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Spatiotemporal identification of druggable binding
sites using deep learning
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Identification of novel protein binding sites expands druggable genome and opens new

opportunities for drug discovery. Generally, presence or absence of a binding site depends on

the three-dimensional conformation of a protein, making binding site identification resemble

the object detection problem in computer vision. Here we introduce a computational

approach for the large-scale detection of protein binding sites, that considers protein con-

formations as 3D-images, binding sites as objects on these images to detect, and con-

formational ensembles of proteins as 3D-videos to analyze. BiteNet is suitable for

spatiotemporal detection of hard-to-spot allosteric binding sites, as we showed for

conformation-specific binding site of the epidermal growth factor receptor, oligomer-specific

binding site of the ion channel, and binding site in G protein-coupled receptor. BiteNet

outperforms state-of-the-art methods both in terms of accuracy and speed, taking about

1.5 minutes to analyze 1000 conformations of a protein with ~2000 atoms.
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P
roteins serve biological functionality of a cell via local
intermolecular interactions that take place in spatial
regions, called binding sites. Binding sites are one of the key

elements in drug discovery, being hot spots in the pharmacolo-
gical targets, where the designed drug-like molecule should bind.
Identification of novel binding sites expands druggable genome
and opens new strategies for therapy and drug discovery1.
Typically drug-like molecules target either orthosteric binding
site, where protein interacts with endogenous molecules, or
topologically distinct allosteric binding sites2. The latter is of a
special interest, because allosteric binding sites exhibit higher
degree of sequence diversity between protein subtypes, thus,
allowing to design more selective ligands, in contrast to the
orthosteric ligands3–5.

Proteins are flexible molecules, that adopt various conforma-
tions during their life cycle; and a binding site is a dynamic
property of a protein mediated by its conformational changes6,7.
Single protein structure represents only a minor part of the entire
conformational space, hence, binding sites might be easy to
overlook from the experimentally determined three-dimensional
protein structures8,9. Moreover, many proteins perform their
function assembling to oligomeric structure and can form binding
sites by means of oligomer’s subunits10,11.

Experimental identification of binding sites, such as fragment
screening and site-directed tethering12,13, using antibodies14,
small molecule microarrays15, hydrogen-deuterium exchange16,
or site-directed mutagenesis17 are resource-consuming and may
result in negative outcome. On the other hand, computational
methods allow to perform large scale binding site identification,
investigate protein flexibility via molecular dynamics simulation,
and probe to fit chemical compounds using virtual ligand or
fragment-based screening. The classical approaches typically
employ empirical scoring functions based on the structural
information about known binding sites, or use this information as
features for the machine learning algorithms18–28. The success
rate of these approaches critically depends on the designed fea-
tures, and may result in false positive predictions, that is identi-
fication of undruggable regions29. Most recently, deep learning
approaches, that do not require hand-crafted feature engineering,
demonstrated feasibility to predict protein binding sites30. In spite
of present progress, large-scale binding site detection remains to
be a challenge, let alone that there is still a big room for
improvement in terms of the method’s accuracy28.

In this study, we present rapid and accurate deep learning
approach, dubbed BiteNet (Binding site neural Network), sui-
table for the large-scale and spatiotemporal identification of
protein binding sites. Inspired by the computer vision problems,
such as object detection in images and videos, we consider protein
conformations as the 3D images, binding sites as the objects on
these images to detect, and conformational ensembles, that is a set
of protein conformations, as the 3D videos to analyze. We
showed that BiteNet is capable to solve challenging binding site
detection problems by applying it to three-dimensional structures
of pharmacological targets, including ATP-gated cation channel,
epidermal growth factor receptor, and G protein-coupled recep-
tor. Particularly, BiteNet correctly identified oligomer-specific
allosteric binding site formed by the subunits of the trimeric P2X3
receptor complex; and conformation-specific allosteric binding
site of the epidermal growth factor receptor kinase domain.
BiteNet can be used for spatiotemporal investigation of novel
binding sites, as we showed by the example of molecular
dynamics simulation trajectory for the adenosine A2A receptor.
BiteNet outperforms the state-of-the-art methods both in terms
of accuracy and speed as demonstrated on several benchmarks. It
takes approximately 0.1 seconds to analyze single conformation
and 1.5 minutes for BiteNet to analyze molecular dynamics

trajectory with 1000 frames for protein with ~2000 atoms,
making it suitable for large-scale spatiotemporal analysis of
protein structures.

Results
BiteNet architecture. To develop BiteNet we trained 3D con-
volutional neural network using manually curated protein
structures from the Protein Data Bank as the training set (see
“Methods” section). Figure 1 presents the BiteNet workflow.
Similarly to 2D images, that have two dimensions (width and
height) and three channels for each pixel (red, green, and blue),
we represent proteins as 3D images with three dimensions (width,
height, and length) and 11 channels for each voxel, where
channels correspond to the atomic densities of a certain type (see
“Methods” section) (Fig. 1a). As neural networks typically take
fixed size tensors for the input, we used voxel grid of 64 × 64 × 64
voxels and voxels of 1Å × 1Å × 1Å size. If protein exceeds 64Å
in any of the dimensions, we used several voxel grids to represent
it (Fig. 1b). The obtained voxel grids are processed with the 3D
convolutional neural network (Fig. 1c) to output 8 × 8 × 8 × 4
tensor, where the first three dimensions correspond to the cell
coordinates relatively to the voxel grid (region of 8 × 8 × 8
voxels), and the four scalars of the last dimension correspond to
the probability score of the binding site being in the cell and its
Cartesian coordinates. This is followed by the processing of
the obtained tensors to output the most relevant predictions of
the binding sites (Fig. 1d). Thus, the input to the BiteNet is the
spatial structure of a protein and the output is the centers of
the predicted binding sites along with the probability scores.
Finally, BiteNet identifies the amino acid residues of a binding
site within 6Å neighborhood with respect to the predicted center.
Additionally, when applied to the conformational ensemble of a
protein, the obtained predictions and identified amino acid resi-
dues are grouped using clustering algorithms (see “Methods”
section).

Spatiotemporal prediction of binding sites in pharmacological
targets. To demonstrate applicability of BiteNet we considered
challenging binding site detection problems comprising three
pharmacological targets: the P2X3 receptor of the ATP-gated
cation channel family, the epidermal growth factor receptor of the
kinase family, and the adenosine A2A receptor of the G-protein
coupled receptor family.

ATP-gated cation channel. The ATP-gated cation channel,
formed by the P2X3 receptor, mediates various physiological
processes and represents pharmacological target for hyperten-
sion, inflammation, pain perception, and others31. The channel
consists of three identical monomers traversing the membrane,
and the orthosteric ATP-binding site comprises amino acid
residues of two monomers (see Fig. 2c)32. Drug design targeting
the orthosteric binding site is difficult due to highly polarized
ATP-specific interface, on the other hand, allosteric ligands
targeting protein–protein interactions form promising avenue
for drug discovery11. Recently allosteric binding site formed by
two monomers of a channel was discovered for the P2X3 and
P2X7 receptors11,33. We applied BiteNet to the ATP-bound and
(AF-219)-bound structures of the trimer complex formed by
the P2X3 monomers (PDB IDs: 5SVK, 5YVE), as well as to the
single monomer structures. BiteNet correctly identified the
orthosteric binding site in the ATP-bound structure and
the allosteric binding site in the (AF-219)-bound structure of
the trimer, and not in the monomer structures (see Fig. 2).
Interestingly, BiteNet also predicted center for the ATP-binding
site located on the opposite end of the ATP molecule with lower
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probability score (see Supplementary Fig. 1). To ensure, that
this is not an artifact of the rotational variance of the model, we
generated 50 replicas by rotating the monomer about ten
axes by π/3, 2π/3, π, 4π/3, and 5π/3 angles and averaged the
obtained predictions. As one can see from Fig. 2e, f although
the absolute values of the probability scores vary with respect to
the monomers, in all the cases BiteNet correctly identifies
the allosteric binding site for the trimer complex and not for the
monomer. Note, that ATP is endogenous agonist, while AF-219
is antagonist for the P2X trimer. The agonist-bound and the
antagonist-bound conformations are different, particularly, in
the regions of the orthosteric and allosteric binding sites
(Fig. 2c, d). Therefore, BiteNet is sensitive to the conforma-
tional changes, as it does not predict the ATP-binding site in
the (AF-219)-bound structure and vice versa. Interestingly,
despite absence of binding site in the monomer structure,
BiteNet predicted different binding sites with relatively high
score in the monomer structures. Closer look into available
three-dimensional structures of the P2X3 receptors revealed
cation ions (Mg, Na, Ca), and ethylene glycol molecules cor-
responding to these predictions (PDB IDs: 5YVE, 5SVS, 5SVT,
5SVJ, 5SVR, 5SVQ, 5SVP, 5SVM, 5SVL, 6AH4, and 6AH5). We
would like to emphasize that the training set does not contain
structures similar to the P2X3 receptor. Indeed, the maximal
sequence identity is 0.32 for human heparanase (PDB ID: 5L9Z)
and the maximal structure similarity is 0.6 for tyrosine car-
boxypeptidase (PDB ID: 6J4P). Thus, this case demonstrates

predictive power of BiteNet, rather than detection of memor-
ized binding sites.

Epidermal growth factor receptor (EGFR). EGFR is a transmem-
brane protein from the tyrosine kinase family. Over-expression of
EGFR is associated with various types of tumors. Although there
are EGFR inhibitors targeting the orthosteric binding site of the
kinase domain, proteins found in cancer cells often have amino
acid substitutions making it insensitive to such inhibitors. There
are also mutant-selective irreversible inhibitors that covalently
bind to the Cys797 amino acid residue, however, some mutant
type receptors possess different amino acid residue at 797 posi-
tion as well34. Recently, three-dimensional structure of L858R/
T790M EGFR kinase domain variant bound to the mutant-
selective allosteric inhibitor EAI001 was discovered (PDB ID:
5D41)35. It was shown, that EAI001 binds to only one monomer,
leading to incomplete inhibition, but decreasing cell autopho-
sphorylation. Accordingly, the three-dimensional structure is
asymmetric dimer with one monomer bound to both orthosteric
and allosteric ligands (the ATP-analog adenylyl-imidodipho-
sphate (AMP-PNP) and EAI001, respectively), while the other
monomer bound to AMP-PNP only. BiteNet successfully iden-
tified both orthosteric and allosteric binding sites in one mono-
mer (chain A) and only former in the other monomer (chain B).
In contrast to the P2X3 case study, the training set does contain
two EGFR kinase domain structures (PDB IDs: 5UG9, 5GNK) as
well as three other proteins with high sequence identity and

Fig. 1 Schematic representation of the BiteNet workflow. a The input three-dimensional structure of a protein is represented with voxel grid, where

channels correspond to the atomic densities. b The voxel grid is split into fixed-size cubic grids to be fed a neural network. c Each cubic grid is processed

with the 3D convolutional neural network to predict binding sites in fixed-size cells. Cells in cubic grids are colored according to the probability score

confidence, from blue to red. d Predictions obtained for each cubic grid are then processed to output center of the binding site (red sphere), its probability

score, and amino acid residues within 6Å of the predicted center (blue sticks). Co-crystallized ligand is shown with gray sticks.
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structure similarity: DDX25 RNA helicase (PDB ID: 2RB4),
kinase domain of human HER2 (PDB ID: 3PP0) and HER3
pseudokinase domain (PDB ID: 4OTW) with sequence similarity
of 0.722, 0.762, and 0.596 and structure similarity 0.833, 0.876,
and 0.944, respectively. Nonetheless, all these structures have
ligands bound to the binding sites corresponding to the EGFR
orthosteric binding site, but not to the allosteric binding site.
Therefore, this example shows the predictive power of BiteNet to
detect conformation-specific binding sites.

Although this and previous examples clearly demonstrate
BiteNet’s capability to detect binding sites in holo conformations,
on practice, such conformations can be unknown, especially, when
one wants to discover novel binding sites. To evaluate BiteNet’s
ability to detect binding sites starting from the unbound
conformation, we emulated unbound-to-bound conformational
transition as it follows. First, we modeled missing residues in chain
B and placed EAI001, as it is observed in chain A. Then, we
prepared molecular dynamics system containing chain B, AMP-
PNP and EAI001, embedded into the water box with ions using the
CHARMM-GUI web server36. Next, we run full atom energy
minimization of the prepared system until convergence using
Gromacs37, resulting in minimization trajectory consisting of ~900
conformations. Finally, we removed ligands, ions, and water and
applied BiteNet to each frame of the minimization trajectory along
with its 50 replicas. Figure 3c shows, that the probability score for
the allosteric binding site steadily increases, while the energy of the
system is decreasing and the root mean square deviation (RMSD)

with respect to the allosteric binding site in the starting (unbound)
conformation is increasing. Supplementary Movie 1 (Fig. 4a)
demonstrates BiteNet predictions along with the minimization
trajectory. Note, that the probability score for the orthosteric
binding site remains high during the minimization. Also note, that
we used 4Å for the non-max suppression distance threshold in
order to avoid merging of the predictions for orthosteric and
allosteric binding sites during post-processing stage of BiteNet.
Therefore, BiteNet can be applied for the large-scale spatiotemporal
trajectories in order to detect protein conformations that possess
binding sites unseen in the original structure.

G protein-coupled receptor (GPCRs). GPCRs mediate numerous
physiological processes in the body, making them important
targets for modern drug discovery. Most of FDA-approved drugs
bind to orthosteric binding sites of GPCRs. However, such drugs
may be nonselective with respect to the highly homologous
receptor subtypes. In such cases, there is need in drug design
targeting allosteric binding sites, that are less conserved than
orthosteric one38. Three-dimensional structures of GPCRs reveal
allosteric binding sites spanning extracellular, transmembrane,
and intracellular regions; identification of novel allosteric sites in
GPCRs can provide alternative options for drug discovery39. To
demonstrate the use of BiteNet in spatiotemporal identification of
GPCR binding sites we analyzed molecular dynamics trajectories
of the human adenosine A2A receptor (A2A) retrieved from the
GPCRmd repository40.

Fig. 2 BiteNet predictions for the monomer and oligomer structure of the P2X3 receptor. aMonomer structure with the orthosteric ligand and cation ion

alongside the BiteNet prediction for this structure. b Monomer structure with the allosteric ligand, cation ion and ethylene glycole alongside the BiteNet

prediction for this structure. c, d Agonist-bound and antagonist-bound structures of the P2X3 trimer, respectively. e, f BiteNet predictions for the agonist-

bound and antagonist-bound structures of the P2X3 trimer, respectively. Orthosteric and allosteric ligands are shown with red and magenta sticks,

respectively. cation ions are shown as dark green spheres and ethylene glycol molecules are shown with violet sticks. BiteNet predictions for these

molecules are shown as spheres with the corresponding color.
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Namely, we considered trajectories of A2A embedded into the
POPC lipid bilayer surrounded by water, sodium and chloride ion
molecules starting from the active-like conformation (PDB ID:
5G53) in complex with agonist NECA and with no ligand
(GPCRmd IDs: 48:10498 and 47:10488, respectively). In total
each simulation lasted for 500 ns with the time step of 4.0 fs and
interval between frames of 2.0 ns, resulting in 2500 conformations
of A2A. We consequently applied BiteNet for each frame of the
trajectory. As expected, in both simulation trajectories we
observed a cluster of predictions corresponding to the canonical
orthosteric binding site in GPCRs. The cluster is more dense and
with higher averaged score in the ligand-bound simulation
trajectory, which could be explained by lower flexibility of the
protein due to the protein–ligand interactions. Surprisingly, in
both simulation trajectories we also observed cluster of predic-
tions in the neighborhood of the end of TM1, TM7 and helix
8 starting from ~300 ns in the ligand-free simulation and from
~150 to ~200 ns and from ~320 to 370 ns in the ligand-bound
simulation. Closer look to the conformations with the highest
probability scores corresponding to this cluster revealed lipid tail
buried to the cavity formed by hydrophobic amino acid residues.
It is important to note, that although GPCRs are tightly
surrounded by lipids, BiteNet did not produced predictions all
over the region exposed to a membrane, as it was explicitly
trained on druggable binding sites. To investigate if the lipid tail
binds to the cavity, for each frame f we calculated its mobility in

terms of RMSD between the conformation of the lipid tail in this
frame and the conformation of the lipid tail averaged over [f
− 100, f + 100] frames. As one can see from Fig. 5c, d, the
calculated RMSD is lower for the frames with high probability
scores corresponding to the predicted binding site. Supplemen-
tary Movies 2 and 3 (Fig. 4b, c) demonstrates BiteNet predictions
and binding of the POPC molecule during these simulations. To
the best of our knowledge there is no available structures for any
GPCR with ligand bound to this region. When applied BiteNet to
molecular dynamics trajectories obtained for other receptors from
GPCRmd, we also observed similar cluster in the muscarinic M2
receptor, again, starting from active-like conformation. Thus, the
predicted region may be worth paying attention to, as it may
correspond to the novel allosteric binding site in GPCRs.

To summarize, we showed applicability of BiteNet for binding
site detection for three different pharmacological targets and
challenging binding sites observed in soluble as well as in
transmembrane protein domains. BiteNet was capable to detect
conformation-specific and oligomer-specific allosteric binding
sites and can be applied for large-scale spatiotemporal analysis of
protein structures. Using the example of A2A we demonstrated
how BiteNet can be used on practice to investigate novel binding
sites. We also would like to note, that used three-dimensional
structures were not exposed to BiteNet during the training
process. In the next section, we demonstrate computational
efficiency of BiteNet in terms of accuracy and speed by

Fig. 3 BiteNet predictions for the energy minimization trajectory of the assymetric dimer structure of the EGFR kinase domain. a Assymetric dimer

structure of the EGFR kinase domain. Orthosteric and allosteric ligands are shown with yellow and magenta sticks, respectively, Mg ion is shown as green

sphere. b BiteNet predictions for the assymetric dimer, the predicted centers for the ligands are shown as spheres with the corresponding color. c BiteNet

predictions obtained for the energy minimization trajectory. The normalized energy is shown with blue dash-dotted line, the RMSD with respect to the

unbound conformation of the alloteric binding site is shown with violet dotted line, BiteNet probability score for the orthosteric and allosteric binding sites

are shown with dashed orange and magenta solid lines, respectively. The normalized energy of 1 and 0 corresponds to −7.76969 × 105 kJ/mol and

−8.80655 × 105 kJ/mol, respectively. d The starting and the final conformations of the minimization trajectory along with BiteNet predictions.
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comparing it against the existing computational methods on
binding site prediction benchmarks.

Computational efficiency of BiteNet. To compare BiteNet with
the other approaches we evaluated its performance on the
HOLO4K and COACH420 benchmarks (see “Methods” section).
As the performance metric we used the average precision (AP), as
we consider this metric the most suitable for the binding site pre-
diction problem (see “Discussion” section). We calculated AP for
All and TopN predictions, where N is the number of the true
binding sites present in a protein structure. As one can see from
Fig. 6a BiteNet significantly outperforms (p-value ≤ 1.2e−6) classical
binding site prediction methods, such as fpocket23, SiteHound21,
MetaPocket24, as well as the state-of-the-art machine learning
methods, such as DeepSite30 and P2Rank28 (Supplementary
Tables 3–12 lists more detailed comparison including the perfor-
mance on the entire benchmarks, as well as the precision, recall,
true positive, false positive, and false negative metrics).

BiteNet is also computationally efficient, Fig. 6b shows elapsed
time spent by BiteNet along with fpocket and P2Rank, which are

one of the fastest methods, with respect to the number of the
processed protein conformations. BiteNet, that runs on a single
GPU (GeForce GTX 1080 Ti), outperforms P2Rank that runs on
several CPUs (Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz). On
average, BiteNet takes approximately 0.1 seconds to process single
protein conformation. Further optimization of CPU–GPU inter-
connection and multiple GPUs implementation of BiteNet will
result in even faster performance.

We observed that BiteNet’s performance is 5% higher, when the
true positive prediction of a binding site is defined as in the training,
as compared to the P2Rank’s criterion. The main reason for this is
more strict ligand filtering implemented in the training aiming to
discard not relevant small molecules. For example, in the HOLO4K
benchmark there are 29 structures corresponding to the Aspartic
peptidase A1 protein family, that have the only active site with a
peptide-like molecule bound to it. However, there are also small
sugars (mannoses or arabinoses) that surround protein structures
yielding additional binding sites according to the P2Rank’s criterion
(see Supplementary Fig. 2). Therefore the total number of binding
sites is 29 for the BiteNet’s criterion and 38 for the P2Rank’s
criterion. As a result, BiteNet yields zero false negative predictions
in the former case, and nine in the latter case, hence, the drop in the
AP metric from 0.99 to 0.75.

To investigate BiteNet’s predictive power in more detail we
considered its performance on the most represented protein
families comprising the HOLO4K benchmark retrieved from the
InterPro database41. More precisely, we assigned the InterPro
family identifier to each protein in the HOLO4K benchmark and
considered protein families counting at least 20 protein structures
and containing at least one relevant binding site according to the
BiteNet’s criterion. Figure 7 shows the AP metric calculated for
each protein family for BiteNet, as well as the ratio of structures
from this family presented in the training set. BiteNet outper-
forms the other methods on 17 out of 27 protein families, for two
protein families BiteNet is on par with P2Rank showing the
perfect performance, and for the rest eight protein families there
is a method with better performance than BiteNet (see
Supplementary Fig. 3). Note also that none of the protein
families are over-represented in the training set (the median ratio
is 0.15%). Figure 8 demonstrates common types of false positive
and false negative predictions on example of Glycosyl transferase
protein family (IPR000811). The most common false positive
predictions correspond to the ligand-free region with low
probability score (≤0.15) (see Fig. 8a). Interestingly, another type
of false positive predictions correspond to the region with absent
ligand in one structures, but present in the others (see Fig. 8c).
Given higher probability scores (≥0.20) and capability to bind a
ligand to the predicted binding site in some protein structures, it
is not clear whether these predictions should be considered as
false positive. At the same time, there are structures with the
bound ligand, but with no binding site predictions, corresponding
to the most common type of the false negative predictions (see
Fig. 8b). Finally, we observed that some false negative predictions
correspond to ligands in the proximity of the catalytic binding
site predicted with high probability score (≥0.75) for the PLP
molecule (pyridoxal-5′-phosphate) (see Fig. 8d). Thus, such false
negative predictions might be an artifact of the nonmax-
suppression procedure, when only single prediction with the
highest probability score is kept within the 8Å.

Discussion
In this study we introduced BiteNet, a deep learning approach for
spatiotemporal identification of binding sites. BiteNet takes
advantages of the computer vision methods for object detection,
by representing three-dimensional structure of a protein as a 3D

Fig. 4 Video frames of energy minimization and molecular dynamic

trajectories analyzed with BiteNet. a BiteNet applied to the minimization

trajectory of the EGFR kinase domain starting from the unbound state

(Supplementary Movie 1). Predictions corresponding to the orthosteric and

allosteric sites are shown as yellow and magenta spheres, respectively.

Frames 1 and 894 are shown. b, c BiteNet applied to the ligand-free (b) and

ligand-bound (c) A2A molecular dynamics trajectory (Supplementary

Movies 2 and 3, respectively). BiteNet predictions for the orthosteric and

hypothethical binding sites are colored with yellow and magenta,

respectively. Lipid molecule, that occupies the identified binding site, is

shown with green sticks. Frames 1489 and 2055 are shown for the ligand-

free simulation, and frames 835 and 1806 are shown for the ligand-bound

simulation.
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image with channels corresponding to the atomic densities.
BiteNet goes beyond classical problem of binding site prediction
in holo protein structures, exploring protein dynamics and flex-
ibility by means of large-scale analysis of conformational

ensembles. The detected conformations with observed binding
site of interest, then can be used for structure-based drug design
approaches, such as molecular docking and virtual ligand
screening, as well as structure-based de novo drug design.

Fig. 5 BiteNet predictions for molecular dynamics trajectories of the adenosine A2A receptor. a, b Starting ligand-free and agonist-bound conformations

of A2A, respectively. Orange point clouds corresponds to the BiteNet predictions of the canonical orthosteric binding site in A2A, while magenta point

cloud corresponds to the BiteNet predictions of the hypothetical binding site, observed during the simulation. c, d BiteNet probability scores for the

orthosteric binding site (dashed orange line), allosteric binding site (magenta solid line), and RMSD with respect to the window-based mean lipid tail

conformation (dotted violet line), computed for the molecular dynamics trajectories. e, f A2A conformations corresponding to the highest BiteNet

probability scores for the hypothetical binding site. Lipid molecule, that occupies the hypothetical binding site, is shown with green sticks.

Fig. 6 Predictive power and computational efficiency of BiteNet. a Performance of the binding site prediction methods on the COACH420 and HOLO4K

benchmarks. Violet and orange bars with diagonal hatching correspond to the average precision calculated for top N predictions for the COACH420 and

HOLO4K benchmarks, respectively, where N is the number of true binding sites in a protein. Similarly, cyan and blue back hatched bars correspond to the

average precision calculated for all predictions for the COACH420 and HOLO4K benchmarks, respectively. Pale bars correspond to the BiteNet

performance, when the true positive binding site is defined as in the training. Black lines correspond to the BiteNet performance on the whole benchmarks.

b Elapsed time for fpocket (dotted violet line), P2Rank (dashed orange, magenta, and green lines), and BiteNet (solid blue line) to analyze 1, 10, 1000, and

10,000 conformations of a protein with ~2000 atoms. The computed elapsed time is the average of ten independent runs, individual data points are shown

with gray circles.
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We believe superior performance of BiteNet with respect to the
other machine learning methods for binding site prediction was
achieved due to careful preparation of the training set and
training process; below we address several important issues
related to these procedures.

Curated and well-balanced training set is of crucial importance
for derivation of machine learning models and its applicability
domain. Experimentally determined protein structures often
contain detergent and buffer molecules, that reveal electron
density. This should be considered carefully and not mixed up
with the true binding sites. To avoid potential bias related to this
problem we filtered out typical detergent and buffer molecules
(see Supplementary Table 1). Note, however, this procedure likely
resulted in removing both false and true positives binding sites.
For example, we discarded lipid molecules surrounding mem-
brane proteins, including functional lipid molecules, such as
cholesterol. Additionally, training set inevitably contains false
negative binding sites, because protein structures may also con-
tain empty binding sites. Another source for false positive binding
sites come from symmetrical oligomer structures, as for example
the P2X3 trimer. Indeed, the asymmetric unit does contain the
ligand, however the binding site is formed not only by the
asymmetric unit, but also by symmetry mates, which are usually
omitted in the analysis. We also observed structures with missing
atoms and residues in the binding sites; we believe such structures
should be either properly refined or discarded from the training
set. In addition, the definition of the true positive prediction and

binding site itself may vary. Binding site is typically defined with
respect to the cutoff distance between the protein and ligand
atoms (4.0Å in this study), center of the binding site can be
defined as the center of mass of the ligand or the binding site
residues (in this study), and the true positive prediction can be
defined with respect to the cutoff distance between the ligand or
center of the binding site (4.0Å in this study). We choose the
latter definition of the true positive prediction because it is
invariant with respect to the type of the ligand and its
binding pose.

Training-validation split is another important issue, that affects
performance of the derived model. First of all structural similarity
should be taken into account, as it is known that proteins with
low sequence similarity may still share highly similar protein fold.
We observed that the largest cluster contains 4044 protein chains
of similar structures. Splitting this cluster into the train and
validation sets would likely result in the bias and overfit with
respect to the corresponding protein fold. To circumvent this
issue we carefully distributed protein structures, such that there is
no highly similar structures in the training and validation sets in
terms of the TM-score structural similarity42.

Data augmentation techniques can be also helpful to derive
more robust predictive models. For protein binding site predic-
tion problem, computational methods to generate conformational
ensembles can be used in order to represent binding site with
multiple orientations or even small perturbations. In this study,
due to computational limitations, we used implicit data

Fig. 7 BiteNet performance on the most representative protein families in the HOLO4K benchmark. Average precision calculated for protein families

with at least 20 protein structures in the HOLO4K benchmark is shown with diagonal hatched blue bars. Ratio of structures from each protein family

presented in the training set is shown with back diagonal hatched orange bars.
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augmentation and provided random orientation of proteins to the
neural network each epoch.

Hyperparameters, such as neural network architecture, type of
the activation functions, the learning rate, and many others,
influences the model performance. Thus, fine-tuning is needed in
order to find optimal set of the hyperparameters. We trained
several models and found the following hyperparameters to be
optimal: 64 voxels for the cubic grid size, 1.0Å for the voxel size,
4.0Å for the density cutoff, 48 for the stride parameter, 16 for the
minibatch size, 1e−5 and 10.0 for the γ and λ parameters,
respectively (see Supplementary Table 2 for evaluation of models
corresponding to different parameters). Among these parameters,

the voxel size has dramatic influence on the computational speed,
it takes ~2 times more to train and apply the model with the
voxel size of 0.8Å, as compared to the voxel size of 1.0Å. On the
other hand, we observed model corresponding to the voxel size of
2.0Å to be faster, though less accurate. Although we achieved
satisfied performance of the resulting model (the average preci-
sion was improved from 0.4 to 0.53), our parameter screen is not
meticulous. The auto-ml approaches would be useful to find
optimal model through extensive search of neural network
architecture and parameters43,44.

Note, that the obtained model is not rotation-translation
invariant by construction; it could be easily seen from the dif-
ferent binding site scores assigned to identical subunits of oli-
gomer (see Supplementary Fig. 4). To make sure this does not
noticeably affect BiteNet’s performance, we re-evaluate the
average precision on the augmented validation set and test
benchmarks, that contains additional 50 replicas of each protein
obtained with rotation by π/3, 2π/3, π, 4π/3, and 5π/3 angles
about ten different axes corresponding to the centroids of the
icosahedron facets45. Indeed, we observed that the average pre-
cision either did not change or slightly increased (see Supple-
mentary Tables 3–12). This is because for some replicas BiteNet
produced additional binding site predictions with very low scores.
Next, we analyzed if using of additional rotations affect internal
ranking of true binding sites with respect to the probability score
for each single structure in the HOLO4K benchmark. We
observed that for most of the protein structures (2676 out of
3203) the ranking of the true positive predictions did not change,
for 333 protein structures the ranking was improved, and for 194
protein structures the ranking was worsened. Thus, it might be
useful to apply BiteNet for different orientations of the structure
and average the obtained results.

As the performance metric we used the average precision (AP),
that is the area below precision-recall curve:

AP ¼

Z 1

0

pðrÞdr;

where p is precision (Eq. 4), and r is recall (Eq. 5). The AP metric
is one of the most indicative metric for the object detection
problems in computer vision used by different methods and
benchmarks46–50. Note that p or r metrics itself are not indicative,
because precision and recall tends to be higher with smaller and
larger number of predicted binding sites, respectively. The AP
metric, in turn, is independent from the number of predicted
binding sites and strongly depends on the ranking of the pre-
dictions, thus, it is suitable for comparison of methods with dif-
ferent average number of predicted binding sites and score
ranges. We would also like to note that other conventional
metrics, like specificity or Matthews correlation coefficient
(MCC), are not suitable for comparison due to the lack of strict
definition of a true negative (TN) prediction. Indeed, there are
literally infinite number of points around the protein structure
that can be considered as negative predictions of the binding site
centers. Furthermore, as various methods operates with binding
sites differently, e.g., voxel centers (BiteNet), surface points
(Fpocket and P2Rank), low energy point clusters (SiteHound), it
is difficult to rigorously define true negative prediction, that
would be suitable for general comparison.

In this study we introduced BiteNet, a deep learning approach
for spatiotemporal identification of binding sites. BiteNet takes
advantages of the computer vision methods for object detection,
by representing three-dimensional structure of a protein as a 3D
image with channels corresponding to the atomic densities.
BiteNet goes beyond classical problem of binding site prediction
in holo protein structures, exploring protein dynamics and

Fig. 8 Examples of BiteNet prediction errors on the Glycosil transferase

protein family (IPR000811). a Low scored false positive predictions, for

which there are no bound ligands. b False negative predictions, that is

absence of predictions in the proximity of the bound ligand. c Similar

predictions may correspond to both the true positive and false positive

predictions depending on the presence (PDB ID: 3GPB) or absence (PDB

ID: 1FU7) of the bound ligand. d Catalytic site with two ligands is predicted

either as two (PDB ID: 1LWN) or single (PDB ID: 5GPB) binding sites,

resulting in false negative predictions. BiteNet predictions are depicted with

spheres colored from white to red with respect to the probability score, and

ligands are depicted with magenta, yellow and purple sticks.
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flexibility by means of large-scale analysis of conformational
ensembles. It is able to detect allosteric binding sites for both
soluble and transmembrane protein domains and outperforms
state-of-the-art methods both in terms of accuracy and speed.
BiteNet takes approximately 0.1 seconds to analyze single con-
formation and 1.5 minutes to analyze molecular dynamics tra-
jectory with 1000 frames for protein with ~2000 atoms.

Methods
Training dataset. To compose the training set we retrieved atomic structures of
protein-ligand complexes with resolution better than 3.0Å, that contain less than
four protein chains, and the sequence identity threshold of 90% from protein data
bank (PDB)51. Then we refined each protein structure by replacing nonstandard
amino acid residues with the standard ones, modeling missing residues and
short loops (less than ten amino acid residues) using the ICM-Pro software
(molsoft.com). Note, that we did not model N-terminus and C-terminus, as well as
long missing loops of more than ten amino acid residues. Then we discarded
proteins, if refinement affects three or more atoms of its binding sites, because such
conformational changes could be incompatible with the ligand binding pose. We
also discarded water molecules, ions, protein chains with length less than 50 amino
acid residues, and considered only nondetergent molecules (see Supplementary
Table 1) with more than 14 heavy atoms as the ligands. We further disregarded
protein complexes with less than 20 protein heavy atoms in the binding site, that is
protein atoms within 4Å distance from the ligand. Finally, we manually filtered out
“long” proteins, which length across at least one of the principal axis was more than
250Å (see Supplementary Fig. 5). This procedure yielded the final set of 5946
atomic structures of protein–ligand complexes comprising 11,301 polypeptide
chains and 11,949 binding sites.

We considered each protein of a protein complex as a voxel grid, with voxel size
of 1.0Å with no spacing between the voxels. We represented each voxel by 11
channels corresponding to the atomic density function of a certain atom type,
similarly to52:

ρðrÞ ¼
e�r2=2; if r ≤ rcutoff

0; otherwise

(

; ð1Þ

where rcutoff is the distance threshold of 4Å.
For rigorous validation of the prediction model it is important to carefully split

the training and the validation datasets. Given that proteins with low sequence
similarity may still have high structural similarity, the standard random split would
likely lead to the biased training and validation sets. To reduce possible bias, we
calculated structural similarity for each pair of protein chains in the dataset using
the TMalign software42, resulting in 11,301 × 11,301 structural similarity matrix
(see Supplementary Fig. 6). Then we grouped protein chains using the hierarchical
clustering algorithm implemented in sklearn53,54, such that structural similarity of
any two protein chains from different clusters is less than 0.5. Finally, we split the
dataset in a way that the training and the validation sets do not share protein
chains from the same clusters, comprising 9844 and 1457 protein chains,
respectively.

Benchmarks. The HOLO4K benchmark is a large dataset of holo protein struc-
tures used for evaluation of binding site prediction methods55; it counts 4542
proteins, most of which are multichain complexes. The original COACH bench-
mark consists of 501 single chain proteins56; in this study, we used the subset of
420 proteins on which several state-of-the-art binding site prediction methods were
compared recently28.

We compared BiteNet with the following approaches for the binding site
detection: fpocket, a geometry-based method23; SiteHound, that uses probe
molecules to find low energy clusters corresponding to the binding sites21;
MetaPocket, a consensus approach that combines predictions of other methods24;
DeepSite, a deep learning approach based on the voxelized representation of
protein structures30; and P2Rank, a classical machine learning approach based on
the feature vectors calculated from the protein surface28.

For fair comparison we considered only proteins not presented in the method’s
train sets, and for which all methods successfully predict true binding sites
according to the P2Rank criterion28, resulting in the 239 and 1682 protein subsets
from COACH420 and HOLO4K, respectively. Also to compute performances of
the methods we used both our and P2Rank’s definition of the binding site. More
precisely, the P2Rank’s definition filters small molecules with less than 4 atoms, as
well as HOH, DOD, WAT, NAG, MAN, UNK, GLC, ADA, MPD, GOL, SO4, and
PO4 molecules. The ligand must be within 4Å of a protein, and the distance from
the ligand center to protein must be at least 5.5Å. The average number of ligand
binding sites per protein structure for both criteria for the COACH420 and
HOLO4K benchmarks, as well as the average number of predictions of each
method are listed in Supplementary Table 13. In addition performances on the
entire datasets are provided in Supplementary Tables 5, 6.

Neural network architecture. Given Nx × Ny × Nz × Nc voxel grid representation
of a protein, we first divided it into the cubic grids of the fixed shape of
64 × 64 × 64 voxels with stride of 48 voxels, in order to get constant size input for
the neural network. We considered cubic grids with the average atom density less
than 1e−4 as empty cubic grids, and discarded it from the training and validation
sets. Following the Yolo approach for the object detection problem in images50, we
constructed neural network that converts 64 × 64 × 64 cubic grid into 8 × 8 × 8
cubic cells of size 8 × 8 × 8 voxels each, and aims to identify target cells, that
contain centers of the binding sites, along with the center’s coordinates. Thus, the
output of the prediction model is 8 × 8 × 8 × 4 tensor, where the first three
dimensions are the cell coordinates with respect to the cubic grid (icell, jcell, kcell),
and the four scalars of the fourth dimension are the probability score ŝ, that the
corresponding cell contains center of a binding site, and the coordinates of this
center with respect to the cell x̂, ŷ, ẑ. The core of the neural network comprises ten

3D convolutional layers: Conv3D32 ) Conv3D
pool
32 ) Conv3D32 ) Conv3D32 )

Conv3D
pool
32 ) Conv3D64 ) Conv3D64 ) Conv3D

pool
64 ) Conv3D128 )

Conv3D4 , where the subscript number denotes the number of filters. We used
kernels of size (3, 3, 3) for each layer, stride of 2 for the pooling layers, and the
batch normalization and the rectified linear unit (ReLu) activation function for all
layers, except for the last one. Finally, we use the sigmoid activation function to
obtain probability score ŝ in the range of (0, 1) and relative coordinates x̂, ŷ, ẑ of the
predicted center of the binding site with respect to the cell. The Cartesian coor-
dinates are then calculated according to (Eq. 2):

X̂ ¼ cxsize � v
x
size � ðicell þ x̂Þ þ Ox

Ŷ ¼ c
y
size � v

y
size � ðjcell þ ŷÞ þ Oy

Ẑ ¼ czsize � v
z
size � ðkcell þ ẑÞ þ Oz

; ð2Þ

where csize and vsize corresponds to the size of a cell and voxel, respectively, and Ox,
Oy,Oz are the Cartesian coordinates of the origin of the cubic grid.

We used custom loss function for training, that contains three terms:

Loss ¼
P

Ncells

i¼1

ðsi � ŝiÞ
2 þ λ

P

Ncells

i¼1

si � ðxi � x̂iÞ
2 þ ðyi � ŷiÞ

2 þ ðzi � ẑiÞ
2� �

þ γL2 ;

ð3Þ

where Ncells is the number of cells in the single cubic grid, si and ŝi are the true (0 or
1) and predicted probability scores of the cell, xi, yi, zi and x̂i; ŷi; ẑi are the true and
predicted coordinates for ith cell, respectively, and L2 correspond to the
regularization term. Therefore, the first and the second terms aim to penalize
incorrect prediction of the probability score and the center of the binding site,
respectively. Note, that we multiply the second term by the true probability score (0
or 1) to take into account only relevant predictions. The third term is the L2
regularization term for the neural network parameters. The coefficients λ = 5 and
γ = 1e−5 are the weights of the penalty terms.

We trained the network in Tensorflow v1.1457 for 400 epochs using the Adam
optimizer with the default parameters, minibatch size of 16 cubic grids, and the
learning rate of 1e−3 gradually decreasing to 1e−5 during the training. We would
like to note, that presented architecture is not invariant to rotations of a protein.
Data augmentation, i.e., considering different orientations of a protein within a
single epoch, may circumvent this problem to some extent. Because of GPU
memory limitations, in this study, we used implicit data augmentation by
considering random orientation of a protein each epoch.

To obtain the final predictions we applied the post-processing procedure, as it
follows. First, we discarded all the predictions with the probability score ŝ < sthreshold .
The remaining predictions are then processed by means of the non-maximum
suppression. More precisely, we select the best prediction in terms of the probability
score, as the seed of a cluster, and put all the predictions with the centers of the
binding site closer than dthreshold = 8Å to the center of the best prediction. Then we
select the second best prediction, as the seed of the next cluster, and repeat the above
procedure until all the predictions are clustered. Finally, we keep only Ntop seeds in
terms of the probability scores, as the final predictions. For the training we used
sthreshold = 0.1 and Ntop= 5, for benchmarking sthreshold= 0.01 (in order to calculate
AP for all predictions), and for the case study sthreshold = 0.1 and all predictions. To
evaluate the performance of the prediction model we define the true positive (TP)
prediction of the binding site, as the top-scored correct prediction, that is prediction
with the probability score ŝ≥ sthreshold and the predicted center of the binding site
within dthreshold from the true center of the binding site. The rest of the predictions
are considered as false positives (FP). Given this, we calculate precision and recall
metrics according to:

Precision ¼
NTP

NTP þ NFP

; ð4Þ

Recall ¼
NTP

NTP þ NFN

; ð5Þ

where NFN is the number of false negative predictions, that is the number of binding
sites with no correct prediction. As the main metric we calculate the average
precision metric AP, which is the area under precision recall curve.

Note, that we define correct prediction with respect to the center of the binding
site, rather than binding pose of a ligand. We believe this is more rigorous metric,
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because it does not depend neither on the binding pose of a ligand, nor on the
ligand itself. However, for fair comparison with the existing methods, we also
computed the metrics, where the prediction is considered to be true positive
prediction, if the minimal distance to the ligand is less than dthreshold = 4Å.

Clusterization. Given conformational ensemble of a protein, as for example,
molecular dynamics trajectory, we firstly applied BiteNet to each conformation.
Then we grouped the obtained predictions using clustering algorithms. In this
study, we used three different clustering approaches implemented in the sklearn
python library54 : the mean shift clustering algorithm (MSCA)58, the density-based
clustering algorithm (DBSCAN)59,60, and the agglomerative hierachical clustering
algorithm53. While the first two approaches are mainly applied for the set of points
in Euclidean space, the latter approach can be applied also for set of amino acid
residues forming the predicted binding site. Finally, we assigned two scores for each
cluster. The first score is the sum of maximal probability score of a cluster in each
frame averaged over the total number of frames. For the second score, the mean
sum of probabilities scores (larger than scluster_score_threshold_step = 0.1) of a cluster is
computed for each frame; these sums are then averaged over the total number of
the corresponding frames. We implement several clustering approaches, because it
is known that clustering results may strongly vary depending on clustering algo-
rithm and different parameters for them, also affecting the cluster scores.

Statistics and reproducibility. To support significant outperforming of BiteNet
over the other methods, we performed statistical Student’s test, as it follows. We
considered protein structures from the COACH420 and HOLO4K benchmarks
that are not in the BiteNet’s training set and have at least one binding site
according to the P2Rank filtering criterion. Then we split these protein structures
into 31 independent subsets, and evaluated the performance of each method for
each subset. Finally, we considered the null hypothesis that there is no significant
difference in performance metrics between BiteNet and other methods. The highest
calculated p-value for the AP metric is 1.2e−6, that allows us to reject the null
hypothesis (see Supplementary Table 14 for more details). The BiteNet model
required to reproduce the results of this study are available at https://github.com/i-
Molecule/bitenet and https://doi.org/10.5281/zenodo.404366461. In addition a web-
server implementation of BiteNet is available at https://sites.skoltech.ru/imolecule/
tools/bitenet.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The dataset used for training of BiteNet is available at https://doi.org/10.5281/

zenodo.404366461 BiteNet is available at https://github.com/i-Molecule/bitenet.

Code availability
BiteNet source code is available at https://github.com/i-Molecule/bitenet and https://doi.

org/10.5281/zenodo.404366461.

Received: 13 March 2020; Accepted: 5 October 2020;

References
1. Hopkins, A. L. & Groom, C. R. The druggable genome. Nat. Rev. Drug Discov.

1, 727 (2002).
2. Christopoulos, A. et al. International union of basic and clinical pharmacology.

xc. multisite pharmacology: recommendations for the nomenclature of
receptor allosterism and allosteric ligands. Pharmacol. Rev. 66, 918 (2014).

3. Changeux, J.-P. The concept of allosteric modulation: an overview. Drug
Discov. Today 10, e223 (2013).

4. Wagner, J. R. et al. Emerging computational methods for the rational
discovery of allosteric drugs. Chem. Rev. 116, 6370 (2016).

5. Lu, S., Ji, M., Ni, D. & Zhang, J. Discovery of hidden allosteric sites
as novel targets for allosteric drug design. Drug Discov. Today 23, 359
(2018).

6. Laskowski, R. A., Gerick, F. & Thornton, J. M. The structural basis of allosteric
regulation in proteins. FEBS Lett. 583, 1692 (2009).

7. Changeux, J.-P. & Christopoulos, A. Allosteric modulation as a unifying
mechanism for receptor function and regulation. Cell 166, 1084 (2016).

8. Di Pietro, O., Juarez-Jimenez, J., Munoz-Torrero, D., Laughton, C. A. &
Luque, F. J. Unveiling a novel transient druggable pocket in bace-1 through
molecular simulations: conformational analysis and binding mode of multisite
inhibitors. PLoS ONE 12, e0177683 (2017).

9. Sun, Z., Wakefield, A. E., Kolossvary, I., Beglov, D. & Vajda, S. Structure-based
analysis of cryptic-site opening. Structure 28, 223 (2020).

10. Ferré, S. et al. G protein-coupled receptor oligomerization revisited: functional
and pharmacological perspectives. Pharmacol. Rev. 66, 413 (2014).

11. Wang, J. et al. Druggable negative allosteric site of p2x3 receptors. Proc. Natl
Acad. Sci. 115, 4939 (2018).

12. Hardy, J. A. & Wells, J. A. Searching for new allosteric sites in enzymes. Curr.
Opin. Struct. Biol. 14, 706 (2004).

13. Ludlow, R. F., Verdonk, M. L., Saini, H. K., Tickle, I. J. & Jhoti, H. Detection of
secondary binding sites in proteins using fragment screening. Proc. Natl Acad.
Sci. 112, 15910 (2015).

14. Lawson, A. D. Antibody-enabled small-molecule drug discovery. Nat. Rev.
Drug Discov. 11, 519 (2012).

15. Doyle, S. K., Pop, M. S., Evans, H. L. & Koehler, A. N. Advances in discovering
small molecules to probe protein function in a systems context. Curr. Opin.
Chem. Biol. 30, 28 (2016).

16. Chalmers, M. J. et al. Probing protein ligand interactions by automated
hydrogen/deuterium exchange mass spectrometry. Anal. Chem. 78, 1005
(2006).

17. Gelis, L., Wolf, S., Hatt, H., Neuhaus, E. M. & Gerwert, K. Prediction of a
ligand-binding niche within a human olfactory receptor by combining site-
directed mutagenesis with dynamic homology modeling. Angew. Chem. Int.
Ed. 51, 1274 (2012).

18. Hendlich, M., Rippmann, F. & Barnickel, G. Ligsite: automatic and efficient
detection of potential small molecule-binding sites in proteins. J. Mol. Graph.
Model. 15, 359 (1997).

19. Ye, K., AntonFeenstra, K., Heringa, J., IJzerman, A. P. & Marchiori, E. Multi-
relief: a method to recognize specificity determining residues from multiple
sequence alignments using a machine-learning approach for feature
weighting. Bioinformatics 24, 18 (2007).

20. Weisel, M., Proschak, E. & Schneider, G. Pocketpicker: analysis of ligand
binding-sites with shape descriptors. Chem. Cent. J. 1, 7 (2007).

21. Hernandez, M., Ghersi, D. & Sanchez, R. Sitehound-web: a server for ligand
binding site identification in protein structures. Nucleic Acids Res. 37, W413
(2009).

22. Capra, J. A., Laskowski, R. A., Thornton, J. M., Singh, M. & Funkhouser, T. A.
Predicting protein ligand binding sites by combining evolutionary
sequence conservation and 3d structure. PLoS Comput. Biol. 5, e1000585 (2009).

23. LeGuilloux, V., Schmidtke, P. & Tuffery, P. Fpocket: an open source platform
for ligand pocket detection. BMC Bioinform. 10, 168 (2009).

24. Zhang, Z., Li, Y., Lin, B., Schroeder, M. & Huang, B. Identification of cavities
on protein surface using multiple computational approaches for drug binding
site prediction. Bioinformatics 27, 2083 (2011).

25. Xie, Z.-R., Liu, C.-K., Hsiao, F.-C., Yao, A. & Hwang, M.-J. Lise: a server using
ligand-interacting and site-enriched protein triangles for prediction of ligand-
binding sites. Nucleic Acids Res. 41, W292 (2013).

26. Yu, D.-J. et al. Designing template-free predictor for targeting protein-ligand
binding sites with classifier ensemble and spatial clustering. IEEE/ACM Trans.
Comput. Biol. Bioinform. 10, 994 (2013).

27. Chen, P., Huang, J. Z. & Gao, X. Ligandrfs: random forest ensemble to identify
ligand-binding residues from sequence information alone, BMC Bioinform.
15, S4.

28. Krivák, R. & Hoksza, D. P2rank: machine learning based tool for rapid and
accurate prediction of ligand binding sites from protein structure. J.
Cheminform. 10, 39 (2018).

29. Broomhead, N. K. & Soliman, M. E. Can we rely on computational
predictions to correctly identify ligand binding sites on novel protein
drug targets? assessment of binding site prediction methods and a
protocol for validation of predicted binding sites. Cell Biochem. Biophys. 75, 15
(2017).

30. Jiménez, J., Doerr, S., Martínez-Rosell, G., Rose, A. S. & Fabritiis, G. D.
Deepsite: protein-binding site predictor using 3d-convolutional neural
networks. Bioinformatics 33, 3036 (2017).

31. Coddou, C., Yan, Z., Obsil, T., Huidobro-Toro, J. P. & Stojilkovic, S. S.
Activation and regulation of purinergic p2x receptor channels. Pharmacol.
Rev. 63, 641 (2011).

32. Hattori, M. & Gouaux, E. Molecular mechanism of atp binding and ion
channel activation in p2x receptors. Nature 485, 207 (2012).

33. Karasawa, A. & Kawate, T. Structural basis for subtype-specific inhibition of
the p2x7 receptor. elife 5, e22153 (2016).

34. Thress, K. S. et al. Acquired egfr c797s mutation mediates resistance to
azd9291 in non-small cell lung cancer harboring egfr t790m. Nat. Med. 21,
560 (2015).

35. Jia, Y. et al. Overcoming egfr (t790m) and egfr (c797s) resistance with mutant-
selective allosteric inhibitors. Nature 534, 129 (2016).

36. Lee, J. et al. Charmm-gui input generator for namd, gromacs, amber,
openmm, and charmm/openmm simulations using the charmm36 additive
force field. J. Chem. Theory Comput. 12, 405 (2016).

37. Van Der Spoel, D. et al. Gromacs: fast, flexible, and free. J. Comput. Chem. 26,
1701 (2005).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01350-0 ARTICLE

COMMUNICATIONS BIOLOGY |           (2020) 3:618 | https://doi.org/10.1038/s42003-020-01350-0 | www.nature.com/commsbio 11

https://github.com/i-Molecule/bitenet
https://github.com/i-Molecule/bitenet
https://doi.org/10.5281/zenodo.4043664
https://sites.skoltech.ru/imolecule/tools/bitenet
https://sites.skoltech.ru/imolecule/tools/bitenet
https://doi.org/10.5281/zenodo.4043664
https://doi.org/10.5281/zenodo.4043664
https://github.com/i-Molecule/bitenet
https://github.com/i-Molecule/bitenet
https://doi.org/10.5281/zenodo.4043664
https://doi.org/10.5281/zenodo.4043664
www.nature.com/commsbio
www.nature.com/commsbio


38. Wootten, D., Christopoulos, A. & Sexton, P. M. Emerging paradigms in gpcr
allostery: implications for drug discovery. Nat. Rev. Drug Discov. 12, 630 (2013).

39. Chan, H. S., Li, Y., Dahoun, T., Vogel, H. & Yuan, S. New binding sites, new
opportunities for gpcr drug discovery. Trends Biochem. Sci. 44, 312–330 (2019).

40. Rodríguez-Espigares, I. et al. GPCRmd uncovers the dynamics of the 3D-
GPCRome. Nature Methods. 17, 777–787 (2020).

41. Mitchell, A. L. et al. Interpro in 2019: improving coverage, classification and
access to protein sequence annotations. Nucleic Acids Res. 47, D351 (2019).

42. Zhang, Y. & Skolnick, J. Tm-align: a protein structure alignment algorithm
based on the tm-score. Nucleic Acids Res. 33, 2302 (2005).

43. Zoph, B. & Le, Q. V. Neural architecture search with reinforcement learning.
arXiv preprint arXiv:1611.01578 (2016).

44. Liu, H., Simonyan, K. & Yang, Y. Darts: differentiable architecture search.
arXiv preprint arXiv:1806.09055 (2018).

45. Popov, P. & Grudinin, S. Eurecon: equidistant uniform rigid-body ensemble
constructor. J. Mol. Graph. Model. 80, 313 (2018).

46. Everingham, M., Van Gool, L., Williams, C. K., Winn, J. & Zisserman, A.
The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 88, 303
(2010).

47. Girshick, R., Donahue, J., Darrell, T. & Malik, J. Rich feature hierarchies
for accurate object detection and semantic segmentation. in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition 580–587
(2014).

48. Lin, T.-Y. et al. Microsoft coco: common objects in context. in European
Conference on Computer Vision 740–755 (Springer, New York, 2014).

49. Liu, W. et al. Ssd: single shot multibox detector, in European Conference on
Computer Vision 21–37 (Springer, New York, 2016).

50. Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You only look once: unified,
real-time object detection, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition 779–788 (2016).

51. Berman, H. M., Bourne, P. E., Westbrook, J. & Zardecki, C. Protein Structure
394–410 (CRC Press, Boca Raton, 2003).

52. Derevyanko, G., Grudinin, S., Bengio, Y. & Lamoureux, G. Deep convolutional
networks for quality assessment of protein folds. Bioinformatics 34, 4046 (2018).

53. Johnson, S. C. Hierarchical clustering schemes. Psychometrika 32, 241 (1967).
54. Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn.

Res. 12, 2825 (2011).
55. Schmidtke, P., Souaille, C., Estienne, F., Baurin, N. & Kroemer, R. T. Large-

scale comparison of four binding site detection algorithms. J. Chem. Inf.
Model. 50, 2191 (2010).

56. Roy, A., Yang, J. & Zhang, Y. Cofactor: an accurate comparative algorithm for
structure-based protein function annotation. Nucleic Acids Res. 40, W471 (2012).

57. Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous
systems. Software available on https://www.tensorflow.org/ (2015).

58. Comaniciu, D. & Meer P. Mean shift: a robust approach toward feature space
analysis, IEEE Transactions on Pattern Analysis & Machine Intelligence, 603
(2002).

59. Ester, M. et al. A density-based algorithm for discovering clusters in large
spatial databases with noise. Kdd 96, 226–231 (1996).

60. Schubert, E., Sander, J., Ester, M., Kriegel, H. P. & Xu, X. Dbscan revisited,
revisited: why and how you should (still) use dbscan. ACM Trans. Database
Syst. 42, 19 (2017).

61. Popov, P. & Kozlovskii, I. Spatiotemporal identification of druggable
bindingsites using deep learning (training dataset and software). https://doi.
org/10.5281/zenodo.4043664 (Zenodo, 2020).

Acknowledgements
We acknowledge the HPC team at CDISE (Skoltech) for support usage of the “Zhores”

supercomputer in order to train BiteNet.

Author contributions
I.K. and P.P. constructed the training, validation, and test sets, processed protein

structures, formulated the machine learning problem, developed BiteNet, conducted

numerical experiments, performed data analysis and wrote the manuscript. P.P. orga-

nized and managed the project implementation, and supervised the research.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s42003-

020-01350-0.

Correspondence and requests for materials should be addressed to P.P.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2020

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01350-0

12 COMMUNICATIONS BIOLOGY |           (2020) 3:618 | https://doi.org/10.1038/s42003-020-01350-0 | www.nature.com/commsbio

https://www.tensorflow.org/
https://doi.org/10.5281/zenodo.4043664
https://doi.org/10.5281/zenodo.4043664
https://doi.org/10.1038/s42003-020-01350-0
https://doi.org/10.1038/s42003-020-01350-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

	Spatiotemporal identification of druggable binding sites using deep learning
	Results
	BiteNet architecture
	Spatiotemporal prediction of binding sites in pharmacological targets
	ATP-gated cation channel
	Epidermal growth factor receptor (EGFR)
	G protein-coupled receptor (GPCRs)
	Computational efficiency of BiteNet

	Discussion
	Methods
	Training dataset
	Benchmarks
	Neural network architecture
	Clusterization
	Statistics and reproducibility

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information


