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Abstract The physical interactions of growing bacterial cells with each other and with their

surroundings significantly affect the structure and dynamics of biofilms. Here a 3D agent-based

model is formulated to describe the establishment of simple bacterial colonies expanding by the

physical force of their growth. With a single set of parameters, the model captures key dynamical

features of colony growth by non-motile, non EPS-producing E. coli cells on hard agar. The model,

supported by experiment on colony growth in different types and concentrations of nutrients,

suggests that radial colony expansion is not limited by nutrients as commonly believed, but by

mechanical forces. Nutrient penetration instead governs vertical colony growth, through thin layers

of vertically oriented cells lifting up their ancestors from the bottom. Overall, the model provides a

versatile platform to investigate the influences of metabolic and environmental factors on the

growth and morphology of bacterial colonies.

DOI: https://doi.org/10.7554/eLife.41093.001

Introduction
Bacteria often form dense biofilms with complex spatiotemporal structures (Costerton et al., 1995;

Nadell et al., 2016; O’Toole et al., 2000; Stoodley et al., 2002). Mechanical and biochemical inter-

actions, together with cell growth, motility, and signaling, are some of the common elements under-

lying the rich variety of patterns and behaviors observed. Biofilms often play important roles in

diverse settings ranging from environment to human health (Costerton et al., 1999; Jayaraman and

Wood, 2008; Potera, 1999). But they are notoriously difficult to study experimentally because of

their opaqueness, high heterogeneity and complex organization, involving multiple spatial and tem-

poral scales (Roberts et al., 2015; Stewart and Franklin, 2008). In addition, biofilm-bound bacteria

alter their micro-environment by secreting various polysaccharides, forming heterogeneous matrices

of filaments that bind cells together within biofilms (Branda et al., 2005; Flemming and Wingender,

2010).

Over the years, various computational models have been constructed to capture different aspects

of biofilm development (Alpkvist et al., 2006; Espeso et al., 2015; Ginovart et al., 2002;

Klapper and Dockery, 2002; Kreft et al., 2001; Kreft et al., 1998; Picioreanu et al., 2004;

Seminara et al., 2012; Tierra et al., 2015). However, most of these models are ‘descriptive’ in

nature – the complexity of the biofilms makes it difficult to make quantitative comparison between

experimental data and model predictions. In recent years, an increasing body of literature has been

devoted to simpler, stripped down versions of the biofilm which can be more readily compared to

experimental studies. The simplest among these is the growth of a simple bacterial colony on hard

agar surface, with cells pushing against each other by the force of their own physical growth, without
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motility and without extracellular polysaccharides (Boyer et al., 2011; Cole et al., 2015;

Farrell et al., 2013; Ghosh et al., 2015; Grant et al., 2014; Jayathilake et al., 2017; Rudge et al.,

2013; Rudge et al., 2012; Volfson et al., 2008) In addition to serving as simpler models of biofilms,

the growth of such colonies has been increasingly used in recent years as a model of microbial range

expansion in studies of population genetics and ecology (Hallatschek et al., 2007; Hallatschek and

Nelson, 2010; Korolev et al., 2012). Although the growth of such simple colonies has been investi-

gated experimentally many decades ago (Cooper et al., 1968; Lewis and Wimpenny, 1981;

Mitchell and Wimpenny, 1997; Palumbo et al., 1971; Pirt, 1967; Reyrolle and Letellier, 1979;

Wimpenny, 1979), surprisingly, there has not yet been a common quantitative understanding of the

basic elements controlling their growth, for example what factors determine the radial and vertical

expansion speeds.

In this study, we develop a conceptually simple, yet physically realistic three-dimensional compu-

tational model, incorporating the elements of nutrient diffusion, cell-cell and cell-agar mechanical

interactions, and introducing a unique cell-level model of surface tension. Our model is efficiently

implemented with a parallel algorithm, enabling the simulation of a colony comprising a few million

cells within 24 hr. The model is able to capture many observed features of the growing colonies,

including the conic shape, the linear growth of the colony radius and height, and their dependence

on the cell growth rate. Extensive analysis of the results reveals key driving forces underlying these

observations, especially on the role of surface tension and the dynamic form of cell-agar friction,

allowing us to make distinct predictions on how various biochemical and mechanical effects alter

physiological features of the colony and generate macroscopic spatiotemporal patterns of the grow-

ing colony. To guide the construction of our model and validate our simulations, we conducted a

series of experiments on the growth of colonies on agar using non-motile E. coli. A set of minimum

media with various carbon sources was used to vary the cell growth rate.

Results

Experimental results
Experiments were performed using E. coli K12 strain EQ59, which is non-motile and harbors consti-

tutive GFP expression; see ’Experimental Methods’. Each colony was inoculated as a single cell from

batch culture growing in mid-log phase on 1.5% (w/v) agar with glucose minimal media, and incu-

bated, covered, at 37˚C for up to 1.5 days. The colony height profile was periodically monitored

using a confocal microscope (see ’Experimental Methods’), and the result was highly repeatable; see

Figure 1—figure supplement 1. Starting with a single cell, the colony remained a single layer

through the first 13 hours (Figure 1AB), buckling into a second layer at around t ¼ 14 h at a radius

of ~75 �m (Figure 1C–E and F). It then developed into a 3D colony over time, maintaining an

approximate conic shape through the ensuing 10-15 hours after buckling (Figure 1G). During this

period which we refer to as the ‘establishment phase’, the colony radius increased linearly in time

with a constant radial speed VR » 45:2 �m=h and the colony height increased also linearly at a vertical

speed VH » 12:4 �m=h (Figure 1H), reaching a radius of ~ 500 �m and a height of

~ 150 �m by t ¼ 24 h. As the colony grew further, the gain in height slowed down while radial expan-

sion continued at the same speed (Figure 1H and Figure 1—figure supplement 1), leading to a sig-

nificant flattening of colony morphology. In this study, we focus on the relatively simple

establishment phase defined by 14 � t � 24 h, where both the radial and vertical growth are linear.

We further probed the growth of colony using saturating amounts of different carbon sources,

each supporting a different batch culture growth rate, spanning the range 0:5 h�1 to 1 h�1; see

Supplementary file 1-Table S1. The radial and vertical expansion speeds obtained in the linear

growth regime are plotted in Figure 1I against the batch culture growth rate in the respective

medium. Our findings of vertical linear growth disagree with earlier finding by Pirt (Pirt, 1967) which

was first questioned by Wimpenny (Lewis and Wimpenny, 1981; Wimpenny, 1979). However, the

latter reported much larger radial expansion speeds than ours, suggesting that their study might be

in a very different regime dominated by swarming motility (Wu et al., 2011).
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Figure 1. Experimental observations of the growth and morphology of a bacterial colony. (A–E) Confocal images of an E. coli colony harboring GFP

expression growing on 1.5% agar (glucose minimal medium) taken at various time after seeding (t ¼ 0). The center of the colony is indicated by the red

dot. Single- and multi-layer regions are distinguished by red circles based on fluorescence intensity; see ’Experimental Methods’. (F) The radius of the

first (red) and second layer (orange) of the colony, as well as their difference (green), versus time. (G) The cross-sectional profile of the growing bacterial

colony at indicated time after single-cell inoculation. (H) After the buckling at around t ¼ 13 h, the colony radius (red symbols) increased at a constant

speed VR ¼ 45:2 �m=h (red line), while the colony height (blue symbols) increased linearly with speed VH ¼ 12:4 �m=h (blue line). The latter slowed

down some time after t ¼ 24 h. (I) The dependence of the radial speed VR (red symbols) and the vertical speed VH (blue symbols) on cell growth rate (x-

axis), for colonies grown in minimal medium with 8 different carbon sources (Supplementary file 1-Table S1): glucose (O); arabinose (□); mannitol (4);

maltose (^); fructose (3); melibiose ("); sorbitol (!); mannose (I). The lines are best linear fit of the data.

DOI: https://doi.org/10.7554/eLife.41093.002

The following source data and figure supplements are available for figure 1:

Source data 1. Experimental data for the temporal development of colony profiles and velocities.

DOI: https://doi.org/10.7554/eLife.41093.005

Figure supplement 1. Data for five repeats of E.coli EQ59 grown on 1.5% (w/v) agar in minimal medium with 0.2% glucose (11 mM), and incubated,

covered, at 37˚C for up to 3 days; cf. ’Experimental Methods’.

DOI: https://doi.org/10.7554/eLife.41093.003

Figure supplement 1—source data 1. Repetitions for the temporal development of colony height and radius.

DOI: https://doi.org/10.7554/eLife.41093.004
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Simulation results and analysis
To describe the morphology and dynamics of these growing colonies in the linear regime (the estab-

lishment phase), we focus on several main elements in the process: the supply of nutrient and inter-

action driven by the physical growth of cells. We construct a minimal, multiscale, three-dimensional

model consisting of the diffusion of nutrient through the agar and the colony; the growth, division,

and movement of individual cells; and the cell-cell, cell-agar, cell-surface mechanical interactions that

generate forces driving cell movement; see Figure 2. A salient summary of the model is provided in

Materials and methods. As will be descripted, a unique aspect of this model is the implementation

of the surface tension, which enables us to capture bulk as well as single layer effects. We use the

data from our experiments and literature to estimate the range of key parameters in the model, and

implement our model using various numerical techniques. Details of the model and numerical meth-

ods are given in Appendix 1. Through the bulk of the study described below, a standard set of

parameters were used (Supplementary file 1-Tables S2-S4); effects due to variation of parameter

values are discussed towards the end.

Radial and vertical growth of the colony
We start by examining how fast the colony expands radially and vertically. We run a simulation with

the batch culture growth rate lS ¼ 1:0 h�1, which corresponds approximately to the growth of E. coli

in glucose minimal medium (Supplementary file 1-Table S1). We use a substrate concentration

Cs ¼ 0:5 mM here and will vary this parameter later. From Figure 3A, we see that the number of

cells in a colony increases exponentially for approximately 10 hours before it slows down. From

Figure 3B, we see that the cross-sectional profiles of the colony preserve their shapes and are evenly

separated at equal time intervals for t � 12 h, suggesting a constant expansion of the colony in the

radial and vertical directions by t ¼ 12 h, similar to the experimental profiles in Figure 1G. (The spa-

tial cell density inside the colony is constant, ~0.68 �cell, throughout the interior of the colony; see

Figure 3—figure supplement 1.) Detail of the profile at the colony periphery appears to be differ-

ent. This is due to an approximate height assignment based simply on thresholding the fluorescence

intensity to obtain the global height profile. This thresholding procedure does not capture height at

Surface Tension

Cell-Cell Interaction

Cell Agar Interaction

Cell Growth

and Division

Figure 2. Schematics of cell-cell, cell-agar, cell-fluid, and surface tension forces investigated in this study. Green area indicates the colony (with cells in

yellow). Blue area indicates the agar.

DOI: https://doi.org/10.7554/eLife.41093.006
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Figure 3. The simulated growth and morphology of a bacterial colony. (A) A semi-log plot of number of cells vs. time showing the exponential growth

of the population starting from a single cell at t ¼ 0. Red line shows exponential growth rate of 0:96 h�1. (B) Cross sections of the growing colony at

various times after seeding of a single cell. (C) Plots of the radius (red) and height (blue) vs. time up to t ¼ 20 h, showing that, after an initial transient

period of ~10 h, the growing colony increases linearly at the radial speed VR » 18 �m=h (red line) and vertical speed VH » 6:0 �m=h. The blue arrow at

t ¼ 6 h indicates the time when the colony height starts to increase. (D) The radius of the first (red) and second (orange) layer of the colony as well as

their difference (green) vs. time. (E–M) Top view of the colony at various time. Cells in the bottom layer (blue) and upper layers (yellow) are fitted into

red circles. The time evolution of buckling phenomenon is captured in detail in (J–M).

DOI: https://doi.org/10.7554/eLife.41093.007

The following figure supplement is available for figure 3:

Figure supplement 1. The spatially varying cell density � (per unit volume of colony) is related to the spatially varying cell volume fraction

f by � ¼ f�cell, where the volume fraction f is defined as the volume of all cells in a unit volume of the colony and �cell is the constant mass density of a

typical mature cell; cf. Appendix 1.2 on nutrient update.

Figure 3 continued on next page
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the periphery where it is one to a few layers in thickness. Figure 3C provides a quantitative picture

of the colony radius (R, defined as the average radius of the bottom layer of the colony) and colony

height (H, defined as the height at the center of the colony). At early time, t � 6 h, the colony

expands radially, while the height remains close to zero, indicating that the colony is comprised of a

thin layer (see discussion in ’Radial expansion – quantitative analysis’). At around t ¼ 7 h (indicated

by the blue arrow in Figure 3C), the height starts to increase, indicating the occurrence of ‘buckling’.

Details of this transition is shown in Figure 3D and E–I; they correspond well to the experimental

patterns observed in Figure 1F and A–E. In particular, the model generates a constant width for the

single-layer annulus region at the periphery, recapitulating report of a constant monolayer region by

earlier mechanical study (Su et al., 2012). Moreover, the model captures the dynamical details

around the buckling transition (compare Figures 3D and 1F), which exhibits an initial fast increase of

the annulus width resulting from the initial non-compact nature of the cells forming the second layer;

see Figure 3J–M. After that point, both the colony radius and height increase linearly with time,

with radial expansion speed VR » 18 �m=h and vertical ascending speed VH » 6 �m=h; see Figure 3C.

Thus, our model captures the linear increase of both the colony radius and height observed experi-

mentally (Figure 1H). To understand the origin of these behaviors, we will analyze below the model

output, first pictorially and then quantitatively. The lower numerical values of the speeds obtained

from simulations are due to parameter settings chosen to limit computational time; this will be dis-

cussed in ’Parameter dependence’.

Vertical rise – a pictorial view
We first focus on factors driving the linear vertical rise of the colony. We start with a pictorial view of

the cell configuration and motion inside the colony. Figure 4A shows a snapshot of cell configura-

tion in a vertical slice through the center of the colony, taken at time t ¼ 20 h which is well in the

steady linear growth regime. The colors distinguish the gross orientations of the cells. The model

shows that cells near the top surface are oriented parallel to the colony surface (shown in cyan), while

cells away from the top surface are mostly oriented vertically (shown in yellow). A detailed view of

the top surface of the colony generated from the simulation is shown in Figure 4—figure supple-

ment 1A. This prediction is validated by confocal scan of the colony in experiment as shown in Fig-

ure 4—figure supplement 1B.

The model shows a thin region at the periphery of the colony in which all cells are oriented in

plane. This region governs radial growth and will be discussed more in the next section. Away from

the periphery into the colony interior, more and more cells stand up vertically. The azimuthally aver-

aged angle from the agar surface is plotted against the radial position in Figure 4B. However, the

internal verticalization took some time to develop (Figure 4—figure supplement 2); appreciable

fraction of cells (50%) picked up vertical orientation only when the radius reached 250 mm.

To characterize the spatial variation in cell orientation more quantitatively, we coarse-grain the

local director fields n
!

r
!
; t

� �

(as described in Appendix A1.5) for the snapshot of Figure 4A. In

Figure 4C, we plot the orientation of the azimuthally averaged director field, coarse-grained over

boxes of size 4 mm � 4 mm over the rz-plane. We see that the orientation is vertical in the colony

interior, but changes to be parallel to the colony surface in a transition zone of ~ 50 �m into the sur-

face along the radial direction.

Next, we examine the coarse-grained velocity field v
!

r
!� �

¼ vx r
!� �

; vy r
!� �

; vz r
!� �� �

whose azi-

muthal average is shown as arrows in Figure 4D. The velocity field points in the vertical direction

throughout most of the colony, even at the top surface where cells are oriented parallel to the col-

ony surface according to Figure 4C. Very close to the periphery in the bottom layer, the velocity

field turns sideway; it is oriented planarly there and will be discussed below in the context of radial

growth. As indicated by the length of the arrows, the vertically oriented velocity increases in magni-

tude away from the agar. This is illustrated by the plot of vertical velocity at different height z at the

center of the colony, that is Vz zð Þ ¼ vz 0; 0; zð Þ, in Figure 4E. We see that Vz increases through a thin

Figure 3 continued

DOI: https://doi.org/10.7554/eLife.41093.008
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Figure 4. The cross-sectional anatomy of a simulated colony. (A) Snapshot of cross-sectional view of the colony at t ¼ 20 h. Cyan represents horizontally

oriented cells (� 45
o with z-axis); Yellow represents vertically oriented cells (� 45

o with z-axis). (B) Fraction of vertically oriented cells averaged over z vs

radius. (C) A side view of the azimuthally averaged director field, indicating the orientation of the rod-like cells. (D) A side view of the azimuthally

averaged velocity field. (E) Vertical component of velocity, Vz, at various values of z along the center of the colony. Increase in vertical speed is seen

only for the bottom 10 mm (F) A cross-sectional view of the colony, color representing the time since last division. Purple and blue represent cells that

have not divided for the past 10 h, and red represents the actively dividing cells. (G) A cross-sectional view of the local growth rate in the colony, with

the color bar showing the values of local growth rate. A disc-shaped ’growth zone’ is revealed by the red color at the bottom of the colony.

DOI: https://doi.org/10.7554/eLife.41093.009

Figure 4 continued on next page
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region of height HS » 10 �m. The vertical ascension speed is saturated for z>HS, meaning that above

this thickness HS, cells move up steadily.

Another way to visualize the vertical growth of the colony is to show the ‘age’ of cells in a cross-

sectional view (Figure 4F). In this plot, the age of a cell is defined as the time duration since the last

division of the cell, with red being the youngest and purple being the oldest. We see that cells at

the bottom of the colony are all young (red), indicating that the bottom layer is constantly dividing.

In contrast, the oldest cells (purple) occupy the top/center region of the colony, and the next oldest

age groups (blue, green, etc.) are located in different layers below the purple top region.

Together, the above results suggest a simple picture of the vertical colony growth: The cells are

oriented vertically (except those close to the surface) and are pushed up by growing cells located

within a 10 mm thick growth zone at the bottom; they stop dividing once pushed out of the growth

zone. This picture is verified in Figure 4G, where the cross-sectional plot of the local growth rate

shows a clear growth zone of ~ 10 �m (red region) confined to the bottom of the colony.

Vertical rise – quantitative analysis
This disc-shaped growth zone at the bottom of the colony may be intuitive, since cells at the bottom

of the colony are in direct contact with the agar and hence have the best access to the nutrients. A

planar growth zone is in fact required to support the observed linear increase of colony radius and

height (during the period t = 12-24 hours in Figure 1): As the colony has the shape of a cone

(Figures 1G and 3B), its volume is given by Vcolony / R2H / R3. Assuming that the increase of the

colony size is due to a portion of cells growing at the maximal possible rate (lS) in a growth zone of

volume Vgrowth tð Þ, then d
dt
Vcolony / Vgrowth tð Þ leads to Vgrowth / R2, that is a disc. The thickness of this

growth zone is of interest because it controls the vertical ascension speed. As the local growth rate

is merely a ’readout’ of the nutrient concentration according to Equation 3 in Materials and meth-

ods, we look into the penetration of nutrients into the colony, which determines the thickness of the

growth zone. In Figure 5A, we plot the vertical nutrient concentration profile at the center of the

colony, Cctr zð Þ � C 0; 0; zð Þ, at various times t during colony growth. In the linear growth regime

(for t � 12 h), the profile Cctr zð Þ is essentially stationary. As shown in Figure 5—figure supplement 1

and Appendix A2.3, this stationary profile drops quadratically at small heights (i.e. close to the agar

surface), and exponentially at larger heights (top of the colony), with the crossover between these

two dependences occurring at the height scale HS such that Cctr HSð Þ ¼ KS, the Monod constant

appearing in Equation 3; see Appendix A2.3. Since the local growth rate drops substantially where

the nutrient concentration is below KS, we can take the value HS as the thickness of the vertical

growth zone, leading to the vertical ascending speed: VH / HSlS.

Detailed analysis of Equations 1 and 3 in Materials and methods shows that the scale of the sta-

tionary profile is set by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dþ=lS
p

; cf. Appendix A2.3. This is verified in Figure 5B where the stationary

profile Cctr zð Þ is computed by repeating the simulation for different growth rate lS: the profile col-

lapses into the same curve for different values of lS when plotted against z
ffiffiffiffiffi

lS
p

; see Figure 5—fig-

ure supplement 2 for the same profiles without rescaling in z. Given this scaling, we expect the

thickness of growth zone to decrease as HS / 1=
ffiffiffiffiffi

lS
p

for faster growth (due to stronger nutrient

depletion), leading to a sublinear dependence of the vertical ascending speed, VH /
ffiffiffiffiffi

lS
p

. Our

numerical result on the growth of vertical height is shown as open blue symbols in Figure 5C. The

results are well fitted by the square-root dependence on lS; see the solid line. In Figure 1I, we

attempted to test the dependence of the vertical ascension speed on growth rate experimentally,

by growing colony in different carbon sources supporting different growth rates. Unfortunately, the

most distinguishing regime of the predicted square-root relation, for lS < 0:4 h�1, is difficult to

Figure 4 continued

The following figure supplements are available for figure 4:

Figure supplement 1. A few top layers of cells in the colony visualized using simulation data.

DOI: https://doi.org/10.7554/eLife.41093.010

Figure supplement 2. Fraction of verticalized cells increase for large colonies.

DOI: https://doi.org/10.7554/eLife.41093.011
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realize by changing carbon sources. However, if we just fit the data in Figure 5C for lS > 0:5 h�1, we

obtain a weak linear dependence (dashed line) that resembles the experimental data in Figure 1I

obtained. Note that the overall scale of the vertical ascending speed is 2-fold smaller in the simula-

tion. This is attributed to the smaller nutrient concentrations used in the model compared to experi-

ment, as will be discussed further below in the section of parameter dependence.

Radial expansion – a pictorial view
We first study the case mimicking glucose medium, corresponding to the simulation result shown in

Figures 3 and 4. Since cells at the bottom grow substantially (Figure 4G), we plot the cell configura-

tion for the bottom layer of the colony at t ¼ 20 h in Figure 6A; the same color code as Figure 4A is

used, with vertically oriented cells shown in yellow and horizontally oriented cells in cyan. The

periphery is seen to be largely cyan while the interior is more yellowish, suggesting that cells at the

interior of the bottom layer are already oriented vertically, consistent with the cross-sectional view

shown in Figure 4A. We again coarse-grain the local director field n
!

r
!
; t

� �

for the snapshot of

Figure 6A. Figure 6B shows the planar projection of this director field in the bottom layer, where

each bar indicates the average cellular orientation of cells in a region. We observe an annular region

of ~ 100 �m in width near the periphery, where the director field has a significant in-plane compo-

nent, directed mostly along the radial direction, except at the outermost boundary, where the direc-

tor field has a great azimuthal component. Towards the inner boundary of the annulus, the in-plane

component becomes smaller in magnitude. Interior to the annulus, the in-plane projection of the

director field vanishes, confirming that they are largely oriented vertically.

Next, we examine the coarse-grained velocity field v
!

r
!
; t

� �

for the bottom layer of cells shown in

Figure 6A, with the x-y projection of v
!

r
!
; t

� �

shown as arrows in Figure 6C. We observe a narrow

annulus of non-vanishing velocity field (arrows with finite length) at the outermost edge pointing

radially outward; see also the side view provided in Figure 4D. Since the in-plane component of

velocity vanishes inside the annulus (turning to vertical speed as shown already in Figure 4D), the

driving force for radial colony expansion reside solely in the narrow annulus where cells are oriented
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Figure 5. Vertical penetration of nutrients. (A) The profiles of nutrient concentration Cctr zð Þ ¼ C 0; 0; zð Þ along the z-axis at different times. (B) The profile

Cctr zð Þ in the uniform scale vs. that in the rescaled z-axis, z
ffiffiffiffiffi

lS
p

. (C) The numerical results for the height velocity VH vs. the batch culture growth rate

lS with a fixed cell division length ldiv (open circles) and variable ldiv (asterisk), respectively. The square root fit for the open circles (solid line) is given by

the expression VH ¼ 5:5
ffiffiffiffiffi

lS
p þ 0:6; the linear fit for circles with lS � 0:5 h�1 (dashed line) is given by the expression VH ¼ 3:2lS þ 2:9.

DOI: https://doi.org/10.7554/eLife.41093.012

The following figure supplements are available for figure 5:

Figure supplement 1. Semi-log plot of the steady-state nutrient profile Cctr zð Þ ¼ C 0; 0; zð Þ : reconstructed from 3D simulations (green *); and the

numerical solution to the 1D model (cf. Appendix 2.3 on nutrient penetration) with discretization Dz ¼ 4 �m (green circles) and Dz ¼ 0:1 �m (black line),

respectively.

DOI: https://doi.org/10.7554/eLife.41093.013

Figure supplement 2. Profiles of nutrient concentration Cctr zð Þ ¼ C 0; 0; zð Þ versus z for various values of the batch culture growth rate lS.

DOI: https://doi.org/10.7554/eLife.41093.014
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planarly (Figure 6B). Just as the thickness of the growth zone determines the vertical ascension

speed, here the width of the annulus determines the colony’s radial expansion speed.

So, what controls the annulus width? Or, equivalently, what determines the transition of velocity

to the vertical orientation in the interior? Qualitatively, the difference between the peripheral and

interior regions can be appreciated by looking at the coarse-grained pressure field

P r
!
; t

� �

experienced by the bottom layer, indicated by the color in Figure 6BC. This pressure is zero

at the colony outer edge, and gradually builds up in the interior due to the physical growth of cells

inside the closely packed colony. Where pressure is high, cells are oriented vertically and move verti-

cally. This analysis thus suggests that increased pressure due to the physical growth of cells, which

itself results from friction exerted by the substrate on the expanding cells, eventually forces cells to

buckle and flow upward, manifested by the reorientation of cell directors in the vertical direction.

Once the flow turns upward, pressure does not build up further due to the lack of friction with the

agar surface. Since the upward flow is resisted by the surface tension, we conclude that pressure

maxes out in this case at a level that is mostly determined by the surface tension. Below, we investi-

gate quantitatively this buckling phenomenon.

Radial expansion – quantitative analysis
First, we examine the nutrient profile at the colony agar interface for growth on glucose. As can be

seen from Figure 7A, the nutrient concentration is reduced underneath the colony. However, the

actual concentration (Figure 7BC) is still much larger than KS of glucose uptake (dashed line in

Figure 7BC), so that cells at the bottom do not experience nutrient depletion. In fact, at the colony

periphery, nutrient concentration is close to the bulk level (Figure 7D).

To elucidate the determinants of buckling, we plot in Figure 8A the azimuthal-averaged radial

velocity profile Vr Drð Þ for the bottom layer of cells, for a range of (signed) distances Dr into the edge

of the colony; see Appendix 1 Equations (A1.5.1 and A1.5.2) for the definitions of Vr and Dr. This

radial velocity profile, which is stationary for t � 12 h, is nearly zero in the colony interior, but

increases almost linearly within a ~ 20 �m region at the outermost periphery of the colony. Since the

radial expansion speed of the colony VR is simply Vr at Dr ¼ 0, we see that the width of this annulus

together with the slope of Vr Drð Þ set the radial expansion speed of the entire colony.

To understand what goes on in this peripheral region, we examine in Figure 8B the azimuthal-

averaged height profile of the colony, h Drð Þ, which is also stationary for t � 12 h, with h Drð Þ » 1 �m in

the ~ 20 �m periphery region. This indicates that this periphery region is comprised of a single layer

of cells lying horizontally on agar. In this monolayer region, the increase of Vr can be understood

40 m(A)

Bottom view

10

8

6

4

2

P
 /

 P
0

Figure 6. Coarse-grained view of director, velocity and pressure fields in the bottom layer of colony. (A) The

bottom view of a simulated colony. Color scheme is the same as in Figure 4A. (B) Bars show the planar

component of the coarse-grained director field at the bottom layer. (C) Arrows show the planar component of the

coarse-grained velocity field at the bottom layer. Colors in (B) and (C) indicate the local pressure; see scale bar on

the far right. The pressure is expressed in unit of P0 ¼ gsurf=w0 where gsurf is the surface tension, the main force

underlying pressure build-up in our model.

DOI: https://doi.org/10.7554/eLife.41093.015
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analytically, as we explain now. By mass conservation, the rate of local cell volume increase is bal-

anced by the divergence of the velocity field, that is r
!
� V
!
¼ l, where l is the local mass growth rate

(Klapper and Dockery, 2002). Through most of the monolayer region (except close to the inner

edge), the vertical velocity Vz is negligible (Figure 8C). Hence, Vr satisfies

1

r
rVrð Þ0 ¼ l:

Throughout the periphery region, the growth rate is essentially the maximal growth rate, that is

l»lS, since the nutrient concentration in this region is set by the boundary value Cs which well

exceeds the Monod constant KS; cf. Figure 8—figure supplement 1. Solving the above equation in

the annulus in the limit jDrj � R yields a linear dependence,

Vr Drð Þ»VRþlS �Dr

where we used the definition of the radial expansion speed VR ¼ Vr Dr¼ 0ð Þ. This solution is indi-

cated by the red line in Figure 8A, which is in agreement with the numerical data, with a small dis-

crepancy for small Vr attributed to the neglected vertical velocity at the inner periphery.

Given the linear radial velocity profile (cf. the previous equation) in the peripheral monolayer

region, the width of this region Wb, defined as the largest value of jDrj where Vr Drð Þ ¼ 0, sets the

radial expansion speed since VR / lS �Wb. We call this width the ’buckling width’ since in the outer

most ring region of the colony of size being this buckling width, cells form a monolayer, expanding

with the speed VR; while the interior cells that are away from the colony edge by this buckling width

flow up vertically; cf. Figure 8—figure supplement 2. The magnitude of the buckling width is set by
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Figure 7. Spatiotemporal nutrient profiles. (A) The xz cross sectional view of the nutrient concentration inside the colony and in the agar, at

time t ¼ 20 h. (B) The nutrient profile at the agar surface for different times. The nutrient concentration vs. time at the center (C) and at the periphery (D)

of the colony at the agar surface.

DOI: https://doi.org/10.7554/eLife.41093.016
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the radial forces exerted on the monolayer of cells. As these cells grow outward, they experience

frictions from the agar substrate as well as surface tension that holds them down flat. These two

forces lead to the accumulation of pressure, which is built up from the periphery. Figure 8D shows

the azimuthally averaged pressure P Drð Þ for the bottom layer of cells. At the inner edge of the

monolayer region, pressure reaches a critical value that surface tension can no longer hold cells in a

single layer. There, some cells buckle into the vertical dimension, leading to vertical flow of cells and

forming multiple layers (Figure 8—figure supplement 2), alleviating the further build-up of
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Figure 8. Physical characteristics near the outer periphery of the colony. (A) The azimuthally averaged local speed of radial expansion Vr vs. the signed

distance Dr from the edge of the colony (cf. Equations (A1.5.1) in Appendix 1) at various times. (B) The azimuthally averaged local height H vs. Dr at

various times. (C) The azimuthally averaged local speed of vertical expansion Vz vs.Dr, averaging over t ¼ 12; 16; 20 hr. (D) The azimuthally averaged

local pressure P vs. Dr at time t ¼ 20 h: As in Figure 6, pressure is expressed in unit of P0 ¼ gsurf=w0. (E) The azimuthally averaged height H vs. Dr at

growth rate lS ¼ 0:5 h�1 and 1:0 h�1. (F) The simulated colony horizontal expansion speed VR vs. the batch culture growth rate lS with a fixed ldiv(red

open circles) and a growth-rate dependent ldiv (red closed circles) using dynamic friction. The dashed line that fits the open circles is given

by VR ¼ 16:9lS þ 0:8; the solid line that fits the closed circles for lS � 0:5 h�1 is VR ¼ 5:7lSldiv � 0:2; the dash dotted line fits the closed circles

with VR ¼ 22:1lS � 5:2. In these expressions, the speeds are in unit of �m=h and growth rate in h�1. For comparison, we also include simulated VR vs.

lS with a growth-rate dependent ldiv, for a model with static friction alone (see Equations (A1.4.6) of Appendix 1) between cell and agar (blue

triangles).

DOI: https://doi.org/10.7554/eLife.41093.017

The following figure supplements are available for figure 8:

Figure supplement 1. The azimuthally averaged and rescaled local growth rate l=lS as function of the signed distance Dr to the colony rim with

various values of the batch culture growth rate lS.

DOI: https://doi.org/10.7554/eLife.41093.018

Figure supplement 2. A zoomed in view of the periphery of the colony shown in Figure 4A, overlaid with coarse-grained velocity field (zoomed in view

of the same periphery region in Figure 4D).

DOI: https://doi.org/10.7554/eLife.41093.019
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pressure. It is interesting to observe that this buckling phenomenon is already evident early on dur-

ing transition from monolayer growth to multiple layers, as shown in Figure 3D. The 20 mm annulus

of monolayer at the periphery is set soon after the initial buckling transition, at around

t ¼ 8 h (Figure 3D), setting the pace of radial expansion.

Quantitative details of the buckling transition depend on the form of the cell-agar friction. Two

types of friction have been used in the cell-modeling literature, one which depends linearly on the

cell-agar velocity, known as viscous or static friction (Farrell et al., 2013; Ghosh et al., 2015), and

the other which saturates to a constant set by the magnitude of the normal force (in this case, result-

ing from the surface tension). The latter is referred to as dynamic friction; see Appendix 1.4. The two

forms can be distinguished by comparing the buckling width Wb at different radial expansion

speed VR: Static friction would increase for increased VR, leading to decreased buckling width,

whereas dynamic friction would not be affected by the radial expansion speed. Experimentally, we

characterized VR in sugars supporting different growth rates lS, and VR is seen to increase linearly

with lS (Figure 1I), suggesting a constant Wb, and hence the applicability of dynamic friction. This

dependence is tested by running simulations with the dynamic friction form (Equations 7a and 7b in

’Computational Model’) for different growth rate lS. The buckling width Wb is indeed not depen-

dent on lS (Figure 8E), and the radial expansion speed VR is indeed linear in lS (open red symbols

and dashed red line, Figure 8F). In contract, static friction leads to a much weaker dependence of

VR on lS (blue triangles in Figure 8F).

The linear dependence on lS seen in the experimental data in Figure 1I (red symbols) however

exhibits a noticeable horizontal offset. This offset likely results from an additional effect we have not

included into the model so far: The size of the cells is dependent on their growth rate, with faster

growth rate being longer and wider (Jun and Taheri-Araghi, 2015; Nanninga and Woldringh,

1985; Taheri-Araghi et al., 2015). By repeating the established dependence of cell size on growth

rate (see Equation (A2.2.3) in Appendix 2) for different values of lS, we recover a nonlinear depen-

dence of VR on lS (Figure 8F, filled red circles and solid red line). Note that a similar horizontal off-

set is obtained as the experimental data in Figure 1I if we do a linear fit using the data with

lS > 0:5 h�1 (dotted red line). On the other hand, the growth-rate dependence of cell sizes has no

noticeable effect on the vertical ascension speed (filled blue symbols, Figure 5C) since the growth

zone thickness HS / 1=
ffiffiffiffiffi

lS
p

does not depend on ldiv (Appendix 2.3).

Parameter dependance
The preceding analysis shows that the vertical expansion speed of the colony depends on the thick-

ness of the vertical growth zone which is set by the nutrient penetration depth, while the radial

expanding speed depends on the width of the monolayer annulus which is set by the onset of the

buckling transition but not the nutrient. The sizes of these growth zones are therefore dependent on

the magnitudes of the physical parameters in different ways: We expect changing the cell-agar fric-

tion to affect the onset of the buckling transition and hence the radial expansion speed VR, but not

the vertical ascension speed VH. Conversely, we expect changing the nutrient concentration Cs to

change the vertical nutrient penetration length and hence VH, but not VR. These expectations are

indeed reproduced by the full colony simulation using different parameter values from the ones dis-

cussed so far, with the nutrient concentraiton Cs doubled in Figure 9A (only VH increased), and with

the cell-agar friction quartered in Figure 9B (only VR increased). These predictions are further tested

experimentally, by varying the glucose concentraton used in the agar (Figure 9C), and by repeating

experiments in reduced agar densities (Figure 9D) which we expect to reduce the cell-agar friction.

The observed changes are very much in line with the expectations of the model shown in

Figure 9AB. These results serve to validate the very important qualitative results of our study, that

radial grow of the colony is not limited by nutrients while the vertial growth is limited by nutrients.

We note that the actual values of radial and vertical expansion speeds obtained

(VR ¼ 17:2 �m=h and VH ¼ 5:8 �m=h), for the standard parameter set used (Supplementary file 1-

Tables S2–S4) through the bulk of the study, are approximately 2x lower than the range of values

obtained in experiments. The results of Figure 9AB show that the experimental range could be

obtained simply by adjusting the combinations of parameters. We did not do that – the parameter

set giving smaller VR and VH was chosen due to computational constraints: Higher nutrient concen-

trations requires longer computational time to reach the linear steady state due to the larger
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nutrient penetration depth. Similarly, lower cell-agar friction would lead to colony spreading too rap-

idly in the radial diretion, thus requiring larger simulation sizes and hence again longer computa-

tional time. Their combination becomes difficult to investigate at the level of details done in this

study. The particular values of frictional coefficients in the standard parameter set have been chosen

so that the colony retains similar aspect ratio as observed in experiments, but with both VR and VH

being about half of the experimentally observed values for growth on glucose medium. As comput-

ing power continues to increase, these models should soon be able to reach sizes comparable to

realistic colonies with realistic parameters.

Discussion
In this work, we presented a detailed quantitative study of the growth of a bacterial colony on hard

agar surface starting from a single cell. For non-motile bacteria incapable of producing extracellular

polysaccharides, the colony is driven primarily by the force of their own growth. Key factors involved

are nutrient diffusion, mechanical interactions between cells, friction between cell and agar, and the

surface tension holding the cells to the agar. We developed a continuum model for nutrient diffusion

and implemented it with a multi-resolution numerical technique. With a discrete agent-based model,
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Figure 9. Parameter dependence of colony growth characteristics. Simulation results using the full model with 2x increase in glucose concentration

(panel A) and 4x decrease in all frictional parameters (panel B) for VR (red bars) and VH (blue bars). Specifically, in panel (A) we fix the friction at a high

level (with �ca ¼ 0:8; �cc ¼ 0:1; gcc;t ¼ 10000 �m�1h�1, and hran ¼ 0:1 �m), and use Cs ¼ 0:5 mM as the lower glucose concentration, Cs ¼ 1:0 mM as

the higher glucose concentration. In panel (B), we fix the glucose concentration at the lower level (Cs ¼ 0:5 mM), and vary the friction, from the higher

value of �ca ¼ 0:8; �cc ¼ 0:1; gcc;t ¼ 10000 �m�1h�1, hran ¼ 0:1 �m used in (A) to the lower value

of �ca ¼ 0:2; �cc ¼ 0:025; gcc;t ¼ 2500 �m�1h�1, hran ¼ 0:025 �m. The corresponding experimental results are shown in panels C and D: In (C), glucose

concentration was varied with agar density fixed at 1.5%. In (D), agar density was varied with glucose fixed at 0.2% (w/v). The data for VH in panel C is

consistent with a square root dependence on nutrient concentration (blue line) expected from the basic analysis in Figure 5.

DOI: https://doi.org/10.7554/eLife.41093.020

The following source data is available for figure 9:

Source data 1. Experimental data on the horizontal and vertical colony expansion speeds at various glucose and agar concentrations.

DOI: https://doi.org/10.7554/eLife.41093.021
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we captured mechanical interactions, including elasticity and dynamic friction. Most importantly, the

surface tension of the liquid in the colony is implemented by introducing a restoring force on cells

protruding from a smoothened colony surface.

Our model is able to capture quantitatively some of the characteristic features observed for bac-

terial colony growth, including the conic shape of the colony, the linear expansion of colony radius

and height, and both the linear and sublinear dependence of the speed of radial expansion and that

of vertical expansion, respectively, on the cell growth rate. The model makes a number of important

predictions on the expanding colony as summarized in Figure 10: The growth zone is predicted to

be disc-like and extended throughout the bottom of the colony, contrary to common belief (see

below). Radial growth is driven by cells at the outer perimeter of the growth zone; these cells are

predicted to form a thin layer, oriented parallel to the agar due to the downward pull of surface ten-

sion, with the width of the region determined by the onset of the buckling transition (which occurs

when radial compression due to cell-agar friction overwhelms the surface tension). In the colony inte-

rior, cells are predicted to orient vertically and are mainly pushed upward by elongating cells in the

bottom growth zone.

Capturing all these behaviors within a single model and with a fixed set of parameters is a non-

trivial task despite the seeming simplicity of this problem. Many aspects of our model are taken from

what are commonly adopted in the extensive literature devoted to this class of problems over the

past decade (Boyer et al., 2011; Cole et al., 2015; Farrell et al., 2013; Ghosh et al., 2015;

Grant et al., 2014; Jayathilake et al., 2017; Rudge et al., 2013; Rudge et al., 2012;

Volfson et al., 2008). These include the basic modeling of metabolism and cell growth (Cole et al.,

2015; Farrell et al., 2013; Rudge et al., 2012), and the use of Hertzian elasticity to describe cell-

cell elastic interaction (Boyer et al., 2011; Farrell et al., 2013; Ghosh et al., 2015; Grant et al.,

2014; Volfson et al., 2008), all incorporated as computational power increases to reach ever

increasing colony sizes (Cole et al., 2015; Rudge et al., 2013; Rudge et al., 2012). Unique to our

study is the treatment of mechanical interactions, specifically friction and cell-level surface tension,

which we believe are at the root of all behaviors described above, including the forms of radial and

vertical colony growth. A key result of our study is that the linear radial growth is driven by the

growth of a thin layer of radially oriented cells located at the colony periphery, whose width is deter-

mined by mechanical buckling. Although the linear radial expansion of bacterial colonies has been
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vertically oriented cells

planarly oriented cells

cells in slanted orientation

cell velocity

Figure 10. A schematic summary of key mechanisms in the growth of an E.coli colony. After an initial, exponential monolayer growth, buckling occurs

at the center of the colony. Cells then grow actively only in the bottom layers (red vertical arrows) whose thickness (HS) is determined by the nutrient

penetration level (dashed blue line). Cells lying above them are passively pushed up. Throughout this yellow triangular region, cells are oriented

vertically. Near the colony edge (cyan region), the cells are oriented planarly and grow outward (horizontal red arrow) continuously in a spread mode to

expand the colony in the radial direction. The width of this annulus (Wb) is determined by mechanical effects arising from the surface tension which pulls

the thin layer of cells into the agar, and cell-agar friction which builds up the pressure from the outer edge of the layer, eventually causing buckling at

an inner radius where cells transition to the vertical orientation (the green region). These two characteristic parameters, HS and Wb, set the speeds of

radial and vertical expansions, VR and VH, respectively, as shown in red. The growth rate dependence of these parameters is shown in blue.

DOI: https://doi.org/10.7554/eLife.41093.022
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known for about 50 years (Pirt, 1967), for a long time this was attributed to a ring-shaped growth

zone at the outer colony periphery due to nutrient diffusion (Lewis and Wimpenny, 1981;

Pirt, 1967; Wimpenny, 1979). Only quite recently has the notion been made that mechanical effects

might also lead to linear radial growth (Farrell et al., 2013; Su et al., 2012). (Su et al., 2012)

showed experimental results that implicated the interplay of forces in the radial expansion of colo-

nies. (Farrell et al., 2013) proposed mechanical effects as a colloquial rationalization of numerical

results generated by toy models with unrealistic details, for example a ‘gravity-like’ adhesion force

acting on all cells in the colony. In our study, the adhesion of cells to the agar surface is provided by

the surface tension of the liquid surrounding cells in the colony. We introduce a novel cell-level

model of surface tension which acts only on cells at the colony surface, distinct from common models

of surface tension which depends on the macroscopic curvature of the colony surface and cannot

describe thin layers. It is this unique surface tension model that enables us to capture the dynamics

from the initial single-layer cell growth, through buckling, to the growth of a macroscopic colony.

This cell-level surface tension, responsible for pressing cells into the agar thereby generating friction

that eventually causes buckling, cell reorientation and vertical colony growth, is thus the source of all

mechanical interactions in the colony. A strong, uniform force such as the ones used in

(Farrell et al., 2013) would lead to artificially flattened colonies, especially at the colony center

where the height is the highest, since the force is proportional to the height in that model.

We regard the characterization of colony growth for different nutrients (which give rise to differ-

ent cell growth rates) as a unique contribution by our study. The knowledge of the dependence of

colony growth on cell growth allows us to discriminate different models of colony growth. As an

example, an important component of our model that makes a quantitative difference to the out-

come is the form of the friction used. Viscous drag (i.e., friction proportional to the velocity differ-

ence) is the form adopted in most models of cell dynamics (Farrell et al., 2013; Ghosh et al., 2015;

Rudge et al., 2012). We instead adopt a form commonly used in modeling granular solids

(Brilliantov et al., 1996; Cundall and Strack, 1979; Kuwabara and Kono, 1987; Shäfer et al.,

1996). It involves a static friction depending on relative velocity, capped by a dynamic friction which

is independent of the velocity. This form, introduced in one of the first models of 2D colony growth

(Volfson et al., 2008), exerts a pressure which is independent of the speed of radial expansion,

leading to a growth rate-independent buckling width and hence a radial expansion speed that is

proportional to cell growth rate, in agreement with our experiments. In contrast, a model based on

static friction would have the buckling width reducing with increasing cell growth rate, giving a sub-

linear dependence of radial expansion speed on cell growth rate which is not compatible with the

data in Figure 1I. Indeed, in a model with static friction alone, a much weaker growth-rate depen-

dence of radial expansion speed was obtained (Figure 8F blue triangles). Along a different line,

Fisher-Kolmogorov (FK) dynamics has been used as a phenomenological model to describe radial

colony expansion, and has been successful in describing certain spatial patterns formed in growing

colonies (Cao et al., 2016). However, FK dynamics would predict a square-root dependence of the

radial expansion speed on the cell growth rate (Fisher, 1937; Kolmogorov et al., 1937), which will

need to be reformulated to conform to the observed dependences.

In addition to the well-known linear radial growth, the linear vertical growth of the colony is dis-

sected for the first time qualitatively here since it was first reported (Lewis and Wimpenny, 1981;

Wimpenny, 1979). Our analysis shows that the vertical expansion speed is limited by the depth that

nutrient can penetrate upward into the colony from the agar. Accompanying our result of vertical

growth is the predicted vertical orientation of cells in the colony interior, which transitions from the

radial orientation at the outer periphery (i.e., the monolayer zone colored in cyan in Figure 10).

Cell verticalization has been observed experimentally for Vibrio parahaemolyticus (Enos-

Berlage and McCarter, 2000) and for Vibrio Cholerae (Beroz et al., 2018; Yan et al., 2016). In

both cases, vertical orientations could be seen already for very small bacterial colonies, possibly due

to their production of extracellular polysaccharide substance (EPS). In this work, verticalization is pre-

dicted to occur for plain bacterial colonies as well, without the need of any EPS, but at much larger

colony sizes. We have not been able to observe verticalization directly for our colonies due to multi-

ple scattering associated with very dense colonies we are studying. This is left as a challenge for

future studies.

In our model, verticalization results from an interplay among colony surface tension, cell-agar fric-

tion and the physical force of expansion due to cell growth. (Beroz et al., 2018) also introduced a
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discrete model to describe cell verticalization. In their model, verticalization resulted from a similar

mechanical instability due to the interplay between in-plane compression force and cell-agar adhe-

sion. Due to the different energy barriers against verticalization, the length scales of verticalization

between our model and that of (Beroz et al., 2018) are very different: The colonies in Beroz et al.

spread very slowly radially ( ~ 3�m=h), and verticalization occurs at a colony radius of ~ 5� 10 �m.

Colonies in our model spread much faster ( ~ 14 �m=h), and substantial verticalization occurs at a

radius of ~ 250 �m; see Figure 4—figure supplement 2.

Although we have restricted our study to colonies growing in rather simple conditions, insight

from our model can be readily used to make qualitative predictions in a variety of other conditions.

Generally, we expect the radial expansion speed to be controlled by the buckling width and vertical

expansion speed be controlled by the thickness of the growth zone. Thus, if agar hardness or ambi-

ent humidity is changed, the effect on air-liquid surface tension is expected to affect the buckling

width and the ratio of the radial and vertical expansion speeds, hence changing the colony aspect

ratio. Also, during later stages of colony growth when oxygen becomes limiting in the colony inte-

rior, the obligatory excretion of large amounts of fermentation product associated with anaerobiosis

is predicted to lower the pH in colony interior and thereby slow down vertical colony growth while

not affecting the radial growth. Our observations shown in Figure 1H and Figure 1—figure supple-

ment 1 are in qualitative agreement with the expectation. A quantitative study of this late regime

(t> 24 h for the growth condition used in Figure 1H) requires a much more detailed model of anaer-

obic metabolism, pH effect, and growth transition kinetics, well beyond the scope of the current

study, and will be reported elsewhere. Note that recent series of colony-based microbial range

expansion studies (Hallatschek et al., 2007; Hallatschek and Nelson, 2010; Korolev et al., 2012),

which involve much larger colony sizes and longer periods of colony growth, are likely in this late

regime where vertical growth has ceased. Nevertheless, the radial expansion of these large colonies

may still be governed by the same factors discussed in this work.

While our work is exclusively on bacterial colonies without EPS, key results we learned from this

study shed light on the more complex dynamics of heterogeneous biofilms. First, we establish that

the radial growth of our colonies is not limited by nutrient as commonly believed, but by the inter-

play of surface tension and cell-agar friction (Figure 9). Given that biofilms have typically much lower

bacterial densities, nutrient limitation will be even less of a problem. Also, EPS secreted by the bac-

teria could modify both the surface tension and cell-agar friction to control the radial expansion

speed. Second, nutrient supply is limiting for the vertical growth of our colonies (Figure 9AC). This

becomes less of a problem for the loosely packed biofilms. Moreover, biofilms are said to form chan-

nels in their interior (Wilking et al., 2013), which would further alleviate the supply of nutrient,

thereby allowing for faster vertical expansion. Finally, verticalization of cells in the interior, which is

important for vertical growth but occurs at rather large colony sizes according to our model (Fig-

ure 4—figure supplement 1), also occurs in biofilms but at much smaller colony sizes (Beroz et al.,

2018; Enos-Berlage and McCarter, 2000; Yan et al., 2016). While the precise nature of the forces

driving verticalization may be different in the two cases, the underlying origins may be similar —

mechanical instability due to in-plane compression resulting from colony expansion and cell-agar fric-

tion. In light of these comparisons, we see that the additional ingredients provided by biofilms

enable the colonies to expand faster both horizontally and vertically.

The model presented here, with results quantitatively comparable to experimental data, can be

used to interpret large-scale data being generated by high-throughput colony growth assays to track

the growth of different strains in different conditions (Takeuchi et al., 2014). Our model can be

used as a launching pad, not only to include the more complex effects of metabolism and cell

growth mentioned here, but also other factors such as extracellular matrix to allow the simulation of

biofilms, and multiple interacting species to explore microbial ecology in compact space. Finally, it

will be an interesting challenge to develop coarse-grained hydrodynamic models that incorporate

the unique features of surface tension and dynamic friction discussed here, and capture the radial

and vertical colony growth characteristics, both their temporal behaviors and their dependences on

cell growth rates and other environmental factors.
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Materials and methods

Experimental methods
Bacterial strain
The strain of E. coli K12 used in all the experiments reported in this work, EQ59, was derived from

NCM3722 (Lyons et al., 2011), with deletion of the motA gene to remove bacterial motility and har-

boring constitutive GFP expression. We note that biofilm formation is highly suppressed in

NCM3722, as acquired nonsense mutations within both the bsg and csg operons prevent the synthe-

sis of extracellular cellulose and curli needed to support biofilm (Lyons et al., 2011; Serra et al.,

2013).

To make strain EQ59, we cloned the gfp gene from pZE12G (Levine et al., 2007) into the KpnI/

BamHI sites of the plasmid pKD13-rrnBT:Ptet (Klumpp et al., 2009), yielding the plasmid

pKDT_Ptet-gfp. The fragment ’kmr:rrnBT:Ptet-gfp’ present in pKDT_Ptet-gfp was PCR amplified, gel

purified and then electroporated into EQ42 cells (Klumpp et al., 2009), expressing the l-Red

recombinase. The cells were incubated with shaking at 37˚C for 1 hour and then applied onto LB

+Km agar plates. The Kmr colonies were verified for the ’kmr:rrnBT:Ptet-gfp’ substitution for the 67

bp intS/yfdG intergenic region between 117th and 51st nucleotides relative to the start codon of

yfdG by colony PCR and subsequently by sequencing. The chromosomal region carrying ’kmr:rrnBT:

Ptet-gfp’ in EQ42 was then transferred to EQ54 (that is NCM3722DmotA) (Kim et al., 2012) by P1

transduction, yielding strain EQ59, in which the gfp gene is constitutively expressed in the absence

of TetR.

Growth medium
Phosphate-buffered media (N- C-) was used for both batch culture and colony growth as described

in Csonka et al. (1994). Various carbon sources were used as specified in Supplementary file 1-

Table S1. The concentration of all carbon sources used was 0.2% (w/v) unless otherwise specified. 10

mM of NH4Cl was added as the sole nitrogen source. The agar concentration used was 1.5% (w/v)

unless otherwise specified. 20 mL of molten agar gel was poured into 60 mm diameter dishes to a

final thickness of approximately 7 mm, and allowed to cool at room temperature. Agar plates were

sealed in plastic and stored at 4˚C until use.

Cell growth
Batch culture growth was performed in a 37˚C water-bath shaker (220 rpm). Cells from a fresh colony

in a LB plate were inoculated into LB broth and grown for several hours at 37˚C as seed cultures.

Seed cultures were then transferred into the desired minimal medium and grown overnight at

37˚C as pre-cultures. For batch culture growth rate measurements, overnight pre-cultures were

diluted to OD600 » 0:01 in the same minimal medium and grown at 37˚C as experimental cultures.

After two doublings, OD measurements were taken at various time over a 10-fold increase (i.e., from

0.04 to 0.4), and the growth rate was determined from a linear fit of ln(OD) vs. time.

Colonies were seeded on the agar gel as single cells. The pre-culture (prepared as above) was

diluted to OD600 » 10
�6. 10 �L of culture (containing approximately 10 cells) was spread over pre-

warmed plates and transferred immediately to a 37˚C incubator for growth. Petri dishes remained

covered at all times, except during periodic measurements with a confocal microscope, in order to

minimize moisture loss.

Microscopy
Colonies were imaged with a Leica TCS SP8 inverted confocal microscope placed within an incu-

bated box at 37˚C. Samples were grown in covered petri dishes stacked on one side of the box.

Each was moved to the microscope objective for periodic measurements. They were immediately

covered once measurement was done. For the measurements, the dishes were uncovered and meas-

urements were taken from the top (air) side to obtain a complete 3D image of the colony. GFP was

excited with a 488 nm diode laser, and fluorescence was detected with a 10� =0:3 objective and a

high sensitivity HyD SP GaAsP detector. For a large colony, an xy-montage was created and stitched

together to form a single 3D image using the ImageJ Grid/Collection Stitching plugin.
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Image analysis
The colony shape was obtained from the 3D confocal image using custom Matlab software. Under

aerobic conditions, the bacterial fluorescence was spatially uniform near the top surface of the col-

ony, and the surface height, h(x,y), could be reconstructed by simply thresholding the intensities: for

each (x,y) position, the height was defined by the top pixel whose intensity was greater than the

threshold. To account for the fact that fluorescence varied somewhat with growth conditions (sugar,

agar concentration, etc.), this threshold was rescaled by the maximum fluorescence of the colony for

each condition.

Furthermore, to capture the radius of the single- and multi-layers at early time of colony develop-

ment (Figure 1A–E), we analyze the image intensity of the colony as the follows: for each stencil of

5� 5 pixels centered at pixel i; jð Þ, we count the number of pixels whose intensity is above a thresh-

old, and call it ni;j. Pixel i; jð Þ is assigned as type 1 if 16> ni;j � 3, and as type 2 if ni;j � 16, indicating

the pixel belonging to single- or multi-layer region, respectively. We then estimated the inner radius

rinner and outer radius router of the colony by the formulas rinner ¼ r�m=px
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Npx2=p
p

and router ¼ r�m=px

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Npx1 þ Npx2

� �

=p
q

, where Npx1 and Npx2 are the total numbers of pixels of type 1 and

2, respectively, and r�m=px » 0:84 is the ratio of mm per pixel in our confocal image.

Colony growth curves
Colony growth was monitored by measuring an individual colony at intervals of 1—4 hours. The

radial growth curve, R(t), was extremely reproducible from colony to colony on the same agar plate

and from day to day on different plates, up to a small offset in time, tl, reflecting a variable lag time,

of up to two hours before colony growth began. To monitor the colony growth over long periods of

time, we started identical colonies at seed times ts separated by several hours. Growth curves

extending over a period of multiple days could be obtained by stitching together R t � tl � tsð Þ at

times where they overlapped. This stitching procedure is illustrated in Figure 1—figure supplement

1. For example, in Figure 1—figure supplement 1A, there are three different symbols: triangles,

squares, and circles. Each symbol represents data from one colony. They are seeded several hours

apart and are plotted together with respect to their respective starting time. The data thus shows

that the colony development is highly repeatable and can be put together to reconstruct the overall

dynamics which spans a long period. In most cases, at least three separate colonies are measured

concurrently for each (short) time span, and three separate time spans were stitched together in a

series.

Computational model
Continuum model of nutrient dynamics
We assume that the growth of cells in the colony is limited by a single type of nutrient (the carbon

source), and use a continuum scalar field C ¼ C r
!
; t

� �

to represent the nutrient concentration at a

spatial location r
! ¼ x; y; zð Þ and time t. Agar, which contains the nutrient and which cannot be pene-

trated by cells (at the dense concentrations used in out experiments), is confined to the region z< 0,

while cells grow on top of the agar in the region z> 0, and bounded by the colony surface G01 to be

defined below; see Figure 11. Nutrient diffuses in the two compartments, agar and colony, accord-

ing to the diffusion equations

qtC¼DþDC� �l=Y for z>0; (1)

qtC¼D�DC for z<0; (2)

with the distinct diffusion coefficients Dþ in the interstitial space between cells in the colony above

the agar, and D� inside the agar. The second term on the right-hand side of Equation 1 describes

the rate of nutrient consumption by growing cells. Here, �¼ � r
!
; t

� �

is the local cell mass density

(total mass of cells in a unit volume of space) and Y is the yield factor. For simplicity, we shall approx-

imate the spatially and temporally varying cell mass density �¼ � r
!
; t

� �

by a constant value �0.
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Above the spatial scale of a few cell lengths, the spatial variation in � is <5% within the colony; see

Figure 3—figure supplement 1. The upper boundary of the colony (G01 in Figure 11) is defined by

thresholding the density; see Appendix 1.2. The local mass growth rate l¼ l r
!
; t

� �

is given by

Monod kinetics

l r
!
; t

� �

¼ lS

C r
!
; t

� �

C r
!
; t

� �

þKS

; (3)

where lS is the batch culture growth rate for cells in a medium saturated with some sugar S, and KS

is the Monod constant for the sugar S. At the (mean) interface z¼ 0ð Þ between the colony and agar

substrate, we have the continuity of the nutrient concentration and its flux:

C� ¼Cþ and D�qzC� ¼DþqzCþ at the agar� colony interface z¼ 0; (4)

where the symbols C� and Cþ indicate the nutrient concentration on the agar side z<0ð Þ and col-

ony side z>0ð Þ, respectively. Equations 1–4 are supplemented by boundary conditions imposed on

the boundaries of a computational region comprising of both the colony and agar regions. We

impose the flux-free boundary condition on the parts G01; G02; and Gb; and the Dirichlet boundary

condition C¼Cs on the lateral wall of agar region Gs; cf. Figure 11. The parameter Cs mimics the

nutrient concentration far away from the colony. It is one of the key parameters in our study.

Discrete model for cell growth, division and movement
In addition to modeling the nutrient as a continuum, we use a discrete, agent-based model to

describe the growth, division, and movement of cells, as well as the interactions of cells with each

other and with the environment. In this agent-based model, each E. coli cell is represented by a

sphero-cylinder, comprised of a cylinder with hemispherical caps of diameter (also called cell width)

w0 on its two ends; see Figure 12A. For a given cell i at a given time t, we use a position vector r
!
i tð Þ

z=-a

z=0

z=b

Figure 11. Schematic of the computational box and different regions in the model of simulation. The computational box

is 
 ¼ �L; Lð Þ � �L; Lð Þ � �a; bð Þ, where all L, a, and b are positive numbers in the units of length. This box is divided into the air region 
0, colony

region 
1, and agar region 
2 ¼ �L; Lð Þ � �L; Lð Þ � �a; 0ð Þ, respectively. See Supplementary file 1-Table S5 for typical values of L, a, and b used in

our simulations. The colony surface or colony-air interface G01 separates the colony from air. The plane z ¼ 0 in the computational box is divided into

two parts. One is the interface that separates the colony from agar, and is denoted by G12. The remaining part, denoted G02, separates the air from

agar. Note that, since the bacterial colony grows with time t, all the air region 
0, the colony region 
1, the colony-air interface G01, and the colony-agar

interface G02 depend on time t.

DOI: https://doi.org/10.7554/eLife.41093.023
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to denote the center-of-mass of the cell, a unit vector n
!
i tð Þ to denote its orientation (the direction

along the cylindrical axis), and li tð Þ to denote the length of the cylinder between the two centers of

hemispherical caps. Each cell starts off with the same cylindrical length l0. We assume that during

cell growth, the width w0 is fixed, and the cylinder length of a cell increases at a rate l
~

tð Þ: We call

this the cell elongation rate. It is proportional to the mass growth rate l tð Þ of the cell with a geomet-

rical proportionality factor s: l
~

¼ sl; see Appendix 1.3.

The mass growth rate is calculated based on the nutrient concentration at the center r
!

i tð Þ of the
cell i at time t, that is li tð Þ ¼ l r

!
i tð Þ; t

� �

, according to Equation 3. The growth of cylindrical length

li tð Þ is then given by the growth equation

d

dt
li ¼ sl r

!
i tð Þ; t

� �

li tð Þ: (5)

Once the cylindrical length li tð Þ reaches a critical value ldiv, the cell divides into two daughter cells

with cylindrical lengths being l0 with small fluctuation; see Figure 12B and Appendix 1.3. For differ-

ent growth media supporting different growth rates lS, the value of ldiv is in general growth-rate

dependent (Jun and Taheri-Araghi, 2015; Taheri-Araghi et al., 2015), the consequences of which

are discussed above in ’Radial expansion – quantitative analysis’.

The position and orientation of cell i change according to its velocity v
!
i and angular velocity !

!
i,

which follow Newton’s second law

Mi

q

qt
v
!

i ¼ F
!net

i and Ii
q

qt
!
!

i ¼ T
!net

i (6)

where Mi and Ii are the mass and moment of inertia of the cell, and F
!net

i and T
!net

i are the net force

and net torque, respectively, exerted on that cell. As cells grow, divide and move, the colony region

(defined by the part of boundary G01 in Figure 11) expands. The nutrient concentration in the new

domain requires an update by solving the boundary-value problem of Equations 1–4 again.

(A) (B)

Figure 12. Schematic view of cell growth and division. (A) A sphero-cylinder model of an E.coli cell. Here, w0 is the diameter of each of the

hemispheres, p
!
and q

!
are the centers of these hemispheres, l ¼ jp! � q

!j is the cylindrical length of the cell, n
! ¼ p

! � q
!� �

=l is the unit vector along the

cylindrical axis of the cell, and r
!
c is the center of the cell. (B) Cell division. Once the cylindrical length of a cell reaches a critical value ldiv, the cell

divides into two daughter cells. The two centers of hemispheres of the mother cell become the centers of hemispheres of the daughter cells. Each of

these two daughter cells has the cylindrical length l0 with fluctuations, where l0 is a constant cylindrical length for any new born cell and any initial cell in

the simulation. Fluctuations of angular velocities are also introduced for the daughter cells; cf. Appendix 1.3.

DOI: https://doi.org/10.7554/eLife.41093.024
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Discrete model for interaction forces

The net force F
!net

i and torque T
!net

i exerted on cell i arise from (a) cell-cell mechanical interaction, (b)

cell-agar interaction (if the cell touches the agar surface), (c) cell-fluid interaction, and (d) surface ten-

sion (if the cell is on top of the colony); cf. Figure 2. Below we briefly describe each component

used in our model. Details are provided in Appendix 1.4.

(a) Cell-cell interaction
In the interior of a colony, two cells interact only if they are in direct physical contact, characterized

here by the overlap dcc in their sphero-cylinder cell boundaries; see Figure 13A. At the point of con-

tact, the cell-cell interaction force F
!

cc is decomposed into the normal and tangential components, of

magnitudes Fcc;n and Fcc;t as defined in and Appendix 1.4a. The normal force includes the Hertzian

elasticity force with magnitude Fcc;elas / ffiffiffiffiffiffi

w0

p
d3=2cc (Hertz, 1882; Johnson, 1985). Additionally, the

normal and tangential force each has a dissipation component, of magnitude Fcc;disp; n and Fcc;disp;t,

respectively, describing the effect of friction against cell movement. In the cell modeling literature

(Farrell et al., 2013; Ghosh et al., 2015; Rudge et al., 2013; Rudge et al., 2012), these dissipation

forces are often taken to be viscous. (We shall include such viscous force in (c) below.) In our model,

we found it necessary to further include static and dynamic friction as described below.

We follow standard models of granular solids (Brilliantov et al., 1996; Cundall and Strack, 1979;

Kuwabara and Kono, 1987; Shäfer et al., 1996), first introduced to cell modeling by Tsimring and

(A)

Agar

(B)

Figure 13. Schematic view of cell-cell and cell-agar interactions. (A) Cell-cell interaction. Two cells, centered at r
!
c and r

!
c
0 , respectively, are in contact

with each other. The shortest distance between the central cylindrical lines of the two cells is d ¼ a
! ��a

!0
�

�

�

�

�

�

�

�

with a
!
and a

!0

two points on the cylindrical

central lines of these two cells, respectively. The amount of the overlap of these two cells is dcc ¼ w0 � d. We shall denote by r
!

cc the center of the line

segment connecting a
!
and a

!0

: The total interaction force, exerted at center r
!
cc, is the sum of the normal force F

!
cc;n in the normal direction

n
!
cc ¼ a

! � a
!0

� �

=d and the tangential force F
!
cc;t in a direction orthogonal to n

!
cc that is determined by the relative velocities of these two cells; see the

details in Appendix 1.4 on force calculations. (B) Cell-agar interaction. A cell, centered at r
!
c, touches the agar surface that has the mean position at

z ¼ 0 and the roughness hran (the maximum fluctuation around the mean), with dca the amount of the overlap of the cell and agar. If the center of the

hemispherical cap of the cell corresponding to the end that dips into the agar is p
! ¼ xa; ya; zað Þ, then dca ¼ w0=2�� za.

Denote r
!
ca ¼ xa; ya; za � w0=2ð Þ, which is the midpoint of the line segment along the vertical line passing through the point p

!
between

z ¼ 0 and z ¼ �dca. The total cell-agar interaction force F
!

ca, exerted at the center r
!
ca, is the superposition of a normal force F

!
ca;n in the vertical

direction and the tangential force F
!
ca;t in a direction along the xy plane that is determined by the velocity of the cell; cf. Appendix 1.4.

DOI: https://doi.org/10.7554/eLife.41093.025

Warren et al. eLife 2019;8:e41093. DOI: https://doi.org/10.7554/eLife.41093 22 of 47

Research article Computational and Systems Biology

https://doi.org/10.7554/eLife.41093.025
https://doi.org/10.7554/eLife.41093


his collaborators (Volfson et al., 2008). To model static friction, we adopt a fictitious drag force

whose normal and tangential components, Fcc;disp; n and Fcc;disp;t, respectively, are taken to be propor-

tional to the normal and tangential components of the relative cell-cell velocity, vcc;n and vcc;t. We use

Fcc;disp;n / d1=2cc vcc;n and Fcc;disp;t / dccvcc;t, where the additional dependences on the overlap dcc cap-

tures the dependence on contact area; see Figure 13A. To implement dynamic friction, we cap the

tangential dissipation by the static yield criterion, that is Fmax
cc;disp;t ¼ �ccFcc;elas, where �cc is the dynamic

frictional coefficient; see Appendix 1.4a. Thus, the full cell-cell interaction force is given by

Fcc;n ¼ Fcc;elasþFcc;disp;n ; (7a)

Fcc;t ¼min Fcc;disp;t ; �ccFcc;elas

� 	

: (7b)

As we see in ‘Radial expansion – quantitative analysis’, a dynamic friction form imposed by

Equation 7b provides a natural explanation of the experimental observation that the radial velocity

of the colony is independent of the cell growth rate.

(b) Cell-agar interaction

The force exerted on a cell in contact with the agar, F
!

ca, can be similarly calculated as sketched in

Figure 13B. The same forms of the elastic and frictional forces are used as in Equations 7a and b.

Note that to break the planar symmetry and facilitate buckling of cell layer into the vertical direction,

we introduced certain roughness to the agar surface, characterized by the roughness parameter hran
which is the maximum fluctuation of the agar surface around its mean z ¼ 0ð Þ.

(c) Cell-fluid interaction
A cell also interacts with the surrounding fluid and experiences viscous drag. This is given by the

Stokes drag force F
!

visc, which is proportional to the velocity of the cell v
!
. We note that in high-den-

sity colonies such as those studied here, dissipation due to viscous drag is significantly less than the

cellular friction force.

(d) Surface tension
Surface tension is a critical factor determining the dynamics of an expanding colony. It is frequently

treated as a property of a composite fluid comprising of cells plus the surrounding fluid

(Grimson and Barker, 1993; Zhang et al., 2008). Alternatively, the liquid phase is ignored alto-

gether, and surface tension is assumed to arise from attractive interactions between the cells them-

selves (Ben-Jacob et al., 2000). In both cases, surface tension reflects the curvature of the

macroscopic colony profile. However, such coarse-grained treatments of surface tension cannot

describe the initial layer-by-layer growth of the colony arising from buckling (Figure 1A–E), nor can

they capture thin layers surrounding the periphery of large colonies (Figure 14). In order to capture

these effects, we endeavor here to model the surface tension experienced by cells in a colony as a

boundary force, that is as force experienced by discrete cells at the colony boundary due to

increased surface tension of the continuum liquid these cells are immersed in.

For E. coli growing on hard agar, the cells themselves have no appreciable attraction to one

another. They are instead held together at high densities in a colony above the agar through the sur-

rounding liquid they share (blue color in Figure 14A): Liquid is pulled into and retained in the colony

through the osmotic effects of hydrophilic molecules on cell surface (Seminara et al., 2012), wetting

the surface of cells in the colony including those at the boundary. One can think of the cellular den-

sity within the colony as determined by the osmotic balance between the colony and the agar. This

can be readily observed, as colonies grown on lower density agar are more liquid-like.

In the same way, the cohesion of a three-dimensional colony is maintained by the interaction of

cells with the surrounding liquid at the air-liquid boundary. As shown in Figure 14A, the red curve

indicates a smooth air-liquid boundary preferred by minimization of the liquid surface tension. Wher-

ever a cell protrudes sharply out of the smooth surface, it drags out the liquid surrounding the cell,

resulting in increased liquid surface tension, and hence a restoring force Fsurf acting on that cell. A

detailed treatment of these physical effects, requiring both the cell configuration and the air-liquid

boundary, is computationally untenable. Here, we do not model the liquid explicitly, but retain its
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effect on cells at the colony boundary via the restoring force. In Appendix 1.4c, we describe a toy

model calculation which yields a saturating restoring force,

Fsurf;0 ¼pgsurfw0 ; (8)

whose magnitude is proportional to the width of the cell w0 rather than the (much smaller) macro-

scopic curvature of the colony boundary. As shown in ’Radial expansion – quantitative analysis’ and

illustrated in Figure 14B, this large cell-level surface tension is able to hold a large group of cells in

a monolayer above the agar surface, until the pressure inside the expanding monolayer (due to fric-

tion against motion on agar surface) exceeds a critical level to overcome the liquid surface tension

resisting vertical protrusion, resulting in the ’buckling’ of the monolayer into multiple layers.

To implement the surface tension force at the single-cell level in our model, we first compute the

coarse-grained colony height h x; y; tð Þ (red curves in Figure 14AC) from the cell configurations. Then

we compute the height of the coated liquid (blue curve in Figure 14C) hw x; y; tð Þ by adding dh to the

colony height. This thickness dh depends primarily on the agar hardness, being larger for softer agar

where cells are less tightly bound by the liquid. For each cell whose maximum height hcell exceeds

the liquid height hw, we impose a restoring force normal to the liquid surface; see Figure 14C. As

the magnitude of the saturating restoring force Fsurf;0 (Equation 8) is independent of the height

(A )

(B)

h
cell

h

h
w

hz

(C)

Figure 14. Schematic view of surface tension acting on cells at the colony boundary. (A) a snapshot of part of a growing colony from a typical computer

simulation. The red curve defines the macroscopic colony-air interface which is used in updating the nutrient profile; cf. G01 in Figure 11 and Appendix

1.1. Cells on the top of the colony are held down by the surface tension force. (B) A sequence of configurations of colony during the early stage of

growth. Top: Initial cells grow exponentially and form a monolayer. All cells in this layer are held down by the surface tension force. Middle: As more

cells are born in the monolayer, the frictions between these cells and the rough agar surface increase. The competition between such frictions and the

surface tension force that pulls down cells leads to an accumulation of the lateral pressure in the cells. The monolayer buckles up once that the surface

tension can no longer hold down all the cells in the monolayer. Such buckling occurs at certain radial distance from the center of colony; cf. Figure 8D.

Bottom: Once the monolayer buckles, the colony starts to grow vertically. In the meantime, the buckling region moves outward as the colony expands

radially. (C) The parameters used in the definition of surface tension force. The parameter hcell is the height of a cell that sticks out of the macroscopic

colony surface; it is measured from the mean height of the agar surface z ¼ 0 to the ’tallest point’ in the cell. The blue and red lines describe the

macroscopic water level (indicated by hw) and colony height (indicated by h), respectively. The parameter dh is used to control how tightly the surface

tension holds back those cells on the top of the colony. See more details in Appendix 1.4c.
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difference dz � hcell � hw for dz> 0, the restoring force can be mathematically written

as Fsurf ¼ Fsurf;0 � u dzð Þ, where u is the Heaviside step function. To avoid numerical instability, we

make a linear extrapolation between Fsurf ¼ 0 and Fsurf ¼ Fsurf;0 over a narrow transition

region 0< dz<w0=10, which is 1=10 of the cell width.

Pressure calculation

Once all the individual forces exerted on a cell i described above are calculated, the net force F
!net

i

and the corresponding torque T
!net

i are calculated. Moreover, the pressure on the cell i can be also

calculated as

Pi ¼ V�1

i

X

j

F
!
ji � r

!
ji (9)

where Vi is the volume of cell i, the index j runs through all the different forces experienced by cell i,

and r
!

ji are the corresponding displacement vectors from the points where the forces are exerted to

the cell center.

Coarse-grained variables

We define coarse-grained fields of cell spatial mass density � r
!
; t

� �

, velocity v
!

r
!
; t

� �

,

directors n
!

r
!
; t

� �

, and pressure P r
!
; t

� �

by averaging the corresponding individual quantities over

small regions in the colony (e.g., a few finite-difference grid boxes); see Appendix 1.5 for details.

Model parameters
We fix the coefficient of nutrient diffusion in the agar to be D� ¼ 600 �m2=s, which is typical for the

diffusion of small molecules in solution (Beuling et al., 1996; Cole et al., 2015). The diffusion coeffi-

cient in the colony is much smaller due to the fact that bacterial cells are not permeable to most sug-

ars. We take Dþ ¼ 90 �m2=s with the influence of volume fraction and tortuosity; see

Supplementary file 1-Table S2 for details. We take the value of the yield factor for different sugars

used to be that for glucose, which is Y ¼ 0:5 gCDW=gglucose (Payne, 1970). As shown above in ’Radial

and vertical growth of the colony’, the local cell mass density is found to vary only mildly around an

average of 0:68 �cell, with �cell ¼ 0:137� 10
�12 gCDW=�m3 being the cell dry weight density

(Basan et al., 2015). The Monod constant is taken to be that for glucose,

KS ¼ 20 �M (Monod, 1949). The cell dividing length ldiv ¼ 3 �m and the diameter w0 ¼ 1 �m are

fixed in all the simulations unless otherwise indicated. The constant value Cs of nutrient concentra-

tion in the boundary conditions for the diffusion equations and the batch culture growth rate ls are

used as control parameters in our simulations. Other parameters that are crucial to the colony pat-

terns and growth dynamics include various friction coefficients. See Supplementary file 1-Tables

S2–S4 for the definitions and estimated values of all the parameters.

Numerical implementation
We use an iteration algorithm for our simulations. It has two loops. The main loop, the ’outer loop’,

consists of the following 3 steps: (i) define the colony region using the local spatial cell

density � ¼ � r
!
; t

� �

; (ii) update the nutrient concentration by solving the diffusion equations in steady

state; and (iii) simulate cell growth, division, and movement over a small-time increment. The last

step has its own loop, the ’inner loop’, consisting of the following steps: update the local cell growth

rate by Equation 3; simulate cell growth and division; and compute the forces and torques on cells,

update the cell velocities and angular velocities, and update all the cell positions. We use the veloc-

ity Verlet algorithm, a commonly used molecular dynamics simulations of macromolecules, to update

the cell velocities and positions (Frenkel and Smit, 2002). The inner loop is determined with a time

step Dt. Usually, we run through one main loop per 100—1,000 inner loops. In updating the nutrient

concentration, we use the finite difference to discretize the equations and the Jacobi or Gauss-Seidel

relaxation method to solve the resulting systems of linear equations. We use multi-resolution
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adaptive grids for a large computational domain, and use the OpenMP for parallelizing our code.

See Appendix 1 for details. On a multi-processor (14-16 processors) computer, the simulation can

reach a colony of a few million cells in 24 hours. We have placed the major and basic parts of our C+

+ codes in the repository GitHub (Warren et al., 2019; copy archived at https://github.com/elifes-

ciences-publications/CellsMD3D).
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Appendix 1

DOI: https://doi.org/10.7554/eLife.41093.028

Simulation Model and Methods
We model the colony expansion through the coupling of the growth, division, and movement

of individual cells with the diffusion and reaction of nutrients and wastes. The growth of an

individual cell within a short time period is described by a linear growth equation. The local

growth rate varies spatially and temporally, and is determined locally by the cell density and

nutrient supply. Once a cell grows into a critical size, it divides itself into two daughter cells

with some randomness in their cylindrical lengths and orientations. In the meantime, growing

and dividing cells push each other, generating mechanical forces. These forces, together with

those arising from the cell-agar interactions, cell-liquid interactions, and surface tension,

determine the movement of individual cells described by Newton’s law of motion. At any

instant of time, the coarse-graining of all cells through their spatial positions determines the

cellular colony region. Nutrients and wastes diffuse in both the agar and colony regions, while

their reactions only occur in the colony region. In our current study, we only include one

species of nutrient and we do not consider any wastes.

A1.1 Set Up and Main Algorithm
Our computational box is 
 ¼ ð�L; LÞ � ð�L; LÞ � ð�a; bÞ, where all L, a, and b are positive

numbers in the units of length; cf. Figure 11 in the main text. It is divided into the air region


0, colony region 
1, and agar region 
2 ¼ ð�L; LÞ � ð�L; LÞ � ð�a; 0Þ, respectively. The
colony surface or colony-air interface G01 separates the colony from air. The plane z ¼ 0 in the

computational box is divided into two parts. One is the interface that separates the colony

from agar, and is denoted by G12. The remaining part, denoted G02, separates the air from

agar. Note that, since the bacterial colony grows with time t, all the air region 
0, the colony

region 
1, the colony-air interface G01, and the colony-agar interface G02 depend on time t: All

the simulations of cell growth, division, and movement, and the force calculations are done in

the colony region which expands with time. The reaction-diffusion equation for nutrient is

solved in both the colony region 
1 and the agar region 
2 (where there is no reaction). The

growth rate is also defined everywhere in the colony region.

We cover the computational box with a finite difference grid with a grid size hgrid: We

generate random and small heights at the grid points on the mean agar surface ðz ¼ 0Þ to
construct a rough agar surface. These random heights are in the range ½0; hran� with hran an

input number representing the possible maximum height. Such a rough surface will be used to

calculate the interaction force between a cell and the agar. Initially, we set the nutrient

concentration to be a nonzero constant in the agar region but zero elsewhere. We also

randomly distribute a set of initial cells on the agar surface, and define their initial velocities

and angular velocities to be all zero.

Our simulation continues through time iteration that consists of two loops. The main loop,

or outer loop, consists of the following steps:

(1) Generate the boundary of colony;

(2) Update the nutrient concentration and cell growth rate;

(3) Simulate the cell growth, division, and movement.

The last step is carried out through an inner loop, a time iteration with time step Dt, that

consists of the following steps:

(3.1) Simulate the cell growth and division;

(3.2) Compute the forces and torques on cells, and update the cell velocities and angular

velocities with a half time step;

(3.3) Update all the cell positions;

(3.4) Compute again the cell forces and torques, and update the cell velocities and angular

velocities with the other half time step;
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(3.5) Set t :¼ t þ Dt and continue with Step (3.1).

Note that Steps (3.2)–(3.4) are the velocity Verlet algorithm (cf. Frenkel and Smit, 2002)

used for the simulation of cell movement. Practically, we update the nutrient concentration

once every 100–1000 time steps of calculations of cell growth, division, and movement.

A1.2 Nutrient and Growth Rate Update

Cell density and colony boundary
Given the positions of all the cells at time t, we define the (local) volume fraction f ¼ fð~r; tÞ of
the cells in each finite difference grid box above z ¼ 0 by

f¼ sum of volumes of the cells inside the grid box

volume of grid box
:

A cell is inside the grid box if the center of this cell is in this box. The volume of a cell is

given by the formula in Equation (A1.3.1) in section A1.3 below. By averaging over nearest

grid boxes, we obtain the volume fraction of cells at each grid point. We then define the cell

mass density (at grid points) to be

�ð~r; tÞ ¼fð~r; tÞ�cell; (A1.2.1)

where �cell is the constant mass density of a typical mature cell, and can be estimated from

experiment; cf. Supplementary file 1-Table S3. We also define the colony region 
1 ¼ 
1ðtÞ
to be that with fð~r; tÞ> 0; cf. Figure 11 in the main text.

Nutrient update: Reaction-diffusion equations and boundary conditions
The concentration field C ¼ Cð~r; tÞ of the nutrient is defined spatially on the colony and agar

regions 
1 ¼ 
1ðtÞ and 
2, respectively; cf. Figure 11 in the main text. It is governed by the

following system of reaction-diffusion equations, interface conditions, and boundary

conditions:

qC

qt
¼DþDC�lS�

Y

C

CþKS

inW1ðtÞ; (A1.2.2)

qC

qt
¼D�DC inW2; (A1.2.3)

C� ¼Cþ onG12ðtÞ; (A1.2.4)

D�
qC�
qz

¼Dþ
qCþ
qz

onG12ðtÞ; (A1.2.5)

qC

qn
¼ 0 onG01ðtÞ[G02ðtÞ[Gb; (A1.2.6)

C¼Cs onGs: (A1.2.7)

The first two equations, Equation (A1.2.2) and Equation (A1.2.3), are the reaction-

diffusion equation for the concentration in the colony region 
1ðtÞ and the diffusion equation

for the concentration in the agar region 
2, respectively, where D� and Dþ are the

corresponding diffusion coefficients, Y is the yield factor, lS is the batch culture growth rate,

KS is the capacity constant (the Monod constant) for sugar, and � ¼ �ð~r; tÞ is the local cell mass

density (cf. Equation (A1.2.1)). As the density of cells is rather uniform (cf. discussions in

Appendix A2.1), we use a constant density value �0 to approximate � ¼ �ð~r; tÞ. We take this

constant �0 to be the cell dry weight (CDW) per unit volume of the colony; cf.

Supplementary file 1-Table S3. Equation (A1.2.4) and Equation (A1.2.5) are the interface
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conditions for the concentration across the colony-agar interface G12ðtÞ (i.e., z ¼ 0), where þ
and � denote the colony side and agar side, respectively. The last two equations,

Equation (A1.2.6) and Equation (A1.2.7), are the boundary conditions. On the agar-air

interface G01, the colony-air interface G02, and the bottom of agar Gb, we impose the flux-free

boundary condition, with q=qn denoting the derivative in the normal direction along the

corresponding part of the boundary, pointing from the colony or agar to the air region or

pointing downward from the bottom of agar. On Gs, the lateral faces of the agar region, we

prescribe a constant value Cs of nutrient concentration that represents the maximum nutrient

that the system supplies.

In each time step, we update the nutrient by solving the steady-state reaction-diffusion

equations with the corresponding boundary conditions, that is, Equation (A1.2.2)–(A1.2.7)

with qC=qt set to be 0. We use an iterative scheme to solve the equations with the previous

nutrient concentration as the initial solution. This iterative scheme is constructed based on

solving the corresponding time-dependent equations with the fixed colony region, and the

time here is only a numerical parameter. We use the forward Euler’s method to discretize this

numerical time (cf. Gustafsson et al., 2013; Morton and Mayers, 1995). The spatial

derivatives of concentration are discretized with central differencing schemes. For a grid point

that is near the colony-air interface but is outside the colony region, we assign a value of

nutrient concentration by interpolating the values of such concentration at nearby grid points

inside the colony. To treat a large computational region 
2 that represents the agar region,

we use a nested, multi-level, finite difference grid as shown in Appendix 1—figure 1.

Techniques of interpolation are employed to discretize the diffusion equation on grid points at

the interface of grids with different levels. In each numerical time step, we sweep the grid

points from top down to those at the interface z ¼ 0, and further down to the bottom Gb, and

then from grids on the bottom Gb up to those at z ¼ 0 and further up to the top. The

numerical time iteration stops if the difference between the concentration fields of the current

and previous numerical time steps is smaller than a given tolerance errconv; cf.

Supplementary file 1-Table S5. To ensure the numerical stability, we chose a numerical time

step that approximately satisfies the CFL condition (Gustafsson et al., 2013; Morton and

Mayers, 1995). We use OpenMP parallelization for both nutrient update and cell activities.

Our simulations speed up more than 15 times in one 2.5 GHz Intel Xeon cluster node with 12

cores and 24 CPU processors.

Appendix 1—figure 1. Schematic view of a nested finite difference grid for the agar region 
2.

DOI: https://doi.org/10.7554/eLife.41093.029

Growth rate update
Once the nutrient concentration field Cð~r; tÞ is updated, we can define the spatially and

temporally varying local mass growth rate l ¼ lð~r; tÞ by

lð~r; tÞ ¼ lS
Cð~r; tÞ

Cð~r; tÞþKS

: (A1.2.8)

This is first defined at each grid point~r and then at any other point in the colony region by

interpolation.
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A1.3 Cell Growth, Division, and Movement
We model an underlying E. coli bacterial cell as a sphero-cylinder; cf. Figure 12A in the main

text. We denote by~p and~q the centers of the two hemispheres. We call ‘ ¼ k~p�~qk the cell

cylindrical length which can vary with time t. We also denote by~n ¼ ð~q�~pÞ=‘ the unit vector

pointing from one center of hemisphere~p to the other~q, and call it the direction of the cell.

Note that the center of mass of the cell is~rc ¼ ð~pþ~qÞ=2: We denote by w0 the diameter of

each of the hemispheres. The volume and mass of the cell are given by

Vcell ¼
1

4
pw2

0
‘þ 1

6
pw3

0
and Mcell ¼ �cellVcell; (A1.3.1)

respectively, where �cell is the constant cell mass density introduced in Equation (A1.2.1). We

shall assume that all cells have the same diameter w0 of hemispheres, independent of time.

Cell growth
With our assumption, a cell grows only in its cylindrical length ‘ ¼ ‘ðtÞ but not in its diameter

of hemispheres. The growth of the cell is governed by the growth equation for the cell

cylindrical length

d‘ðtÞ
dt

¼ ~lð~rc; tÞ‘ðtÞ: (A1.3.2)

Here, ~lð~rc; tÞ is the cell elongation rate evaluated at the cell center~rc. The elongation rate ~l

is proportional to the mass growth rate l defined in Equation (A1.2.8): ~lð~r; tÞ ¼ slð~r; tÞ. This
effective relation between the two growth rates will be discussed after we describe the cell

division. Numerically, we use the first-order approximation to obtain the cell cylindrical length

at time t þ Dt by

‘ðtþDtÞ ¼ ‘ðtÞþ ~lð~rc; tÞDt;

where Dt is the simulation time step. Initially at t ¼ 0, all the cells start with a constant

cylindrical length ‘0.

Cell division
When a cell of centers of hemispheres~p and~q grows long enough, with its cylindrical length

‘ � ‘div for some critical value ‘div>w0, it divides into two daughter cells of cylindrical lengths ‘1
and ‘2, respectively; cf. Figure 12B in the main text. The two centers of hemispheres of the

mother cell become the centers of hemispheres of the daughter cells. The lengths ‘1 and ‘2 of

these daughter cells are given by

‘1 ¼
1

2
‘div�

w0

2
þh‘ran and ‘2 ¼

1

2
‘div�

w0

2
�h‘ran;

where h 2 ð�0:5; 0:5Þ is a random variable and ‘ran is an input positive number representing

the maximum fluctuation of cell cylindrical length during the cell division; cf.

Supplementary file 1-Table S3. In average, all new born cells have the same cylindrical length

‘0; and we take it to be the same for all the initial cells. This implies that ‘div ¼ 2‘0 þ w0; cf.

Figure 12B in the main text. Note that before division, the mother cell has volume

pw2

0
‘div=4þ pw3

0
=6; after division, the total volume of two daughter cells is pw2

0
‘div=4þ pw3

0
=12.

There is pw3

0
=12 volume loss every time due to division. For a fixed cell aspect ratio

‘div : w0 ¼ 3 : 1, which is what we have in our simulations, the volume loss is about 9%. Note

also that we have used a constant dividing length ‘div independent of the batch culture growth

rate lS: The effect of this simplification is discussed in Appendix A2.2.

The centers of hemispheres of the two daughter cells are given by (cf. Figure 12B in the

main text)

~p1 ¼~p; ~q1 ¼~p� ‘1
‘

~p�~qð Þ; ~p2 ¼~qþ ‘2
‘

~p�~qð Þ; ~q2 ¼~q:
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Moreover, these daughter cells inherit the velocity from their mother cell. But the angular

velocities of these two daughter cells are set to be

~!1 ¼ ð0;0;0Þ and ~!2 ¼ !ranð0;0; �Þ;

respectively, where � 2 ð�0:5; 0:5Þ is a random variable and !ran is an input positive number

that is the maximum fluctuation of the angular velocity; cf. Supplementary file 1-Table S3.

In the cell division, each of the two daughter cells also experiences the rotational

fluctuation. Let us fix the center of mass~rc of a daughter cell. We rotate the vector~p�~rc with

~p the center of a hemisphere of this daughter cell. (For notational simplicity, we use~rc and~p

for this daughter cell; and they are different from those of the mother cell.) To do so, we

construct a local Cartesian coordinate system with the origin at~rc and the three unit

coordinate vectors~e1,~e2, and~e3 by~e3 ¼ ~p�~rcð Þ=jj~p�~rc,

~e1 ¼
~p�~rcð Þ� argmin~i2f~ex ;~ey ;~ezg ~p�~rcð Þ �~i

k ~p�~rcð Þ� argmin~i2f~ex ;~ey;~ezg ~p�~rcð Þ �~ik
;

and~e2 ¼~e3 �~e1, where~ex; ~ey; ~ez are the unit coordinate vectors in the original coordinate

system. Then we rotate the vector~p�~rc by an angle of ’ around the axis~e2, and � around~e3
successively. Here, ’ is a random variable in the range ½0; ’ranp�, where ’ran is a constant that

sets the magnitude of fluctuations of ’ (cf. Supplementary file 1-Table S3) and � 2 ½0; 2pÞ is a
random number. If we denote by~pnew the new center of hemisphere after the rotation, then

~pnew �~rc ¼ k~p�~rck sin’cos�~e1þ sin’ sin�~e2 þ cos’~e3ð Þ:

This equation allows us to find the coordinates of~pnew in the original coordinate system. The

coordinates of the other center of hemisphere~qnew are given by~qnew ¼ 2~rc �~pnew:

The two growth rates
We assume that, in the life span of a cell, the cell mass growth rate l and the cell elongation

rate ~l stay constant. The growth of mass satisfies the equation MðtÞ ¼ Mð0Þelt. If the mass

doubling time is td, then MðtdÞ ¼ 2Mð0Þ and hence ltd ¼ ln 2: On the other hand, the doubling

time is the time that a new born cell, which in average has the cylindrical length ‘0, grows as

its cylindrical length reaches the dividing length ‘div. Note that ‘div ¼ 2‘0 þ w0. From the

growth equation Equation (A1.3.2), we have then ‘div ¼ l0e
~ltd : Therefore,

~ltd ¼ ln
‘div
‘0

¼ ln
2‘div

‘div�w0

:

Finally, ~l ¼ sl, where

s¼
~l

l
¼ ln ‘div=‘0ð Þ

ln2
¼ ln 2‘div=ð‘div�w0Þð Þ

ln2
:

For the fixed dividing cell aspect ratio ‘div : w0 ¼ 3 : 1, we have s ¼ ln 3 : ln 2.

Cell movement
Consider a cell at some time instant. Let us denote its centers of hemispheres by~pold and~qold,

its cylindrical length by ‘old ¼ k~pold �~qoldk, its direction by~nold ¼ ð~qold �~poldÞ=‘old; and its mass

by Mold: Let us also denote by~vold and ~!old the velocity and angular velocity, respectively, at

the center of the cell. We apply the velocity-Verlet algorithm to update the cell position,

velocity, and angular velocity with the simulation time step Dt:

We first calculate the force ~Fhalf and torque ~Thalf of the cell. Details of such calculations are

given below in section A1.4. We then calculate the velocity~vhalf and angular velocity ~!half for a

half time step:
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~vhalf ¼~voldþ
Dt

2

~Fhalf

Mold
;

~Thalf;n ¼ ð~Thalf �~noldÞ~nold;

~Thalf;t ¼~Thalf �~Thalf;n;

~!half ¼~!oldþ
Dt

2

~Thalf;n
Iold;n

þ
~Thalf;t
Iold;t

 !

;

where Iold;n and Iold;t are the moments of inertia of the cell along the directions~nold and its

orthogonal, respectively. By direct calculations and using the constant density �cell in the place

of the mass density of an underlying cell, we have

Iold;n ¼ �cellpw
4

0

1

32
‘old þ

1

60
w0

� �

;

Iold;t ¼
1

480
�cellpw

2

0
4w3

0
þ 15‘oldw

2

0
þ 20‘2oldw0þ 10‘3old

� �

:

We now update the cell positions for the entire time step Dt by updating the centers of

hemispheres

~pnew ¼~pold þDt ~vhalf þ~!half �
~pold �~qold

2

� �

;

~qnew ¼~qold þDt ~vhalf þ~!half �
~qold �~pold

2

� �

:

We update the force and torque of the new cell with the centers of hemispheres~pnew and

~qnew by the procedure of force calculations described below in section A1.4 to get ~Fnew and

~Tnew. Finally, we update the velocity and angular velocity for the second half time step to get

~vnew ¼~vhalf þ
Dt

2

~Fnew

Mnew

;

~Tnew;n ¼ ð~Tnew �~nnewÞ~nnew;

~Tnew;t ¼~Tnew�~Tnew;n;

~!new ¼~!half þ
Dt

2

~Tnew;n
Inew;n

þ
~Tnew;t
Inew;t

 !

;

where Mnew,~nnew ¼ ð~qnew �~pnewÞ=‘new, and ‘new ¼ k~pnew �~qnewk are the mass, direction, and

cylindrical length, respectively, of the new cell with the centers of hemispheres~pnew and~qnew,

and the moments of inertia Inew;n and Inew;t can be calculated similarly using the cylindrical

length ‘new:

A1.4 Force Calculations
Mechanical forces exerted on a cell include the elastic and dissipative forces from the cell-cell

mechanical interactions, the elastic and dissipative forces from the cell-agar interaction if the

cell is in contact with the agar, the surface tension force if the cell is on the top of the colony,

and the viscous force from the interaction between the cell and the surrounding liquid. For a
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given cell, we shall denote these forces by ~Fcc, ~Fca, ~Fsurf , and ~Fvisc, respectively. So, the total

force acting on the cell is

~F¼~Fcc þ~Fcaþ~Fsurf þ~Fvisc:

Note that most cells are in the interior of the colony; and they only experience the forces from

the cell-cell and cell-liquid interactions.

(a) Cell-cell interaction force
When two cells are in direct contact, they generate the cell-cell interaction force. As in

Volfson et al. (2008), we describe such forces using a standard model in granular solids

(Brilliantov et al., 1996; Cundall and Strack, 1979; Kuwabara and Kono, 1987;

Makse et al., 2004; Shäfer et al., 1996), with some adjustment based on experimental

considerations on bacterial cells. An important part of our force scheme is a detailed

treatment of the cell-cell frictional force, which together with the cell-agar friction are

responsible for crucial mechanical behaviors such as buckling of the bacterial colony. While a

similar grain-grain friction is commonly included in models of granular solids, however, friction

in cellular models is often described to only include a purely viscous force (Farrell et al., 2013;

Ghosh et al., 2015).

Let us fix a cell in the colony centered at~rc, and call it a primary cell. Let us also fix a

neighboring cell centered at~rc0 : We denote by d the minimal distance between the central

cylindrical line segments of the two cells, and by~a and~a 0 the points on these line segments,

respectively, that reach this minimal distance:

d¼ k~a�~a 0k;

cf.Figure 13A in the main text. We will describe an algorithm of finding the minimum distance

d and these two points~a and~a 0 at the end of this part. We denote by~ncc the unit vector along

the direction from~a 0 to~a; by~rcc the center of these two points, and by dcc the indentation size

(i.e., the amount of overlap) between the two cells, respectively:

~ncc ¼
1

d
ð~a�~a 0Þ; ~rcc ¼

1

2
ð~aþ~a 0Þ; dcc ¼

w0 � d if w0� d>0;
0 if w0 � d � 0:

�

Let~v,~v 0 and ~!, ~!0 be the velocities and angular velocities of the primary and neighboring cells,

respectively. The velocities ~V and ~V 0 of the two cells at the midpoint~rcc are then given by

~V ¼~vþ~!�ð~rcc�~rcÞ and ~V 0 ¼~v 0þ~!0�ð~rcc�~rc0Þ;

respectively. Denote the difference of these velocities by

~vcc ¼~V �~V 0:

We call the unit vector~ncc the normal direction in the interaction of these two cells. We specify

the tangential direction to be the unit vector

~tcc ¼
~vcc�ð~vcc �~nccÞ~ncc
k~vcc�ð~vcc �~nccÞ~ncck

;

if the denominator is nonzero, that is the relative velocity~vcc has a nonzero tangential

component. (Otherwise,~tcc can be any unit vector orthogonal to~ncc.) Note that the tangential

direction~tcc depends on the direction of the relative velocity~vcc:

Let us assume now that these two cells are in direct contact with each other, that is dcc > 0:

The total interaction force ~Fcc between these two cells exerted at the center~rcc and the

corresponding torque ~Tcc about the axis~rcc �~rc, are given, respectively, by

~Fcc ¼~Fcc;n þ~Fcc;t;
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~Tcc ¼ ð~rcc�~rcÞ�~Fcc:

Here, ~Fcc;n is the normal force in the direction~ncc and ~Fcc;t the tangential force in the direction

~tcc: They are defined by

~Fcc;n ¼
2

3
kcc

ffiffiffiffiffiffi

w0

p
d3=2cc �gcc;nMeffdccð~vcc �~nccÞ

� �

~ncc; (A1.4.1)

~Fcc;t ¼�min gcc;tMeffd
1=2
cc j~vcc �~tccj;

2

3
�cckcc

ffiffiffiffiffiffi

w0

p
d3=2cc

� �

~tcc: (A1.4.2)

Note that the final form of the force ~Fcc is the same as that in the main text; cf. Equations 7a

and b there.

The first part in the normal force ~Fcc;n is the Hertz contact force resulting from the elastic

collision of the two cells and pointing from the neighboring cell to the primary cell. Here, we

approximate the cells as spheres of radius w0=2. In such a case, the classical Hertz contact

force is ð4=3Þkcc
ffiffiffiffiffiffiffiffiffiffi

w0=4
p

d3=2cc ; which is exactly what we have, where kcc is the reduced (or

effective) elastic constant and w0=2 is the reduced radius. If E and n are Young’s module and

Poisson’s ratio of cells, then kcc ¼ E=ð2ð1� n2ÞÞ (cf. Johnson, 1985; Landau and Lifshitz,

1986; Popov, 2010). The second part in the normal force ~Fcc;n is the friction force in the

normal direction~ncc due to the relative motion of the two cells, where gcc;n is the (normal)

static friction coefficient and

Meff ¼ �cell
VcellV

0
cell

Vcell þV 0
cell

is the reduced mass.

This form of the normal force Equation (A1.4.1) has been used in Volfson et al. (2008).

Similar forms of such a normal force can be found in the literature of granular solids (cf.

Brilliantov et al., 1996; Herrmann and Luding, 1998; Kuwabara and Kono, 1987;

Makse et al., 2004; Shäfer et al., 1996; Silbert et al., 2001). In particular, Kuwabara and

Kono (1987) and Brilliantov et al. (1996) derived the normal force between two spherical

granular grains, assuming such grains are viscoelastic. The frictional part in their derived

normal force is proportional to
ffiffiffiffiffiffiffiffi

Rred

p ffiffiffi

d
p

v, where Rred is the reduced radius and equals R=2 if

both spheres have the same radius R; is the amount of overlap of the grains (same as our dcc),

and v is the relative speed of the head-on collision of the grains (same as our j~vcc �~nccj). Since
we have always used a fixed radius of the spherical caps of a cell in our simulations, with or

without the factor
ffiffiffiffiffiffiffiffi

Rred

p
does not change noticeably our simulation results. However, unlike in

granular material simulations where the grain size is fixed, a cell in the bacterial colony can

have different mass and size at different stages. So, including the dependence on the effective

mass is reasonable.

The magnitude of the tangential force ~Fcc;t in Equation (A1.4.2), where gcc;t and �cc are the

(tangential) static and dynamic friction constants, respectively, is the minimum of a tangential

friction force that depends on the relative velocity~vcc and the dynamic friction force that is

proportional to the Hertz contact force which is part of the normal force ~Fcc;n in

Equation (A1.4.1). This is different from that used in Volfson et al. (2008): we only include

the Hertz contact force here, not the entire normal force, as the elastic collision force can be

dominated in cell-cell interactions.

To understand the form of the tangential component of the friction force, let us first

consider the friction for two solid objects in contact. Coulomb’s law for such friction states that

the static tangential friction force ~Fstatic required to move the objects relative to each other

and the dynamic tangental friction force ~Fdynamic between the objects to maintain such motion

once it is initiated are both proportional to the normal force Fnormal pressing the objects

together (Popov, 2010):
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~Fstatic ¼ �s
~Fnormal and ~Fdynamics ¼ �d

~Fnormal;

where �s and �d are the static and dynamics friction coefficients, respectively. In general,

�d <�s and �d »�s; cf. Appendix 1—figure 2A. Here we assume for simplicity that �d ¼ �s: In

addition, we assume that the friction force is proportional to the relative velocity of the two

cells in the tangential direction, with the proportion constant g, when the tangential relative

velocity is small; cf. Appendix 1—figure 2B. This allows the inclusion in the tangential friction

of the dependence of the tangential velocity when it is small in magnitude and can be

damped away quickly in the dynamics. Such an assumption is supported by our experimental

observation that the radial velocity of colony expansion is linear in the batch culture growth

rate but is independent of the individual cell velocity, as the ‘buckling length’ is independent

of such local cell velocity. Our specific form of the tangential friction for small value of relative

tangential velocity, that is the first part in the minimum of the tangential force ~Fcc;t in

Equation (A1.4.2), is the same as that in Volfson et al. (2008). It is different from a form,

popularly used in simulations of granular solids, that only includes the linear dependence on

the relative tangential velocity but not the effective mass and the overlap distance dcc (cf.

Shäfer et al., 1996) and the references therein. Moreover, for simplicity of simulations, we

have also neglected the history dependence in the tangential velocity (Cundall and Strack,

1979; Shäfer et al., 1996).
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Appendix 1—figure 2. The standard (A) and modified (B) model for friction between two

objects, as a function of tangential relative velocity between the two objects, where �s and �d

are the static and dynamic friction constants, respectively.

DOI: https://doi.org/10.7554/eLife.41093.030

We end this part with a method of computing the minimum distance d between the central

cylindrical line segments g1 and g2 of the two cells and the corresponding points on these

segments that reach this minimum distance. For notational convenience, let us denote by~pi
and~qi the position vectors of the centers of hemispherical caps of the cell i with i ¼ 1 and 2,

respectively. Let~ui ¼~qi �~pi We parameterize the central cylindrical line segments gi by~riðtÞ ¼
~pi þ t~ui for 0 � t � 1 Denote~p0 ¼~p1 �~p2 and define the distance-square function

f ðs; tÞ ¼ k~r1ðsÞ�~r2ðtÞk2 ¼ ks~u1 � t~u2 þ~p0k2:

Clearly, f is minimized in ½0; 1� � ½0; 1� by some point ðs0; t0Þ 2 ½0; 1� � ½0; 1�: The minimum

distance d > 0, and the two points~a1 and~a2 on the two line segments reaching this distance

are then given by

d2 ¼ f ðs0; t0Þ ¼ min
s;t2½0;1�

f ðs; tÞ and ~a1 ¼~r1ðs0Þ; ~a2 ¼~r2ðt0Þ: (A1.4.3)

We first assume that the two lines are not parallel, that is~u1 �~u2 6¼~0: In this case, f ðs; tÞ is a
strictly convex and quadratic function with a constant symmetric positive definite Hessian

matrix. By setting qsf ðs; tÞ ¼ 0 and qt f ðs; tÞ ¼ 0, we find that f is minimized in R2 at ðs0; t0Þ with
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s0 ¼
ð~p0�~u2Þ � ð~u1 �~u2Þ

k~u1 �~u2k2
and t0 ¼

ð~p0�~u1Þ � ð~u1 �~u2Þ
k~u1 �~u2k2

:

If ðs0; t0Þ 2 ½0; 1� � ½0; 1�, then we obtain d and~a1; by Equation (A1.4.3). Otherwise, we

compute the minimum value of f on each of the four sides of the square ½0; 1� � ½0; 1� and
compare these values to find the global minimum points ðs0; t0Þ 2 ½0; 1� � ½0; 1� and the

corresponding minimum value of f on this square. Consider, for instance, the side s ¼ 0 and

0 � t � 1: The function f ð0; tÞ for all t 2 R is found to be minimized at t1 ¼ ð~a0 �~u2Þ=k~u2k2. If
t1 2 ½0; 1�, then the minimum value of f on this side is f ð0; t1Þ: Otherwise, this value will be the

minimum of f ð0; 0Þ and f ð0; 1Þ.
We now assume that the two line segments g1 and g2 are parallel. In this case, the

minimum distance d is achieved by the minimum of the distance from~p1 to the second line

segment g2 and that from~q1 to g2:

d¼minfdistð~p1;g2Þ;distð~q1;g2Þg:

Each distance from a point to a line segment can be found by minimizing a convex quadratic

function on ½0; 1�, similar to and simpler than the previous case.

(b) Cell-agar interaction force
When a cell is in contact with the agar surface (including the case of the cell overlaps partially

with the agar region), a cell-agar interaction force ~Fca is generated and can be modeled similar

to the cell-cell interaction force. Assume one end of the cell dips into the agar region; cf.

Figure 13B in the main text. Let~p ¼ ðxa; ya; zaÞ be the center of the spherical cap

corresponding to that end of the cell. We denote by dca the indentation depth: dca ¼
w0=2� za: We also denote~rca ¼ ðxa; yz; za � w0=2Þ, which is the midpoint of the line segment

along the vertical line passing through the point~p between z ¼ 0 and z ¼ �dca: As before, we

denote by~vca the relative velocity at the center~rca. It is given by

~vca ¼~vþ~!�ð~rca�~rcÞ;

where~v is the velocity of the cell at its center~rc and ~! is the angular velocity of the cell. The

normal direction is now the positive z-direction; we denote the unit vector along this direction

by~nca ¼ ð0; 0; 1Þ: The tangential direction is defined through the relative velocity~vca by

~tca ¼
~vca�ð~vca �~ncaÞ~nca
k~vca�ð~vca �~ncaÞ~ncak

;

if the denominator is nonzero. (Otherwise,~tca can be any unit vector orthogonal to~nca.)

Similar to the cell-cell interaction, the total cell-agar interaction force exerted on the

midpoint~rca and the corresponding torque are given by

~Fca ¼~Fca;nþ~Fca;t;

~Tca ¼ ð~rca�~rcÞ�~Fca:

Here ~Fca;n and ~Fca;t are the forces normal and tangential to the mean colony-agar interface z ¼
0: They are given by

~Fca;n ¼
2
ffiffiffi

2
p

3
kca

ffiffiffiffiffiffi

w0

p
d3=2ca �gca;nMeffdcað~vca �~ncaÞ

� �

~nca; (A1.4.4)

~Fca;t ¼�min gca;tMcelld
1=2
ca j~vca �~tcaj;

2
ffiffiffi

2
p

3
�cakca

ffiffiffiffiffiffi

w0

p
d3=2ca

� �

~tca: (A1.4.5)

where kca is an elastic constant in the Hertzian stress, gca;n and gca;t are static friction constants,

�ca is the dynamic friction constant, and Mcell ¼ �cellVcell is the cell mass with Vcell the cell
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volume. Note that the factor
ffiffiffi

2
p

in the Hertz contact force part is different from those for the

cell-cell interaction case. Here, the mean agar surface can be treated as a sphere of radius ¥

which leads to the reduced radius of the cell-agar system to be w0=2:

In our numerical implementation, we do not decide which end of the cell dips into the agar

region. Instead, we compute the corresponding forces at both ends and add them together.

(c) Surface tension
Bacterial cells are hydrophilic. They are coated with water molecules. Once a bacterial cell

sticks out of the colony surface, the tension between the air and water surface generates the

surface tension force that brings down the cell. Such surface tension has long been recognized

as a critical component in colony growth. Existing models of surface tension for colony,

however, rarely treat the cells and the surrounding liquid as distinct media. Rather, the surface

tension is frequently treated as a property of a composite fluid of cells plus liquid

(Grimson and Barker, 1993; Zhang et al., 2008). Alternatively, the liquid phase is ignored

and surface tension is assumed to arise from attractive interactions between the cells

themselves (Farrell et al., 2013). In both cases, the surface tension scales with the

macroscopic curvature of the colony. Here, we endeavor to model the surface tension force as

a boundary force between the discrete cells and the continuum liquid.

The surface tension force can be calculated using the virtual work principle, dW ¼ gsurf dA,

where W is the work done by the water surface, gsurf is the water-vapor surface tension, and

dA is the change in water area A as the cell is raised with an additional dh; cf. Appendix 1—

figure 3. Here, we approximate a cell by a sphere of diameter w0: (The notation for the radius

is R here.) The surface area is A ¼ 2pRh and hence dA ¼ 2pRdh. (In the case of a disk in the

two-dimensional setting, the change in area is dA ¼ 2prRd� ¼ 2pR2 sin �d�. Note that h ¼
R sin � and dh ¼ R sin �d�. Hence dA ¼ 2pRdh:) As a result, the surface tension force is

F¼ dW

dh
¼ 2pgsurf R¼pw0gsurf :

Appendix 1—figure 3. Schematic of the derivation of the surface tension force.

DOI: https://doi.org/10.7554/eLife.41093.031

Therefore, the surface tension is a constant force when a cell sticks out of the water.

However, when a cell is below the water level, it should not experience any surface tension

force. As a result, the surface tension force of a cell is discontinuous across the water surface.

To reconcile this discontinuity, we make an approximation that the surface tension force

increases linearly with the height until the height reaches some critical value hc » 0:1w0, when it

saturates to its maximum value of pw0gsurf .

Specifically, let us consider a cell on top of the colony. Let~rc denote the center, and~p and~q

the two centers of hemispheres of such a cell; cf. Figure 14C in the main text. We define the

total surface tension force ~Fsurf and torque ~Tsurf on this cell to be
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~Fsurf ¼~Fsurf;~p þ~Fsurf;~q;

~Tsurf ¼ ð~p�~rcÞ�~Fsurf;~p þð~q�~rcÞ�~Fsurf;~q;

where

~Fsurf;~i ¼pw0gsurf min
maxf0; ðh~i � z~iÞ~ns �~nzþ dhg

0:1w0

;1

� �

~ns; ~i¼~p or~q:

Here, h~i is the water level at~i or~q),~nz ¼ ð0; 0; 1Þ is the unit vector along the z direction, z~i ¼
~i �~nz is the z-component of~i,~ns is the unit vector of the colony surface, and dh is a constant

determining how tightly the surface tension holds the cells. The water level is coarse-grained.

First, on each horizontal grid square Bi;j ¼ ðiDx; ðiþ 1ÞDxÞ � ðjDy; ðjþ 1ÞDyÞ, we set the water

level, hi;j, at the center of this grid square to be the maximum of the z-coordinate of the two

centers of hemispherical caps of cells whose centers are in the grid column Bi;j � ½0; b�. (Recall
that z ¼ b is the top of our computational box; cf. Figure 11 in the main text.) Then we

construct the coarse-grained water level everywhere by a continuous and piecewise linear

interpolation at all hi;j:

(d) Viscous force
The cells in the colony experience a drag force—the Stokes drag force—due to their

interactions with the surrounding liquid. Such viscous force ~Fvisc exerted at a cell by the

surrounding liquid and the corresponding torque Tvisc are given by (note that w0 is the

diameter)

~Fvisc ¼�3p�liqw0~v and ~Tvisc ¼�p�liqw
3

0
~!;

respectively, where~v and ~! are the velocity and angular velocity, respectively, at the center of

mass of the cell, and �liq is the liquid viscosity.

We finish our description of forces with a remark on the static and dynamic frictions. A

static friction is proportional to the cell speed, while a dynamic friction is the same as the static

friction for small speed but saturates after the speed is large; cf. Appendix 1—figure 2. In our

tangential friction forces that arise from the cell-cell and cell-agar interactions, the saturation is

controlled by capping through the elastic force; cf. Equation (A1.4.2) and Equation (A1.4.5).

To compare our dynamic friction forces with static friction forces alone, we shall consider a

static friction model where the tangential friction forces in Equation (A1.4.2) and

Equation (A1.4.5) are replaced by the following static frictions:

~Fcc;t ¼�gcc;tMeffd
1=2
cc j~vcc �~tccj~tcc and ~Fca;t ¼�gca;tMcelld

1=2
ca j~vca �~tcaj~tca; (A1.4.6)

respectively. The difference between the static and dynamic friction models is shown in

Figure 8F, and the related discussions are given in Discussion in the main text.

A1.5 Coarse-Grained Variables
To better present our simulation results, we need to coarse-grain the cell volume fraction f,

pressure field P, velocity field~v, and director field~n over a subregion G of the colony region.

Examples of a subregion G include:

. The union of a few grid boxes for coarse-graining in the entire colony;

. A small box at the agar-colony interface ðiDx; ðiþ 1ÞDxÞ � ðjDy; ðjþ 1ÞDyÞ � ð0;DzÞ for some i, j

for coarse-graining around such interface;
. A small box in a vertical layer ð�Dx;DxÞ � ðjDy; ðjþ 1ÞDyÞ � ðkDz; ðk þ 1ÞDzÞ or ðiDx; ðiþ 1ÞDxÞ �

ð�Dy;DyÞ � ðkDz; ðk þ 1ÞDzÞ for some i, j, and k for coarse-graining around the cross-section

x ¼ 0 or y ¼ 0, respectively; and
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. A cylindrical ‘cube’ ðidr; ðiþ 1ÞdrÞ � ðjd�; ðjþ 1Þd�Þ � ðkDz; ðk þ 1ÞDzÞ in the cylindrical coordi-

nates ðr; �; zÞ for some small dr> 0, d�> 0, and Dz> 0, and for some i, j, and k, for azimuthal

coarse-graining.

Now let us fix a subregion G in the colony. Let f denote the pressure P or a component of

the velocity field~v; and denote by fi such a quantity at the center of cell i. We define the

coarse-grained average of f over G to be

�f ðGÞ ¼
P

~rci2G
fi

P

~rci2G
1
;

where~rci is the center of mass for the cell i. Similarly, we define the coarse-grained volume

fraction over the subregion G to be

�fðGÞ ¼
P

~rci2G
Vi

VolðGÞ ;

where Vi is the volume of cell i and VolðGÞ is the volume of the subregion G. Note that, if G is a

grid box, then �fðGÞ is the same as the volume fraction f on that box; cf. section A1.2. Note

also that the cell density � can be coarse-grained following its relation with the volume fraction

f; cf. Equation (A1.2.1).

The director field~n cannot be coarse-grained simply by summing over the directors in a

subregion, since the director of a given cell can have two possible directions and the sum can

lead to artificial cancellations. Here, we define the coarse-grained director field~nðGÞ over a
given subregion G to be a maximizer of the maximization problem

max
~n

X

~rci2G
j~n �~nij2 subject tok~nk ¼ 1:

By the Lagrange multiplier method, this leads to an eigenvalue problem for a 3-by-3 matrix,

with the maximizer~nðGÞ being a unit eigenvector that corresponds to the largest eigenvalue.

Let dr> 0 be small. Let N� � 2 be an integer and define d� ¼ 2p=N�. We denote Gi;j;k ¼
ðidr; ðiþ 1ÞdrÞ � ðjd�; ðjþ 1Þd�Þ � ðkDz; ðk þ 1ÞDzÞ in the cylindrical coordinates ðr; �; zÞ; We

define the azimuthal average of a scalar field f by

~f ðidr;kDzÞ ¼ 1

N�

X

N��1

j¼0

�f ðGi;j;kÞ;

where �f ðGi;j;kÞ is the the coarse-grained average of f over Gi;j;k. The azimuthal average of a

vector field can be defined componentwise.

Given any point in the agar-colony interface with the polar coordinates ðr; �Þ, we define

Dr¼ r�Rð�Þ; where Rð�Þ ¼ max
�ðr0;�Þ>0

r0; (A1.5.1)

where �ðr0; �Þ is the local cell density projected onto the colony-agar interface. This is the

negative distance between this point and the colony edge along the ray of angle �: For each

integer j with 0 � j � N�, we denote by ij the largest integer not exceeding ðRðjd�Þ þ DrÞ=dr.
We then define the azimuthal average of the radial component Vr of the velocity field~v by

VrðDrÞ ¼
1

N�

X

N��1

j¼0

�~vðGij;j;0Þ �~rj; (A1.5.2)

where~rj ¼ ðcosðjd�Þ; sinðjd�ÞÞ: Other azimuthal-averaged quantities in terms of Dr can also be

defined similarly.
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Appendix 2
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Additional Results of Simulation and Analysis
Unless otherwise stated, all the notations and terms are the same as defined in the main text

and Appendix 1.

A2.1 Constant Density and Volume Fraction
For each of the batch culture growth rates lS ¼ 1 h�1 and 0:5h�1, we simulated the growth of

bacterial colony. Figure 3—figure supplement 1 in the main text shows our simulation results

on the volume fractions and their course-grained values. We observe that the volume fraction

of cells in the colony has the mean value around 0:68 with the standard deviation around 0:03

for both of the batch culture growth rates lS ¼ 1 h�1 and 0:5h�1. This suggests that we can

treat the cell volume fraction as a constant inside the colony. Hence, we can also approximate

well the density � by a constant �0; cf. Equation (A1.2.1) in Appendix 1.

A2.2 Effect of lS-Dependence on Cell Dividing Length
It has been known that cell dividing length ‘div may vary with the batch culture growth rate lS

according to the relation (cf. Donachie, 1968; Jun and Taheri-Araghi, 2015; Wallden et al.,

2016)

Vdiv ¼ V0e
lS=lS0 ; (A2.2.1)

where Vdiv is the corresponding dividing volume of the cell, V0 is a constant, and lS0 ¼ 1:0 h�1.

In our simplified computational model, we have not included such variations. Here, we study

the effect of the lS-dependence on the cell dividing length ‘div by computer simulations.

Based on recent experimental observations on the size on E. coli cell (Jun and Taheri-

Araghi, 2015; Si et al., 2017), we have the ratio

‘div :w0 ¼ 3 : 1 (A2.2.2)

for all the batch culture growth rate lS: This and Equation (A2.2.1), together with the formula

for cell volume (cf. Equation (A1.3.1) in Appendix 1), then imply that the cell dividing length

should be given by

11

324
p‘3div ¼ V0e

lS=lS0 :

Setting lS ¼ lS0 ¼ 1 h�1 in Equation (A2.2.1) and using the assumption Equation (A2.2.2), we

obtain also that

11

324
p‘3div;0 ¼ V0e;

where ‘div;0 is the cell dividing length for lS ¼ lS0. We now assume that this cylindrical length

is ‘div;0 ¼ 3�m (Jun and Taheri-Araghi, 2015; Si et al., 2017). The above two equations then

provide us with the cell dividing length

‘div ¼ 27elS=lS0�1: (A2.2.3)

We chose lS ¼ 0:1 h�1; 0:2 h�1; . . . ; 1:0 h�1: For each of these values of lS, we ran simulations

with the variable dividing length ‘div determined by Equation (A2.2.3). We also ran

simulations with a fixed diving length ‘div ¼ 3�m; cf. Supplementary file 1-Table S3. In

Figure 5C in the main text, we plot the (constant) vertical ascending speed VH vs. lS for both
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fixed (open circles) and variable (filled circles) dividing lengths. We observe that the results

from a fixed dividing length are consistent with those from a variable dividing length. In

Figure 8F in the main text, we see that the (constant) radial velocity VR obtained with a fixed

dividing length is close to that with a variable dividing length, but the discrepancy is more

significant than the case of VH: In Appendix 2—figure 1 below, we plot the velocities VR and

VH for variable dividing length, and fit the simulation data with lS � 0:5 h�1. We observe that

the straight line that fits simulated VR intersects the x-axis at ~ 0:2h�1. This agrees well with

the experimental result plotted in Figure 1H in the main text. Hence, the inclusion of lS-

dependence on the cell dividing length can better describe experiment.
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Appendix 2—figure 1. Experimental measurement on VR and VH with various batch culture

growth rates. Data are fitted with the stright line VR ¼ 51:27lS � 7:96 and the squre root curve

VH ¼ 12:7
ffiffiffiffiffi

lS
p

for the redial and vertical speeds of expansion VR and VH respectively. (B)

Simulation results on VR and VH with various batch culture growth rates and with a variable

diviting length ldiv. data are fitted for lS � 0:5 h�1 using the straight line VR ¼ 22:1lS � 5:24 the

squre-root curve VH ¼ 6:12
ffiffiffiffiffi

lS
p

; respectively.

DOI: https://doi.org/10.7554/eLife.41093.033

We now show that using a fixed cell dividing length ‘div independent of the batch culture

growth rate lS is a reasonable simplification for our simulations. We fixed the batch culture

growth rate lS ¼ 1:0h�1 and the constant concentration in the boundary condition Cs ¼
2:0mM: We then distributed randomly 625 cells at time t ¼ 0h: At t ¼ 9:0 h; there are around

0:16 million cells in the colony. We picked randomly 2; 000 of them from the bottom layer, and

then tracked the local mass growth rate of each of these cells from t ¼ 9:0h to t ¼ 15 h: If a cell

divides during this time period, we kept track one of its two daughter cells. We found that the

local growth rates of about 80% of these cells change from high values, larger than 90% of lS,

to low values, smaller than 10% of lS, during this time period of colony growth. This indicates

that the majority of the cells go through a complete transition in local growth rates.

We now consider those 80% cells that experience the transition from high to low growth

rates. Appendix 2—figure 2A is the histogram of the number of cell generations (i.e., the

number of divisions) of these cells. It is clear that during the transitioning time period, most of

these cells did not divide or only divided once, signaling the sharpness of the high-to-low

growth rate transition. To better understand such sharpness, we selected randomly 100 cells

which complete the high-to-low transition, and tracked the growth rate of each of these cells

during the time period from t ¼ 9:0 h to t ¼ 16 h: In Appendix 2—figure 2B, we plot the local

growth rate vs. shifted time for each of these 100 cells. For a given cell, we shifted the time so

that the growth rate of lS=2 was reached at the shifted time 0. All these indicate that cells

pass the transitioning region in a short time, and it is therefore reasonable to assume a fixed

ldiv and w0 for the entire simulation.
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Appendix 2—figure 2. Statistics of cells undergoing growth transition. (A) The histogram of the

number of generations of the cells that experienced high-to-low growth rate transition.(B)

Curves of growth rates vs. shifted time for 100 cells randomly selected from those 80% cells.

DOI: https://doi.org/10.7554/eLife.41093.034

A2.3 A One-Dimensional Model for Nutrient Penetration
The vertical ascending velocity and the pattern formation of the colony depend largely on how

deep the nutrient from agar can penetrate into the interior of colony. Near the agar surface,

cells grow fast with abundant nutrient supply. Away from the agar surface, the growth of cells

in the colony is much limited due to the lack of nutrient. In this section, we construct a

simplified 1D model of nutrient diffusion and reaction, and show that the nutrient

concentration decays quadratically in the region where it is above the Monod constant KS but

decays exponentially in the region where it is below KS. We introduce the nutrient penetration

level HS to be the height (i.e., the z coordinate) at which the nutrient concentration takes the

value KS, and analyze how HS affects the colony growth.

Since the colony is rather thin, the variations of the nutrient concentration in the x and y

directions are rather small compared with that in the z direction. Therefore, we can assume

that the steady-state concentration C ¼ CðzÞ depends only on the z variable, and approximate

the full Laplacian DC in the colony region by the 1D Laplacian qzzC in the z variable.

Consequently, we consider the following 1D model for the nutrient concentration C ¼ CðzÞ :

DþC
00 ¼ �0lS

Y

C

CþKS
for z>0;

Cð0Þ ¼C0 and Cð¥Þ ¼ 0;

where a prime denotes the spatial derivative and C0 > 0 is a controlling parameter that

describes the amount of nutrient concentration from the agar substrate. Note that we have

replaced the local cell density � by the constant density �0; cf. the description of nutrient

update in Appendix A1.2. Setting

~C¼ C

KS
and ~z¼ z

b
with b¼ DþKSY

�0lS

� �1=2

;

we obtain the non-dimensionalized form of the model

~C00 ¼
~C

~Cþ 1
for ~z>0; (A2.3.1)
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~Cð0Þ ¼ ~C0 and ~Cð¥Þ ¼ 0; (A2.3.2)

where ~C0 ¼ C0=KS:

We observe that there is a unique solution ~C ¼ ~Cð~zÞ to this boundary-value problem that is

nonnegative for all ~z � 0: This solution is the unique minimizer of the convex functional

I½u� ¼
Z

¥

0

1

2
u02 þ u� lnð1þ uÞ

� �

d~z

of all nonnegative functions u such that both u and u0 are square-integrable on ð0;¥Þ, and
uð0Þ ¼ ~Cð0Þ and uð¥Þ ¼ 0: Note that the solution ~C ¼ ~Cð~zÞ is a monotonically decreasing

function of ~z> 0. For otherwise, ~C would reach a local maximum at some ~zm > 0 with ~C00ð~zmÞ< 0

but ~Cð~zmÞ � 0. This is impossible by Equation (A2.3.1). We also observe that ~C0ð¥Þ ¼ 0, for

otherwise ~C0 would be negative and stay strictly away from 0 as ~C00 � 0, leading eventually to
~Cð¥Þ ¼ �¥ which would contradict the fact that ~Cð¥Þ ¼ 0:

Now, multiplying both sides of Equation (A2.3.1) by ~C0, we get

1

2

d

d~z
ð~C0Þ2 ¼ d

d~z
~C� ln ~Cþ 1

� �� �

:

Integrating both sides of this equation from 0 to ~z> 0, we obtain

1

2
ð~C0ð~zÞÞ2 � 1

2
ð~C0ð0ÞÞ2 ¼ ~Cð~zÞ� ln ~Cð~zÞþ 1

� �� �

� ~C0 � ln ~C0 þ 1
� �� �

:

Sending ~z ! ¥, we get

�1

2
ð~C0ð0ÞÞ2 ¼� ~C0 � ln ~C0 þ 1

� �� �

:

The combination of the above two equations leads to

1

2
ð~C0ð~zÞÞ2 ¼ ~Cð~zÞ� ln ~Cð~zÞþ 1

� �

8~z>0: (A2.3.3)

We now study how fast ~C ¼ ~Cð~zÞ decays. Assume ~Cðz1Þ � 1 for some ~z1 � 0. Then ~CðzÞ � 1

for all ~z � ~z1: Noting that

x� lnðxþ 1Þ � x2=3 if 0� x� 1;

and that ~C0 � 0, we have by Equation (A2.3.3) that �~C0 �
ffiffiffiffiffiffiffiffi

2=3
p

~C for all ~z � ~z1. This leads to

the exponential decay

~Cð~zÞ � ~Cðz1Þe�
ffiffiffiffiffiffi

2=3
p

ð~z�~z1Þ 8~z�~z1: (A2.3.4)

If ~C0 ¼ ~Cð0Þ � 1, then we can have ~z1 ¼ 0 in Equation (A2.3.4) and the concentration ~C ¼ ~Cð~zÞ
decays exponentially.

Suppose now ~C0 > 1. Since ~C ¼ ~Cð~zÞ decreases monotonically and ~Cð¥Þ ¼ 0, there exists a

unique ~z0 ¼ z0=b> 0 such that ~Cð~z0Þ ¼ 1 (i.e., Cðz0=bÞ ¼ KS) and ~Cð~zÞ � 1 for all ~z � ~z0: Thus the

inequality (Equation (A2.3.4)) holds with ~z1 ¼ ~z0 and ~Cð~z1Þ ¼ ~Cð~z0Þ ¼ 1: We show now that the

concentration ~C ¼ ~Cð~zÞ decays quadratically in ½0;~z0�: Precisely, we shall prove that

max

ffiffiffiffiffiffi

~C0

q

� 1
ffiffiffi

2
p ~z;0

� �� �2

� ~Cð~zÞ �
ffiffiffiffiffiffi

~C0

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnðe=2Þ
2

r

~z

 !2

8~z2 ½0;~z0�: (A2.3.5)

By Equation (A2.3.3) and the fact that ~C0 � 0, we have �~C0 �
ffiffiffiffiffiffi

2~C
p

in ½0;~z0�. This leads to
ð
ffiffiffiffi

~C
p

Þ0 � �1=
ffiffiffi

2
p

. Integrating both sides of this inequality from 0 to ~z, we obtain the first

inequality in Equation (A2.3.5). Note that

Warren et al. eLife 2019;8:e41093. DOI: https://doi.org/10.7554/eLife.41093 46 of 47

Research article Computational and Systems Biology

https://doi.org/10.7554/eLife.41093


ðln2Þx� lnðxþ 1Þ � 0 8x� 1:

Thus, by Equation (A2.3.3) and the fact that ~C0 � 0, we obtain that �~C0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 lnðe=2Þ~C
q

, and

further that ð
ffiffiffiffi

~C
p

Þ0 � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlnðe=2ÞÞ=2
p

in ½0;~z0�. An integration of both sides of this inequality

from 0 to ~z then leads to the second inequality in Equation (A2.3.5).

In Figure 5—figure supplement 1 in the main text, we see that the nutrient concentration

Cctr along the z-axis is described well by a quadratic function for Cctr � KS (i.e., ~C > 1) and that

the nutrient concentration decays exponentially for Cctr � KS (i.e., ~C � 1).

The position ~z0 > 0, defined by ~Cð~z0Þ ¼ 1, is the (rescaled) vertical level across which the

nutrient concentration transitions from the quadratic decay described in Equation (A2.3.5) to

the exponential decay described by Equation (A2.3.4) with ~z1 ¼ ~z0: The nutrient penetration

level we have defined is exactly HS ¼ b~z0. Setting ~z ¼ ~z0 in Equation (A2.3.5), we see that ~z0 ¼
Oð

ffiffiffiffiffiffi

~C0

p

Þ if ~C0 � 1: Therefore,

HS ¼ b~z0 ¼O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DþC0Y

�0lS

s
 !

¼O
1
ffiffiffiffiffi

lS
p
� �

:

Since the nutrient decays exponentially above HS, only those cells below the height HS

grow with the maximum growth rate lS. Therefore, the speed of vertical expansion VH is given

by VH / HSlS /
ffiffiffiffiffi

lS
p

; see the discussion in the main text: Vertical rise—quantitative analysis, in

Simulation Results and Analysis.
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