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Abstract—Dynamic Contrast-enhanced magnetic resonance 

imaging (DCE-MRI) is a tissue perfusion imaging technique. Some 

versatile free-breathing DCE-MRI techniques combining 

compressed sensing (CS) and parallel imaging with golden-angle 

radial sampling have been developed to improve motion 

robustness with high spatial and temporal resolution. These 

methods have demonstrated good diagnostic performance in 

clinical setting, but the reconstruction quality will degrade at high 

acceleration rates and overall reconstruction time remains long. In 

this paper, we proposed a new parallel CS reconstruction model 

for DCE-MRI that enforces flexible weighted sparse constraint 

along both spatial and temporal dimensions. Weights were 

introduced to flexibly adjust the importance of time and space 

sparsity, and we derived a fast thresholding algorithm which was 

proven to be simple and efficient for solving the proposed 

reconstruction model. Results on in vivo liver DCE datasets show 

that the proposed method outperforms the state-of-the-art 

methods in terms of visual image quality assessment and 

reconstruction speed without introducing significant temporal 

blurring. 

 
Index Terms—DCE-MRI, parallel imaging, golden-angle radial 

sampling, sparse reconstruction, fast algorithm. 

I. INTRODUCTION 

AGNETIC resonance imaging (MRI) is a non-invasive, 

radiation-free modality that plays an essential role in day-

to-day routine clinical diagnosis.  

 

In recent years, remarkable advances have been achieved in 

dynamic contrast-enhanced magnetic resonance imaging 

(DCE-MRI) in terms of spatiotemporal resolution, image 

quality and motion management. DCE-MRI is a tissue 

perfusion technique and allows quantitative characterization of 

the microcirculation and tissue characteristics through analysis 

of signal intensity changes following injection of a contrast 

agent. It has been an integral part in most routine clinical MRI 

protocols for detection of suspected lesions and for evaluation 

treatment response [1-5]. 

Fast data acquisition speed is needed to capture changes in 

signal intensity as the contrast-agent passes through the 

cardiovascular system [6] and to ensure adequate spatial and 

temporal resolution. To accelerate DCE-MRI, a variety of 

methods have been proposed, including various parallel 

imaging methods (e.g. SENSE [7] and GROWL [8]), golden-

angle radial sampling [9], k-t acceleration methods (e.g. radial 

K-T SPIRiT [10]), artificial sparsity methods (e.g. ARTS-

GROWL [11] and K-T ARTS-GROWL [12]), the combination 

of parallel imaging, golden-angle radial sampling and 

compressed sensing method, iGRASP [13]. 

The principle of compressed sensing (CS) [14-20] meets the 

need of accelerating DCE-MRI. The key point for developing 

CS-based reconstruction methods is the sparse representation of 

images. Sparse representation can be divided into two main 

categories: orthogonal sparse representation system [16, 21, 22] 

and redundant sparse representation system [23-27]. While the 

former system is helpful for theoretical analysis, fast algorithm 

design, reducing calculation time and memory consumption, it 

often leads to insufficient sparse representation of the image. 

The latter, on the other hand, is able to capture more image 

features, thereby better eliminating noise and suppressing 

residual artifacts [28, 29]. There are two different models for 

MRI image reconstruction called synthetic model and analysis 

model under redundant sparse representation system which is 

represented mainly by tight frames [27] , and it has been shown 

that the analysis model can achieves better image quality [28, 

30, 31]. To solve the analysis model, our group proposed a 

projected iterative soft-thresholding algorithm (pISTA) and its 

acceleration version - pFISTA [28] by rewriting the analysis 

model into an equivalent synthesis-like one and calculating the 

proximal map of non-smooth sparsity terms approximately. 

Comparing with other state-of-the-art algorithms that can solve 

the analysis model, such as ADMM [32] and SFISTA [33], 

pFISTA consumes low memory and only needs to tune one free 
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parameter with simple settings [28]. 

In DCE-MRI reconstruction, we need to preserve temporal 

fidelity, which can be assessed by dynamic enhancement curve 

(signal intensity changes over time) [12, 13] firstly, and then 

seek to improve the image quality as much as possible (less 

artifacts and/or noise). This poses a major challenge for 

developing reconstruction model based on CS. 

The existing CS-based reconstruction methods in DCE-MRI, 

such as iGRASP, only constrain sparsity in the time dimension. 

In this work, we proposed a parallel dynamic analysis 

reconstruction model with sparsity constraints in both the time 

and spatial dimension. Weights were introduced to flexibly 

adjust the balance of the sparsity between two dimensions, and 

pFISTA was modified to solve the model. We have also shown 

the convergence results of applying pFISTA for reconstructing 

DCE-MRI images. 

The rest of the paper is organized as follows. In Section II, 

we introduced prior related works including continuous 3D data 

acquisition scheme, iGRASP, K-T ARTS-GROWL, and 

pFISTA. In Section III, we introduced the proposed model first 

then derive the numerical algorithm, and analyze the 

convergence. In Section IV, the performance of the proposed 

method is demonstrated by experiments on various in vivo liver 

DCE datasets. Finally, we concluded this paper in section V. 

II. RELATED WORK 

A. Free-breathing continuous 3D data acquisition scheme 

To implement continuous 3D data acquisition, cartesian 

sampling along the partition dimension (kz) and golden-angle 

radial sampling (radial lines are continuously increased by 

111.25 degrees) in kx-ky plane are combined together (Fig.1) 

[13]. Radial sampling has a lower sensitivity to motion. 

Moreover, approximately uniform k-space coverage can be 

obtained for any arbitrary number of consecutive spokes. 

Therefore, in this work, certain Fibonacci numbers which can 

obtain an optimal SNR [34] of consecutive spokes are 

combined to form each time frame. 

B. Iterative Golden-angle Radial Sparse Parallel MRI 

iGRASP [13] combines parallel imaging, golden-angle radial 

sampling and CS. To reconstruct DCE image series, iGRASP 

firstly sorts the golden-angle radial k-space data into dynamic 

series by grouping a number of consecutive Fibonacci spokes 

into each temporal frame. Iterative reconstruction is then 

performed on the undersampled re-sorted radial data using the 

first order finite differences as a temporal sparsity transform. 

The reconstruction process can be expressed as Eq. (1). The 

original iGRASP implementation uses the nonlinear conjugate 

gradient algorithm (CG) [16] to solve the reconstruction 

problem. 

 2

2 1
ˆ arg min ,=   − + d F S d m T d                (1) 

where d̂  is the image series to be reconstructed in x-y-t space, 

T  is first order finite difference operator along the time 

dimension, m is the undersampled k-space data, S  is the coil 

sensitivity maps, F is the nonuniform fast Fourier transform 

operator (NUFFT) [35], and   is the regularization parameter.  

C. K-T ARTS-GROWL 

K-T ARTS-GROWL [12] is an extension of ARTS-GROWL 

[11]. This technique is comprised of three steps. The first step 

aims to use GROWL [8] to obtain an intermediate parallel 

imaging results, followed by the second step apply a K-T sparse 

denoising method to denoise the parallel imaging results. The 

reconstruction problem can be expressed as Eq. (2), which is 

solved using the CG algorithm [16]. 

   
2

12

ˆ arg min ,p = − +
I

I I I TI                        (2) 

where Î  is the denoised image series in x-y-t space, pI  is the 

parallel imaging results, I  is the output image series, T  is first 

order finite difference operator along the time dimension, and 

  is the regularization parameter. 

Finally, the sparse reconstruction results and K-T denoised 

image series were summed up to obtain the final result. 

D. Projected fast iterative soft-thresholding algorithm 

An analysis sparse reconstruction model, in which a MRI 

image is under a sparse representation of tight frame, can be 

expressed as: 

2

2 1

1
min ,

2
− +

x
y UFx Ψx                           (3) 

where x  is the MRI image data rearranged to a column vector, 

y  is the undersampled k-space data, F  is the discrete Fourier 

transform and U  is the undersampling matrix, Ψ  is a tight 

frame to sparsify an image, and   is the regularization 

parameter. 

To solve the model in Eq. (3), pFISTA rewrites the analysis 

model above into a synthesis-like model as: 

( )

2

12

1
min ,

2Range



− +

α Ψ
y UFΨ α α                      (4) 

where 


Ψ  is the adjoint of the tight frame Ψ  , and it 

specifically satisfies 
 =Ψ Ψ I . α  contains the sparse 

coefficients of an image under the representation 


Ψ . 

The iterations of pFISTA to solve the synthesis-like model in 

Eq. (4) is [28]： 

 
 

Fig. 1. Free-breathing continuous 3D data acquisition scheme. 
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where   is the step size, ( )T   is a point wise soft-thresholding 

function defined as: 

( )  max ,0 .i

i i

i

T


  


= −                      (6)  

III. PROPOSED METHOD 

A. Reconstruction model and pipeline 

To achieve a desired temporal resolution, the continuously 

acquired golden-angle radial spokes are sorted into temporal 

frames by grouping a Fibonacci number of spokes to form each 

frame. To reconstruct the image series, tight frames in time and 

spatial dimensions are applied separately to sparsify the image 

series, which leads to the 1l  norm optimization problem. To 

accomplish the goal of that, the importance of time and spatial 

sparsity can be flexibly adjusted and corresponding weights are 

introduced into the 1l  norm-based problem. The proposed 

model can be expressed as Eq. (7) and corresponding 

reconstruction pipeline is shown in Fig. 2. 

2

2

1

1
min + ,

2

t T

s S

w

w

 

− 
 d

R d
Ed m

R d
                        (7) 

where d  is the image series to be reconstructed which is 

rearranged into a column vector, m  is the undersampled k-

space data,   is the regularization parameter to balance the 

sparsity and data consistency. E  is given by the multiplication 

of NUFFT encoding elements and coil sensitivities, besides the 

adjoint operator of E  is 
E  [36]. The required coil sensitivities 

are estimated from the temporal average of all acquired spokes 

using the adaptive coil combination technique [13, 37]. TR  is 

a tight frame used to sparsify the image series along the time 

dimension, selected cyclic shift discrete wavelet transform 

(CSDWT). The reason we chose the CSDWT is to keep 

temporal fidelity of the reconstruction result while maintaining 

the tight frame and sparse representation property. SR  is also a 

tight frame adopted to sparsify the image series in spatial 

dimension chosen shift-invariant discrete wavelet transform 

(SIDWT) [38]. Related details about TR  (CSDWT), SR  

(SIDWT) can be seen in the Appendix. 1tw =  and sw w=  

representing the importance of temporal and spatial sparsity, 

respectively. 

 One representative frame (the Venous phase) of the 

reconstructed image series under different weights is shown in 

Fig. 3, indicating that the introduced weights are meaningful as 

we discussed below:  

 
Fig. 2. The proposed method reconstruction pipeline. the continuously acquired data are firstly re-sorted into undersampled dynamic time series by grouping 
several consecutive spokes. The proposed method is then applied to the re-sorted multi-coil radial data with weighted sparse in time and space dimension 

constraints, using the operator 
E  to produce the image time-series (x-y-t). Acquired coil sensitivity maps are estimated from the multi-coil reference images 

(x-y-coil) which are given by the coil-by-coil NUFFT reconstruction of the temporal average of all acquired spokes. 

 

 
Fig.3. Representative frame of the reconstruction results under different 

weights. (a): 0sw = , (b): 0.09sw = , (c): 1sw = , (d): 1.5sw =  
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When we enhanced the time sparsity ( 0.09sw = , Fig.3(b)), 

it can get a good result. Without spatial sparsity ( 0sw = , 

Fig.3(a)), the image suffers from an increased level of noise. 

When we keep the same contribution of time and spatial 

sparsity ( 1sw = , Fig.3(c)), or enhanced the spatial sparsity 

( 1.5sw = , Fig.3(d)), the image suffers from blurring. 

B. Numerical algorithm and convergence analysis 

For derivation convenience, the proposed model in Eq. (7) is 

transformed into an equivalent form in Eq. (8). 

2

1 2

1
min + ,

2
 −

d
WAd Ed m                   (8) 

where 
T

S

 
=  
 

R
A

R
, ( ), , , , ,t t s sdiag w w w w=W  is a 

diagonal matrix. 

 The adjoint of A  can be denoted as 
A , which specifically 

satisfies: 

T

T S T T S S

S

     
 = = +  

 

R
A A R R R R R R

R
           (9)  

where T


R , S


R  are the adjoint of tight frames TR and SR , 

satisfying T T

 =R R I  and S S

 =R R I , so we have: 

2 . =A A I                                        (10) 

The modification helps us to easily introduce the pFISTA to 

solve the reconstruction model with the following iterations: 

 

( )

( )

1

2

1

1 1 1

1

1 1ˆ ˆ ,
2 2

1 1 4( )
,

2

1ˆ .

ik w k k

k

k

k

k k k k

k

T

t
t

t

t

  

+

+

+ + +

+

  
= − −  

  

+ +
=

 −
= + − 

 

d A A d E Ed m

d d d d

  (11)  

where   is the step size, iw  is the weight, ( )
iwT   is a point 

wise soft-thresholding function defined as: 

( )  max ,0 .
i

i

w i i i

i

T w


  


= −                      (12) 

Good empirical convergence of the objective function is 

observed in Fig.4. Next, we theoretically analyze the 

convergence of pFISTA for DCE-MRI. 

 

Theorem 1: let  kd be generated by pFISTA, and when the 

step size satisfies 0 1  , the sequence    k k=α Ad will 

converge to a solution of: 
22

1
2 2

1 1 1 1
min .

2 2 4 2




  
+ − + − 

 α
Wα EA α m I AA α   (13) 

And the convergence speed is: 

( ) ( )
( )

02

2
,

1
kF F

k

 −  −
+

α α α α              (14) 

where 

α is a solution of Eq. (13) and ( )F   is the objective 

function in Eq. (13). 

Proof of Theorem 1:  

Denote the gradient term in Eq.(13) as: 

( )
22

2 2

1 1 1 1
.

2 2 4 2
u



  
= − + − 

 
α EA α m I AA α    (15) 

According to the convergence analysis in [28, 29, 39], the 

convergence depends on the Lipschitz constant of the gradient 

u that is: 

( ) ( )
2

1 1 1
.

4 2 2
L L u



   
=  = + − 

 
AE EA I AA   (16) 

Based on the results in [28, 29], if the step size satisfies: 

( )

1
.

L



                                   (17) 

or equivalently 

( )
1

.L 


                                     (18) 

The algorithm will converge with a speed described in Eq. (14). 

Now the question is directly related to analyze ( )L  . 

Let: 
1 1

4 4

  = −B AE EA AA , we have: 

( ) *

2 2

1 1 1 1
.

4 2 2 2
L 

 

  
= + − = + 

 
AE EA I AA B I    (19) 

So: 

( ) ( )
2

1 1
max ,

2 2
i

i
L c

 

 
= + = + 

 
B I B                (20) 

where ( )ic B is the 
thi eigenvalue of B . 

1

2
+B I  is a 

Hermitian matrix, therefore we need to further analyze ( )ic B . 

Noting that 2 =A A I , we can get: 

1 1
,

4 4




   
= − = 
 

Bz AΕ EA AA z z                 (21) 

where z  is the eigenvector of B  belonging to the eigenvalue 

 . 

 
Fig. 4. The changes of objective function value during iterations. 
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That means all non-zero eigenvalues of B  satisfies: 

( )
1 1 1 1

.
2 2 2 2

i i ic c c
 

 
     

 − = −      
     

B E E I E E    (22) 

Thus: 

( ) ( )
1 1 1

max max , .
2 2 2

i i
i i

L c c
 


    

= + =    
   

B E E   (23) 

And with a normalization in which 
2

2
1E  [36], so we have: 

 
2

22

1 1 1 1
max .

2 2 2 2
i

i
c   

=   
 

E E E E E         (24) 

Therefore, 
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*

1 1 1 1
max , ,0 1,

2 2 2

1 1 1
max , , 1.

2 2 2

i
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i
i

L c
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= =     

  

  
=    

  

E E

E E

 (25) 

The Eq. (25) means that, if the step size satisfies 0 1  , 

( )
1

L 


  will be satisfied then pFISTA used to solve the 

proposed model in Eq. (8) will convergence with a speed 

described in Theorem 1. 

IV. EXPERIMENTAL RESULTS 

In this section, we describe our experiments with three in vivo 

liver DCE datasets to demonstrate that the proposed method 

produces better clinical visual image quality and faster 

reconstruction speed compared to two state-of-the-art reference 

DCE reconstruction methods including K-T ARTS-GROWL 

[12] and iGRASP [13]. For different methods, several 

parameters must be set firstly. The step size in the proposed 

method is set to be 1 for fast convergence speed. Reconstruction 

parameters for all methods (TABLE I) were empirically 

selected to obtain good image quality without introducing 

significant temporal blurring. Because fully-sampled images 

are not available in DCE-MRI for validation, four radiologists 

(with 25, 23, 21, 26 years of clinical experience in abdominal 

imaging, respectively), who are blind to the reconstruction 

methods visually assessed the overall image quality of in vivo 

DCE-MRI, considering the sharpness of vessel, residual 

artifacts and noise. 

Three liver DCE datasets were downloaded from 

http://cai2r.net/resources/software. The first and the second 

datasets were acquired on a 3 Tesla MRI Scanners (Siemens 

AG, Erlangen, Germany) with a 12-channel coil array. A three-

dimensional radial stack-of-stars fast low-angle shot (FLASH) 

pulse sequence with golden-angle reordering scheme was 

employed for free-breathing data acquisitions. Relevant 

imaging parameters of the first dataset were: FOV = 380 * 380 

mm2, TR/TE = 3.9/1.7 ms, Partitions = 30, Slice Thickness = 3 

mm, Spokes in Each Partition = 600, Sampling in Each Readout 

= 384, Acquisition Time = 77 s. For the second dataset: FOV = 

370 * 370 mm2, TR/TE = 3.83/1.71 ms, Partitions = 40, Slice 

Thickness = 3 mm, Spokes in Each Partition = 600, Sampling 

in Each Readout = 768, Acquisition Time = 90s. The last dataset 

was acquired with a fat-saturated stack-of-stars golden-angle 

radial imaging sequence relevant parameters were: FOV = 350 

* 350 mm2, TR/TE = 3.6/1.6 ms, Partitions = 48, Slice 

Thickness = 5 mm, Spokes in Each Partition = 1100, Sampling 

in Each Readout = 512, Acquisition Time = 190 s. 

All reconstruction tasks were implemented in MATLAB 

2018a (Mathworks Inc, Natick, MA) on a personal computer 

with 2.80 GHz dual-core CPU and 8 GB RAM. 

A. Main results 

Representative partitions from three reconstructed DCE-MR 

images are shown in Figs. 5-7 with zoomed views of different 

regions of interest (ROIs). For display purpose, only three 

contrast phases that are most relevant to clinical diagnosis, 

including one pre-contrast phase, one arterial phase, and one 

venous phase, are presented. The visual image quality scores 

listed in TABLE II, suggesting that the proposed method 

achieved significantly better visual image quality (p values: 

iGRASP vs proposed: 3.37e-12, K-T ARTS-GROWL vs 

proposed: 2.31e-49, calculated with the Wilcoxon signed-rank 

sum test where p < 0.05 was considered to be statistically 

significant difference). All radiologists all made their consensus 

that the reconstruction image series of the proposed method 

present better overall quality, higher sharpness, improved 

delineation of hepatic vessels and reduced level of noise and 

artifacts. 

The aorta, highlighted with a blue circle in Figs. 5-7, was 

selected to evaluate temporal fidelity [12, 13] because it is a 

region showing the highest variation of signal in DCE liver 

images [40]. The aorta signal intensity time courses of three 

different methods reconstruction results and corresponding 

reference were averaged and shown in Fig. 8. It can be seen that 

all the methods show similar enhancement patterns. For K-T 

ARTS-GROWL, parallel imaging alone was used as reference 

[12], and for iGRASP, NUFFT results were used as reference 

[13]. To determine the accuracy of the curves, linear correlation 

was evaluated. The linear correlations between K-T ARTS-

GROWL and the reference are both larger than 0.99 for all three 

datasets. iGRASP and the proposed method results are shown 

in Fig. 9, both of which are larger than 0.99 close to 1. Thus, 

the proposed method does not introduce significant temporal 

blurring and it offered a comparable temporal resolution with 

the other two state-of-the-art methods. 

The reconstruction time listed in TABLE III implies the fast 

reconstruction among all methods. 

TABLE I 
RECONSTRUCTION PARAMETERS 

Dataset ID iGRASP 
K-T ARTS-

GROWL 
Proposed 

1 00.04i M =  
k 00.01P =  00.04 ,

0.2

p M

w

 =

=

 

2 00.05i M =  
k 00.02P =  00.06 ,

0.09

p M

w

 =

=

 

3 00.03i M =  
k 00.015P =  00.025 ,

0.3

p M

w

 =

=

 

Note: 0P  is the maximal magnitude of the PI results, 0M  is the maximal 

magnitude of the NUFFT results, also used to initialize iGRASP and the 
proposed method reconstruction. 
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Fig. 5. Reconstructed three frames of the representative partition in dataset 1, iGRASP in the first column, K-T ARTS-GROWL in the second, the proposed 

method in the last by grouping 21 consecutive spokes to form each temporal frame with a temporal resolution as 21 spokes per frame, 28 frames in total. The 

reconstructed matrix of each frame is 192*192. The ROIs were called out by white squares for comparisons.  

 

 
 

Fig. 6. Reconstructed three frames of the representative partition in dataset 2, iGRASP in the first column, K-T ARTS-GROWL in the second, the proposed 

method in the last by grouping 21 consecutive spokes to form each temporal frame with a temporal resolution as 21 spokes per frame, 28 frames in total. The 

reconstructed matrix of each frame is 384*384. The ROIs were called out by white squares for comparisons. 
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Fig. 7. Reconstructed three frames of the representative partition in dataset 3, iGRASP in the first column, K-T ARTS-GROWL in the second, the proposed 

method in the last by grouping 34 consecutive spokes to form each temporal frame with a temporal resolution as 34 spokes per frame, 32 frames in total. The 

reconstructed matrix of each frame is 256*256. The ROIs were called out by white squares for comparisons. 

 

 

 

 

 
 
Fig. 8. Aorta enhancement curves of different methods. (a)-(c) KT ARTS-GROWL (KT) results, (d)-(f) iGRASP and the proposed method results, where the 

proposed method used NUFFT results as reference like iGRASP. 
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V. CONCLUSION 

In this work, we proposed a tight frame-based compressed 

sensing reconstruction model with flexible weighted sparse 

constraint along both time and spatial dimension for parallel 

DCE-MRI. We modified the pFISTA, a fast and efficient 

algorithm, to solve the reconstruction model and theoretically 

analyze the convergence. Experimental results demonstrate that 

the proposed method outperforms the two state-of-the-art DCE-

MRI reconstruction methods on whatever the clinical image 

quality assessment and the reconstruction speed, while 

maintaining comparable temporal resolution. The proposed 

method may also be extended to other dynamic MRI or imaging 

modality applications. 
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Appendix 

In this appendix, we will explain how to use CSDWT and SIDWT [1-5] to 

sparsify the DCE image series in time and spatial dimensions separately. The 

DCE image series d  rearranged to a column vector can be expressed as: 

 1 2; ; ; ,NJ

J= d x x x                                     (A1) 

where ( )1,2, ,N

j j J =x  is the thj  frame vector of the image series. 

1. CSDWT along the time dimension 

The pipeline of CSDWT and inverse CSDWT used to DCE image series d  

along time dimension are shown in Fig. 1. 

The mainly three steps when we adopt CSDWT to sparsify d  along time 

dimension contain: 

(1) Extracting pixels of d  corresponding to the time dimension: 

    1 2 1 2; ; ; ; ; ; ,NJ

N N= = = p P P P d Pd p p p                    (A2) 

where  1 2; ; ; NJ NJ

N

= P P P P , ( )1,2, ,J NJ

n n N =P denotes 

extracting the 
thn  pixel of each frame in d , ( )1,2, ,J

n n n N=  =p P d  is 

the 
thn  pixels of each frame in d . 

(2) Cyclic shifting the pixels in np  for M  times ( 6M =  in this work) then 

we can get: 

 
( )1

0 1[ ; ; ; ] ,
M J

n M n n

+
= = c C C C p Cp                         (A3) 

where ( )( 1)

0 1[ ; ; ; ] , 0,1, ,M J J J J

M m m M+  =   =C C C C C , denotes 

cyclic shifting the pixels in 
np  to the right for m  times (one pixel a time in 

this work). 

(3) Discrete wavelet transform (DWT) 

 ( )1
,

M J

n n n

+

 
 

= = 
 
  

D 0

α c Dc

0 D

                         (A4) 

where J JD  denotes DWT, Daubechies wavelets with 5 decomposition 

levels are utilized in this work, ( ) ( )1 1M J M J+  +

 
 

= 
 
  

D 0

D C

0 D

. 

Then we can get the sparse coefficients of the DCE image series after CSDWT 
along time dimension: 

   ( )1

1 2 1 2
ˆ ; ; ; [ c ; c ; ; c ] ,

N M J

N N

+
= = = α α α α D D D GPd            (A5) 

where: 
( )1N M J NJ+ 

 
 

=  
 
 

DC 0

G

0 DC

, then the CSDWT can be expressed 

as: 
T =R GP .  

Inverse CSDWT: 

(1) Applying inverse DWT to 
nα , then we can get: 

 
( )1

,
M J

n n n

+ = = α D α D Dc                                    (A6) 

where ( ) ( )1 1M J M J



+  +



 
 

=  
 
 

D 0

D C

0 D

, 
D  is the adjoint of D , and it 

satisfies  =D D I . 

(2) Inverse shifting of the pixels in 
nα : 

 
( )1ˆ ˆˆ ,
M J

n n n

+= = c Cα CD Dc                                  (A7) 

where ( )

0

( 1) ( 1)1

ˆ

ˆ
ˆ ˆ, 0,1, ,

ˆ

M J M J J J

m

M

m M+  + 

 
 
 

=   = 
 
 
 

C 0

C
C C

0 C

, 

denotes cyclic shifting the pixels in 
nα  to the left for m  times (one pixel a 

time), and it satisfies ˆ
m m =C C I . 

(3) Sum and average of the pixels 

Denote:   ( )1ˆ ,
J J M J J + =  I I I I R I R is an identity matrix, let: 

( )
1

1b M
−

= + , therefore: ˆˆ ˆˆ ˆ J

n n nb b = = p Ic ICD Dc , then we can get: 

 

 1 2 1 2
ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ; ; ; [ ; ; ; ]

ˆˆ

ˆ .

ˆˆ

N n

NJ

b

b

  





= =

 
 

=  
 
 

p p p p ICD Dc ICD Dc ICD Dc

ICD 0

α

0 ICD

            (A8) 

Denote: ( )1

ˆˆ

ˆˆ

NJ NJ M



 +



 
 

=  
 
 

ICD 0

H C

0 ICD

, ˆ ˆ ˆ NJb = = d P p P Hα , so 

the inverse CSDWT can be expressed as: 
*

T b =R P H . 

2. SIDWT in spatial dimension 

  1 2; ; ; ,S J

 
 

= =
 
  

Ψ 0

α d Ψx Ψx Ψx

0 Ψ

                          (A9) 

where Sα  is the sparse coefficients after applying SIDWT in spatial dimension, 

Ψ  denotes SIDWT, Daubechies wavelets with 4 decomposition levels are 

utilized in this work. So, the tight frame adopted to sparsify d  in spatial 

dimension can be expressed as: 
S

 
 

=  
  

Ψ 0

R

0 Ψ

, inverse SIDWT in spatial 

dimension is 
S







 
 

=  
 
 

Ψ 0

R

0 Ψ

, where 
Ψ  is the adjoint of Ψ . 
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Fig. 1. (a) CSDWT, n

jx  is the 
thn  pixel of frame j in d ; (b) Inverse 
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jx  is the 
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