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Abstract. The distributions of animal populations change and evolve through time.
Migratory species exploit different habitats at different times of the year. Biotic and abiotic
features that determine where a species lives vary due to natural and anthropogenic factors.
This spatiotemporal variation needs to be accounted for in any modeling of species’
distributions. In this paper we introduce a semiparametric model that provides a flexible
framework for analyzing dynamic patterns of species occurrence and abundance from broad-
scale survey data. The spatiotemporal exploratory model (STEM) adds essential spatiotem-
poral structure to existing techniques for developing species distribution models through a
simple parametric structure without requiring a detailed understanding of the underlying
dynamic processes. STEMs use a multi-scale strategy to differentiate between local and global-
scale spatiotemporal structure. A user-specified species distribution model accounts for spatial
and temporal patterning at the local level. These local patterns are then allowed to ‘‘scale up’’
via ensemble averaging to larger scales. This makes STEMs especially well suited for exploring
distributional dynamics arising from a variety of processes. Using data from eBird, an online
citizen science bird-monitoring project, we demonstrate that monthly changes in distribution
of a migratory species, the Tree Swallow (Tachycineta bicolor), can be more accurately
described with a STEM than a conventional bagged decision tree model in which
spatiotemporal structure has not been imposed. We also demonstrate that there is no loss
of model predictive power when a STEM is used to describe a spatiotemporal distribution with
very little spatiotemporal variation; the distribution of a nonmigratory species, the Northern
Cardinal (Cardinalis cardinalis).

Key words: citizen science; ensemble model; exploratory analysis; multiscale; sample bias; semi-
parametric; spatiotemporal; survey data.

INTRODUCTION

Understanding the determinants of species distribu-

tions and why distributions change through time is an

important aspect of ecology and is critical for conser-

vation and management. Many animal populations

exhibit long-term temporal variation in distribution

and abundance due to a variety of mechanisms. For

example, distributions respond to changes in the biotic

and physical environments (Thomas and Lennon 1999,

Brommer 2004, MacLean et al. 2008, Schummer et al.

2008), or colonization of or adaptation to new and

suitable environments (Dhondt et al. 2005, Strayer

2009). Other species undergo distribution changes on

shorter time scales, such as daily or annual migrations.

Describing temporal variation in distributions and

identifying the environmental features with which

species are associated throughout their movements is

essential for developing comprehensive conservation

policies.

Recognizing the importance of these issues, there has

been an increasing effort to collect, assemble, and

organize the ecological data needed to understand how

species distributions change through time (e.g., the

Global Biodiversity Information Facility; data available

online).7 However, data on species occurrences and

abundances are, at best, sparsely distributed in space

and through time, necessitating the ability to accurately

interpolate where data were not collected (Scott 2002).

By relating environmental predictors to observed

occurrences or abundances, species distribution models

can make predictions at unsampled locations and times.

Modeling dynamic species distributions requires that

analyses deal with spatiotemporal variation across

multiple scales. Systems often exhibit strong homogene-

ity when viewed at ‘‘fine’’ or ‘‘local’’ scales (Dungan et

al. 2002, Beever et al. 2006). There are many processes

that induce similarity of nearby observations. For
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example, the fine-scale spatial and temporal patterning

of resources induces corresponding local distribution

patterns (Smith 1974, Fortin and Dale 2005) and

juvenile dispersal limitations help define the extent of

‘‘locality’’ (Waser and Elliott 1991, Anselin 1995). The

importance of accounting for spatial (Lichstein et al.

2002, Royle et al. 2002, Banerjee et al. 2004, Latimer et

al. 2006) and temporal correlation (Hurlbert 1984) has

been broadly recognized. In contrast to fine-scale

homogeneity, systems often exhibit strong heterogeneity

when viewed at ‘‘coarse’’ or ‘‘global’’ scales. For

example, it is known that individuals of the same species

often occupy different specialized habitats at the edges

of their distributions (Brown et al. 1995) and population

dynamics processes such as the Allee effect (Groom

1998, Keitt et al. 2001) and source–sink dynamics

(Mouquet and Loreau 2003) can create spatial pattern-

ing at relatively large spatial scales. In the temporal

domain, large-scale effects like El Niño/La Niña and

North Atlantic Oscillation (Lima et al. 2002, Grosbois et

al. 2008) create strong, relatively abrupt changes in

population size and composition.

Most statistical species distribution models have been

developed to estimate static distributions (Latimer et al.

2006, Maggini et al. 2006, Royle et al. 2007, Thogmartin

et al. 2007). These methods are based on hierarchical

linear models that take into account local-scale spatial

patterning via spatial covariates and parametric spatial

correlation models. Recent extensions of this framework

have been used to analyze dynamic species distributions

by adding the structure to link distributions through

time. For example, Link and Sauer (2007) included

seasonal components of population change to estimate

changes between breeding and winter seasons; Wikle

(2003) used integro-difference equations to model the

range expansion; and vector autoregressive processes

have been used to study dynamics in forest growth

(Hooten and Wikle 2007). The success of this approach

depends strongly on the analyst’s ability to correctly

specify the important coarse-scale processes that control

distribution dynamics.

However, for many applications, the dominant

processes are unknown or are not understood in

sufficient detail to specify as a parametric statistical

model. Nonparametric techniques offer an alternative

approach for modeling broad-scale species distributions

(De’ath and Fabricius 2000, Elith et al. 2006, 2008,

De’ath 2007, Hochachka et al. 2007). The essential

feature of these nonparametric models is that they

automatically adapt to patterns in data, reducing the

amount and detail of information that must be supplied

by the user. The ability to automatically discover

patterns also makes these methods especially well-suited

for exploratory analysis and subsequent hypothesis

generation (Hochachka et al. 2007, Kelling et al.

2009). Many nonparametric methods have been suc-

cessfully used to study static distributions (Phillips et al.

2006, Prasad et al. 2006, Hochachka et al. 2007, Elith et

al. 2008).

The challenge with using nonparametric techniques to

model spatiotemporally varying distributions is that

without any spatiotemporal structure the models are

free to share predictor information across regions or

seasons in ways that are impossible in nature. Later in

this paper we show how strong habitat–occurrence

relationships identified in one region can be erroneously

applied to distant regions giving rise to biased predic-

tions and inferences. Thus, to conduct successful

spatiotemporal exploratory analyses, existing techniques

need to be adapted to provide sufficient spatiotemporal

structure while not constraining the analysis too

narrowly, restricting the utility of the model. To date,

no such methods exist.

In this paper, we introduce a novel methodology for

adding essential spatiotemporal structure to existing

static species distribution models without requiring

detailed specification of the underlying dynamic pro-

cesses. This is achieved by creating an ensemble, or

mixture model, from a population of static species

distribution models each applied to a spatiotemporally

restricted extent. By restricting each model to a local

region, we can account for local-scale spatial and

temporal patterns and control the risk of extrapolation

to distant regions. Partitioning the study area into many

local regions gives the ensemble extra flexibility to adapt

to coarse-scale heterogeneity. Predictions are made by

averaging across local models with shared extents,

allowing for local-scale patterns to ‘‘scale up’’ to

patterns at the global scale (sensu Levin 1992). We call

this method the spatiotemporal exploratory model

(STEM).

The motivation for this work was to explore the

continent-wide inter-annual migrations of common

North American birds using data from the citizen

science project, eBird (Sullivan et al. 2009; information

available online).8 Understanding temporal variation in

species distributions is critical for developing conserva-

tion strategies for migratory species (Greenberg and

Marra 2005). This is challenging in part because of the

great variation in migration dynamics between species.

To deal with this, we sought to develop a highly

automated STEM capable of producing objective,

dynamic species distribution estimates with a minimum

of user inputs. Therefore, the implementation presented

here focuses on exploratory analysis with decision trees

(Breiman et al. 1984, Quinlan 1993) with an ensemble

designed specifically for intra-annual migration dynam-

ics.

Developing models that can account for spatial and

temporal structuring in species’ responses to their

environment is one component of an effective modeling

framework, but the effectiveness of the modeling process
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also depends on appropriate evaluation of model

accuracy. A common approach to evaluation is to hold

out data from the model development, either by splitting

the data, k-fold partitioning (Wiens et al. 2008), or

bootstrapping (Harrell 2001). Accuracy is assessed

through the quality of predictions on the hold out set

(Fielding and Bell 1997, Hastie et al. 2001). However,

broad-scale survey data collected by volunteers, like

eBird, often have strong spatial heterogeneity in

sampling intensity, at multiple scales. At a fine

resolution, these data tend to be biased toward road-

sides and human population centers (Reddy and

Davalos 2003), whereas at a continental scale, data

density is highest in regions of highest human density.

This sampling bias can influence the evaluations by

placing too much emphasis in those data regions that are

most intensively sampled.

We addressed this problem with a novel model

evaluation procedure for controlling spatial sampling

bias and then used it to demonstrate the utility of STEM

analysis for producing models of distributions of

migratory and nonmigratory bird species with eBird

data.

DATA USED IN EXAMPLES

Data for our study come from eBird, a citizen science

project launched by the Cornell Lab of Ornithology and

the National Audubon Society in 2002 (Sullivan et al.

2009): eBird engages a large network of bird watchers,

who are highly motivated and self-trained, to report bird

observations from around the world. Participants follow

a checklist protocol, where time, location, and counts of

birds are all reported in a standardized manner. A

network of bird distribution experts (more than 400

participants) manage the observations through a series

of region- and time-specific checklist filters (more than

800) to ensure data quality. These filters are used to

identify species occurrences that are considered unusual,

given the date and location of the observation. When

unusual sightings are submitted, they are sent to an

expert for review and possible acceptance into the

database. For this reason, eBird data may be somewhat

conservative for measuring changes in timing or location

of distributions.

eBird is unique among broad-scale North American

bird monitoring projects in that it collects observations

made throughout the year. The goal of our application is

to use these year-round data to produce continent-wide

occurrence maps for all times of the year for a wide

range of North American bird species.

Participants record counts of bird species detected

visually or acoustically, the location where their search

took place, and the time that they initiated the search.

eBird reporting rates are highest during the spring and

fall migrations (e.g., in May of 2009 eBird gathered

more than 1.7 million observations of birds), and are

lower during the breeding and winter seasons (approx-

imately 1 million observations of birds in January or

June 2009). By asking participants to indicate when they

have contributed ‘‘complete checklists’’ of all the species

they detected, we can assume species with no detected

individuals conveys absence information for that loca-

tion. This distinguishes eBird as a ‘‘presence–absence’’

data protocol. A subset of eBird participants use

standardized protocols designed to collect additional

information on search effort. For example, under the

‘‘traveling count’’ protocol participants record the

amount of time spent and the transect distance traveled

while searching for birds. Together, the reports of

absence and effort data add valuable information

allowing the analytical control of variable detection

rates when inferring absences.

In this paper we used presence–absence data from

complete checklists collected under the ‘‘traveling count

protocol’’ from 2004 to 2007. Under this protocol all

observations are tied to a single location even though

birds were recorded continuously along the path that

was travelled. Participants are encouraged to record this

location at the middle of their transect. However,

because some participants record the transect locations

differently, there is increasing location uncertainty with

increasing transect length. In addition, we were con-

cerned that very long transects would be subject to

additional noise because of variation in the mode and

speed of transportation. Therefore, we decided to adopt

a convenient limit for transect distances, 8.1 km (5

miles). Start times were restricted to daylight hours

between 05:00 and 20:00 and the total search time was

limited to ,3 hours to make observations more

comparable. The study area includes all of the conter-

minous United States. Fig. 1 shows the 9799 unique

locations for 57 863 complete traveling count checklists

submitted during the study period. There is substantial

spatial variation in sampling intensity visible from the

large empty map regions in much of the Western and

Central United States to the intensively sampled

metropolitan areas throughout the country.

We included effort variables in all analyses to account

for variation in detection rates. Additionally, variation

in availability for detection (Diefenbach et al. 2007) was

modeled as a function of the observation time of day

and day of year. To account for habitat selectivity of

bird species, each eBird location was linked with a set of

remotely sensed habitat information. We selected a set

of spatial covariates that we believed would be generally

useful for capturing occurrence–habitat associations

across a wide number of avian species.

The data used to describe habitat are from the U.S.

2001 National Land Cover Database (Homer et al.

2007), which includes a raster GIS layer of classification

of vegetation with 30-m cell resolution and a 0.40-ha

minimum mapping unit. Land cover was classified into

one of 15 classes within our study region. Two

additional layers were obtained describing the percent-

age of canopy cover and the percentage of impervious

surface, also with 30-m cell resolutions. Because birds
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may respond to their habitat over a range of spatial

scales, we created predictors describing the percentage of

coverage for each of the land-cover classes above

(including canopy and impervious coverage) in square

neighborhoods at two sizes (2.25 ha and 20.25 ha)

centered on each location. We selected these two spatial

scales because we have found them to generate

informative predictors in previous studies of broad-scale

avian distributions for large groups of species.

To account for additional anthropogenic effects we

used human population density estimates from the U.S.

Census Bureau 2000 census block-level summaries.

Elevation measured at 30 arc second (GTOPO30)

resolution was also included (data available online).9

Finally, we included the observation latitude and

longitude, in addition to the day of the year and year, to

ensure sufficient predictor information to adapt to any

spatiotemporal patterns insufficiently represented by the

other predictors. There were a total of 48 predictors used

in the model (Table 1).

MODEL DEVELOPMENT

Ensembles

Ensemble models have emerged as some of the most

powerful nonparametric methods (Breiman 1996, 2001,

Freund and Schapire 1996, Friedman 2001, Friedman

and Popescu 2008) and are the basis for our new

technique. Let yi, i¼ 1, . . . , N, be a set of responses each

associated with p predictors xi ¼ [x1,i, . . . , xp,i]. It is

assumed that each observation, yi, conditioned on xi,

arises as a realization from some true but unknown

function, F*(xi ) that maps xi to yi. The goal is to use

data to estimate F*(xi ) while minimizing the expected

value of a specified loss function.

Here we consider ensemble models that are discrete

mixture models,

FðxÞ ¼
XM

m¼1

am fmðxÞ

where M is the size of ensemble and each ensemble

member or base model fm(x) is a different function of the

predictors x derived from the data. Ensemble predic-

tions F(x) are taken to be a linear combination of the

predictions from each of the ensemble members. The

parameters (a1, . . . , am) determine the mixture weights.

An ensemble model is specified by the choice of the

particular class of functions used for the base models, a

prescription how to construct the M base models and

the mixture weights using a specified set of observations

and predictors (the training data).

Decision trees

Decision trees (DTs) have several features that make

them a good choice as base model, especially for

exploratory analysis (Hochachka et al. 2007, Elith et

al. 2008). DTs are nonparametric models designed to

automatically screen large numbers of predictors to

identify the most important ones while determining the

shape of the functional relationships between predictors

and response, including high order interactions

(Breiman et al. 1984, Quinlan 1993). Additionally, most

DT implementations automatically impute missing

predictors.

These models use a binary recursive partitioning

strategy to adaptively search high-dimensional tensor-

product predictor spaces. Each split partitions the

training data based on values of a single predictor

variable. Splits are chosen to maximize information

content from among all potential splits among all

predictors. Thus, each predictor can appear multiple

times within a decision tree in different decision rules, or

not at all. Node predictions are taken to be the average

FIG. 1. The eBird data locations, 2004–2007. Presence–absence data were taken from 57 863 complete checklists submitted
during the study period. The study area includes 9799 unique data locations across the conterminous United States.

9 hhttp://eros.usgs.gov/#/Find_Data/Products_and_Data_
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of the training samples at that node. Decision trees have

been implemented for many different types of response

variables including continuous responses, counts, and

nominal categories. In this paper we use ‘‘classification’’

trees to model the binary responses arising from

presence–absence data.

There are two key specifications for DTs, the function

used to measure information and the strategy used to

end the tree-growing process. Often the type of response

variable determines which functions are used to measure

information. Like any highly flexible model, a single

decision tree can over-fit data, producing a model that is

too highly tailored to a specific sample of data. Early

methods for dealing with over-fitting used various rules

to prune back the branches of a decision tree (e.g.,

Breiman et al. 1984). Current ensemble methods use new

strategies to control overfitting by combining informa-

tion from multiple decision trees.

Bagged decision trees

In order to control the highly variable predictions of

overfit DTs, Breiman (1996) suggested averaging

predictions from an ensemble of DTs generated by

bootstrapping the training data. Each base model DT is

deliberately overfit by growing it to its maximal size to

produce a low-bias, high-variance estimator. We will

refer to these as ‘‘saturated’’ trees. Ensemble averaging is

used to control the between-model variance. These

‘‘Bootstrap AGgregations’’ are known as ‘‘bagged’’

decision trees (hereafter BDT) and consistently improve

predictive performance compared to single trees.

BDTs are a good, general purpose predictive model

with predictive performance competitive with other

current exploratory models. They have been used

successfully for static species distribution modeling

applications (Prasad et al. 2006, Hochachka et al.

2007). Caruana and Niculescu-Mizil (2006) compared

10 binary classification models (including the three tree-

based models BDTs, RandomForests [Breiman 2001],

and boosted regression trees [Friedman 2001]) using eight

performance metrics across 11 different data sets. They

concluded that RandomForests and BDTs were among

the top overall performers. Boosted regression trees

outperformed RandomForests and BDTs only after the

predictions went through a post-modeling probability

calibration. Elith and Graham (2009) concluded that

boosted regression trees outperformed RandomForests,

a tree-based method very similar to BDTs, for their static

species distribution comparison.

One of the distinguishing features of BDTs is their

simplicity; no parameters need to be fit or tuned during

model training. Bootstrap samples are generated from

the training data by sampling with replacement. Simple

ensemble averaging, ai ¼ 1/M, i ¼ 1, . . . , M, controls

overfitting, making it feasible to fit relatively complex,

saturated trees thereby avoiding any additional param-

eter tuning or computation to control tree complexity.

This approach contrasts with boosted regression trees,

which requires the specification of several important

tuning parameters (interaction depth, shrinkage rate,

and the number of iterations) to control complexity.

Because these parameters are almost always unknown,

fitting these models requires estimation with indepen-

TABLE 1. Predictors used in the model.

Predictor Definition

YEAR observation year
JDATE observation day of year
HOUR observation hour
LONGITUDE degree longitude
LATITUDE degree latitude
EFFORT_HRS_ATMOST effort search time (hr)
EFFORT_DISTANCE_KM effort distance traveled (km)
POP00_SQMI human population density

(number per square mile)�
GTOPO30_ELEVATION elevation (m above mean

sea level)
NLCD01_LANDCOVER NLCD class (30-m resolution)
NLCD01_IMPERV NLCD impervious surface

(30-m resolution)
NLCD01_CANOPY NLCD canopy (30-m

resolution)
NLCD 2.25-ha neighborhood

NLCD01_N11A10R15 open water
NLCD01_N12A10R15 perennial ice/snow
NLCD01_N21A10R15 developed, open space
NLCD01_N22A10R15 developed, low intensity
NLCD01_N23A10R15 developed, medium intensity
NLCD01_N24A10R15 developed, high intensity
NLCD01_N31A10R15 barren land
NLCD01_N41A10R15 deciduous forest
NLCD01_N42A10R15 evergreen forest
NLCD01_N43A10R15 mixed forest
NLCD01_N52A10R15 shrub/scrub
NLCD01_N71A10R15 grassland/herbaceous
NLCD01_N81A10R15 pasture/hay
NLCD01_N82A10R15 cultivated crops
NLCD01_N90A10R15 woody wetlands
NLCD01_N95A10R15 emergent herbaceous wetlands
NLCD01_CMNA10R15 canopy
NLCD01_IMNA10R15 impervious surface

NLCD 20.25-ha neighborhood

NLCD01_N11A10R5 open water
NLCD01_N12A10R5 perennial ice/snow
NLCD01_N21A10R5 developed, open space
NLCD01_N22A10R5 developed, low intensity
NLCD01_N23A10R5 developed, medium intensity
NLCD01_N24A10R5 developed, high intensity
NLCD01_N31A10R5 barren land
NLCD01_N41A10R5 deciduous forest
NLCD01_N42A10R5 evergreen forest
NLCD01_N43A10R5 mixed forest
NLCD01_N52A10R5 shrub/scrub
NLCD01_N71A10R5 grassland/herbaceous
NLCD01_N81A10R5 pasture/hay
NLCD01_N82A10R5 cultivated crops
NLCD01_N90A10R5 woody wetlands
NLCD01_N95A10R5 emergent herbaceous wetlands
NLCD01_CMNA10R5 canopy
NLCD01_IMNA10R5 impervious surface

Notes: NLCD is the U.S. 2001 National Land Cover
Database. We used predictors describing the percentage of
coverage for each of the land-cover classes in square
neighborhoods at two sizes (2.25 ha and 20.25 ha) centered
on each location.

� One square mile¼ 259 ha.
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dent data (Ridgeway 2007, Elith et al. 2008) requiring

additional computation (e.g., cross validation). For

these reasons, we decided to use BDTs as the basis for

this study where we utilize very large ensembles of DTs.

We began by testing the effectiveness of BDTs to

study dynamic annual distributions of Tree Swallow

(Tachycineta bicolor), a common migratory passerine

bird. We chose this species because it is an easily

identified, conspicuous, social bird with broad distribu-

tion across the continental United States, generating

data with relatively high detection rates with few

misidentifications. Additionally, we selected Tree

Swallow because its year-round broad-scale distribution

is relatively well understood (Robertson et al. 1992,

Winkler 2006).

The BDT was fit using all training data across the

entire extent of the study area (see STEM application

and evaluation). Thus, the BDT had sufficient predictor

information to adapt to fine-scale temporal variation

(hourly) and fine-scale spatial variation (30 m). On the

other hand, because the BDT is so highly automated, it

faced the task of finding spatial and temporal signal on

its own—without a priori information or analytical

‘‘requirements’’ telling the model what predictors to

include or functional forms to fit. Fig. 2 shows the

predicted probability of occurrence for Tree Swallow on

9 January 2006. With the land cover predictor variables

used in this analysis, the model correctly identified

known wintering grounds along the Gulf and Atlantic

coasts in the east, and along the central and southern

California coasts in the west. However, this map also

predicted significant concentrations of Tree Swallows in

areas where they are known to not occur in the middle of

winter. These ‘‘false positives’’ are strongest in the

Appalachians, Missouri, and through the Shortgrass

Prairie region, with several smaller high-probability

points scattered throughout the western United States.

All of these locations are far from suitable food sources

and known populations in winter. For ecological and

conservation planning, these ‘‘false positives’’ are

significant errors that limit the utility of the model (see

STEM application and evaluation).

Analytically, these errors arise when strong habitat–

occurrence associations learned from one region and

season are spuriously applied to other regions and/or

seasons. Thus, the model has failed to recognize the

essential spatiotemporal ‘‘scale’’ of Tree Swallow migra-

tion, sharing habitat information across regions where

Tree Swallows do not coexist in time. This problem is

not specific to this analysis; it is a general problem that

can arise for any model whose development involves

sharing information across large spatial and temporal

extents, regardless of the particular predictors used. The

risk of this problem will be greater for more flexible

models and predictor sets with greater variation.

The spatiotemporal exploratory model (STEM)

The spatiotemporal exploratory model (STEM) is an

ensemble model designed to include essential informa-

tion about spatial and temporal scales. This is accom-

plished by restricting each base model to a local spatial

and temporal region. Thus there are two key STEM

parameters: the spatial scale parameter controls the size

of the spatial subregions from which data are analyzed

and the temporal scale parameter controls the length of

the time period within each temporal sub-region. We use

DTs as the base model to conduct local-scale explor-

atory modeling.

FIG. 2. Tree Swallow winter distribution estimate using bagged decision trees. This surface shows the predicted probability of
reported occurrence for Tree Swallows on 9 January 2006. Significant concentrations of Tree Swallows appear in areas where they
are known to not occur at this time of year. These ‘‘false positives’’ are strongest in the Appalachians, Missouri, and through the
Shortgrass Prairie region, with several smaller high-probability points scattered throughout the western United States.
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Each ensemble member takes as input predictors x at

location s and time t

fiðx; s; tÞ

where i indexes the ensemble. Model fi has an associated

parameter, hi, that defines the region in space and time

where fi is trained and is allowed to make predictions. In

statistics, this is called the support set. For example, in

the next section parameter hi is defined as the set of all

locations within rectangular region S and all times t

falling between the two dates, [a, b], h¼f(s, t) j s 2 S, t 2
[a, b]g, STEM predictions are computed as the average

prediction taken across the ensemble members with

shared support

Fðx; s; tÞ ¼
1

nðs; tÞ

XM

i¼1

fiðx; s; tÞIððs; tÞ 2 hiÞ:

I((s, t) 2 hi ) is the indicator function, taking value 1

when the location and time are within support set hi, and

zero otherwise. Here the indicator function identifies the

subset of ensembles with support that contain location s

and time t. Function

nðs; tÞ ¼
XM

i¼1

Iððs; tÞ 2 hiÞ

calculates the number of ensemble models supporting the

prediction at (s, t); we will call this quantity the ‘‘prediction

support.’’ For simplicity, all supporting predictions are

weighted equally. Support sets are randomly sampled

from a spatiotemporal distribution p(h) in such a way to

ensure sufficient spatial and temporal overlap.

Thus, each ensemble prediction is made for a

particular date and location and is computed as the

average prediction made by all base models that contain

that date and time. This local averaging achieves

important ecological and statistical modeling objectives.

Ecologically, local averaging is the mechanism that

allows local-scale patterns to ‘‘scale up’’ to coarse-scale

patterns. Statistically, the local averaging procedure is

similar to a randomized block design on the support sets

where neighboring blocks function like replicates. These

neighboring replicates are used to average out inter-

model (i.e., block level) variation among the predictions.

The locality of the averaging also performs a function

similar to that of parametric models of spatial and

temporal correlation giving larger weights to nearby

predictions. When true large-scale heterogeneity exists, a

well designed STEM ensemble will increase the variation

between predictions from different base models while

reducing the variation among predictions within each

model. According to Breiman’s (2001) theorem, this will

result in improved predictive performance.

STEM design for inter-seasonal dynamics

In order for the model to handle a wide variety of

intra-annual migration dynamics, we need to specify a

sufficiently flexible sampling strategy for the base model

support sets and training data.

First, the temporal windows were defined as evenly

spaced, overlapping intervals spread throughout the

year. Second, for each temporal window, a randomized

set of rectangular spatial support sets was selected from

a geographically stratified design to ensure maximal

spatial coverage across the study area. Third, a

subsample of data within the spatiotemporal support

set was used as the training data. Pseudo code for the

STEM training algorithm is presented in Table 2 and

discussed in more detail in the following subsections.

Temporally, we made a simplifying assumption that

there was more day-to-day variation in distributions for

a fixed year than the amount of year-to-year variation in

distributions observed at a fixed date. Thus, for this

design, we decided to model year-to-year variation at the

local level by including year as a base model predictor.

Then we accounted for day-to-day variation in distri-

bution by specifying a population of temporally

restricted support sets. Each temporal support set was

defined as an interval on the days of the year. To

smoothly model migration dynamics throughout the

year we created an evenly spaced set of overlapping

temporal windows. By limiting the number of windows

and their relative width, we set boundaries on the

maximum temporal period over which information was

shared (i.e., the longest period over which we assume

that relationships between predictors and response are

stable). In the examples presented in later sections of the

paper, we used 80 temporal windows centered at equally

spaced days throughout the year. Each window was 40

days wide for model training. This window width was

selected to be small enough to yield informative monthly

distributional predictions. For the purpose of making

STEM predictions, we further restricted temporal

window support to the central 36-day window to limit

bias when predicting near support ‘‘edges.’’

TABLE 2. Pseudo-code for the STEM training algorithm.

A) Parametric specifications

Temporal scale: specify number and width of temporal
windows

Spatial scale: specify GSRD and dimensions for spatial
support rectangles

Specify support set minimum data requirement.

B) For each temporal window, fit saturated decision trees as
follows:

1) Randomize location of GSRD grid
2) Sample realization of support set from GSRD
3) For each support set
a) Subsample training data within support set
b) Check ensemble minimum data requirement
c) Fit model fi(x, s, t)

End for

End for

Note: GSRD stands for geographically stratified random
design.
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The goal for designing the STEM spatial support sets

was to facilitate adaptation to as wide a variety of intra-

annual migrations as possible. Given the variety of

plausible migration patterns we located support sets

uniformly across the study area. To do this we used a

geographically stratified random design (GSRD), where

strata are defined by a regular grid of ‘‘latitude 3

longitude’’ cells overlaying the study area. We define a

GSRD by its ‘‘latitude 3 longitude’’ dimensions. Each

cell is a unique ‘‘stratum’’ and is sampled uniformly to

create support set ‘‘centers.’’ Sampling a fixed number of

centers per grid cell gives equal spatial weighting across

the ensemble of base models. The ‘‘position’’ of the grid

is randomly located for each realization of the GSRD.

We will use the same GSRD to construct uniformly

distributed test sets and prediction locations, below.

The spatial support sets are rectangles with fixed

latitudinal height and longitudinal width centered

around sampled ‘‘center’’ coordinates. Varying the area

(or scale) of these support rectangles affects the amount

and density of data and the level of prediction support.

Within each spatiotemporal support set hi we subsam-

pled the training data. We randomly sample 63% of the

data locations, the percentage of unique data points

expected in a bootstrap sample on average. A minimum

of 25 unique traveling count training locations within

each support set was specified as the minimum data

requirement. Support sets that did not meet this

requirement were thrown out, reducing ensemble

coverage. Together, the minimum data requirement

and the scale of the support sets define the maximum

extent, minimum data density, and maximum degree of

model extrapolation.

In the examples that follow, we consider STEM at

three spatial scales: ‘‘small,’’ ‘‘medium,’’ and ‘‘large.’’

Typical realizations of the spatial rectangles at small,

medium, and large scales are show in Fig. 3. The ‘‘small’’

scale has the smallest GSRD with 1.508 3 2.08 latitude

by longitude cells and the smallest support set rectangles

at 38 latitude by 48 longitude. This scale provided the

most stringent restriction on long-range extrapolations

and ensemble support; however, because the spatial

distribution of eBird data is so concentrated large parts

of the U.S. study area contained too few data to support

predictions at this scale (Fig. 3). The ‘‘medium’’ size was

generated from a GSRD with 2.12832.838 cells and 683

98 support rectangles. The ‘‘large’’ support set was

defined to be large enough to cover approximately the

entire coterminous U.S. study area. It was generated

from a GSRD with 2.608 3 3.468 cells and 98 3 128

support rectangles. All GSRD and support rectangle

dimensions were selected to yield similar predictive

support in data rich regions.

MODEL EVALUATION WITH SPATIALLY BIASED DATA

Empirical measures of accuracy are useful for model

testing, diagnostics, and comparisons. In this section we

describe how we measured accuracy for predicted

seasonal species distributions when the models were

constructed using data from a nonuniform spatial

distribution. With strong variation in spatial sampling

intensity there will be large areas of low sampling

density and smaller regions with very high sampling

density. If ignored, this spatial bias will produce model

evaluations in which regions with the most data have

excessive influence on the overall measure of model

accuracy and regions with the least data are under-

represented. This is an especially serious problem for

many citizen science projects in which spatial bias

follows patterns of human population density. Indeed,

for conservation applications, we may be most interested

in those regions that are the furthest from human

population centers. The challenge for evaluating species

distribution maps is to generate test set samples that

adequately represent the uniform target population

using the spatially biased data in hand.

Formally, lack of accuracy is defined by the statistical

prediction risk

RðFÞ ¼ EXYLðy;FðxÞÞ:

Here the loss function L(y, F(x)) describes how to

penalize discrepancies between observations y and

predictions F(x) and the expectation is taken over the

joint distribution of observations y and covariate x.

Functions with smaller risk are preferred as more

‘‘accurate.’’ In practice one must specify (1) how to

estimate the loss expectation and (2) define the loss

FIG. 3. Typical realizations of spatial support sets at small, medium, and large sizes. All spatial support sets were made up of
rectangles with fixed latitudinal height and longitudinal width. The size (area) of the support rectangles controlled the trade-off
between the coverage of the study area and the risk of extrapolation due to spurious ‘‘long-range’’ learning.
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function to meet the desired modeling objectives. We

describe these specifications in the subsections below.

The loss expectation

Map estimation, by definition, implies a target

population that includes all locations in the study area.

Moreover, we assume that inference quality at all

locations is equally important. Thus, the expectation

needs to be taken across a uniform distribution of

locations. In practice, the goal is to draw Monte Carlo

samples from the target population using locations

sampled from observed locations. For broad-scale

spatial analyses, observational data are at best sparsely

distributed across the study area. Thus, map estimation

as an inferential goal relies on a model’s ability to make

accurate ‘‘out of sample’’ predictions at locations where

there were no observations. In spatial statistics, this is

known as the spatial interpolation problem (Banerjee et

al. 2004), and it is an essential consideration for

evaluating the quality of a species distribution map.

Here we propose a straightforward subsampling

algorithm for generating the test data used to evaluate

the model. First, we split the data into training and test

sets such that each set contains a distinct set of locations.

This avoids location-specific biases in the risk assess-

ment, an important consideration for bird monitoring

data for which it is common to repeatedly monitor the

same locations. Second, in order to maximize the spatial

coverage of the evaluation, test set locations are

uniformly subsampled with a GSRD. The grid cell size

was specified small enough to measure predictive

performance at a finer spatial resolution than STEMs

smallest local support size. This we set at approximately

1/16 the area of the ‘‘small’’ scale STEM support size,

0.758 latitude and 1.108 longitude. We also set a per-grid-

cell maximum sample size at 2 as a simple way to

produce subsamples with more equitable spatial distri-

bution for risk evaluation. For each selected location, all

of the observations at that point are included in the test

sample. Finally, we evaluate the statistical risk function

over 50 Monte Carlo samples of the GSRD. This allows

us to use more of the test data and to improve the risk

estimate. Pseudo code for the species distribution map

evaluation algorithm is presented in Table 3.

Loss functions

Often, species distribution estimates are best displayed

as a map of predicted probability of occurrence, or as a

continuously varying occurrence score across a set of

locations. Our primary inferential goal was to accurately

rank occurrence probabilities so that the associated map

could be used for the comparison of species prevalence

across regions. For this reason we used the area under

the receiver operating-characteristic curve (AUC) sta-

tistic. This statistic measures a model’s ability to

discriminate between positive and negative observations

(Fielding and Bell 1997). The AUC is equal to the

probability that the model will rank a randomly chosen

positive observation higher than a randomly chosen

negative one. Thus, AUC depends only on the ranking

of the predictions. The AUC statistic ranges from 1.0 to

zero. In order to preserve the ‘‘loss’’ interpretation and

ordering (smaller is better) for evaluating species

distribution maps, we use the AUC error defined as 1

� AUC, as our loss function. Thus, when 1 � AUC

equals zero it indicates perfect discrimination, a value of

0.5 indicates random discrimination, and values greater

than 0.5 are worse than random.

In addition to measuring ranking performance we

also calculate the root mean squared error (RMSE)

between predicted probabilities and observed outcomes.

This measure takes into account the magnitude of the

predicted probability, sometimes called calibration

information, in addition to ranking. For measuring

differences between binary observations and predicted

probability scores, the RMSE ranges from 1.0 (worst) to

0.0 for a set of perfect predictions.

STEM APPLICATION AND EVALUATION

To demonstrate the utility of the STEM structure for

modeling dynamic species’ distributions, we compared

STEMs, which constrain each model in the ensemble to

meet very specific spatial and temporal requirements, to

the unrestricted ‘‘global’’-scale BDT models that utilize

data from across the entire extent of the study area (i.e.,

the coterminous United States). We investigated if

varying the spatial scale of STEM affected the accuracy

of the predicted winter distribution for Tree Swallows.

Subsequently, we examined the relative success of STEMs

in predicting swallow distributions at different seasons,

and then evaluated STEM performance for a species with

a less dynamics distribution, the nonmigratory Northern

Cardinal (Cardinalis cardinalis).

All computations were carried out in the R statistical

computing language (R Development Core Team 2008)

and individual decision trees were computed using the

rpart library (Therneau and Atkinson 2008). For each

data set we fit all three STEM scales. In addition, BDTs

were fit with full temporal and spatial support, the

TABLE 3. Species distribution map evaluation algorithm.

A) Initialize:

Split training and test sets such that they have no common
locations

Test set spatial scale: specify height and width for test set
GSRD

B) For each Monte Carlo iteration, subsample test data as
follows:

1) Randomize GSRD location
2) For each test set cell
a) Randomly sample test locations up to per-grid-cell
maximum

b) Evaluate statistical risk & accumulate results across
MC iterations

End for

End for
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‘‘global support’’ case, using the same saturated DTs as

base models. We used 125 bootstrap samples with the

BDT so that predictions would be supported by a

similar number of base models compared to STEM

predictions. All models were trained and evaluated with

five-fold validation. For each of the five ‘‘folds’’ the data

were split into a random sample with 80% of the data

locations used for training and the other 20% used for

model evaluation, as described in Model evaluation with

spatially biased data.

Tree Swallow winter distribution comparison

Predicting species distributions is most difficult when

populations are most dynamic and exhibit the highest

variability in observed occurrences. For migratory

species, like the Tree Swallow, we expect the accuracy

of estimated distributions to vary among seasons with

the best performance during the winter and breeding

seasons when populations are relatively static and the

worst performance during the migrations. Here we

compare STEM and BDT estimates of the winter

distribution for Tree Swallow. By late December, if

not earlier, most Tree Swallows have returned to their

wintering grounds in the southeastern United States.

They remain there through the month of January with

the earliest spring migrants leaving during February.

To facilitate model comparison, we computed the

ratio of STEM error (loss) to BDT model error (loss).

When the STEM had a smaller error than the BDT, the

ratio was less than one, in proportion to the difference in

the error rates. Winter distribution map performance

was evaluated using test set observations for a two week

window in the middle of January. The STEMs at small,

medium, and large scales were compared with the BDT.

Each comparison was based on a total of 250 test trials:

a single ‘‘test trial’’ was produced for each of the 50

Monte Carlo test set samples across all five data ‘‘folds.’’

The STEM structure improved prediction of this

migratory species’ winter distribution. Fig. 4 displays the

performance comparison results for the Tree Swallow

winter distribution. Panel A shows the distributions

(box plots) of the AUC error ratio. The performance of

STEM improved with increasing spatial scale. STEM

outperformed BDT on almost all trials at the largest

spatial scale. For this season, at least, STEM does better

by pooling data across larger regions. Panel B shows the

distributions of the RMSE error ratios. These results are

qualitatively similar to the AUC results, STEM perfor-

mance improved at larger spatial scales and STEM

outperformed BDT on most of the trials at the largest

spatial scale. However, the percent change in RMSE

performance is smaller than for the corresponding AUC

comparisons.

Tree Swallow monthly distribution performance

In this test we evaluated the performance of the best-

scale STEM and global BDT models during each of 12

monthly distribution tests. Each monthly distribution

test is conducted during the central two-week window

for that calendar month. We considered a model to be

superior if its error rate was smaller on at least half of

the test trails.

As expected, distributions were described most

accurately during the winter and breeding season

months, when Tree Swallow distributions are most

stable (Fig. 5). Panel A shows the 1�AUC distributions

for the best-scale STEM arranged by month. The center

and lower panels show the 1 � AUC and RMSE ratios

for STEM vs. BDT performance arranged by month.

We plotted the ratios on the log-scale to facilitate model

comparisons. STEM outperformed BDT in terms of

AUC error for all months except July. Note that STEM

performance was much better for January, February,

and November: AUC errors were half as big as BDT

errors on half of these test trials. The 1� AUC relative

performance varied widely in December. Averaging

FIG. 4. Performance comparisons between spatiotemporal
exploratory model (STEM) and bagged decision tree (BDT)
models for Tree Swallow winter distribution. The ratio of
STEM error (loss) to BDT model error (loss) is plotted for
three STEM spatial scales on a log scale. When STEM has a
smaller error than the BDT (i.e., the STEM model is more
accurate), the ratio will be less than 1. Errors are calculated by
(A) 1 � AUC (the area under the receiver operating-
characteristic curve) and (B) root mean-square error. In the
box plots, the top of the box shows the 75th percentile, the
heavy dark line shows the median, and the bottom box shows
the 25th percentile. The ‘‘whiskers’’ above and below the box
show 1.5 times the interquartile range, and dots show data
points beyond the whiskers.
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across all months, the STEMs outperformed BDTs in

terms of AUC error on 77% of the test trials.

The relative RMSE performance of STEMs followed

a similar seasonal pattern to the AUC error. The

STEM clearly outperformed BDTs at all times of the

year except in July and August, when performance is

nearly equal. When the fall migration begins, RMSE

performance is similar between a STEM and a BDT.

Note that the percent difference in RMSE errors

between the STEM and BDT models is smaller than

for AUC errors. Averaging across all months, STEMs

outperforms BDTs in terms of RMSE on 71% of the

test trials.

Tree Swallow seasonal occurrence maps

Royle et al. (2007) noted the importance of control-

ling for variation in detectability when displaying

occurrence surfaces as maps. Here we demonstrated

how predictor information can be used to control for

sources of observational bias with a nonparametric

model. We produced four daily occurrence maps for

Tree Swallow, one for each season for both STEM and

BDT models. The resulting maps show the improve-

ments due to STEM and highlight the importance of

maps as a visual diagnostic for inferring species

distributions.

When displaying maps, the inferential target popula-

tion includes all locations in the study area. Therefore,

we constructed our maps based on a series of predictions

designed to represent this population. We selected 75 000

locations from a GSRD sample designed to cover the

entire study area. For each of these locations we had

data available from all spatial covariates. Variation in

detectability associated with observation effort was

controlled by assuming that all three effort predictors

(search time, transect length, and time of day) were

additively associated with the true occurrence probabil-

ity and then holding their values fixed for all map

predictions.

Using this procedure, we estimated the daily proba-

bility of observing Tree Swallows for an eBird partic-

ipant that searches from 07:00 to 08:00 while traveling 1

km. The daily seasonal occurrence maps for Tree

Swallow are shown in Fig. 6. The left column shows

the estimates based on the largest scale STEM and the

right column shows the corresponding estimates based

on the BDT. We chose to display daily maps to

demonstrate the fine temporal resolution of the eBird

data and the models. The seasonal maps were arranged

by row: (A) winter (24 January 2006), (B) spring

migration (10 April 2006), (C) breeding season (24

June 2006), and (D) the fall migration (24 October

2006).

The STEM maps matched known large-scale patterns

in Tree Swallow distributions. Some interesting features

of the STEM maps included the limited predicted

occurrences through the intermountain West and high

plains regions of Montana and Wyoming. The relatively

high regional occurrence shown in fall along the

Mississippi River valley and along the Atlantic coast

were especially interesting. The Mississippi is a plausible

migration route with high food availability this time of

year and Tree Swallows are known to over-winter and

migrate along the Atlantic coast.

While the BDT maps show the overall pattern of

migration, there were several regional artifacts. These

included some of the ‘‘false positive’’ regions during the

winter, though these were less pronounced on 24

January compared to the 9 January map shown in Fig.

FIG. 5. Predictive performance of monthly Tree Swallow
distribution models. (A) The 1 � AUC distributions for the
best-scale STEM arranged by month. (B) The 1�AUC and (C)
RMSE ratios on the log scale arranged by month. Each
monthly distribution test was conducted during the central two-
week window for that calendar month. Averaging across all
months, STEM outperformed BDT on 77% of the AUC and
71% of the RMSE test trials.
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2. The BDT maps for both spring and breeding seasons

had a sharp linear southern boundary resulting from DT

splits on latitude that were longitudinally extrapolated.

The BDT fall map (Fig. 6, row D) failed to predict any

of the migrants still known to be remaining in California

and the Northeast and revealed in the STEM map. It

also retains some false positive predictions in northern

Minnesota and the Dakotas at a time when this species

is known to be long gone from these regions. Though the

STEM structure protects against ‘‘long range’’ learning,

it is still possible to produce biased local predictions, see

the false positives in the Dakotas on the fall STEM map.

Local-scale bias depends on the specific base model and

the local predictors.

FIG. 6. Single-day estimates of the distribution for Tree Swallow in four seasons. The left column shows the predicted
probability of reported occurrence for Tree Swallows based on the largest scale STEM, and the right column shows the
corresponding predictions based on the global BDT model. The distributions’ dates are arranged by row: (A) winter (24 January
2006), (B) spring migration (10 April 2006), (C) breeding season (24 June 2006), and (D) the fall migration (24 October 2006).
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Northern Cardinal seasonal occurrence performance

and maps

While STEMs do a better job at predicting distribu-

tions of species whose ranges change through time, the

STEM structure will be more generally useful if it can

also deal well with species whose distributions do not

vary. When a species’ distribution does not vary in space

or time, data can be pooled across the entire extent of

the study to maximize sample size and predictive

performance. Thus BDTs built from an ensemble of

‘‘global’’ base models may have an advantage over the

STEM built from an ensemble of base models each with

restricted support and smaller sample sizes. To test this

we compared model performance for a nonmigratory

bird, the Northern Cardinal (Cardinalis cardinalis). The

Northern Cardinal is found throughout eastern and

central North America. It is a year-round resident and is

common at backyard feeders. It is found in environ-

ments with trees and small shrubs throughout its range

(Halkin and Linville 1999).

Fig. 7A shows the 1� AUC distributions for the best-

scale STEM arranged by month. Fig. 7B, C shows the 1

� AUC and RMSE ratios, respectively, on the log-scale

arranged by month. We used the same y-axes for all

three panels as in Fig. 5 to facilitate comparison with the

Tree Swallow. Compared to the Tree Swallow, there was

relatively little month-to-month variation in STEM and

BDT performances, as was expected for a nonmigratory

species. Moreover, the predictive performance of STEM

and BDT were similar to each other indicating that the

STEM did not suffer much, if at all, from being unable

to pool information from across the entire year.

Averaging across all months, the STEMs outperformed

BDTs on 45% of the AUC and 48% of the RMSE test

trials, also suggesting comparable predictive perfor-

mance.

While numerically the performance of STEM and

BDT models was similar (Fig. 7), visual inspection of

the predicted distributions (Fig. 8) suggests that the

STEM produced more accurate predictions at the edge

of the cardinal’s distribution. Both models over-predict-

ed the distribution of cardinals in the Dakotas, but the

STEM better described the southwestern U.S. distribu-

tion of the species, indicating that range edges are better

predicted when information is not globally shared.

Interestingly, the western edge of the Midwestern

distribution is shown as a straight line in the BDT

maps, as these models identified a longitudinal predictor

that was effective in an area of high data density and

extrapolated it northward; in contrast, the same

boundary from the STEM distributions was more

diffuse, showing slightly lower probability of occurrence

toward the northern part of the eastern range limit.

Also, the BDTs shared a problem across seasons of

predicting considerable presence of this species in the

northern Great Basin where it is absent or extremely

rare.

DISCUSSION

We have developed a semiparametric model that

provides a rigorous and flexible framework for modeling

dynamic patterns of species occurrence and abundance

from broad-scale survey data. The STEM adds essential

spatiotemporal structure to existing species distribution

models through a simple parametric structure without

requiring a detailed understanding of the underlying

dynamic processes. Instead, the approach we take with

the STEM is to differentiate between local- and global-

scale spatiotemporal structure. At the local scale, we rely

on a species distribution model to account for spatio-

FIG. 7. Predictive performance of monthly Northern
Cardinal distribution models. (A) The 1 � AUC distributions
for the best-scale STEM arranged by month. (B) The 1� AUC
and (C) RMSE ratios on the log scale arranged by month. Each
monthly distribution test was conducted during the central two-
week window for that calendar month. Averaging across all
months, STEM outperformed BDT on 45% of the AUC and
48% of the RMSE test trials.
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temporal patterning and we let these patterns scale up

via ensemble averaging to larger scales. This makes

STEMs especially well suited for exploring distribution-

al dynamics arising from a variety of dynamic processes.

The STEM developed in this paper was designed for a

specific task: to create a nearly nonparametric dynamic

species distribution model for broad-scale intra-annual

migrations. More generally, the STEM framework can

be customized for a wide range of applications that vary

from very exploratory objectives, like the one discussed

here, to more confirmatory analysis objectives. There are

three key user specifications necessary to implement a

STEM: (1) the sizes of the local spatial and temporal

scales, (2) the base model type, and (3) the predictors.

We briefly discuss theses specifications and note how to

adapt STEM to new applications.

We demonstrated that predictive performance varies

with spatial scale and across temporal windows (Figs. 3

FIG. 8. Single-day estimates of distribution for Northern Cardinal distribution models. The left column shows the predicted
probability of reported occurrence for Northern Cardinal based on the largest scale STEM, and the right column shows the
corresponding estimates based on the global BDT model. The distributions’ dates are arranged by row: (A) winter (24 January
2006), (B) spring migration (10 April 2006), (C) breeding season (24 June 2006), and (D) the fall migration (24 October 2006).
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and 5). In general our experience suggests that the

optimal spatial scale varies by season and species.

Though we did not address the question of temporal

scale directly, we also saw that predictive performance

varied by month for the migratory Tree Swallow. Thus,

‘‘scale’’ parameters convey information about the

population and it should be possible to fit these

parameters to data in future studies, ultimately improv-

ing predictive performance and permitting formal

inference. Optimal spatial and temporal scale parame-

ters describe the dominant scales at which observations

tend to exhibit homogenous phenological patterns and/

or predictor associations. Ecologists can use this

information to determine the effective range or extent

of inference over which small scale studies can be

applied. This information may also be useful for

determining the ‘‘scale’’ for designing interconnected

reserves systems to support migratory species or species

experiencing distributional dynamics due to other

causes.

Many new and powerful nonparameteric methods

have been applied with success to static species

distribution problems. However, we have found that

these methods can be biased when used to model

distribution dynamics. These problems arise from the

inability of nonparametric models to take into account

regions of space or periods of time where environmental

features differ in their importance (i.e., spatiotemporal

interactions). As a semi-parametric model, this STEM

produced more accurate predictions of species distribu-

tions than the associated fully nonparametric BDT

model. This result is in keeping with our previous work

showing that the addition of well-supported structure to

an otherwise nonparametric model improves the accu-

racy of the model (Sorokina et al. 2008, Fink and

Hochachka 2009).

For this eBird analysis we specified a general purpose

base model along with a relatively generic set of

predictors. This STEM produced improved species

distribution maps compared to the associated global

BDT models for both the migratory and nonmigratory

test species. There is real potential to refine this general-

purpose STEM for more specific analysis objectives. For

example, the STEM could be easily refined to analyze a

single species of conservation concern by carefully

selecting the predictors to take into account what is

currently known about that species.

When STEM is used to predict patterns from

imperfectly detected responses it is important to

consider the inclusion of predictor information for

important ecological and observational processes.

‘‘Observational predictors’’ can be used to control or

mitigate sources of observation bias. To demonstrate

this we included effort predictors in the eBird analysis

and used these predictors to help control for variation in

detection rates. However, there are many other known

and potential sources of variation in detection rates and

observer biases that were not controlled in the analysis

presented here. For example, detection rates are known

to vary with habitat types and the observer’s level of

expertise. We believe that the detection and control of

additional types of observational bias within nonpara-

metric and semiparametric models will be an important

direction for future research.

We plan to evaluate more sophisticated nonparamet-

ric base models like boosted regression trees or RuleFit

(see Hochachka et al. 2007) in the future. STEMs can

also be built around parametric base models to take

advantage of local-scale ecological information. For

example, the Bayesian hierarchical models of Royle et

al. (2007) may be used within a STEM to explicitly

estimate detectability and spatial correlation. The

STEM could also be fit to occurrence-only data

common in museum and herbarium collections by

specifying a model designed for occurrence-only data

analysis like MaxEnt (Phillips et al. 2006). Additionally,

the ensemble itself may be designed to suit other classes

of problems. For example, the STEM ensemble can be

designed to analyze non-stationary spatial processes,

similar in spirit to varying-coefficient models (Hastie

and Tibshirani 1993) and geographically weighted

regression models (Fotheringham et al. 2002). The

STEM ensemble can also be used to analyze time series,

especially those subjected to stochastic change points.

To fully realize the potential of large-scale spatiotem-

poral data for species distribution modeling it is

important to be able to critically evaluate modeling

methodologies. We have taken a step toward this goal

and developed a method for evaluating the quality of

species distribution surface estimates using observation-

al data with heterogeneous, or nonuniform, spatial

density. Spatial heterogeneity is a common source of

variation in many broad-scale survey data, especially

citizen science projects where volunteers decide where

and when to make observations. The novelty of our

evaluation method is that it explicitly accounts for the

spatiotemporal variation in sampling intensity to

evaluate the model’s ability to make accurate predictions

uniformly across the study area.

In conclusion, we see the STEM as a useful addition

to the analytical tools available to ecologists. As an

important tool for exploratory analysis of dynamic

distributions, we see the STEM as a good choice for

three general applications. First, when the goal is simply

to produce accurate predictions of dynamic distribu-

tions. The STEM developed here can exploit large

quantities of predictor information with a minimum of

user input. Second, this STEM can be used for model-

based explorations of data where the goal is to generate

hypotheses for further research. This will be especially

useful for the initial analysis of populations believed to

be simultaneously experiencing several dynamic pro-

cesses; for example, migration dynamics and range

expansion or dispersals. Finally, the STEM can be used

as a simple performance benchmark for more detailed

parametric analyses of distributional dynamics.
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