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Abstract

Precision medicine in cancer proposes that genomic characterization of tumors can inform 

personalized targeted therapies1–5. This proposition, however, is complicated by spatial and 

temporal heterogeneity6–14. Here we study genomic and expression profiles across 127 multi-

sector or longitudinal specimens from 52 glioblastoma (GBM) patients. Using bulk and single-cell 

data, we find that samples from the same tumor mass share genomic and expression signatures, 

while geographically separated multifocal tumors and/or long-term recurrent tumors are seeded 

from different clones. Chemical screening of patient-derived glioma cells (PDCs) shows that 

therapeutic response is associated to genetic similarity, and multifocal tumors enriched with 

PIK3CA mutations have a heterogeneous drug response pattern. Importantly, we show that 

targeting truncal events is more efficacious in reducing tumor burden. In summary, this work 

demonstrates that evolutionary inference from integrated genomic analysis in multi-sector biopsies 

can inform targeted therapeutic interventions for GBM patients.

Main Text

In glioblastoma (GBM) most clinical trials on targeted therapy have shown limited clinical 

success15. Although recent genome-wide studies evaluating regional heterogeneity9,11 and 

longitudinal GBM pairs8,12,14,16 have suggested potential evolutionary models, there is little 

understanding which strategies can effectively use genomic data to inform targeted 

therapies. To identify such strategies, we analyzed somatic variants in 127 multi-region or 

longitudinal tumor specimens from 52 glioma patients: 42 from Samsung Medical Center 

(SMC) Seoul, South Korea, and 10 from The Cancer Genome Atlas (TCGA) GBM 

cohort8,14,16 (Supplementary Table 1). Additionally, we analyzed transcriptomes of 83 tumor 

specimens from 41 patients (bulk) and 305 single cells from seven samples of three patients. 

Tumors were classified into three distinct groups according to spatial and temporal tissue 

acquisition: from the same location and time (locally adjacent), from different locations at 

the same time (multifocal/multicentric, referred as multiple)17, and from local and distant 

recurrences at different times (longitudinal local or distant, respectively) (Fig. 1a).

We inferred clonal and subclonal alterations from cancer cell fractions in multiple sectors 

(Methods, Supplementary Table 2). The average mutation rate was 2.2 mut/Mb for non-

hypermutated samples, consistent with previous studies2,14. IDH1 R132 mutations were 

clonal across all the regions in IDH mutant tumors2,14 (6/6). PIK3CA mutations were always 

clonal and shared in all sectors (5/5), consistent with our previous longitudinal analysis from 

tumor evolution directed graphs (TEDG) that PIK3CA mutations are early events14 (Fig. 1b, 

Supplementary Fig. 1a–b). Furthermore, FGFR3-TACC3 fusions were highly expressed in 

all regions from two patients18. These somatic variants that are shared in all tumor regions 

represent promising therapeutic targets14,19, as they reflect truncal alterations suspected to 

be present among all tumor cells. In contrast, PTEN alterations including copy number 
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deletions and mutations were shared in 10/20 (50%) and 5/7 (71.4%) tumor sectors, 

respectively. Likewise, EGFR amplifications were observed as private events in 4/15 

(26.7%) of EGFR-amplified tumors, including two multiple cases (GBM5 and GBM9). 

Furthermore, EGFR mutations were shared in 3/7 (42.9%) cases, including one harboring 

disjoint alterations (GBM7-I1: L62R and R108K; GBM7-I2: A289V and C624S), 

suggesting that partial genetic information of a single tumor biopsy can be inconclusive for 

assessing EGFR targeted therapy (Supplementary Fig. 1b–c).

To understand the association between spatiotemporal architecture and genetic relevance, we 

calculated Nei’s genetic distance among multi-sector samples from the same patient 

(Methods). Genetic diversity is greater in multiple tumors compared to locally-adjacent 

tissues (q=4.7e-5, Fig. 2a), in distant compared to local recurrence (q=1.4e-5, Fig. 2a), and 

in long-term recurrence compared to short-term recurrence (q=2.9e-3, Fig. 2a). A 

multinomial logistic regression was applied to classify multi-sector sample pairs based on 

genomic features (Supplementary Note). This analysis has highlighted that tumors from 

distant regions or longer period separation compose a distinct evolutionary scenario in GBM 

(Figure 2b). In colorectal tumors, a Big Bang model20 interprets that cells from different 

biopsies of the same tumor share clonal and subclonal variants (Fig. 2c, left panel). 

Consistent with this model, samples taken from locally adjacent tumors share a large 

proportion of clonal and subclonal events (Supplementary Fig. 2a–b). In contrast, multiple 

tumors contain fewer shared (higher private) clonal mutations compared to local (q=1.86e-3, 

Supplementary Fig. 2a). We corroborated this finding by computing statistics on the space of 

evolutionary trees (evolutionary moduli spaces, Supplementary Fig. 3, Methods). Local 

tumors clustered near the tip of the space, indicating a higher shared mutation ratio 

compared to multiple tumors (p=1.27e-2). These results indicate that in contrast to local 

tumors, geographically separated multifocal tumors and/or long-term recurrent tumors are 

seeded from distinct clones, a phenomenon we call the ‘Multiverse model’ (Fig. 2c, right 

panel). Unlike the Big Bang model20, in the Multiverse model, tumor samples from different 

tumor masses share very few genomic alterations, indicating tumor clones are 

geographically segregated at an early stage of evolution, and each clone acquires distinct 

“private” alterations, leading to the construction of multiple “universes”.

Next, we investigated the mutation profiles of GBMs with multifocal/multicentric (M-GBM) 

or solitary (S-GBM) lesion in 160 treatment naïve patients from both SMC and TCGA17 

cohorts (Supplementary Fig. 4 and 5a, Supplementary Table 3, Methods). Notably, non-

synonymous mutations of PIK3CA were enriched in M-GBM (13/130 and 9/30 tumors in S- 

and M-GBMs respectively, p=7.905e-3, Fig. 2d). This conclusion remains the same in IDH1 

wild type cohort (Supplementary Fig. 5b). PIK3CA induces multipotency of mammary 

tumors, suggesting its associative role in tumor multiplicity21. Survival analysis indicates 

that both M-GBM and PIK3CA mutant patients have worse prognosis (p-values: 0.0151 and 

0.039, respectively, Supplementary Fig. 5c–d).

To further characterize the heterogeneity of expression profiles, we curated single cell RNA-

Seq of seven different samples from three patients. Overall, expression-based cell subtypes 

were not clearly determined by location or time (Fig. 3), consistent with a previous report10. 

To make sure this observation is not due to the limitations of this classification and to 
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capture the transcriptional similarity among different cells, we used topological data analysis 

(Methods), a recently developed technique to summarize and reduce the dimensionality of 

large data sets while retaining local high dimensional structure22,23.

GBM9 (Figs. 3a–d) consisted of samples from two primary tumors in the right and left 

frontal lobes, and a recurrent tumor in the left frontal lobe that emerged after concurrent 

chemoradiotherapy (CCRT) and EGFR targeted treatment (Supplementary Note). We found 

in bulk whole exome sequencing (WES) and confirmed using ultra-deep sequencing 

(Supplementary Table 4) and single-cell analysis that cells from the recurrent tumor shared 

genomic and expression features with the left initial tumor cells (Supplementary Figs. 6–8, 

Fig. 3b). Particularly, there are 61 somatic mutations shared between left and recurrent, 

while only 42 between right and recurrent. Single-cell transcriptome analysis showed EGFR 

expression predominantly in the right tumor mass, but not in the left and recurrent tumors 

(Fig. 3c). Interestingly, different single cells harbor different EGFR alterations, implying 

they were late events during tumor evolution21. PIK3CA mutations were detected from 

single cells in all three samples, consistent with the bulk WES that PIK3CA mutations are 

founder events (Supplementary Figs. 1a and 6a). Our analysis also revealed the presence of 

transcriptional heterogeneity within the individual samples. A subset of left-initial tumor 

cells was characterized by upregulation of mitotic genes not found in either right or recurrent 

sections (Fig. 3d).

Additionally, we profiled IDH1 mutant tumor cells distinguished by 5-Aminolevulinic acid 

(5-ALA) uptake pattern (populations stained for tumor cellularity24) (GBM10, Fig. 3e–f, 

Supplementary Figs. 6–7). Previous glioma studies suggested that low pathologic grade is 

associated with low uptake of 5-ALA24,25; however, genomic determinants for 5-ALA 

uptake remain elusive. Using single cell transcriptome analysis, we found predominant 

enrichment of proneural cells on 5-ALA (-) sample, supporting previous observations that 

GBM cells may be evolved from proneural precursors (p<0.01, Fig. 3e,)26. We also found 

enrichment of several cell proliferation and migration markers in the 5-ALA (+) section, 

including MET and CD4427–29. Notably, 5-ALA (-) tumors, which are conceived as less 

aggressive, are actually fully-fledged tumors that harbor driver mutations and express tumor 

aggressive markers (Fig. 3e and 3f, Supplementary Fig. 6b, 7, 9a and 10). Finally, we 

studied main and margin samples from GBM2—a locally adjacent hypermutated case, and 

found distinct subpopulations of cells expressing mitotic cell markers and migration-

associated genes, including CD44 (Fig. 3g, Supplementary Figs. 6–7, Supplementary Figs. 

9–10)28.

To investigate the influence of genetic heterogeneity on drug response, we isolated 28 PDCs 

from 11 patients and screened 40 different cancer-related compounds (Supplementary Table 

5)4,30. We found that Nei’s genetic distance was associated with drug response correlation 

(p=0.02; Fig. 4a). Consistently, both distant and longitudinal samples showed significantly 

broader drug responses compared to local samples (Fig. 4b). Importantly, we found that the 

PDCs from M-GBMs were more sensitive to PI3K/AKT/mTOR (PAM) pathway inhibitors 

than those from solitary tumors (p=1.872e-6, Fig. 4c and Supplementary Fig. 11). This 

indicates that PAM inhibitors could provide clinical benefit for M-GBMs. In addition, we 
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observed that PDCs from recurrent GBMs were more resistant to EGFR inhibitors, 

compared to initial (p=2.9e-4, Supplementary Figs. 12–13).

We hypothesized that clonal alterations found in all multi-sector samples (truncal 

alterations) represent better molecular targets. In agreement with this truncal target 

hypothesis (Supplementary video), multisector PDCs were more sensitive to drugs that 

target shared alterations compared to private alterations (p=0.0381, Methods, Fig. 4d; 

Supplementary Figs. 14–16). The Multiverse model implies that the extensive genetic 

diversity of multiple tumors presents a special challenge. Accordingly, GBM9 showed a 

divergent genetic profile and a highly heterogeneous drug response (Fig. 4e–f). PDCs from 

the right-side tumor were highly sensitive to EGFR inhibitors but not to MEK inhibitors, and 

vice-versa in the left side tumor. However, PAM pathway inhibitors were ubiquitously 

effective, consistent with our hypothesis that targeting the PAM signaling pathway could be 

a potent option to treat M-GBMs (Fig. 4c,f). Yet not all truncal alterations can serve as drug 

targets. For example, “gatekeeper” genes, which are necessary for tumor initiation but no 

longer required for tumor maintenance, are not good candidates31. Although targeting 

subclonal mutations show limited effect, patients might still benefit from the elimination of a 

subclone that has a bystander effect on surrounding cells.

In conclusion, based on comprehensive bulk and single cell analyses, we have proposed a 

Multiverse model to interpret the evolution of multiple GBMs. We showed M-GBMs are 

more genetically diverse than locally adjacent tumors, and genetic similarity between multi-

region samples is associated with consistent drug response. Specifically, we found an 

enrichment of PIK3CA mutations in M-GBMs and that PAM inhibitors are more effective in 

PDCs from this cohort. These findings support the truncal target hypothesis that truncal 

mutations can inform more effective therapies.

Online Methods

Glioma specimens and their derivative cells

After receiving informed consents, glioma specimens and clinical records were obtained 

from patients undergoing surgery at Samsung Medical Center (SMC) or Seoul National 

University Hospital (SNUH) in accordance with its Institutional Review Board (IRB file No. 

2010–04-004). Surgical samples measuring approximately 5 × 5 × 5 mm3 were snap-frozen 

using liquid nitrogen for genomic analysis. We also curated whole exome and/or RNA 

sequencing of 33 multisector specimens from 10 GBM patients in TCGA cohort8, and 22 

previously reported GBM longitudinal pairs14,16. To investigate the genomic characteristics 

of solitary and multifocal/multicentric GBMs, we curated 83 and 77 tumor exome 

sequencing data with matched normal DNA from SMC and TCGA8,17, respectively. 

Portions of the surgical samples were enzymatically dissociated into single cells, following 

the procedures reported previously with modification of immune cell depletion33. Tumor 

cells were cultured in neurobasal media with N2 and B27 supplements (0.5× each; 

Invitrogen) and human recombinant basic fibroblast growth factor (bFGF) and epidermal 

growth factor (EGF; 20 ng/ml each; R&D Systems). The patient-derived cells (PDCs) used 

here had shown no obvious contamination of mycoplasma.

Lee et al. Page 5

Nat Genet. Author manuscript; available in PMC 2017 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Radiological evaluation

Both T1-weighted contrast-enhancement (T1CE) and fluid-attenuated inversion recovery 

(FLAIR)/T2 axial images of 160 treatment-naïve GBMs (83 and 77 tumors from SMC and 

TCGA cohort, respectively) were reviewed. MR images of TCGA cohort have been obtained 

from The Cancer Imaging Archive (TCIA) website17,34,35. We excluded cases with any 

evidence of prior neurosurgical intervention except biopsy, lack of treatment history, or loss 

of T1CE or FLAIR/T2 images. To distinguish the multifocal/multicentric GBMs (M-GBM) 

from solitary ones (S-GBMs), we adapted annotations from the VASARI feature set for 

human glioma36. According to VASARI feature set, m-GBMs are defined as having at least 

one region of tumor, either enhancing or non-enhancing, which is not contiguous with the 

main lesion and is outside of the region of signal abnormality (edema) surrounding the main 

mass17,37,38. When FLAIR/T2 high signal intensity lesion resides outside of the T1-

weighted contrast-enhancement lesion, this lesion is considered as separate tumor foci and 

counted as multifocal tumor in our study39,40. In contrast, tumors which present separate 

contrast-enhancement lesions within the FLAIR/T2 high-signal intensity background are 

considered as solitary ones.

Whole-exome sequencing

Agilent SureSelect kit was used for capturing the exonic DNA fragments. Illumina 

HiSeq2000 was used for sequencing and generated 2 × 101 bp paired-end reads.

Somatic mutation

The sequenced reads in FASTQ files were aligned to the human genome assembly (hg19) 

using Burrows-Wheeler Aligner version 0.6.2. The initial alignment BAM files were 

subjected to conventional preprocessing before mutation calling: sorting, removing 

duplicated reads, locally realigning reads around potential small indels, and recalibrating 

base quality scores using SAMtools, Picard version 1.73 and Genome Analysis ToolKit 

(GATK) version 2.5.2. We used MuTect (version 1.1.4) and Somatic IndelDetector (GATK 

version 2.2) to make high-confidence predictions on somatic mutations from the neoplastic 

and non-neoplastic tissue pairs. Variant Effect Predictor (VEP) version 73 was used to 

annotate the called somatic mutations. Additionally, we ran SAVI (Statistical Variant 

Identification) software to call somatic variants and indels for refining the mutation calls 

from the above pipeline.

Copy number

Excavator was used to generate estimated copy number alterations in tumor specimens 

compared to its matching non-neoplastic part. For each gene we calculated the copy number 

=2x+1 , where x is the segmentation mean from Excavator and defined as the log2 fold-

change of tumor divided by normal. The gene was labeled as “amplified” when the copy 

number was ≥ 3 and “deleted” when it was ≤ 1.

Cancer cell fractions and clonality

We ran ABSOLUTE41 using input of genomic variants and copy number data to infer 

sample purity and cancer cell fractions (CCF) and removed those having <20% purity. We 
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considered mutations as clonal if indicated clonal in Absolute and with a cancer cell fraction 

of 80% or having CCF of 100% and not marked as clonal or subclonal. The Absolute CCF 

estimates with regard to hypermutated samples appeared disproportionately subclonal in 

sample GBM18 inital and TCGA-14-1402 2nd recurrence and we reasoned the large 

mutational load may skew estimates. In hyper mutated samples treatment-associated 

mutation coupled with defects in mismatch repair are deemed largely responsible for a 

majority of observed mutations. Therefore, mutations having cancer cell fractions greater 

than or equal to the maximum mismatch repair CCF were marked clonal in these two 

samples.

If a mutation was found to be clonal in all sectors of a patient’s tumor, it was inferred to be 

clonal throughout the entire tumor. We investigated the number of sequenced tumor sectors 

or cores needed to obtain a reasonable false discovery rate (FDR) for this inference of 

clonality. We analyzed glioma patient LGG174 published recently by Suzuki et al., where 

nine sectors from different locations of the same tumor mass were sequenced. Based on 

Figure 7b from their paper42, 13 mutations have high cell fraction (>60%) shared by all 

samples. To relate the number of sectors sequenced to the number of mutations deemed to be 

clonal tumor-wide, we exhausted all possible sub-sampling strategies (number of cores k = 

1, 2, …, 9), and calculated the reported clonal mutations based on k cores. For example, if 

there are two cores (k=2), there are  potential sampling strategies. We found that 22 

out of 36 sampling strategies contained no false discoveries in identifying clonal mutation. 

For each value of k, we calculated FDR (Supplementary Fig. 17). Almost 90% of clonal 

mutations identified by two-core sequencing are true clonal mutations, and over 95% 

identified by three-core sequencing are true clonal mutations.

Nei genetic distances

Nei’s genetic distance is used in population genetics to assess the similarity between 

populations, taking into account heterogeneity within populations. Samples containing the 

same spatial or longitudinal category (Local, 5-ALA, Multiple Lesion, Longitudinal Local, 

Longitudinal Distant) were retained for statistical comparisons. We calculated Nei distance 

of CCF for each patient’s sample as follows. Let X = all CCF of sample 1 and Y = all CCF 

of sample 2:

The multiverse model of tumor evolution

We found increased Nei’s genetic distance in Multi-focal/multi-centric compared with 

locally-adjacent biopsies. In addition, private clonal mutations appear frequently in multi-

sectional and distant longitudinal samples, but are infrequent in local samples 

(Supplementary Figure 2a). This spurred a hypothesis that specific early event(s) can give 

rise to distinct mutational profiles in spatially separated tumors (Figure 2A). These 

differences in mutational load suggested distinct tumor profiles may arise in separate 

‘universes’ of clones rather than from one large growth period followed by diversification.
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For each somatic mutation we record the clonal status as determined by ABSOLUTE and if 

the mutation is shared or private or if the clonal status changes between biopsies. Mutations 

are then classified into 5 patterns between every available pair of a patient’s samples. The 

mutational classes are labeled as the following: CC (clonal-clonal), CS (clonal-subclonal), 

SS (subclonal-subclonal), CX (clonal-absent) or SX (subclonal-absent). Order of the sample 

pair is not important: a mutation that is clonal in one sample and subclonal in the other is 

marked “CS,” regardless of sample identity.

These mutational classifications were used to predict whether the spatiotemporal 

configuration of a sample pair fell into one of three groups: locally adjacent, local 

longitudinal, or multi-sectional/distant-longitudinal. The fractions of mutations in a sample 

pair that fit each of the five patterns were used as features in a multinomial-logistic 

regression. Predictions were then made using leave-one-out cross validation.

Mutational pairs plotted on the simplex allowed us to visually separate multi-sectional/

distant-longitudinal, locally adjacent or local longitudinal sections in agreement with most 

of our MRI classifications. The simplex axes represent the predicted probabilities of 

outcomes for each observation. Curiously, the sample layout contained 3 longitudinal local 

outliers closest to the multi-sectional point of the simplex. The time interval between 

surgeries of the 3 pairs was 18 months or more. Moreover, their Nei distances were 

significantly different from all other sections (p-value = 0.01652). We labeled all samples 

exceeding surgical intervals of 18 months as long-term recurrence and colored them in dark 

green. Analysis was performed in the [R] computing environment using the multinom 

function from the nnet package (https://CRAN.R-project.org/package=nnet).

Isolation of single cells and RNA sequencing

We adopted the C1TM Single-Cell Auto Prep System (Fluidigm) with the SMARTer kit 

(Clontech) to generate cDNAs from single cells. 352R and L cells were captured as a single 

isolate in C1 chip (17–25 μm) determined by microscopic examination as previous 

described. RNAs from pooled samples were also processed using the SMARTer kit with 

10ng of starting materials. Libraries were generated using Nextera XT DNA Sample Prep 

Kit (Illumina) and sequenced on the HiSeq 2500 using the 100bp paired-end mode of the 

TruSeq Rapid PE Cluster kit and TruSeq Rapid SBS kit. Before mapping RNA sequencing 

reads to the reference, reads were filtered out at Q33 by using Trimmomatic-0.30. TPM 

values were calculated from each single cell (as if they are different samples) using RSEM 

(version 1.2.25)43 and expressed as log2(1+TPM).

Gene fusion detection

Chimerascan was applied to generate candidate list of gene fusions44. For bulk sequencing, 

only previously reported in-frame, high expressing fusions, such as FGFR3-TACC318, 

MGMT fusion14, EGFR-SEPT145 and ATRX fusion were considered in this manuscript. For 

single cell fusion analysis, if a fusion was highly expressed and independently detected in 

multiple cells the fusion will be reported.
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Expression based subtypes determination

Gene expression was measured by RSEM and then log2 transformed. To determine the 

expression-based subtype of GBM cells, we first calculated z-scores for gene expression 

data across samples, and then applied ssGSEA (version gsea2–2.2.1) on the normalized 

expression profile. For each cell, we ranked all genes based on their expression values to 

create a .rnk file as the input of the software GseaPreranked. An enrichment score was 

computed for all four subtypes initially defined in Verhaak et al32. The subtype with the 

maximal enrichment score was used as the representative subtype for each cell.

Topological data analysis using Single cell transcriptome

We filtered out normal cells based on their expression profile. To that end, we considered 

expression signatures of normal oligodendrocytes, neurons, and astrocytes 45, microglia 46, 

endothelial cells 47, T-cells 48, and other immune cells 48,49, and used a Gaussian mixture 

model to classify individual cells according to their expression profile. 94/133, 82/85 and 

90/137 cells, respectively for GBM9, GBM10, and GBM2, were classified as tumor cells. 

After normalization of gene expression level by dividing total number of reads in each cell 

to eliminate the potential bias caused by batch effect, we built topological representations of 

these single cell data using Mapper algorithm 23, as implemented by Ayasdi Inc. Open-

source implementations of this algorithm are also available (http://danifold.net/mapper, 

http://github.com/MLWave/kepler-mapper). We used the first two components of 

multidimensional scaling (MDS) as auxiliary functions for the algorithm. The output of 

Mapper is a low-dimensional network representations of the data, where nodes represent sets 

of cells with similar global transcriptional profiles (as measured by the correlation of the 

expression levels of the 2,000 genes with highest variance across each patient). We identified 

individual genes that had an expression pattern localized in the network, and used those to 

determine the sub-clonal structure of the samples at the level of expression.

PDC-based chemical screening and analysis

PDCs grown in serum-free medium were seeded in 384-well plates at a density of 500 cells 

per well in duplicate or triplicate for each treatment. The drug panel consisted of 40 

anticancer agents (Selleckchem) targeting oncogenic signals. Two hours after the plating, 

PDCs were treated with drugs in a fourfold and seven-point serial dilution series from 20 

μM to 4.88 nM using Janus Automated Workstation (PerkinElmer, Waltham, MA, USA). 

After 6 days of incubation at 37°C in a 5% CO2 humidified incubator, cell viability was 

analyzed using an adenosine triphosphate (ATP) monitoring system based on firefly 

luciferase (ATPLite™ 1step, PerkinElmer). Viable cells were estimated using EnVision 

Multilabel Reader (PerkinElmer). Dimethyl sulfoxide (DMSO) was also included as control 

in each plate. Controls were used for calculation of relative cell viability for each plate and 

normalization per-plate basis. DRC fitting was performed using GraphPad Prism 5 

(GraphPad) and evaluated by measuring Area Under the Curve (AUC) of dose response 

curve. After normalization, best-fit lines were determined and the AUC value of each curve 

was calculated using GraphPad Prism, ignoring regions defined by fewer than two peaks.

Cell viability was determined via calculating AUC values of dose–response curves (DRCs) 

with exclusion of non-convergent fits50.
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Moduli space analysis

To illustrate evolution histories of GBM patients, we applied moduli space analysis51 in 

local and multiple group of patients. Multiregion pairs were compared to calculate number 

of shared and private mutations. In this analysis, clonal mutations were separated based on 

their allele frequencies. Sector pairs were put in left sphere based on the number of shared 

and private mutations with high allele frequency mutations (>20%), while the same number 

of pairs were put in right sphere based on mutations with low allele frequency mutations 

(<20%). The same analysis was then also performed based on inferred clonally.

Immunohistochemistry

Tissue specimens were fixed by formalin and embedded in paraffin. Paraffin-embedded 

sections were treated with 0.3% Hydorgen peroxide to block endogenous peroxidase acitivty 

and antigens were retrieved by heating sections in 10 mM sodium citrate (pH 6.0) for 95 

degree Celsius 30 min. Sections were incubated with primary antibodies overnight at 4 

degree Celsius, biotinylated secondary antibodies for 1 hr in RT and avidin-biotin complex 

for 1 hr in RT.

Western blot

GBM PDCs were washed with cold PBS, harvested in lysis buffer (150 mM sodium 

chloride, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 50 mM Tris-HCL and 2 

mM EDTA), and a protease and phosphatase inhibitor cocktail added (Thermo Scientific). 

Insoluble materials were removed by centrifugation at 12000 rpm for 15 min, 4°C. The 

proteins were separated by SDS-PAGE. Immunoblotting was performed using antibodies 

against indicated proteins.

Limiting dilution assay

GBM PDCs were dissociated into single-cell suspensions and then plated into 96-well plates 

at 1–250 cells per well. Cells were incubated at 37°C for one to two weeks. At the time of 

quantification, each well was examined for formation of neurosphere-like cell aggregates. 

Statistical significance was evaluated using Extreme Limiting Dilution Analysis (ELDA; 

Walter+Eliza Hall Bioinformatics).

Gene fusion validation

Validation of gene fusion transcripts were performed by reverse transcription polymerase 

chain reaction (RT-PCR) assays. Total RNA was extracted from the tissues by AllPrep 

DNA/RNA Mini kit according to the manufacturer’s instructions (Qiagen). Total RNA (1 

μg) was reverse transcribed to synthesize template cDNA by a random primer using the 

SuperScriptIII First-Strand System(Life Technologies), and 20 μl of synthesized cDNA was 

diluted 5 fold with DW. For RT-PCR, EzWay Taq PCR MasterMix (Komabiotech, KOREA) 

and 5 μl of synthesized cDNA template was used. Thermal cycling was carried out under the 

following conditions: 1 min at 95°C followed by 30 cycles of 30 sec at 95°C, 30 sec at 56°C, 

30 sec at 72°C. The primer pairs used in this experiment were designed to make the 

amplification product including the breakpoints of the fusion genes. PCR products were 
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analyzed by agarose gel electrophoresis. The primers were summarized in Supplementary 

Table 6.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Mutational landscape of multi-region malignant glioma samples
(a) A schematic representation of glioma genomic heterogeneity and differential drug 

response analysis. Human glioma specimens were acquired based on their spatial order, or 

longitudinal pairs and subjected for genomic analysis for identification of tumor-initiating 

(truncal) events. (b) Somatic mutations including Single Nucleotide Variants (SNVs) and 

small Insertions/Deletions, copy number alterations, and gene fusions of 83 glioma multi-

region or multisector-longitudinal specimens from 30 patients are demonstrated. 34 locally 

adjacent tumor fragments were from 14 patients, 13 multifocal/multicentric (referred as 

multiple) tissues from 5 patients, and a longitudinal pair GBM14 with leptomeningeal 

seeding were collected from Samsung Medical Center (SMC). We also curated 34 

multisector-longitudinal tumor exomes and/or RNA sequencing from 10 patients in TCGA 

cohort8. All somatic mutations called by SAVI with allele frequency >5% were 

demonstrated. For each gene we calculated the copy number (CN) based on Excavator. 

Clonal alterations were determined using ABSOLUTE with cancer cell fraction >80%. 

(Methods).
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Figure 2. Comparison of genetic heterogeneity across glioma multisector / longitudinal samples
Patient samples were classified into five groups: Local, Multiple Lesion, S.T. (Short-Term) 

Longitudinal Local, L.T. (Long-Term) Longitudinal Local and Longitudinal Distant for 

comparative analyses. (a) Nei’s genetic distance of the indicated groups are shown. Q-values 

were calculated by Wilcoxon Rank-Sum Test and corrected for false discovery rate using 

Benjamini-Hochberg method. S.T. and L.T. Local indicates short-time (<18 months surgical 

interval) and long-time recurrent tumors ( ≥18 months), respectively. (b) Illustration of 

leave-one-out results from multinomial logistic regression. Each point indicates one pair of 

samples, and their coordinates are the probabilities to be local, multiple lesion/longitudinal 

distant, or longitudinal local. Long-Time recurrent samples were classified together with 

multiple lesion/longitudinal distant samples, indicating they might follow the same 

evolutionary model. (c) Tumor evolution behind Big Bang and Multiverse models. The Big 

Bang model is indicated as a mixture of tumor cells that share many clonal and subclonal 

alterations. The Multiverse model is indicated with a greater proportion of private events at a 

clonal level. (d) Pie charts demonstrate the frequencies of PIK3CA mutations in multifocal/

multicentric (M-) GBMs (30%, 9/30) and solitary (S-) GBMs (10%, 13/130). The p-value 

was calculated using Fisher’s exact test.
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Fig. 3. Single cell transcriptome from multi-region samples
(a) Expression profile of individual tumor cells from three samples of GBM9 (left initial, 

right initial, and relapse), according to expression subtypes32. For each cell, the subtype with 

the highest expression is marked with an asterisk. Several EGFR genomic alterations can be 

identified in the single cell expression data (yellow), despite the abundance of missing data 

(gray). (b) Topological representation of the expression data of individual tumor cells from 

GBM9, labeled by sample of origin. Each node represents a set of cells with similar 

transcriptional profile. A cell can appear in several nodes, and two nodes are connected by 

an edge if they have at least one cell in common. Topological representation of GBM9 

labeled by expression of EGFR (c) and mitotic genes (d). (e) Expression profile of 

individual tumor cells from GBM10 (two samples: 5-ALA (+) and 5-ALA (-)). The p-value 

between proneural and 5-ALA was obtained using Fisher’s exact test. The p-value between 

mesenchymal and LTBP4 expression was calculated based on Spearman’s correlation. 

ATRX fusion was validated by RT-PCR assays (Supplementary Fig. 7b–c). Topological 

representation of expression data of individual tumor cells from patients GBM10 (f) and 

GBM2 (g), labeled by the sample of origin. (h) Expression profile of individual tumor cells 

from patient GBM2 according to the GBM expression subtypes.
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Fig 4. Chemical screening of multi-region patient-derived cells (PDCs)
(a) PDCs were treated with 40 chemical agents, targeting oncogenic signaling pathways in 

diluted series from 20 μM to 4.88 nM. X-axis indicates Nei’s genetic distances between 

fragments from the same patient, while y-axis indicates Spearman’s correlation coefficient 

(SCC) of corresponding fragments based on drug sensitivities measured by Area Under the 

Curve (AUC). (b) A violin plot for SCC of drug responses of the groups described in Fig. 

4a. (c) Mean values of AUCs for six PI3K/AKT/mTOR (PAM) inhibitors (BEZ235, 

BKM120, BYL719, AZD5363, AZD2014 and Everolimus) of PDCs isolated from M- (n=9) 

or S-GBMs (n=22) were plotted. (d) The normalized Z-score in each PDC was plotted when 

the corresponding tissues harbored associated genetic alterations, designated as “shared” or 

“private”. The private group was determined when the drug response-associated genetic 

alteration (i.e. EGFR mutations-EGFR inhibitors; PTEN mutations-PI3K/AKT/mTOR 

pathway inhibitors) was private, and vice versa for the shared group. (e) Preoperative T1-

weighted contrast-enhanced MR image and key genomic alterations found in the 

corresponding tumors and its derivative cells from a multicentric patient (GBM9). Right-side 

‘R’ tumors encompassed the right frontal lobes and corpus callosum (CC). ‘L’ indicates the 

left frontal tumor. Preoperative MRI showed a multifocal infiltrative lesion in both the 

frontal lobe and CC. (f) Scatterplot of AUC for 40 cancer-targeting compounds on GBM9 

PDCs derived from the left and right side tumor. The R was obtained as Pearson’s 

correlation coefficient. All p-values in this figure were obtained using Wilcoxson Rank-Sum 

test.
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