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In this article, we report that usual multilayer mirror configurations to focus attosecond pulses generate geo-
metric aberrations and can significantly stretch pulses. The numerical simulations show that the effects can be
strong enough to delay some parts of the pulses of an attosecond pulse train and make them interfere with the
next pulses of the train. The influence of the numerical aperture on the pulse duration is also studied, showing
that such effects can occur even with very low numerical apertures. © 2010 Optical Society of America

OCIS codes: 320.0320, 340.7480, 080.1010.

1. INTRODUCTION

For a decade, it has been possible to generate attosecond
pulses. Such pulses are produced by the interaction of an
infrared femtosecond pulse with a rare gas jet [1,2], a mo-
lecular gas jet [3], or even a solid target [4], which gener-
ates high harmonics of the fundamental infrared fre-
quency in the extreme ultraviolet (EUV) spectral range.
This is equivalent to a chirped pulse train in time [5,6].
But it is also possible to generate single attosecond pulses
[7]. The current pulse duration record is 80 as [8] and has
been obtained by correcting the chirped spectral phase of
the pulses thanks to the natural dispersion of a metallic
foil. The possibility of correcting the spectral phase with
inversely chirped multilayer mirrors [9,10] or with grat-
ings compressors has also been demonstrated [11].

But, indeed, the phase difference between spectral com-
ponents of an ultrashort pulse varies in space. For that
reason, the pulse shape and the pulse duration may not
be the same at every point in space, especially when fo-
cusing pulses with aberrating optics. Generally in order
to manipulate attosecond pulses, on- and off-axis para-
bolic and spherical mirrors are used [5,12].

Consequently, they introduce spherical aberration,
coma, and astigmatism which could have a dramatic im-
pact on the pulse duration. Indeed a 100 as pulse is 30 nm
thick; that is to say a variation greater than 30 nm of the
optical paths is sufficient to significantly stretch the at-
tosecond pulse. The influence of aberrations on ultrashort
pulses has already been studied for femtosecond pulses
not only theoretically [13–16] but also experimentally
[17]. But since optics used for visible femtosecond pulses
is usually on-axis optics, spherical aberration and chro-
matism have been studied [15].

Moreover, currently there is no detector able to spa-
tiotemporally characterize attosecond pulses. Indeed, to
measure the pulse durations, current techniques are
implementing time of flight (TOF) spectrometers, detect-
ing the electrons coming from the ionization of a rare gas

jet in which the pulses are focused [5,12]. Since the inter-
action in the gas is not spatially resolved, the pulses can-
not be spatiotemporally characterized. In other words, the
effects of geometric aberrations on attosecond pulses can
be very important even for usual conjugations and, cur-
rently, their influence on the pulse duration is difficult to
study experimentally.

In this paper, we propose a theoretical study of such ef-
fects. First of all, we describe the theoretical model used
to perform the numerical simulations. Then we present
the results obtained by using on- and off-axis parabolic
and spherical multilayer mirrors, investigating the de-
pendence of the pulse duration on the numerical aperture
(NA).

2. THEORETICAL MODEL

We consider the optical layout presented in Fig. 1. In or-
der to study the influence of geometric aberrations in a
chosen configuration, we developed our own ray-tracing
software. But around the focal point, it is not possible to
describe attosecond pulses with geometric optics because
of interferences and diffraction effects. Our solution is to
use the ray tracing in order to describe the electric field in
a deeply defocused plane, called integration plane in Fig.
1, and where diffraction effects are negligible; then we
calculate the attosecond pulse near the focal point by re-
solving the Rayleigh–Sommerfeld integral [18].

A. Source
The EUV electric field emitted by the source is spatially
Gaussian [19]. Since the optics is always placed at a dis-
tance from the attosecond pulse source far bigger than the
Rayleigh range for all the energies of the spectrum, we
can consider that the intensity distribution on the mirror
is a Gaussian angular distribution generated by a source
point S (see Fig. 1). Consequently the intensity distribu-
tion can be described by Eq. (1) as a function of the posi-
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tion z along the beam propagation axis, the angle � with
this axis, and the wavelength �,

I��,z,�� � I0���
w0

2

z2�0���2
exp� − �2

2�0���2� , �1�

where �0��� is the divergence of the EUV beam and is
equal to � /w0�, with w0 being the beam waist, and I0��� is
the EUV spectrum of the source.

B. Mirror
Let M�xmirror ,ymirror ,zmirror� be the current point on the
mirror surface. The mirror has a given shape and a given
coating, the complex reflectivity of which (reflected ampli-
tude and reflected phase), called r�S ,M ,��, depends on
the energy and on the angle of incidence. The reflectivity
also depends on polarization, but in this work we only
consider one component of the electric field, which is as-
sumed to be one of the eigenpolarizations of the reflectiv-
ity. Each ray traced from the source to the mirror is as-
signed an elementary area on the mirror.

Knowing the local normal to the mirror, we can deter-
mine the solid angle ���M� under which that area is seen
from the source. It allows us to calculate the flux Fr�M ,��
on the mirror surface [see Eq. (2)],

Fr�M,�� = I�S,M,�����M��r�S,M,���2. �2�

The ray tracing allows us to know the coordinates of the
impact point P�xplane ,yplane ,zplane� of the reflected ray at
point M with the integration plane. Then we obtain the
scalar electric field E�P ,�� in this plane [see Eq. (3)],

E�P,�� = �Fr�M,���1/2exp	i�source��� + i�mirror�P,��

+
2i�

�
��SM� + �MP��
 , �3�

where �source��� is the spectral phase of the EUV electric
field emitted by the source point S, �mirror�P ,�� stands for
the phase reflected by the mirror, and �SM�+ �MP� repre-
sents the geometric optical path of the ray reflected at
point M and impacting at point P on the integration
plane.

C. Detector
In order to simulate the electric field of the pulse nearby
the focal point P��xdetector ,ydetector ,zdetector�, we calculate
the Rayleigh–Sommerfeld integral of the electric field in

Fig. 1. (Color online) Reflection of the EUV beam on a mirror.
The ray-tracing software allows us to geometrically describe the
attosecond pulse in the integration plane.

Fig. 2. (Color online) Spectral amplitude (a) of a single attosec-
ond pulse and (b) of an attosecond pulse train. The reflectivity
spectrum of the mirror is shown in dashed line.
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the integration plane E�P ,��. And finally Eq. (4) gives us
the electric field nearby the focal point,

E�P�,�� �

−
i

�
�

−�

+��
−�

+�

E�P,��

exp�2i�

�
PP�

PP�
cos�	�P,P���dSplane,

�4�

where 	�P ,P�� is the angle between the propagation axis
and the PP� line. Note that PP� is an algebraic distance
which becomes negative when P is placed beyond P� in
the way of the propagation of the beam. We can consider

that cos�	�P ,P��� is equal to 1 when the scalar approxima-
tion is verified. Finally we calculate the square modulus
of the inverse Fourier transform of the previous electric
field in order to obtain the spatiotemporal intensity dis-
tribution of the pulse [see Eq. (5)],

I�P�,t� = �FT−1�E�P�,
���2, �5�

where 
 is the optical frequency and is equal to c /�.

3. CONDITIONS OF THE SIMULATIONS

A. Source
The EUV radiation is generated by the interaction be-
tween an infrared femtosecond pulse and a neon gas jet.
The EUV typical spectral amplitude is

• either Gaussian centered at 75 eV with a full width
at half-maximum (FWHM) of 30 eV, when a single at-
tosecond pulse is emitted [8] [see Fig. 2(a)],

• or a high harmonic spectral amplitude, when an at-
tosecond pulse train is generated [see Fig. 2(b)]. In this
case, since high harmonics are generated in a rare gas jet,
only odd harmonics are emitted. Moreover, considering
the initial femtosecond pulse is centered at 800 nm, the
interval between two consecutive pulses of the train is
about 1.3 fs [5].

Moreover, since we are considering short trajectories,
attosecond pulses are positively chirped [6] and their
group delay dispersion is about 3000 as2 / rad, which is a
typical value.

B. Mirror
In order to efficiently reflect attosecond pulses, we need to
deposit a multilayer stack on the mirror, the reflected

Fig. 3. (Color online) Radial intensity distribution of (a) a single attosecond pulse and (b) an attosecond pulse train focused by an on-
axis parabolic mirror.

Fig. 4. (Color online) Radial intensity distribution of a single at-
tosecond pulse focused by an on-axis parabolic mirror 25 �m af-
ter the paraxial focus.
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spectral phase of which has to be as linear as possible
over a large bandwidth with a constant reflectivity. Such
multilayer mirrors exist near normal incidence and for
the 35–75 eV spectral range, as described in Fig. 5 of [20].
But the reflected phase of this mirror is not perfectly lin-
ear over the whole bandwidth so that such a stack may
weakly stretch the reflected pulse. In the case of [20], we
estimate such a stretch to a few tens of percents on the
FWHM of the pulse.

But the point of this article being only to study the ef-
fects of geometric aberrations, we consider that the mir-
ror has an ideal reflectivity which is constant between 55
and 95 eV and null everywhere else. Moreover the re-
flected phase is linear on the whole bandwidth, with the
result that the mirror will not modify the initial chirp of
the pulse. In the following situations, the angles of inci-
dence of the rays on the mirror will always be lower than
4°. Consequently it is reasonable to consider that the re-
flectivity and the reflected phase of the mirror will not
change on this angular range [21].

C. Detector
In order to simulate the evolution of the pulse in the
whole photoelectron collection volume in the TOF, typi-
cally 300 �m long area, we calculate the spatiotemporal
profile of the pulses every 50 �m over a 300 �m range
centered on the paraxial focus.

4. RESULTS

A. On-Axis Parabolic Mirror
Let us consider an on-axis parabolic mirror with a focal
length equal to 100 mm. The mirror is placed 3 m behind
the source and refocuses the beam into the rare gas jet of
the TOF. The FWHM of the polychromatic Gaussian EUV

spot on the mirror is about 8.4 mm. Since the problem has
a symmetry of revolution, calculating the radial intensity
distribution in a plane is sufficient to perfectly know the
whole pulse. In such a conjugation, a parabolic mirror is
not very aberrating and the pulses are almost diffraction
limited. Indeed we can clearly see in Fig. 3 that the pulse
fronts are spherical.

But if we wanted to have a perfectly stigmatic conjuga-
tion, we would have to put the source at infinity, which is
not rigorously the case. Indeed there is a small spherical
aberration which is responsible for the intensity fluctua-
tions visible on the boundaries of the pulse fronts 50 �m
after the paraxial focus. The simulation of the pulse
25 �m after the paraxial focus highlights such an influ-
ence of spherical aberration (see Fig. 4). Paraxial rays
which have already been focused at the paraxial focus are
responsible for the main diverging part of the pulse. But
the second part of the pulse which is propagating before
the first one is generated by marginal rays coming from
the boundaries of the mirror. Indeed their optical paths
are shorter than the paraxial rays’, with the result that
the marginal part of the pulse is ahead of the paraxial
one.

B. On-Axis Spherical Mirror
Let us replace the previous parabolic mirror with a
spherical one. This conjugation is not stigmatic since the
mirror adds a significant spherical aberration (see Fig. 5).
Whereas spherical aberration was very small when using
a parabolic mirror, this time the influence of spherical ab-
erration is very important no matter what is the position
in the rare gas jet. Especially 150 �m before the paraxial
focus, the pulse is already composed of two main parts
due to the different focal points for paraxial and marginal
rays. Such a pulse usually called a Bessel-like pulse is a

Fig. 5. (Color online) Radial intensity distribution nearby the paraxial focus when using an on-axis spherical mirror. We consider (a) a
single attosecond pulse and (b) an attosecond pulse train.
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typical effect of spherical aberration on ultrashort pulses
and is quite well-known with visible femtosecond pulses
[15–17].

Concerning the reflection of an attosecond pulse train,
with our realistic assumption of pulses spaced by 1.3 fs,
this effect is so important that the paraxial part of one
pulse over-passes the marginal part of the previous one.
Indeed we can see interferences between two consecutive
pulses in Fig. 5(b). These interferences disappear 50 �m

later since the marginal and paraxial parts of each at-
tosecond pulse of the train come closer. At the paraxial fo-
cus, the beam size is the smallest but the lateral part of
the pulse is slightly delayed with respect to the on-axis
part of the pulse. After the paraxial focus, the pulse front
is quickly diverging without generating any interference
effects between different attosecond pulses of the train.
This clearly means that interference effects appear if the
pulse duration at a given point exceeds 1.3 fs.

Fig. 6. (Color online) Intensity distribution in two orthogonal planes when studying either (a) a single attosecond pulse or (b) an at-
tosecond pulse train after their reflection on a 1° field angle parabolic mirror. The bold lateral lines on each image indicate the position
of the corresponding orthogonal section of the pulse.
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C. Off-Axis Parabolic Mirror
Let us now study off-axis mirrors. We consider a 1° field
angle parabolic mirror. This time, in addition to a small
spherical aberration, we now add a significant coma aber-
ration and a very small astigmatism. Since the problem
does not have any symmetry of revolution anymore, we
have to study the pulses in two orthogonal planes in order
to properly describe them. First of all, we can see in Fig. 6
that the effect of coma on pulses is a far cry from spheri-
cal aberration. Indeed coma generates V-shaped pulses
made of two parts which join together to create the most
intense part of the pulse [16].

When considering an attosecond pulse train, we can see
interference effects between two consecutive pulses at
several positions, especially between �100 and −50 �m.
Consequently we simulate at −75 �m the pulses not only
in two orthogonal planes but also in the whole volume in
order to resolve the complete fringe system. In Fig. 7(b),
we can see on the side view some dark spots at X

=4.3 �m where two consecutive pulses are interfering. On
the front view, we see that the fringes are well contrasted
and are located on a bow.

D. Off-Axis Spherical Mirror
In our last case, we replace the previous parabolic mirror
with the spherical one with the result that we still have a
lot of comas, but we add a significant spherical aberra-
tion. Consequently, calculations show pulses which are
quite similar to those obtained when considering an on-
axis spherical mirror, especially for the Y sections (see
Fig. 8). But the influence of coma is still important and is
clearly visible on the X sections since coma removes the
symmetry of revolution of the pulse by making it have a V
shape.

Concerning interferences between consecutive pulses,
we can see that they are particularly important in this
configuration 150 �m before the paraxial focus. Indeed,
Fig. 8(b) shows us at least two fringe systems. In order to
study more efficiently these interferences, we perform the
same kind of calculations as previously. We calculate the
three-dimensional (3D) intensity distribution at this posi-
tion. On the side view of Fig. 9(b), we can see in fact four
series of aligned dark spots which are standing for the

four fringe systems. This conclusion is confirmed in Fig.
10 which shows that the four fringe systems are equally
spaced by about 3 �m. Moreover we can see on the front
view of Fig. 9(b) that these interferences are located on
bows. What is remarkable on these fringe systems is that
they are all corresponding to different kinds of interfer-
ences. More precisely, they are always generated by inter-
ferences between two pulses but these two pulses are
varying depending on the fringe systems. In fact, starting
from the top of Fig. 10:

• the first system corresponds to interferences be-
tween two consecutive pulses,

• the second one corresponds to interferences between
two pulses spaced by one pulse in the train,

• the third one corresponds to interferences between
two pulses spaced by two pulses in the train, and

• finally the fourth fringe system corresponds to inter-
ferences between two pulses spaced by three pulses in the
train.

E. Influence of the Numerical Aperture on the Pulse
Duration
When studying geometric aberrations, the key parameter
is the image NA. A small increase in this quantity can sig-
nificantly increase the influence of aberrations. That is
why it is interesting to study the evolution of aberrations,
and especially of the pulse duration, with respect to the
image NA.

In order to define a pulse duration based on our 3D in-
tensity distribution, we measure the duration of the spa-
tially integrated 3D pulse at the paraxial focus, just as if
we were measuring the pulse duration on the signal of an
imaginary attosecond photodiode. In the four previous
cases, we calculate the FWHM and the 80% energy pulse
duration. Results are shown in Fig. 11.

As predicted, the influence of geometric aberrations on
the pulse duration is strongly depending on the image
NA. But more precisely, we see that the stretch of the
pulse is much more important on the 80% energy pulse
duration than on the FWHM. Indeed, the aberrations
usually add some strongly delayed and weakly intense
parts on pulses. When we spatially integrate the pulse,
these strongly delayed parts are best taken into account
in the 80% energy pulse duration than on the FWHM.

Concerning the on-axis parabolic mirror, Fig. 11 shows
that we can significantly stretch the pulse even when
working in this almost stigmatic conjugation. Indeed the
small spherical aberration can be strong enough for NA
=0.047 to double the 80% energy pulse duration. Concern-
ing the on-axis spherical mirror, spherical aberration is
much more important than in the previous situation, with
the result that the pulse duration increases much more
quickly. This is due to marginal rays which are signifi-
cantly delayed with respect to paraxial ones. These rays
are responsible for the diverging lateral part of the pulse
at the paraxial focus in Fig. 5(a).

Since spherical aberration does not depend on the field
angle, the increase in the pulse durations when consider-
ing off-axis mirrors is mainly due to coma aberration. But
such an increase in the pulse duration is much more im-
portant when considering the off-axis parabolic mirror

Fig. 7. (Color online) 3D Intensity distribution (a) of a single at-
tosecond pulse or (b) of an attosecond pulse train 75 �m before
the paraxial focus after their reflection on a 1° field angle para-
bolic multilayer mirror.
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than when considering the spherical one. This is clearly
visible if we compare the two intensity distributions in
Figs. 6(a) and 8(a). Indeed we can see that the pulse is
more temporally stretched at the paraxial focus after its
reflection on an off-axis parabolic mirror than on a spheri-
cal one.

Finally we can see that when considering the image
NA, the smaller is the better whatever is the case. Indeed
we can see that even when using an off-axis parabolic
mirror, the stretch can be negligible if the NA is lower

than 0.015. But when considering such a low NA, a small
stretch due to imperfections in the linearity of the spec-
tral phase reflected by a real multilayer mirror may ex-
ceed aberrations’ effects. Consequently, if we made calcu-
lations with real performances of the multilayer stack
described in [20] instead of simplified performances (per-
fectly linear spectral phase and constant reflectivity) and
for an initial spectrum centered at 50 eV, the normalized
FWHM would have tended to 1.2 instead of 1 for low ap-
ertures.

Fig. 8. (Color online) Intensity distribution in two orthogonal planes when studying either (a) a single attosecond pulse or (b) an at-
tosecond pulse train after their reflection on a 1° field angle spherical mirror.
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5. CONCLUSION

In conclusion, we developed a calculation code able to
simulate the reflection of attosecond pulses on multilayer
mirrors. We couple a ray-tracing code with a diffractive
propagation code in order to take into account not only
geometric effects but also diffraction effects. For the first
time, to our knowledge, such a simulation code allowed
one to study the influence of geometric aberrations on at-
tosecond pulses.

Such an influence is a major issue, insofar as pulses
can be strongly stretched by geometric aberrations even
for usual configurations and small numerical apertures
(NAs). Consequently the pulse duration can be signifi-
cantly increased, and when considering attosecond pulse
train, the superposition of several consecutive pulses of
the train can generate multiple interference systems. Fi-
nally we demonstrated the strong dependence of the pulse
duration on the NA, showing the latter should be lower

Fig. 9. (Color online) 3D Intensity distribution (a) of a single at-
tosecond pulse or (b) of an attosecond pulse train 150 �m before
the paraxial focus after its reflection on a 1° field angle parabolic
multilayer mirror.

Fig. 10. (Color online) Modulus of the electric field in the plane of symmetry of the pulse train reflected by a 1° field angle spherical
mirror.

Fig. 11. (Color online) Evolution of (a) the 80% energy pulse duration and (b) the FWHM with respect to the image NA. The pulse
durations are normalized with respect to the initial pulse duration.
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than 0.015 to prevent aberration effects from stretching
pulses for the cases investigated.
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