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We demonstrate that frequency (Kerr) comb generation in whispering-gallery-mode resonators can be

modeled by a variant of the Lugiato-Lefever equation that includes higher-order dispersion and nonlinearity.

This spatiotemporal model allows us to explore pulse formation in which a large number of modes interact

cooperatively. Pulse formation is shown to play a critical role in comb generation, and we find conditions under

which single pulses (dissipative solitons) and multiple pulses (rolls) form. We show that a broadband comb is the

spectral signature of a dissipative soliton, and we also show that these solitons can be obtained by using a weak

anomalous dispersion and subcritical pumping.
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The development of frequency combs—equidistant fre-

quency lines from a short-pulse laser—revolutionized the

measurement of frequencies [1] and has opened up a host

of potential applications in fundamental and applied physics,

including the measurement of physical constants, the detec-

tion of earthlike planets, chemical sensing, the generation,

measurement, and distribution of highly accurate time, and

the generation of low-phase-noise microwave radiation [2].

Ti:sapphire lasers were used as the original source of frequency

combs, but in the past seven years, alternative fiber laser

sources have developed [2]. Recently, Del’Haye et al. [3]

demonstrated that it is possible to use the whispering-gallery

modes in microresonators in combination with the Kerr effect

to generate an equidistant frequency comb that is also referred

to as a Kerr comb. Since many applications in both funda-

mental and applied science would benefit from the small size,

simplicity, robustness, and low power consumption of these

whispering-gallery-mode sources, a considerable worldwide

effort has gone into understanding and controlling them [4],

and there have been several efforts to develop mathematical

models of these sources [5–7].

A complete modal expansion has been derived to describe

the growth of the Kerr combs from noise [5,6]. This model

predicts a cascaded growth in which a primary comb is first

generated, which then generates a secondary comb, and later

higher-order combs. This model is in complete agreement with

experiments [5]. However, it is difficult and computationally

expensive to use this mode expansion beyond the primary

comb generation because calculation time grows as the third

power of the number of modes [6]. Moreover, it is difficult to

study pulse formation in this model, since a large number of

modes interact cooperatively.

Pulse formation plays a critical role in comb generation.

It is desirable to find a spatiotemporal model that would be

analogous to the Haus modelocking equation (a variant of the

nonlinear Schrödinger equation) that has been used with great
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success to study modelocked lasers [8]. Early research had

investigated the modulational instability in a synchronously

pumped nonlinear dispersive ring cavity, and predicted the

formation of stable temporal dissipative structures for both

the normal and the anomalous dispersion regime of the fiber

[9,10]. In recent work, Matsko et al. [11] have used a two-

time-scales approach similar to that of Haus [8], and they have

built a spatiotemporal model that successfully predicted comb

generation through modelocking and pulse formation.

In this article we show that a variant of the Lugiato-

Lefever equation (LLE) [12] in which the evolution is in

time and the conjugate (transverse) variable is the resonator’s

azimuthal angle is the appropriate spatiotemporal model for

Kerr-comb generation in whispering-gallery-mode resonators.

We demonstrate that the previously derived modal expansion

is equivalent to a variant of the LLE that includes higher-order

dispersion and nonlinearity, and the standard LLE closely

approximates the modal expansion when the bandwidth is

small compared to the carrier frequency and does not approach

an octave. We then use this model to study how multiple

pulses (rolls) and single pulses (dissipative solitons) form in

the cavity.

The LLE can be considered a variant of the nonlinear

Schrödinger equation (NLSE) that includes damping, driving,

and detuning. It has been the subject of intensive mathematical

study [13–15]. Unexpected phenomena such has convective

instabilities [16] and excitability [17] are also known to occur

in this system. The identification of the LLE as the fundamental

equation governing the field evolution in whispering-gallery-

mode resonators allows us to take advantage of this prior work,

while at the same time suggesting efficient computational

methods for studying the field evolution, including Kerr-comb

generation.

Our starting point is the modal equations that were derived

in Ref. [6]. The modal structure of the whispering-gallery-

mode resonators is well understood. It has been shown that

these resonators can sustain several families of eigenmodes

that trap light inside the cavity by total internal reflection.

We are only interested in the fundamental family of modes
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that can be characterized by their toroidal structure. Provided

that the polarization is fixed, the members of this family are

unambiguously defined by an integer wave number ℓ that

characterizes each member’s angular momentum and can be

interpreted as the total number of reflections that a photon

makes during one round trip in the cavity.

We denote the eigennumber of the pumped mode as ℓ0. If

we restrict ourselves to the spectral neighborhood of ℓ0, the

eigenfrequencies can be expanded in a Taylor series, whose

first N elements are

ωℓ = ωℓ0
+

N
∑

n=1

ζn

n!
(ℓ − ℓ0)n, (1)

where ωℓ0
is the eigenfrequency at ℓ = ℓ0, ζ1 = dω/dℓ|ℓ=ℓ0

=

�ωFSR is the free-spectral range of the resonator or the

intermodal angular frequency, and ζ2 = d2ω/dℓ2
∣

∣

ℓ=ℓ0
is the

second-order dispersion coefficient. In effect, we are making

a polynomial fit of N th order to the frequency ωℓ, which is

a discrete function of ℓ. Since there are many thousands of

frequencies and the ωℓ are smoothly varying, we may treat the

ωℓ as a continuous function of ℓ and set the ζn equal to the

Taylor expansion coefficients.

The quantity ζ2 corresponds to ζ in Refs. [5,6]. In the case of

a disk resonator with main radius a, we find ζ1 = c/n0a, where

c is the velocity of light and n0 is the index of refraction at ωℓ0
.

This intermodal angular frequency is linked to the round-trip

period of a photon through the resonator as T = 2π/ζ1.

The second-order dispersion ζ2 denotes the lowest-order

deviation from frequency equistance of the modes. When

ζ2 = 0, the eigenfrequencies are equidistant to lowest order

and are separated by ζ1. The dispersion is normal when

ζ2 < 0 and anomalous when ζ2 > 0. In fact, ζ2 is the sum

of two contributions—the geometrical dispersion (generally

normal) and the material dispersion (which can be normal or

anomalous). Explicit expressions are given in Refs. [5,6] for a

spherical resonator.

We now consider the elements of the modal expansion in a

range of ℓ values in which the expansion of Eq. (1) is valid.

The slowly varying envelopes Aℓ obey the equations [5,6]

dAℓ

dt
= −

1

2
�ωℓ Aℓ +

1

2
�ωℓ Fℓ ei(�0−ωℓ)tδ(ℓ − ℓ0)

− ig0

∑

ℓm,ℓn,ℓp

Aℓm
A

∗
ℓn
Aℓp

e[i(ωℓm −ωℓn+ωℓp −ωℓ)t]

×	
ℓmℓnℓp

ℓ δ(ℓm − ℓn + ℓp − ℓ), (2)

where δ(x) is the Kronecker δ function that equals 1 when

x = 0 and equals zero otherwise. The mode fields have been

normalized so that |Aℓ|
2 corresponds to the photon number in

the mode ℓ. The mode bandwidth �ωℓ = ωℓ/Q0 is inversely

proportional to the loaded quality factor Q0 and to the photon

lifetime τph,ℓ = 1/�ωℓ. The four-wave mixing gain is g0 =

n2ch̄ω2
ℓ0

/n2
0V0, where h̄ is Planck’s constant, n2 is the Kerr

coefficient at ℓ = ℓ0, and V0 is the effective mode volume. The

variation of the coefficient 	
ℓmℓnℓp

ℓ is due to variations in the

mode overlap and the Kerr coefficient with mode number.

The parameter F0 denotes the amplitude of the external

excitation, while �0 is the angular frequency of the pump

laser, and it is assumed to be close to ωℓ0
. Typically, resonant

pumping only occurs when |�0 − ωℓ0
| � �ωℓ0

.

When the spectrum is restricted to the neighborhood of ℓ0,

then 	
ℓmℓnℓp

ℓ ≃ 1, but when the spectrum begins to approach

an octave of bandwidth, higher-order corrections, analogous

to the higher-order terms in Eq. (1) must be kept.

At lowest order, we find

	
ℓmℓnℓp

ℓ = 1 + ηℓ(ℓ − ℓ0) + ηℓm
(ℓm − ℓ0)

+ ηℓn
(ℓn − ℓ0) + ηℓp

(ℓp − ℓ0), (3)

where ηℓ = ∂	/∂ℓ is evaluated when ℓ, ℓm, ℓn, and ℓp are

all equal to ℓ0. The coefficients ηℓm
, ηℓn

, and ηℓp
are all

analogously defined. From the symmetry of Eq. (2) under

interchange of Aℓm
and Aℓp

, it follows that ηℓm
= ηℓp

. As

is the case for ωℓ, the quantity 	
ℓmℓnℓp

ℓ varies smoothly as a

function of its arguments and may be treated as a continuous

function, so that the coefficients in Eq. (3) correspond to

the terms in a Taylor expansion. Since the mode overlap is

a maximum when ℓ = ℓm = ℓn = ℓp = ℓ0, we expect that

these first-order contributions will be dominated by variations

of the Kerr coefficient due to changes in the mode volume

and the contribution from the Raman effect. The second-order

contributions from the decrease in the mode overlap will also

become important as the bandwidth approaches an octave. A

detailed investigation of the competing nonlinear contributions

and their relative importance remains to be carried out [18].

The spatiotemporal slowly varying envelope of the total

field A(θ,t) may now be written

A(θ,t) =
∑

ℓ

Aℓ(t) exp[i(ωℓ − ωℓ0
)t − i(ℓ − ℓ0)θ ], (4)

where θ ∈ [−π,π ] is the azimuthal angle along the circumfer-

ence. From Eq. (4) it follows that

∂A

∂t
=

∑

ℓ

[

dAℓ

dt
+ i(ωℓ −ωℓ0

)Aℓ

]

e[i(ωℓ−ωℓ0
)t−i(ℓ−ℓ0)θ]. (5)

Equation (4) independently yields

in
∂nA

∂θn
=

∑

ℓ

(ℓ − ℓ0)nAℓe
[i(ωℓ−ωℓ0

)t−i(ℓ−ℓ0)θ], (6)

so that if we set �ωℓ = �ωℓ0
, the evolution equation (5) can

be rewritten as

∂A

∂t
= −

1

2
�ωℓ0

A − ig0|A|2A +
1

2
�ωℓ0

F0e
iσ t

+

N
∑

n=1

in+1 ζn

n!

∂nA

∂θn

+ g0

[

ηℓ

∂

∂θ
(|A|2A) + 2ηℓm

|A|2
∂A

∂θ
− ηℓn

A
2 ∂A∗

∂θ

]

,

(7)

where σ = �0 − ωℓ0
is the detuning between the laser and

cavity resonance frequencies. Note that while Eq. (7) could

be used to account for a frequency dependent nonlinearity, it

still neglects the frequency dependence of the absorption. It

is useful to translate the frequency of the carrier envelope to

remove the explicit time dependence of the driving term by

making the transformation A → A exp(iσ t). It is also useful
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FIG. 1. (Color online) Multiple-FSR comb with α = 0, β =

−0.0125, and F = 1.71. The intracavity pump is |ψ0|
2 = 1.2, so

that it is above threshold |ψ |2th = 1. The parameters correspond to

Fig. 10(b) in Ref. [6]. (a) Time-domain dynamics that consists of 19

smooth pulses (“roll” Turing pattern solution). (b) FFT of the roll

solution, corresponding to an order 19 multiple-FSR comb.

to transform the θ coordinate to remove the group velocity

motion by making the transformation θ → θ − ζ1t mod [2π ].

When we make these transformations, and the spectrum is

restricted to the neighborhood of ℓ = ℓ0, so that ζn, n � 3 can

be neglected and so that 	
ℓmℓnℓp

ℓ ≃ 1, then Eq. (7) becomes

∂A

∂t
= −

1

2
�ωℓ0

A − iσA +
1

2
�ωℓ0

F0

− ig0|A|2A − i
ζ2

2

∂2A

∂θ2
. (8)

This equation can be rewritten in the form of the normalized

Lugiato-Lefever equation

∂ψ

∂τ
= −(1 + iα)ψ + i|ψ |2ψ − i

β

2

∂2ψ

∂θ2
+ F, (9)

where the field envelope has been rescaled so that ψ =

(2g0/�ωℓ0
)1/2A∗ and the time has been rescaled so that τ =

�ωℓ0
t/2. The dimensionless parameters of this normalized

equation are the frequency detuning α = −2σ/�ωℓ0
, the

dispersion β = −2ζ2/�ωℓ0
, and the external pump F =

(2g0/�ωℓ0
)1/2F∗

0 . This LLE with periodic boundary condi-

tions is the exact counterpart of the modal expansion as long

as higher-order dispersion and the variation of �ωℓ and 	
ℓmℓnℓp

ℓ

in Eq. (2) can be neglected. Since the higher-order corrections

can be calculated, it is always possible to check the validity

of the LLE. As a consequence, all the conclusions that were

previously obtained using the modal expansion and confirmed

experimentally can also be obtained by solving the LLE and its

extensions when the bandwidth becomes large. These two twin

models are however useful in different and complementary

ways. On the one hand, the modal expansion must be used

to determine threshold phenomena when a small number of

modes are involved. On the other hand, the LLE is appropriate

to use when many hundreds or thousands of modes interact

since it does not refer to the individual modes. In particular,

as we will show later, it is useful in the study of Kerr combs

or pulse (solitons or Turing rolls) growth and propagation in

which a large number of modes interact cooperatively.

We now discuss the meaning and order of magnitude of the

variables and parameters that appear in the dimensionless LLE.

FIG. 2. (Color online) Temporal cavity soliton with α = 1.7, β =

−0.002, and F = 1.22. The intracavity pump is |ψ0|
2 = 0.95, so that

it is below threshold. (a) Cavity soliton formation. (b) FFT of the

soliton, corresponding to a wide-span, low-threshold Kerr frequency

comb.

The detailed analysis of Ref. [6] showed that the threshold

value for the Kerr comb is given by |A|2th = �ωℓ0
/2g0, which

exactly corresponds to |ψ |2th = 1. Hence, we would expect

ψ to be on the order of 1 in our theoretical analysis and

numerical simulations. Note that the stationary intracavity

field ψ0 before comb generation can be obtained by setting

all the derivatives to zero in Eq. (9). The dimensionless time

can be rewritten as t/2τph, where we recall that τph is the

photon lifetime, which is typically a few microseconds in

ultrahigh-Q whispering-gallery-mode resonators. Using the

external field’s phase as our reference, the amplitude F is

real and positive and F 2 is proportional to the external pump

power. The real parameter α equals the ratio of the detuning to

half the linewidth, so that we expect to be off resonance when

|α| > 1. This parameter is easily tuned in experiments. The

parameter β equals the ratio of the walkoff due to second-order

dispersion to the half-linewidth. This parameter is negative for

anomalous dispersion and positive for normal dispersion. It is

interesting to note that the LLE formalism sheds new light on

the role of dispersion on Kerr-comb formation: In Eq. (9) no

comb generation can occur when the dispersion parameter

β is null since ψ becomes independent of the azimuthal

angle θ (“flat” solutions). The case of the generalized LLE

in Eq. (7) is however less trivial to analyze in this regard.

The overall dispersion has to be a relatively small parameter

in all cases. In Refs. [5,6] for example, it was found that

β ∼ −0.01 was sufficient to generate combs. In practice, the

dispersion magnitude |β| should preferably not be too large

(∼1), as it would mean that the deviation from equidistance of

the mode frequencies would be too strong for the nonlinearity

to compensate, and the emergence of a wide-span Kerr comb

would be suppressed [19,20].

Numerical simulations were performed using the split-step

Fourier algorithm, which is commonly used in simulations

of the one-dimensional (1D) generalized NLSE. We note that

this simulation method inherently assumes periodic boundary

conditions because it is based on the fast Fourier transform

(FFT). For studies of pulses in optical fibers—in which

the pulse duration can often be many orders of magnitude

smaller than the separation between pulses—this feature is

often an annoyance that leads to boundary-induced artifacts.
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In our case, the physical boundary conditions are periodic.

The split-step Fourier algorithm is therefore a remarkably

cost-effective computational tool, enabling the simulation of

Kerr-comb dynamics with a laptop computer in a few minutes

regardless of its spectral span, as opposed to a few days with

the modal expansion for wide-span combs.

For the numerical simulation of the LLE [Eq. (9)] we have

considered a calcium fluoride resonator with a radius a =

2.5 mm. The polar eigennumber of the TE-polarized pump

mode is ℓ0 = 14 350, corresponding to a wavelength of 1560.5

nm and ωℓ0
= 2π × 192.24 THz in vacuum. The index of re-

fraction is n0 = 1.43. The resonator is critically coupled with a

loaded quality factor Q0 = 3 × 109, corresponding to a central

mode bandwidth of �ωℓ0
= ωℓ0

/Q ≃ 2π × 64 kHz. The free

spectral range is equal to �ωFSR = ζ1 = 2π × 13.36 GHz.

In Fig. 1, we present simulation results that correspond

to those that have already been obtained from the modal

expansion, namely the multiple-FSR solution. It can be seen

that the solution corresponds to the formation of “rolls” in

the time domain. We take advantage of the LLE formula-

tion to show particular solutions that would be difficult to

observe in a strictly modal study. Figure 2(a) shows the

formation of a single-peaked cavity soliton. This dissipative

localized structure is obtained after subcritical pumping. The

figure corresponds to a single pulse of width �T ≃ 500 fs,

circulating inside the cavity with a round-trip time T =

2π/�ωFSR ≃ 75 ps. In the frequency domain, this pulse

consists of several tens of modelocked whispering-gallery

modes, whose frequencies have been nonlinearly shifted so

that they are equidistant, as shown in Fig. 2(b). In order to

obtain a single soliton, it is necessary to lower the power

so that it is below threshold and to reduce the magnitude of

the anomalous dispersion so that it is closer to zero. Because

this cavity soliton is subcritical, it emerges abruptly and at

a low pump power. The solitonic Kerr combs do not grow

as the pump power increases; instead, they are destroyed. By

contrast, supercritical combs like the one shown in Fig. 1

have spectral components that grow in number and power

as the external pump power grows. However, the dissipative

cavity solitons are robust, and their full width at half maximum

decreases with the dispersion parameter |β|.

In conclusion, we have demonstrated that the Kerr-

comb evolution in whispering-gallery-mode resonators can

be modeled using the Lugiato-Lefever equation and its

extensions, where the evolution variable is time, and the

conjugate (transverse) variable is the azimuthal angle. We

have shown that low-threshold, wide-span combs can emerge

as dissipative cavity solitons. With different parameters, rolls

appear, corresponding to narrower-band combs. So, when

the goal is to optimize the bandwidth a correct parameter

choice is critical. Additionally, we demonstrated that the LLE

can be extended to incorporate higher-order dispersion and

nonlinearity, and we expect that it can be extended without too

much difficulty to include Rayleigh and Brillouin scattering

[21]. A key advantage of the spatiotemporal model that we

have developed is that the LLE has already been the subject of

extensive mathematical study, and it should be possible to take

advantage of this earlier work to shed additional light on the

dynamical properties of Kerr combs. We expect that a better

understanding of Kerr-comb generation in whispering-gallery

resonators will be the result, leading to new resonator designs

that can produce octave-spanning combs [22,23].
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