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ABSTRACT 

The Scramble for Africa in the late 1800s marked the beginning of increased human population 

growth in Africa. Here, we determined the genetic architecture of both historical and modern 

lions to identify changes in genetic diversity that occurred during this period of landscape and 

anthropogenic change. We surveyed microsatellite and mitochondrial genetic variation from 143 

high-quality museum specimens of known provenance and combined them with data from 

recently published nuclear and mitochondrial studies. Analysis of variation at 9 microsatellites 

and 280 polymorphic mitogenome SNPs indicate the presence of male-mediated gene flow and 

recent isolation of local subpopulations, likely due to habitat fragmentation. Nuclear markers 

showed a significant decrease in genetic diversity from the historical (HE=0.833) to the modern 

(HE=0.796) populations, while mitochondrial genetic diversity was maintained (Hd=0.98 for 

both). While the historical population appears to have been panmictic based on nDNA data, 

hierarchical structure analysis identified four tiers of fine structure in modern populations, able to 

detect most sampling locations. Mitochondrial analyses identified 4 clusters: Southern, Mixed, 

Eastern, and Western; and were consistent between modern and historically sampled haplotypes. 

Within the last century, habitat fragmentation caused lion subpopulations to become more 

isolated as human expansion changed the African landscape. This resulted in an increase in fine-

scale nuclear genetic structure and loss of genetic diversity as subpopulations became more 

differentiated, while mitochondrial structure and diversity was maintained over time.  
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INTRODUCTION 

The Scramble for Africa in the late-1800’s increased European control of the African continent 

from 10% to 90% (1). The influence resultant of European settlement inevitably lead to an 

exponential increase in the human population, urban development, and rural expansion (2) 

resulting in changes to the African landscape and fragmentation to once continuous wildlife 

ranges (3–5).  

Multiple published investigations document the genetic consequences of large scale landscape 

changes over short periods of time (6–9) (i.e. 100 years). Levels of genetic diversity are directly 

related to a species ability to adapt, survive, and thrive; and loss of genetic diversity can be 

detrimental to overall population health and long-term survival (10–13). Many species across 

Africa are declining due to human-induced threats (14–16), even in protected areas (16). The 

adverse effects of low genetic diversity have been observed in small feline populations that exist 

in heavily managed fenced reserves (17–21). Historically, the lion (Panthera leo) range was 

more continuous and connected (22). The lion population has changed dramatically over the past 

100 years (3, 22, 23), particularly in terms of population size and distribution in response to 

habitat availability and anthropogenic pressures related to a growing human population (24–27).  

Around the turn of the 19th century, explorers, naturalists and hunters went on expeditions to 

collect biological specimens for preservation in natural history museums. These expeditions 

resulted in hundreds of lion specimens being deposited in museums across the world that predate 

the precipitous human population growth across Africa (1, 2). With the continued development 

of techniques for improved isolation and sequencing of degraded genetic material (ancient DNA, 

aDNA), these collections now provide access to genetic information from historically sampled 

individuals as well as their contemporary counterparts.  

Previous studies that sampled nuclear genetic diversity reported both high (28–30) and low (31–

33) levels of gene flow, but this was largely dependent on the amount of connectivity present 

between sampling locations. For example, isolated populations such as those in the Kainji Lake 

National Park from Yankari Game Reserve in Nigeria (31) and Kafue National Park from the 

Luangwa Valley Ecosystem in Zambia (32). Genetic differentiation can even be seen between 

populations within national parks (33). However, where there are no geographic or man-made 

barriers to limit movement, there is only weak evidence of population structure and high levels 

of gene flow (28, 30). 

Studies including historical and ancient lion samples have been primarily restricted to mtDNA 

analyses incorporated within a modern lion dataset (22, 34–37). A recent study including 

historical individuals focused on assessing changes in the recent past but was confined to a local 

analysis of the Kavango–Zambezi transfrontier conservation area (KAZA) (38). Here, we report 
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the first range-wide study assessing changes in genetic diversity of the lion, based on both 

historical and modern samples collected throughout African and India. By comparing diversity 

estimates from samples from different time periods we can detect and evaluate changes in 

genetic diversity that have occurred during this time of landscape and anthropogenic change.  

RESULTS 

Nuclear DNA 

The modern dataset (MD) contained 135 lions from 14 sampling locations and the historical 

dataset (HD) consisted of 143 lions (SI Appendix S1). Nine microsatellite loci (Leo006, Leo008, 

Leo085, Leo098, Leo126, Leo224, Leo230, Leo247, Leo281) were shared between with two 

datasets. The MD had greater than 75% allele calls reported, and the HD had an average of 90% 

amplification success across the nine loci. Sampling was similarly distributed across the lion 

range for both the MD and HD (Figure 1). 

 
Figure 1. Map of lion sample locations. Dot size coincides with sample size for each location. 
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Fine-scale structure was observed in the MD but not the HD. The MD hierarchical structure 

analysis resulted in four tiers of structure: Continental (K=2), Subcontinental (K=4), Regional 

(K=6), and Local (K=11), as seen in the final analysis with location priors (Figure 2, SI 

Appendix S2 shows a graphical display of the step-by-step hierarchical population structure). 

The initial run had a ΔK of 2 separating Asia (GIR) from Africa. The African population could 
then be further broken down into a Western, Eastern, and Southern population with a ΔK of 3 

from structural analysis of only the African population. Analysis of the Western population also 

resulted a ΔK of 3 separating a West African (WES), Central African (CEN) and a population 

between the two (MID). The Eastern population had a ΔK of 2 separating lions in Kenya (KEN) 
from all lions sampled in Tanzania (TAN). The Southern population is separated into 5 local 

populations that can be grouped into 3 regional populations as ΔK was 5, however, there was a 
sizable peak also seen at K=3. Eastern and western Zambia (ZAE and ZAW) make up a 

Southeast population while Etosha and Kalahari (ETO & KAL) make up a Southwest population. 

Kruger was identified as a single population at both K=3 and K=5. Population clustering in the 

MD principal coordinate analysis (PCoA) follows the Subcontinental tier (Figure 3). Mean 

heterozygosity across polymorphic loci (HE) is lowest in GIR and highest in CEN although only 

44% of loci are polymorphic in this population (SI Appendix S3). 

 
Figure 2. The four tiers of lion population structure as determined by hierarchical structure 

analysis based on 9 microsatellites. Groups are colored based on Figure 1. 
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Bayesian clustering in STRUCTURE did not identify any population structure in the HD. While 

ΔK was also 2 for the initial run, individuals could not be assigned to meaningful populations. 

Further evidence of this lack of structure was observed in the PCoA results (Figure 3). PCoA did 

not reveal any population clusters but did show weak evidence of isolation-by-distance (IBD) (SI 

Appendix S5), indicating an admixed population.  

 

 
Figure 3. Results of a principal coordinate analysis (PCoA) of 9 microsatellite loci analyzed in 

historical and contemporary lion samples. 

 

A significant decrease (p-value < 0.005) from HD to MD was evident across diversity indices 

(Table 1). Correcting for sample size through rarefaction, the HD has an allelic richness of 14.2 

and private allelic richness of 4.6, higher than the MD at 11.3 and 1.7, respectively. The Garza-

Williamson index (M) of the HD is 0.41 and the MD is 0.32. 

Mitochondrial DNA 

Results from mitochondrial analyses can be found in Table 1. There was no significant 

difference found between mtDNA nucleotide diversity (π) and haplotype diversity (Hd). The 
historical population had 74 haplotypes with 22 private mutations while the modern population 

had 17 haplotypes with only 1 private mutation. Two haplotypes (Hap_33 and Hap_66) are in 

both datasets. The low number of private mutations (PM) in the modern population was likely a 

result of the small number of mitogenomes compared to the historical population. While we were 

able to obtain a large number of historical mitogenomes from museum samples, the number of 

modern mitogenomes was restricted to published data  
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 Historical Modern Sig. Trend 

  N 143 N 135   

↓ 
nDNA HE 0.833 HE 0.796 *** 

(9 msat loci) A 15 A 11.6 *** 

  PA 6.2 PA 1.2 *** 

  M 0.41 M 0.32 *** 

  N 102 N 19   

→ 

mtDNA s 280 s 258   

(280 SNPs) π 0.222 π 0.258 n.s. 

  Hd 0.98 Hd 0.98 n.s. 

  H 74 H 17   

  PM 22 PM 1   

 

Table 1. Historical versus modern 

genetic diversity for nDNA and 

mtDNA. N = Sample Size, HE = 

Expected Heterozygosity, A = 

Allelic Richness, PA = Private 

Alleles, M = Garza-Williamson 

Index, s = Segregating Sites, π = 
Nucleotide Diversity, Hd = 

Haplotype Diversity, H = Number of 

Haplotypes, PM = Private Mutations. 

Trend is based on statistical 

significance from a comparison of 

means. HE, A, PA, and M had a p-

value < 0.005 (***) indicating a 

downward trend (↓) from historical 
to modern. The p-value for π and Hd 
was > 0.05 (n.s.) indicating 

maintained diversity (→) from 
historical to modern. 

   

Mitochondrial genome analyses identified 4 major clades: Southern, Mixed, Eastern and 

Western. Each clade was represented by at least one of the 19 modern lions. A Northern subclade 

was nested within the Western clade. Bootstrap values in the unrooted maximum likelihood 

(ML) tree (Figure 4) indicating strong support for these four clades. The 4 clusters in the PCA 

(SI Appendix S6) and the four main branches of the haplotype network (SI Appendix S7) also 

support these same four clades. 

There are five conventionally recognized regions of Africa according to the United Nations 

geoscheme for Africa: Southern, Eastern, Western, Central, and Northern 

(https://unstats.un.org/unsd/methodology/m49/). The Southern clade includes the conventionally 

recognized regions of Southern Africa incorporating Botswana, South Africa, Namibia and 

Zimbabwe. Haplotypes from Botswana and South Africa were present in both the Southern and 

Mixed clades. The Mixed clade consists of haplotypes from the Southern, Eastern, and Western 

subcontinental groups.  

The Western clade included countries in the conventionally recognized regions of Central and 

Western Africa including present-day Democratic Republic of Congo, Benin, Central African 

Republic, and Cameroon. The Eastern clade consists primarily of historical lions from British 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 8, 2020. ; https://doi.org/10.1101/2020.01.07.896431doi: bioRxiv preprint 

https://en.wikipedia.org/wiki/United_Nations_geoscheme_for_Africa
https://en.wikipedia.org/wiki/United_Nations_geoscheme_for_Africa
https://doi.org/10.1101/2020.01.07.896431


7 

 

 

Figure 4. Maximum likelihood tree based on 280 variable sites in 121 lion mitogenomes 

showing nodes with >70% bootstrap support. Black dots denote the nodes of the four major 

clades. Arcs indicate clade boundaries. The hollow dot denotes the nested Gir Forest clade. Color 

corresponds to sampling location according to conventionally recognized regions in Figure 1. 

 

East Africa, specifically present-day Kenya, Tanzania and Uganda, and a modern lion from 

Somalia. Eastern haplotypes within the Western clade are from bordering countries suggesting 

gene flow between neighboring regions, which is in line with previously published patterns (37). 

The Mixed clade is intermediary, consisting of lions from Southern and Eastern Africa. Zambia 

and Malawi were found exclusively in the Mixed clade, while all other countries found in the 

Mixed clade are also within the Southern and/or Western clades. The historical samples from the 
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Congo Region (present day Republic of the Congo and Gabon) were assigned to the Western 

subcontinental group by convention (Figure 1), but mitochondrial analyses consistently clustered 

them within the Southern and Mixed clades. The Congo Region is below the Congolese 

rainforests, a geographical barrier isolating them from West and Central Africa to the north. For 

the lion, the Congo Region is, therefore, closer to East and Southern Africa. 

DISCUSSION 

While lions currently exhibit fine population structure, the historical population lacked any 

structure, suggesting lions acted as a panmictic population only a century ago. This result was 

supported by structure analysis and PCoA. The modern populations cluster into four 

subcontinental groups, which are not recovered in the historical population, even between Asia 

and Africa.  

Four tiers of modern nuclear genetic structure were identified through hierarchical structure 

analysis. Continental structure separated Asia from Africa. The subcontinental tier identified 

three main groups in Africa: Western, Eastern, and Southern. Bertola et al. 2015 (39) also 

observed strong differentiation between Africa and Asia as well as subcontinental structure 

within Africa. Smitz et al. 2018 (30) identified only two groups at the subcontinental scale; lack 

of identification of a Southern group was likely due to low sampling. The regional tier divides 

the Southern group into a Southwest, South, and Southeast group. The highest level of 

population structure was able to detect most sampling locations, as in Antunes et al. 2008 (40). 

Only sampling locations in Tanzania were unable to be individually identified, similar to 

findings of Smitz et al. 2018 (30).  Admixture was evident within local groups (Figure 2, K=11) 

indicating recent gene flow. The UA group is comprised of individuals sampled within local 

groups that could not be assigned to a particular tier due to admixture. Other range-wide studies 

of lions have shown a similar localized structure pattern with individuals assigned to sampling 

populations with evidence of isolation-by-distance (40, 41).  

Habitat fragmentation restricts gene flow and often leads to loss of genetic diversity (42, 43). 

The Kavango–Zambezi transfrontier conservation area has seen a decrease in genetic and allelic 

diversity over the past century (38). Our study showed there has been a significant decrease in 

nDNA diversity from the range-wide historical to the modern lion population (Table 1). 

Expected heterozygosity, allelic richness, and number of private alleles have all significantly 

decreased (p-value < 0.0005). While there is evidence of a recent reduction in size in both the 

historical and modern populations both displaying an M value <0.67 (44) (Table 1), M is 

significantly lower in the modern population. This indicates the reduction predates the Scramble 

for Africa but has increased in the past century.  
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Given the strong signal differentiating the Asiatic and African lions in the analysis of modern 

populations, we predicted the historical lions from the Gir Forest National Park (NP) in India 

would cluster independently of the historical African lions. The PCoA, however, showed that the 

Gir Forest lions cluster together in the center of a single historical lion cluster (Figure 3). Lions 

were at the brink of extinction in Asia at the beginning of the 20th century (45) when these 

samples were collected (1906-1929). Today there are over 400 lions in the Gir Forest NP. The 

historical and modern samples from the Gir Forest NP were collected at the peak of a recent 

bottleneck and its subsequent population restoration. Our comparisons document this severe 

bottleneck that resulted in low genetic diversity in Asia compared to Africa (SI Appendix S3). 

Habitat fragmentation leading to the isolation of subpopulations within Africa appears to be 

following the same trend as the Asiatic lion a century ago. 

Historical and modern mtDNA show strikingly different patterns than nuclear data. Although 

nuclear diversity has decreased significantly, mtDNA diversity has remained constant over time 

(Table 1). Mitochondrial DNA is matrilineally inherited, and localized studies show there is little 

or no female-mediated gene flow between subpopulations across Africa (32, 46, 47). Female 

lions primarily remain with their natal pride while males disperse (48, 49). Therefore, pride 

structure can dictate mtDNA population structure. With females remaining close to their natal 

prides, habitat fragmentation will not greatly alter pride structure, keeping mtDNA diversity 

constant over time. Accordingly, the distribution of modern haplotypes within clades is 

geographically consistent with historical haplotypes. The four major clades (Southern, Mixed, 

Eastern, and Western) geographically follow the subcontinental groups identified by nDNA 

analysis (Southern, Eastern, Western, and Northern). 

The Western clade includes lions from West and Central Africa as well as Asiatic lions. Previous 

studies have suggested that the Asiatic and West and Central African lions should be grouped 

taxonomically (37, 50). United States Fish and Wildlife Services recently updated the lion 

taxonomy under the Endangered Species Act to recognize these populations as the same 

subspecies, Panthera leo leo, and East and Southern Africa populations as Panthera leo 

melanochaita (51). Our mitogenome results support this dichotomy, placing the Gir Forest NP 

lions within the Western clade in all analyses 

CONCLUSION 

A century ago, the lion population consisted of close-proximity prides with enough overlapping 

movement to appear panmictic. Our comparison of nDNA and mtDNA analyses between 

historical and modern datasets indicates the presence of substantial historical male-mediated 

gene flow and evidence of recent isolation of local subpopulations due to habitat fragmentation.  
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In the lion mating system, females primarily remain with their natal pride while males disperse 

(48, 49). If unobstructed by geographic or artificial barriers, a male home range can be hundreds 

to thousands of km2 (52–54) and can span different habitats (55–57). However, the original range 

of the lion has been severely reduced as a direct result of the growing human population (24) and 

changes in land-use, such as expansion of large-scale cultivation and increased movement of 

livestock into protected areas (58–60). As lion habitat has become more fragmented and groups 

of prides become more isolated, gene flow is restricted, and subpopulations become more 

genetically distinguishable. The dichotomy between the historic nuclear and mitochondrial 

structure is indicative of male-mediated gene flow and female philopatry. This pattern is not as 

evident in the modern population because fragmentation has hindered the ability of males to 

migrate between isolated subpopulations.  

The differences evident between the historical and modern lion populations have several 

important conservation implications. If left unattended, these subpopulations could become 

completely isolated leading to further differentiation and reduction in genetic diversity. 

Managing a species as a continuous population without a continuous habitat requires 

considerable resources. Lions currently reside in 28 countries whose differences in policy could 

complicate range-wide management (61) and act as additional artificial barriers. Cooperative 

international management would be needed to restore historical levels of connectedness. 

Currently, the African Lion Working Group recommends using regional guidelines for sourcing 

lions for translocations (62). Though mtDNA structure should still be considered, strict 

guidelines dictated by nDNA genetic similarities within regional populations may not be as 

critical for maintaining the population’s genetic diversity if the goal is to reflect historical levels 

of gene flow.  

Connectivity is critical to enable gene flow between subpopulations to avoid the erosion of 

genetic diversity (63). As an iconic flagship species, these results expose the influence of habitat 

fragmentation, potentially affecting hundreds of other species. We already are observing the 

initial effects of this fragmentation on lions through increased nDNA structure and decreased 

nDNA diversity. Science-based management policies and informed stewardship can help 

mitigate the loss of nDNA diversity and continued preservation of mtDNA diversity. 

Intervention is needed to increase gene flow between lion subpopulations and reduce the effects 

of habitat fragmentation. 

METHODS 

Nuclear Analysis 

Biological material from 162 lions dating prior to 1947 was collected from museums (Figure 1, 

SI Appendix S9) in the form of bone fragments, whole teeth or tooth fragments, nasal turbinate 
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bones, and/or dried tissue. Microsatellite amplification was performed following protocols and 

procedures described in Curry and Derr 2019 (64). Nine microsatellite loci (Leo006, Leo008, 

Leo085, Leo098, Leo126, Leo224, Leo230, Leo247, Leo281) that had greater than 75% allele 

call coverage across both the modern dataset (MD) and the historical nuclear dataset (HD) for all 

loci were employed in the final analyses. Only lions with known sampling date and location and 

>70% amplification success were used in downstream analyses. Sample preparation, DNA 

extraction, and storage, PCR amplification, allele calling, and call verification followed protocols 

described in Curry and Derr 2019 (64). Further details can be found in SI Appendix S11. 

The MD consists of microsatellite allele calls from Bertola et al. 2015 (39) (MD-1), Driscoll et 

al. 2002 (65) (MD-2) and Curry et al. 2019 (32) (MD-3). Six additional lions were included from 

the African Wildlife Genomics collection at Texas A&M University (MD-4). These datasets 

were combined to expand sample size and range for structure analysis and population statistics as 

well as for direct comparison with the HD. Data calibration is needed when combining 

microsatellite allele calls from different studies (66). Details on calibration of allele calls can be 

found in SI Appendix S10. 

Nuclear diversity calculations were done using Arlequin v3.5 (67), GenePop (68), HPRare (69), 

and GenAlEx v6.5 (70). MD and HD were analyzed separately, and results were then compared. 

A comparison of means was used to determine statistical significance of differences between 

historical to modern metrics. 

Knowing that population structure has been found regionally (28, 30, 33, 37, 40, 71, 72), we 

implemented a hierarchical strategy to uncover any hidden structure that may be lost when 

subpopulations are analyzed together (73–75). STRUCTURE runs were performed on each of 

the full MD and HD datasets without priors for 15 iterations of K 1-15 for 100,000 MCMC reps 

with 10% burn in. STRUCTURE was rerun for each population as determined through ΔK 
values from STRUCTURE HARVESTER (76) with individuals assigned to populations based 

on Q scores from runs combined in CLUMPP (77). To determine structural tiers, this was 

continued until no additional population structure was found. Samples were assigned to the finest 

level of structure then run as a full population with location priors for 15 iterations of K 1-12. 

Runs were combined using CLUMPP (77) and visualized at each tier using DISTRUCT (78).  To 

further look at structure patterns, a mantel test for IBD and principal coordinate analysis (PCoA) 

were performed in GenAlEx v6.5(70). 

Mitochondrial analysis  

Only polymorphic sites found in the sequences generated in this study were used for downstream 

analyses. Conservative filtering was implemented to accommodate the higher error rate 

associated with DNA damage possible in older samples (79–81). However, conservative filtering 
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in the historical mitogenomes may increase false negative variation present in the published, 

modern mitogenomes. Therefore, polymorphic sites found only in the published mitogenomes 

were excluded to reduce potential biases produced by differences in sequencing between studies 

Whole mitogenomes were assembled based on whole genome sequencing of 155 samples (152 

historical and 3 modern). Details on whole genome sequencing, quality filtering, and SNP 

identification can be found in SI Appendix S11. After filtering, 102 historical lions and 3 modern 

lions were of sufficient quality for downstream analyses. Sixteen additional modern lion 

sequences from GenBank (KP001493- KP001506 (37), KP202262 (82), KC834784 (83)) were 

added for a total of 19 modern lions. 

Mitochondrial diversity analyses of the multiple sequence alignment (MSA) of 280 polymorphic 

sites were performed using PLINK v1.9 (84), Arlequin v3.5 (67), and DnaSP v6 (85). Principal 

components analysis (PCA) was performed using R package SNPRelate (86) through calculation 

of Eigenvectors and visualized using the plot3D function in the rgl R package. A median-joining 

haplotype network was created using POPArt (87) and an unrooted maximum likelihood (ML) 

tree was inferred in RAxML using a rapid bootstrap with 1000 replicates evaluated under the 

GTR+GAMMA+I substitution model (88). 
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