ensures good detection performance. In experiments,

we observe that the peak of score map obtained by combin-

ing root score and part scores is more distinct, stable and

accurate than that of only root score map. Since the parts

can ignore the background pixels in the bounding volume

and focus on the distinctive aspects of the given action, the

part-based SDPM is significantly more effective.

6. Experimental Methodology and Results

Since most of previously published results on actions in

video are on whole-clip recognition rather than localiza-

tion, we choose to evaluate SDPM using both criteria, while

stressing that the former is not the focus of our work. Where

possible, we also present direct comparisons to published

localization results on standard datasets. More importantly,

since this paper’s primary goal is to study the correct way to

generalize DPM to spatiotemporal settings, we stress repro-

ducibility by employing standard features, eschewing pa-

rameter tweaking and making our source code available.3

We present evaluations on three standard datasets, Weiz-

mann, UCF Sports and MSR-II. The main advantage of the

first is that the controlled conditions under which actions are

performed and the availability of pixel-level actor masks en-

able us to directly assess the impact of design choices and

3SDPM: http://www.cs.ucf.edu/˜ytian/sdpm.html

http://www.cs.ucf.edu/~ytian/sdpm.html
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Figure 4. SDPM for “lifting” in UCF Sports, with parts learned in each of the temporal stages. There are in total 24 parts for this SDPM

and the index of each part is indicated at the left top corner of corresponding small rectangle. See Fig. 1 for example in clutter.

better understand how SDPM root and part filters work in

spatiotemporal volumes. SDPM achieves 100% recogni-

tion (without use of masks) and localizes every action oc-

currence correctly, which is an excellent sanity check.

The second dataset is much more challenging and is

drawn from broadcast videos with realistic actions per-

formed in dynamic, cluttered environments. Our results on

UCF Sports demonstrate that SDPM achieves state-of-the-

art localization in challenging video.

The third dataset contains videos recorded in complex

environments and is particularly well suited for cross-

dataset experiments. We evaluate action detection on MSR-

II Dataset using SDPMs trained solely on the KTH Dataset.

Our results on MSR-II confirm that parts are critical for ac-

tion detection in crowded and complex scenes.

For action detection (spatiotemporal localization), we

employ the usual “intersection-over-union” criterion, gener-

ate ROC curves when overlap criterion equals 0.2 and also

summarize ROC curves with different overlap criterions by

the area-under-curve (AUC) measure when necessary for

space constraints. For MSR-II, we show precision-recall

curves following [3].

For action recognition (whole clip, forced-choice classi-

fication), we apply an SDPM for each action class to each

clip and assign the clip to that class with the highest number

of detections. We provide action recognition results mainly

to show that SDPM is also competitive on this task, even

though detection is our primary goal.

6.1. Experiments on Weizmann Dataset

The Weizmann dataset [1] is a popular action dataset

with nine people performing ten actions. This dataset is

considered easy because the actor in each clip is filmed

against a static background, with little variation in view-

point, scale and illumination. We use it primarily to under-

stand the relative contribution of SDPM root vs. part filters.

Weizmann does not come with occurrence-level annota-

tions so we annotate a single action cycle from each video

clip to provide positive training instances; as usual, nega-

tives include such instances from other classes augmented

with randomly-sampled subvolumes from other classes.

For recognition, we follow the experimental methodol-

ogy from [1]. SDPM achieves 100% recognition accuracy.

While perfect recognition has also recently been achieved

by others (e.g., [5, 22, 26]), these all perform recognition

through silhouettes. To the best of our knowledge, we are

the first to achieve 100% recognition on Weizmann in a

detection-based framework that operates only on raw video.

When SDPM is learned using root filter alone, recogni-

tion accuracy drops to 92.4%, confirming our hypothesis

in Sec. 3 that parts are important, even under “easy” condi-

tions. The feature pyramid does not contribute much on this

dataset since actions are roughly at the same scale.

On detection, SDPM also achieves perfect results, cor-

rectly localizing every occurrence with no false positives.

But, SDPM without parts performs poorly: only 66.7% of

occurrences are correctly localized! Table 1 compares the

detection rate for SDPM with and without parts.

Table 1. Detection rate on Weizmann, showing impact of parts.

bend jack jump pjump run side skip walk wav1 wav2

SDPM 100 100 100 100 100 100 100 100 100 100

w/o parts 100 75 43.8 78.6 80 95.7 27.3 67.5 85 52.9

6.2. Experiments on UCF Sports Dataset

The UCF Sports Dataset [18] consists of videos from

sports broadcasts, with a total of 150 videos from 10 ac-

tion classes, such as golf, lifting and running. Videos are

captured in realistic scenarios with complex and cluttered

background, and actions exhibit significant intra-class vari-

ation. From the provided frame-level annotations, we create

a new large bounding volume that circumscribes all of the

annotations for a given action cycle. We train the SDPM

using these bounding boxes.

Following Lan et al.’s experimental methodology [12],

we split the dataset into disjoint training and testing sets.

For action recognition (not our primary goal), SDPM’s

forced-choice classification accuracy, averaged over action

classes is 75.2%, which is between 73.1% from [12] and

79.4% in [17]. Our recognition results are competitive,

considering that we restrict ourselves to HOG-like features

and do not employ trajectories or bag-of-words [12, 17].

When SDPM is trained without parts, the recognition ac-
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Figure 5. Direct comparisons on UCF Sports vs. [12, 17]. (a) classification; (b) detection, ROC at overlap threshold of θ = 0.2; (c)

detection, AUC for θ from 0.1 to 0.6. The black solid curve shows the average performance of SDPM and the black dotted curve shows

the average performance of [12]. Other curves show SDPM results for each action. (Best viewed in color.)

curacy drops to 64.9%; the drop of 10.3% is greater than

the 7.6% observed on Weizmann, supporting our hypothe-

sis that parts are more important in complex videos. The

per-class classification accuracy comparison among all of

these methods is summarized in Fig. 5(a).

We evaluate action localization using the standard

“intersection-over-union” measure. Following [12], an ac-

tion occurrence is counted as correct when the measure ex-

ceeds 0.2 and the predicted label matches. Fig. 5(b) shows

the ROC curve for overlap score of 0.2; Fig. 5(c) summa-

rizes results (as AUC) for overlap scores ranging from 0.1

to 0.6. In direct comparisons, SDPM clearly outperforms

Lan et al. [12] on action detection; we are unable to directly

compare detection accuracy against Raptis et al. [17] be-

cause they do not provide bounding-box level evaluations.

Fig. 6 shows several sample detections from UCF Sports

and MSR-II datasets in a diverse set of complex scenes.

6.3. Experiments on MSRII Dataset

MSR-II [3] includes 54 video sequences recorded in

crowded and complex scenes, with each video containing

several instances of boxing, handclapping and handwaving.

Following the cross-dataset paradigm in [3], we train on ac-

tions from KTH and test on MSR-II. For each model, the

training set consists of a single action cycle from each KTH

clip (positives) and instances from the other two classes

(negatives). Fig 7 shows a direct comparison4 between

SDPM and Cao et al. [3]. Surprisingly, SDPM outper-

forms [3] even though we perform no explicit domain adap-

tation. We attribute this robustness to SDPM’s ability to

capture the intrinsic spatiotemporal structure of actions.

7. Conclusion

We present SDPM for action detection by extending de-

formable part models from 2D images to 3D spatiotemporal

4We note that the description of precision and recall in [3] is reversed.

In our evaluation, we employ the correct expression.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Detection examples on UCF Sports and MSR-II. (a)–(d)

are examples with lifting, running, horse riding and golf SDPMs,

respectively. (e) and (f) are examples with handwaving and boxing

SDPMs. Actions are detected correctly even in complex scenarios.

volumes. Naive approaches to generalizing DPMs fail be-

cause the fraction of discriminative pixels in action volumes

is fewer than that in corresponding 2D bounding boxes. We

show that SDPM parts are critical, both to focus on im-

portant regions in the volume as well as to handle the sig-

nificant intra-class variation in real-world actions. We are

the first to demonstrate perfect recognition and localization

results on Weizmann in an unconstrained detection setting

and achieve state-of-the-art recognition and localization re-

sults on both UCF Sports as well as MSR-II datasets. We

conclusively demonstrate that DPMs (when extended cor-

rectly) can achieve state-of-the-art results in video, even

with simple HOG-like features. A natural direction for



(a) (b) (c)

Figure 7. Action detection on MSR-II. SDPM outperforms model w/o parts as well as baselines in [3]. Comparison of average precision

by SDPM and the best baseline in [3]: 0.3886 vs. 0.1748 (Boxing), 0.2391 vs. 0.1316 (handclapping), 0.4470 vs. 0.2671 (handwaving).

future work would be to integrate the SDPM framework

with video-specific features; our open-source implementa-

tion will enable others to effectively explore such directions.
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