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SUMMARY 

Exposure to elevated levels of air pollution can lead to cardiorespiratory disease, 

birth defects, and cancer. However, observational air quality data are spatially and 

temporally sparse due to high cost of monitors, limiting the scope of epidemiologic 

analyses and introducing error in exposure assessments. This dissertation presents the 

developments, evaluations, and applications of multiple mathematical and computational 

modeling approaches for estimating spatiotemporal fields of air pollutant concentrations 

where and when monitoring data are not available.  

First, source apportionment techniques with multivariate regression analyses are 

used to estimate long-term (years 1998—2010) and large-scale (eastern United States) 

spatiotemporal trends in a novel pollutant metric, fine particulate matter (PM2.5) oxidative 

potential measured with a dithiothreitol assay (OPDTT). OPDTT measures a particle’s ability 

to catalytically generate reactive oxygen species while simultaneously depleting a body’s 

antioxidant defenses, leading to oxidative stress and, in turn, inflammation in the 

respiratory tract and cardiovascular system. Two different source apportionment 

techniques are used to estimate source impacts on OPDTT: the source-receptor Chemical 

Mass Balance (CMB) method and the photochemical air quality model with sensitivity 

analysis CMAQ-DDM (Community Multiscale Air Quality Model with Direct Decoupled 

Method). CMB is applied to an OPDTT measurement site in Atlanta, GA at which advanced 

ensemble-based source profiles had previously been developed. CMAQ-DDM is applied 

across the eastern United States and data assimilation techniques are used to minimize 

biases in source impact estimates. Two OPDTT-predictive models are developed by relating 

OPDTT measurements to either CMB or CMAQ-DDM derived PM2.5 source impacts using 
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multivariate regression analyses with backwards selection. The CMB-based model is 

applied to daily PM2.5 CMB source impacts from August 1998 through December 2010 to 

obtain an historical time series of daily 24 h averaged estimated OPDTT at one site in 

Atlanta, GA. The CMAQ-DDM source impact model is applied to daily PM2.5 CMAQ-

DDM source impacts from June 2012 to July 2013 to estimate daily 24 h averaged OPDTT 

across the eastern United States. The estimated historical time series of ambient OPDTT in 

Atlanta, GA is used in a health study showing that OPDTT is more linked to 

asthma/wheezing and congestive heart failure emergency department visits than PM2.5 

mass. In other words, OPDTT exposure drives a positive, significant risk ratio in two-

pollutant models with both OPDTT and PM2.5 exposure, while PM2.5 does not, even though 

OPDTT estimates are likely more uncertain than PM2.5 measurements, implying OPDTT is a 

useful, health-relevant air pollutant metric. The OPDTT estimates across the eastern United 

States are developed for future regional or multi-city health analyses. Both source 

apportionment regression approaches find that out of the sixteen tested emission sources, 

vehicle (both gasoline and diesel) and biomass burning emissions are the major 

contributors to ambient OPDTT levels. Biomass burning, including wildfires and prescribed 

burning, is the largest overall contributor to ambient OPDTT levels in these studies, driving 

its spatial and temporal trends. 

 Second, statistical downscaling techniques and model fusion approaches are 

developed and applied to simulate intraurban air pollutant concentrations [OPDTT, PM2.5, 

carbon monoxide (CO), and nitrogen oxides (NOx)] at a fine spatial resolution (250m) in 

Atlanta, GA. These methods attempt to capture steep concentration gradients driven by 

vehicle emissions on roadways that are not captured by models with coarse grid resolutions 
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(like CMAQ) or limited observational data but can affect exposures. The statistical model 

is developed under a Bayesian Hierarchal framework to downscale 12km CMAQ data to 

geocoded locations using annual-averaged link-based vehicle emissions or 250m 

resolution dispersion model data from RLINE (Research LINE model—a link-based 

dispersion model for near-surface releases of primary, inert pollutants) as land-use 

regression variables. However, there is limited observational data on which to train the 

model, and the CMAQ and RLINE data are correlated, so estimated PM2.5 concentration 

fields in Atlanta, GA are unphysical with lower concentrations on roadways than in rural 

areas. Further work modeling daily RLINE and collecting near-road PM2.5 monitoring data 

for the model training data set is suggested to produce a successful statistical downscaler 

under this framework.  

Due to the current limitations of the statistical downscaler, two model fusion 

techniques are also developed to estimate air pollutant concentrations at a fine spatial 

resolution within Atlanta, GA. These approaches combine 12km CMAQ data, which 

provide the daily data along with chemistry and regional emissions, and 250m RLINE data, 

which provide the fine spatial resolution data of primary pollutants on an annual basis, that 

have been previously fused with observations to optimize model estimates. Two slightly 

different model fusion techniques are developed due to biases in CMAQ and RLINE: an 

additive model that is applied to PM2.5 and a multiplicative model that is applied to CO, 

NOx, and OPDTT. The model-fused air pollutant concentration fields in Atlanta, GA show 

peaks on roadways and steep spatial gradients. Overall, model-fused concentration 

estimates for PM2.5, NOx, and CO have higher temporal and spatial correlations with 

monitoring data than observation-fused CMAQ or RLINE alone, suggesting that the 
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model-fused estimates provide the most accurate data out of currently available modeling 

data for epidemiologic and environmental justice studies investigating effects of intraurban 

air pollution exposures, particularly as they relate to impacts of vehicle emissions on health. 

Model-fused OPDTT results show peaks on roadways that can affect exposures but 

contributions from other sources, like biomass burning and natural gas combustion, cause 

a more spatially homogeneous field compared to other pollutants (e.g., CO and NOx). The 

OPDTT results also suggest that the intrinsic OPDTT of vehicle emissions may vary spatially. 

These model fusion methods are computationally fast and can be easily applied to other 

models, study areas, spatial resolutions, and pollutants, allowing their use in a broad range 

of future research projects.   

 The methods and spatiotemporal fields presented in this dissertation can be valuable 

tools for future epidemiologic and environmental justice studies investigating the utility of 

OPDTT as a useful health metric and the impacts of disproportionate air pollution exposure 

on minority communities in urban environments resulting from heterogeneous pollutants 

emitted by vehicles. 



 

CHAPTER 1.                                                              

INTRODUCTION 

The World Health Organization reports that ambient air pollution is the fifth leading 

cause of premature death and disability (Lim et al., 2012). Specifically, fine particulate 

matter (PM2.5) is estimated to have contributed to 3.2 million premature deaths in 2010 and 

to roughly 5% of all cardiorespiratory deaths across the globe (Lim et al., 2012). One 

critical difficulty with studying air pollution health effects is estimating pollutant exposures 

for epidemiologic studies. Misidentifying exposure can lead to significant biases in health 

risk assessments, especially in long-term cohort studies (Goldman et al., 2011). Further, 

inaccurately estimating intraurban spatial variations in air pollutant concentrations affects 

environmental justice studies researching the impacts of disproportionate exposures of 

populations and individuals to pollution. Air quality monitoring data are often too sparse 

to capture the spatial and temporal variabilities in air pollutant concentrations, so air quality 

modeling is often used to provide spatially and temporally resolved air pollutant estimates 

that monitors do not capture. However, models can be limited by coarse grid resolutions 

incapable of capturing steep spatial gradients in pollutant concentration or may lack 

chemistry for secondary pollutant formation. Further, current models do not capture all 

atmospheric contaminants or pollutant properties relevant to health, such as oxidative 

potential (OP) of PM2.5. With a changing particulate matter composition with an increasing 

biogenic fraction due to dropping anthropogenic emissions, it may become more important 

to measure and model health-relevant components of PM2.5 rather than total PM2.5 mass as 

each PM2.5 component may not have similar impacts on health. OP is a potentially useful 



 

metric for measuring the components of particulate matter that drive adverse health 

outcomes. This dissertation presents the developments, evaluations, and applications of 

source impact models capable of estimating long-term and large-scale spatiotemporal 

trends in OP as well as modeling methods developed to estimate urban air pollutant 

concentrations, including PM2.5, carbon monoxide (CO), nitrogen oxides (NO2 + NO = 

NOx), and OP, at a fine spatial resolution. Developing long-term, large-scale, and fine-

scale spatiotemporal fields of air pollutant concentrations is valuable for reducing 

uncertainty, assessing consistency of results across study areas, and improving accuracy, 

respectively, in exposure and epidemiologic analyses.  

 The first part of this dissertation describes the current state of knowledge on OP 

while building upon that research by developing models using source impact analyses that 

are applied to create spatiotemporal fields of OP of ambient PM2.5 for health research, 

described in chapters 2 through 4. OP assays measure a particle’s ability to catalyze redox 

reactions that generate reactive oxygen species (ROS) while depleting antioxidants in vivo, 

leading to an imbalance in ROS and the body’s antioxidant defenses that results in 

oxidative stress. Oxidative stress can lead to DNA strand breakage and inflammatory 

responses in organs such as the lungs, heart, and brain (Baulig et al., 2003; Donaldson, 

Stone, Seaton, & MacNee, 2001; N. Li et al., 2003; Prahalad et al., 2001). OP integrates 

the biologically-relevant redox reactions of particulate matter species into one 

measurement. Studying source impacts on OP can assist with targeting health-relevant 

emissions for regulatory initiatives. The research presented in this dissertation is focused 

on Atlanta, GA and the eastern United States where PM2.5, and, thus, OP are impacted by 

a multitude of emission sources with significant formation from photochemistry. 



 

The second part of this dissertation focuses on developing methods for estimating 

urban air pollutant concentrations near roadways at a fine spatial resolution while also 

capturing the atmospheric chemistry and regional emissions that impact the more spatially 

homogenous “urban background” concentrations and is presented in chapters 5 through 7. 

With over 66% of the world’s population projected to live in cities by 2050, accurately 

estimating intraurban air pollution is critical for epidemiology and environmental justice 

work (United Nations, Department of Economic and Social Affairs, & Population Division, 

2014). Two modeling techniques are developed to incorporate the strengths of regional-

scale photochemical air quality models and fine-scale dispersion models while limiting the 

disadvantages of each model and are applied to develop intraurban air quality estimates at 

a fine spatial resolution. Daily pollutant concentration fields in Atlanta at geocoded 

locations and 250m resolution are presented. These fine-scale spatial fields can capture the 

steep concentration gradients near roadways necessary for exposure and health analyses 

focusing on vehicle emissions. A brief introduction specific to each chapter in this 

dissertation is presented below. 

 Chapter 2 assesses our understanding of particulate matter OP by reviewing the 

broad and growing global literature. A variety of acellular OP measurement techniques 

exist, including the dithiothreitol (OPDTT), glutathione (OPGSH), ascorbic acid (OPAA), and 

electron spin resonances (OPESR) assays. Each assay responds differently to particulate 

matter species and emission source composition and appears to have different relationships 

with health outcomes. Each of the listed OP assays captures the redox reactions driven by 

metals, including copper, manganese, and iron (except OPDTT does not capture Fenton 

chemistry driven by iron) that are found in vehicle emissions while OPDTT also responds to 



 

organic species, such as quinones, resulting from vehicle and biomass burning emissions. 

As organic species age, OPDTT increases, which could impact population exposures to 

health-relevant particulate matter. Further, the species and source impacts on particulate 

matter drive the size distribution of OP. Based on the limited health research currently 

available, OPDTT and OPGSH appear to be the most relevant assays for cardiorespiratory 

health, including asthma/wheezing, congestive heart failure, lung cancer, and ischemic 

heart disease. OPAA does not appear to measure particulate matter effects relevant to any 

health endpoints. Future work should include standardizing OP measurement techniques 

for more direct and effective comparison between studies and expanding measurements of 

OPDTT and OPGSH for more extensive epidemiologic studies looking at chronic and acute 

health endpoints beyond cardiorespiratory effects. 

Chapter 3 presents the development of an empirical model for OPDTT in Atlanta, 

GA using source impacts from the source-receptor Chemical Mass Balance (CMB) 

method. Multivariate regression with backward selection is used to relate CMB source 

impacts to OPDTT measurements. The resulting model shows the importance of vehicle and 

biomass burning emissions to OPDTT of ambient PM2.5 in Atlanta. The model is applied to 

daily CMB-derived source impacts at the OPDTT measurement site from August 1998 

through December 2010 to estimate an unprecedentedly large temporal data set of OPDTT, 

which is used in an epidemiologic analysis. This study highlights OPDTT as a useful health 

indicator for certain cardiorespiratory endpoints, the importance of vehicles and biomass 

burning for health-relevant PM2.5, and the capability to reconstruct a long time series of 

ambient OPDTT using a source impact model developed using a regression analysis. As a 



 

testament to the utility of this modeling approach, it has been used more recently by other 

groups internationally (Samuël et al., 2018). 

 Chapter 4 describes the spatiotemporal modeling of OPDTT across the eastern 

United States. Building on the approach discussed in chapter 3, chapter 4 details the 

development, evaluation, and application of using chemical transport model-derived 

source impacts rather than CMB-derived source impacts to model regional spatial trends 

in ambient OPDTT for use in multi-city epidemiologic analyses. CMB is limited to a specific 

observational site with speciated measurements (in this case, Atlanta, GA), so CMAQ-

DDM (Community Multiscale Air Quality Model with Direct Decoupled Method) is used 

to generate source impacts across the eastern United States. Biases in these source impacts 

are reduced using data assimilation techniques. These bias-reduced source impacts are 

integrated with spatially-limited observations of OPDTT from four measurement locations 

across Georgia and Alabama by using multivariate regression with backward selection. 

This work supports that out of the sixteen tested source impacts (agriculture, aircraft, 

biogenics, coal combustion, dust, fuel oil, fires, metal processing plants, natural gas 

combustion, on-road and non-road gasoline vehicles, on-road and non-road diesel vehicles, 

seasalt, other, and residential wood combustion), on-road vehicle and fire emissions are 

significant contributors to OPDTT, consistent with previous work presented in chapter 3 as 

well as from other work globally. Overall, this chapter presents a method for using limited 

observations with source impact analyses to develop a model capable of estimating OPDTT 

across a large study domain. 

 Chapter 5 presents the development and application of a spatial statistical 

downscaling model developed under a Bayesian hierarchal framework that uses 



 

observations to train coefficients for daily 12km CMAQ data and annual-averaged 250m 

dispersion model data from RLINE or on-road vehicle emissions developed by the Atlanta 

Regional Commission (ARC) to simulate PM2.5 concentrations at geocoded locations. In 

other words, the fine-scale emissions and dispersion model data are used as land-use 

regression variables to downscale 12km CMAQ data. The advantage of this method is 

computational efficiency, the ability to estimate concentration estimates at geocoded 

locations, and built-in uncertainty analysis. However, when using annual-averaged RLINE 

data as an input parameter, the statistical downscaler predicts unphysical spatial 

concentration gradients with lower concentrations on roadways than in rural areas. The 

hypothesized reasons for these unphysical results, including lack of observational data for 

the training set and covariation between CMAQ and RLINE, are discussed.  

 Chapter 6 describes the development, evaluation, and application of two model 

fusion methods used to simulate air pollutant concentrations in Atlanta, GA from 2003 

through 2008 at a 250m resolution. Two slightly different models are developed due to 

biases in CMAQ and RLINE: an additive model that is applied to PM2.5 and a multiplicative 

model that is applied to CO and NOx. A sensitivity analysis using each model for 

estimating each pollutant is presented. Each method fuses daily 12km CMAQ and annual-

average 250m RLINE data that were each previously adjusted with observations to 

minimize biases. CMAQ provides the daily temporal data as well as photochemically 

formed secondary pollutants and regional source impacts while RLINE provides the fine 

spatial variation in primary roadway pollution. The resulting model fused pollutant 

concentration fields have high concentrations on roadways and steep spatial gradients, in 

line with available observations, and are being used in environmental justice, city planning, 



 

and health studies. These model fusion methods are flexible and fast tools that can be 

applied to other pollutants, models, and study areas of interest for future research. 

 Chapter 7 presents a brief analysis of spatial variation of daily water-soluble OPDTT 

within Atlanta, GA from June 2012 through July 2013. OPDTT concentrations are estimated 

at a 250m resolution using the multiplicative model fusion method described in chapter 6 

with daily PM2.5 on-road vehicle impacts from CMAQ-DDM and annual-average primary 

PM2.5 RLINE estimates. The model fused results represent the primary and secondary 

PM2.5 resulting from vehicle emissions and are multiplied by an estimated intrinsic OPDTT 

value for vehicle sources. This vehicle-driven OPDTT is then added to OPDTT of other 

sources, including fires, natural gas combustion, and regional sources, that are calculated 

by multiplying source-specific intrinsic OPDTT by their respective spatially interpolated 

PM2.5 source impacts. The results presented provide initial insight into within-city variation 

of OPDTT that could affect exposure analyses and suggest that intrinsic OPDTT of vehicles 

may vary in space due to photochemical aging.  

 This dissertation concludes with a summary of the major findings of the above 

studies as well as proposed ideas for future work that would be valuable to improve upon 

the developed models and our understanding of the relationship between source impacts, 

OP, and health.  

  



 

CHAPTER 2.                                                                      

REVIEW OF ACELLULAR ASSAYS OF AMBIENT 

PARTICULATE MATTER OXIDATIVE POTENTIAL: METHODS 

AND RELATIONSHIPS WITH COMPOSITION, SOURCES, AND 

HEALTH EFFECTS 

Abstract 

 

Oxidative stress is a potential mechanism of action for particulate matter (PM) 

toxicity and occurs when the body’s antioxidant capacity cannot counteract harmful effects 

of reactive oxygen species (ROS) due to an excess presence of ROS. ROS can be bound 

on and/or within PM (particle-bound ROS) and/or catalytically generated in vivo by redox-

active PM components (oxidative potential, OP). In this review, particle-bound ROS 

techniques are discussed briefly while acellular OP measurements are the focus because 

more ROS are generated catalytically in vivo than are present bound to particles. The most 

common OP measurement methods are discussed along with evidence for utility of OP 



 

measurements in epidemiologic studies and PM characteristics that drive different 

responses between assay types (such as species composition, emission source, and 

photochemistry). Dithiothreitol and glutathione OP assay measurements have significant 

associations with certain cardiorespiratory endpoints, such as asthma, ischemic heart 

disease, and lung cancer. Though more work is needed, OP shows promise for health 

studies as it integrates redox-active PM species that drive in vivo catalytic reactions leading 

to oxidative stress into one measurement and current work highlights the importance of 

metals, organic carbon (especially aged organic carbon), vehicles, and biomass burning 

emissions to OP. 

2.1 Introduction 

Extensive literature supports the association between airborne particulate matter 

(PM) and adverse human health effects, especially cardiorespiratory endpoints (Brunekreef 

& Holgate, 2002; Cesaroni et al., 2014; Delfino, Sioutas, & Malik, 2005; Donaldson et al., 

2001; N. Li et al., 2003; Pope et al., 2002; Pope, Ezzati, & Dockery, 2009). However, the 

mechanisms of action are not completely understood. Growing evidence in cellular, animal 

model, and human biomarker studies show that PM exposure can induce oxidative stress, 

offering one potential mechanism of PM toxicity (Autrup et al., 1999; Ball, Straccia, 

Young, & Aust, 2000; Baulig et al., 2003; Dellinger et al., 2001; Donaldson et al., 2001; 

Kodavanti et al., 2002; N. Li et al., 2003; Prahalad et al., 2001; Saffari, Daher, Shafer, 

Schauer, & Sioutas, 2014a; Sorensen et al., 2003; Strak et al., 2012). Oxidative stress 

occurs when the concentration of reactive oxygen species (ROS) are in excess of the body’s 

antioxidant capacity, leading to a redox state change in cells that, in turn, can initiate or 

exacerbate inflammation in the respiratory tract and cardiovascular systems, chemically 



 

alter DNA, proteins, and lipids, and lead to cell and tissue damage or death (Baulig et al., 

2003; Donaldson et al., 2001; N. Li et al., 2003; Prahalad et al., 2001).  ROS are any 

oxygen-containing molecules that have one or more unpaired electrons, making them 

highly reactive, and include species like hydrogen peroxide (H2O2), superoxide radical (O2
-

), and hydroxyl radical (•OH). These species can be introduced to the body via PM 

inhalation with ROS directly bound to the particles (“particle-bound ROS”) and/or by 

catalytic generation of ROS in vivo via cellular redox reactions stimulated by specific 

inhaled PM components (Dellinger et al., 2001; Obrien, 1991). The catalytic generation of 

ROS by such inhaled components with simultaneous depletion of antioxidants is defined 

in this paper as “oxidative potential” (OP).  

The recent development of acellular assays for OP has led to a rapid rise in OP 

measurements worldwide. Common acellular OP assays include electron spin (or 

paramagnetic) resonance (OPESR), dithiothreitol (OPDTT), ascorbic acid (OPAA), and 

glutathione assays (OPGSH). OPESR measures the generation of •OH via electron spin 

resonance while OPDTT, OPAA, and OPGSH measure the depletion rate of antioxidants (AA, 

GSH, urate (UA)) or chemical proxies for cellular reductants (DTT), which is proportional 

to the generation rate of ROS. Particle-bound ROS measurements use fluorescence-based 

techniques to measure concentrations of specific ROS, usually H2O2 or •OH, on and/or 

within a PM sample. The development of particle-bound ROS measurement methods 

precedes the development of acellular OP assays, but recent literature showing the 

relevance of OP to health has pushed current and future research towards using OP assays. 

Further, the concentrations of particle-bound ROS are often much smaller than the 

concentrations of ROS catalytically generated by PM components in vivo, meaning OP-



 

active PM components may be more related to oxidative stress and observable adverse 

health endpoints. 

OP measurements integrate multiple aspects of PM, including species composition, 

bioavailability of chemical species (specifically metals) for reactions, synergistic 

interactions between chemical species and emission source impacts, redox cycling by 

complex organics, and oxidative stress delivered by surfaces, making it an advantageous 

health metric. Current epidemiologic analyses using acellular assays suggest that exposure 

to PM with high OP affects cardiorespiratory health (Abrams et al., 2017; J. T. Bates et al., 

2015; Janssen et al., 2015; Yang et al., 2016). In fact, OP has been found to be more 

strongly associated with acute cardiac and respiratory endpoints than fine PM 

concentration in multiple studies, suggesting that OP may be a more relevant health metric 

than PM mass for certain outcomes of interest (Abrams et al., 2017; J. T. Bates et al., 2015; 

Weichenthal, Crouse, et al., 2016). Understanding the current state of knowledge on 

acellular OP assays could guide future research investigating the epidemiologic relevance 

of various OP assays and further our understanding on the relationship between PM and 

health. 

Different OP assays are sensitive to different PM species and pollutant mixtures 

from different emission sources. Metals can directly support electron transport that 

generates ROS while diminishing antioxidant levels and organic compounds can drive 

oxidative stress through redox cycling of quinone-based radicals (Ghio, Carraway, & 

Madden, 2012). In general, all OP methods are responsive to some metals, though not all 

assays capture every metal-induced redox reaction, making assays sensitive to different 

metals. For example, OPAA is more sensitive to iron and copper and OPDTT to copper and 



 

manganese. OPDTT is also sensitive to organic species, especially highly oxidized organics. 

Literature shows that PM related to vehicle emissions drives responses in all OP assays, 

most likely due to the high copper content in brake and tire wear, and biomass burning PM 

significantly contributes to OPDTT due to its large oxidized aromatic (e.g., quinone) 

fraction. Further, chemistry, photochemical aging, and volatility of organic species can 

play significant roles in OP. Each of the described PM factors, including species and source 

composition and photochemical aging along with pH, affects the size distribution of OP 

measurements, which also varies by assay.  

This review summarizes the current state of knowledge on the relationship between 

health endpoints and acellular OP measurements along with the sensitivities of various 

acellular OP assays to PM composition, emission source impacts, and size. Particle-bound 

ROS measurements are described in brief, but the focus is on OP due to the growing body 

of literature linking these assays to adverse health outcomes.  

2.2 Overview of Measurement Methods 

 ROS can exist on and/or within PM or can be generated in vivo by constituents of 

inhaled particles chemically interacting with fluids and cells in the body. There are various 

methods to measure these two different phenomena. Particle-bound ROS techniques 

typically report levels in units of concentration (e.g. nmol H2O2 equivalents m-3
air) while 

OP techniques use units of time rate-of-change of volume-based concentration (nmol or % 

depletion per min per m3 of air), mass-based concentration (nmol or % depletion per min 

per μg of PM; sometimes referred to as intrinsic OP), or absorbance units. Volume-based 



 

concentration rates of OP are relevant for epidemiologic studies while mass-based 

concentration rates of OP are useful for comparing between OP observational studies.  

2.2.1 Measuring Particle-Bound ROS  

 Measurements of ROS present within and/or on PM are typically measured using 

fluorescence-based techniques adapted from intracellular ROS measurement techniques. 

These particle-bound ROS methods suspend particles in a reagent and measure the spectra 

of specific oxidation byproducts. Dichlorofluorescin (DCFH) is a non-fluorescent reagent 

that becomes fluorescent (DCF) when oxidized in the presence of ROS and is the most 

common probe used when quantifying particle-bound ROS (Antonini et al., 1998; 

Venkatachari, Hopke, Grover, & Eatough, 2005). Specifically, DCFH is mixed with 

Horseradish Peroxidase (HRP) in a sodium phosphate buffer prior to analysis to catalyze 

reactions. Then the DCFH-HRP reagent is added to each PM sample filter and the solution 

is sonicated to extract ROS in the particles. Finally, fluorogenic intensity of DCF is 

measured and converted to nmolH2O2-eq m-3 or nmolH2O2-eq µg-1 using least squares 

regression with a H2O2 calibration assay (Venkatachari et al., 2005). Other particle-bound 

ROS methods can vary by reagent type and concentration, mixing time and method, and 

fluorescence measurement technology. Other common reagents include the 9-

(1,1,3,3,tetramethylisoindolin-2-yloxyl-5-ethynyl)-10-(phenylethynyl)anthracene 

(BPEAnit) probe, aminophenyl fluorescamine (APF) probe, and the 10-Acetyl-3,7-

dihydroxyphenoxazine (Amplex Red) probe (Cohn, Simon, & Schoonen, 2008; Miljevic 

et al., 2010; Venkatachari & Hopke, 2008).  



 

 Molecular probes vary in their sensitivities to species. In general, the DCFH probe 

is the least specific method, reacting similarly with multiple ROS, including •OH, H2O2, 

peroxyl radicals, and peroxynitrite. This is largely due to the ease of abstraction of the 

hydrogen atom located at the 9’ position of the DCFH molecule (Venkatachari & Hopke, 

2008). APF reacts with •OH but not peroxynitrite, unlike the DCFH and Amplex Red 

probes, making it potentially useful for specific •OH measurements (Cohn et al., 2008).  

Artifacts can occur using these techniques during sonication or development of 

reagents. Increased sonication of BPEAnit in dimethyl sulfoxide (DMSO) and of DCFH-

HRP in 10/90 ethanol/water are correlated with an increase in fluorescence, implying 

sonication results in formation of ROS (Miljevic et al., 2014). The amount of ROS 

generated can be approximately two orders of magnitude higher than the values obtained 

for PM samples using the same probe (Miljevic et al., 2014). Particle-bound ROS 

measurements are also sensitive to pH, reagent concentration, and extraction method but 

not incubation temperature (Huang, Zhang, Zhang, Fang, & Schauer, 2016). According to 

Huang et al., (2016) (Huang et al., 2016) optimized performance in stability, reliability, 

and operability for offline particle-bound ROS measurements occurs at a pH of the 

phosphate buffer at 7.2 with the DCFH-HRP reagent at a concentration of 10M DCFH + 

0.5 unit/ml HRP.  

One limitation of off-line particle-bound ROS measurements is the very short 

lifetime of ROS, ranging from only a few minutes to a day or longer, so off-line 

measurement techniques with delays of hours to days may severely underestimate true 

particle-bound ROS concentrations (Fuller, Wragg, Nutter, & Kalberer, 2014). 

Specifically, H2O2 bound to particles has been shown to significantly decrease over time 



 

(Chen & Hopke, 2009; Hung & Wang, 2001; Wang, Kim, & Paulson, 2011). On-line 

measurement technologies have been developed to measure particle-bound ROS, in 

particular, three using DCFH (Fuller et al., 2014; King & Weber, 2013; Wang, Hopke, Sun, 

Chalupa, & Utell, 2011; Wragg et al., 2016). The main difference between the three on-

line measurement techniques currently available is the particle collection method. One 

instrument collects PM in an aqueous HRP solution on a paper filter that then flows through 

Teflon tubing immersed in a water bath for 15 minutes (Fuller et al., 2014). This instrument 

was further developed to be portable (Online Particle-bound ROS Instrument, OPROSI) 

for automated continuous field deployment over many hours or days (Wragg et al., 2016). 

Another method uses a particle into liquid sampler (PILS), which allows particle collection 

at a high flow rate (Venkatachari & Hopke, 2008). The final method uses a mist chamber 

to collect particles (King & Weber, 2013). Even with online particle-bound ROS 

technologies, the growing epidemiologic evidence suggests OP measurements are 

potentially more relevant than particle-bound ROS measurements, pushing future research 

towards OP assays.  

2.2.2 Measuring Oxidative Potential (OP) 

 OP is most commonly measured as the capacity of PM to oxidize target molecules 

over time (e.g., OPDTT, OPAA, OPGSH). Assays using antioxidants, including OPAA and 

OPGSH, can be performed in a chemical assay or in surrogate lung fluid (SLF). Currently, 

all OPGSH studies have been performed with SLF, but OPAA has been measured in chemical 

and SLF environments. To differentiate if AA depletion was measured in SLF or not, 

subscripts will be used throughout this review (e.g., OPAA versus OP SLFAA ). Two other 



 

techniques measure the actual generation of ROS over time rather than the depletion of 

target molecules using electron spin resonance (OPESR) or high-performance liquid 

chromatography (HPLC) with fluorescent probes. Different OP assays capture different 

redox reactions that lead to the generation of different ROS species. For example, OPESR 

and HPLC techniques measure the production rate of  •OH and/or H2O2, while antioxidant 

depletion assays (OPAA and OPGSH) have not been shown to be correlated with the 

generation of any specific ROS. OPDTT is most correlated with O2
- and H2O2 formation and 

is not correlated with •OH generation (Xiong, Yu, Wang, Wei, & Verma, 2017).  

OPESR measures the ability of PM to induce •OH formation in the presence of H2O2 

by measuring the electron paramagnetic resonance signals of the spin trap 5,5-dimethyl-1-

pyrroline-N-oxide byproduct DMPO-OH quartet as the average of total amplitudes 

expressed in arbitrary units (A.U.) (Hellack et al., 2014; Shi et al., 2003). HPLC techniques 

measure the concentration of reduced byproducts of chemicals in SLF reacting with •OH 

or H2O2, such as 2,3 dihydroxygenzoic acid (2,3 DHBA)—the hydroxyl radical adduct of 

salicylic acid, p-hydroxybenzoate (p-HBA)—forming from the reaction of •OH with 

benzoate (BA), and parahydroxylphenyl acetic acid  (POPHAA) dimer—a result of the 

oxidation of POPHAA by H2O2, at various time steps to measure •OH or H2O2 generation 

over time (DiStefano et al., 2009; Donaldson et al., 1997; H. Shen, Barakat, & Anastasio, 

2011). Disodium terephthalate (TPT)—which reacts with •OH to form 2-

hydroxyterephthalic acid (2 OHTA)—with a spectrofluorophotometer has also been used 

to estimate OP, specifically •OH generation (Son et al., 2015; Xiong et al., 2017). BA is 

the most common probe, but it can bind with manganese potentially disrupting results. 



 

However, •OH production from manganese seems to be negligible, so results should not be 

affected significantly (Charrier & Anastasio, 2011). 

OPDTT measures the depletion of a biologically relevant chemical due to oxidation 

rather than direct ROS production (Cho et al., 2005). DTT is a surrogate for the cellular 

oxidant NADPH, which reduces oxygen to O2
-. Overall, the rate of O2

- generation by a PM 

sample is measured by the rate at which DTT is consumed, which is proportional to the 

concentration of redox-active species in the PM sample. Specifically, solvent-extracted 

(e.g., in water or methanol) PM samples are incubated with DTT and a potassium 

phosphate buffer for times varying from 15 – 90 minutes. A small aliquot is removed from 

the mixture at designated times and mixed with 1% w/v Trichloraoacetic acid (TCA) to 

quench DTT reactions. The aliquot is mixed with 0.5 mL 5,5-dithiobis-(2-nitrobenzoic 

acid) (DTNB) to form 2-nitro-5-mercaptobenzoic acid (TNB) by reacting with the residual 

DTT, which is then measured using a spectrometer. The DTT consumption rate, otherwise 

known as DTT activity, is determined from the linear slope of DTT consumption and is 

used as a measure of OP (Cho et al., 2005; Fang et al., 2015). Work has been done to alter 

the DTT assay protocol for personal monitoring use, but most current studies focus on 

ambient or chamber PM samples (Sameenoi et al., 2013). The chemical OPAA protocol is 

very similar to the OPDTT protocol (Fang et al., 2016). Semi-automated OPDTT and OPAA 

assays have been developed to reduce labor intensity (Fang et al., 2015; Gao, Fang, Verma, 

Zeng, & Weber, 2017). Online systems for OPDTT have also been developed to avoid filter 

sampling of PM that may lose reactive species before analysis and provide better temporal 

resolution (between 3 minutes and 3 hours) (Eiguren-Fernandez, Kreisberg, & Hering, 

2017; Sameenoi et al., 2012). One system couples a PILS with microfluidic-



 

electrochemical detection of reduced DTT using a cobalt(II) phthalocyanine (CoPC) 

electrode (Koehler, Shapiro, Sameenoi, Henry, & Volckens, 2014; Sameenoi et al., 2012), 

while another uses a Liquid Spot Sampler (Eiguren-Fernandez et al., 2017). Offline 

systems are still the most common methods as online technologies have just recently been 

developed and require further evaluation.  

The chemiluminescent reductive acridinium triggering (CRAT) assay measures the 

interaction of reductants, such as DTT or GSH, and oxidants. These chemicals act as 

reducing agents leading to the formation of H2O2, which in turn reacts with acridinium 

ester and emits light that can be used to quantify rates of H2O2 production (Zomer et al., 

2011). CRAT is a relatively new technique that is not as commonly used as OPDTT or OPAA.  

OP SLFAA  and OP SLFGSH measure % depletion of antioxidants in SLF exposed to PM 

rather than directly from PM samples exposed only to the depletion chemical of interest. 

SLF is typically composed of multiple antioxidants, which is more indicative of realistic 

lung conditions; however, the composition of SLF varies by study and affects OP 

measurements. AA is the most critical component in SLF for reactions with metals 

(Charrier & Anastasio, 2011). The concentration of antioxidants in SLF is quantified at 

specific time intervals using HPLC and/or a DTNB-enzyme recycling to obtain % 

antioxidant depletion per unit time as a measure of OP (Godri, Duggan, et al., 2010; Jung, 

Guo, Anastasio, & Kennedy, 2006; S. X. Ma et al., 2015; Yang et al., 2016).  

With the multitude of acellular OP assay types and varying protocols within an 

assay, results across studies can be difficult to compare. Choices of PM extraction solvent 

(water, methanol, SLF), PM filter type, incubation time, and metal chelator can affect OP 



 

results. For example, OPAA, OPDTT, OPESR, and OPCRAT are lower for PM measured on 

quartz filters than Teflon filters (Yang et al., 2014), and methanol can extract hydrophilic 

species and hydrophobic organic species, resulting in higher OPDTT than water-soluble 

extracts (Rattanavaraha et al., 2011; Verma et al., 2012; Yang et al., 2014). Future research 

should focus on optimizing epidemiologically-relevant OP assays and standardizing 

methods across studies.   

2.3 OP in Epidemiologic Analyses  

 To date, measurements of OP have been very limited both spatially and temporally, 

restricting the lengths of exposures for health studies relying on OP measurement data. 

There is a growing reliance on modeling approaches, such as land-use regression (LUR) 

and source impact regressions, to extend OP estimates where and when measurements are 

not available (J. T. Bates et al., 2015; Fang et al., 2016; Yang et al., 2016). Both modeled 

and measured OP have been found to be associated with cardiorespiratory outcomes (Table 

1). In some cases, those associations have been stronger for OP than PM mass, supporting 

the hypothesis that oxidative stress is a mechanism of PM toxicity and OP is capturing the 

property of PM related to these health outcomes (Table 1). Based on current literature, 

OPDTT and OP SLFGSH are the assays most relevant to health. 

Fractional exhaled nitric oxide (FeNO), used as a measure of airway inflammation, 

has been used in the most OP epidemiologic studies with mixed results (Table 1). A human 

exposure study in the Netherlands found a significant association between OPESR, OPAA, 

and OPDTT and FeNO after 5 hours of exposure (to our knowledge, this is the only study to 

find a health association with OPAA) (Janssen et al., 2015). Interestingly, in two-pollutant 



 

models with exposure to two different OP measurements, effects of OPDTT remained 

positive after adjustment for OPESR and OPAA and vice versa, suggesting that the PM 

component drivers of OPDTT and OPESR or OPAA may have independent effects on FeNO. 

The same was not true for OPESR and OPAA as they were too correlated to disentangle their 

effects. A longer follow-up study in the Netherlands using OP estimates from a LUR model 

did not find an association between FeNO and OPESR but did find an association between 

FeNO and OPDTT (Yang et al., 2016). OPDTT has also been associated with FeNO of healthy 

adults after 2 hours of exposure and in schoolchildren with persistent asthma in southern 

California with exposures lagged one and two days (Delfino et al., 2013; Janssen et al., 

2015). The association of FeNO with OPDTT in the schoolchildren study was nearly twice 

as strong as with other measures (macrophage ROS and traffic-related markers) (Delfino 

et al., 2013). AA oxidative burden [OB: calculated by multiplying PM2.5 concentration by 

measured mass-based OP SLFAA ; (µgPM m-3 )* (%AA depletion µgPM
-1)] was reported to have 

a null association with FeNO (Maikawa et al., 2016). One limitation using OB is assuming 

an intrinsic OP measurement is applicable throughout the year to regional PM, but 

literature has shown that PM composition influences OP and is not static in time or space. 

Nevertheless, OPAA has been found to have no association with other adverse health 

endpoints in multiple studies, including epidemiologic analyses on all-cause, respiratory, 

and cardiovascular mortalities, cardiorespiratory emergency department visits, myocardial 

infarction, and lung cancer mortality (Atkinson et al., 2016; Fang et al., 2016; Weichenthal, 

Crouse, et al., 2016; Weichenthal, Lavigne, Evans, Pollitt, & Burnett, 2016), suggesting 

that OPAA may have limited utility in future epidemiologic studies. 



 

Table 2-1. Reported results of tested associations between OP assays and health 

endpoints. Associations that were reported to be stronger for OP than PM 

concentration in at least one study are marked with an *. No significant negative 

(protective) associations were reported by any study.    

Health Endpoint 

Assays with Positive 

Associations 

(confidence interval does not include null) 

Assays with Null 

Associations 

(confidence interval does include null) 

Respiratory Health   

General DTT* (Abrams et al., 2017)   

FeNO 

DTT* (Delfino et al., 2013; 

Janssen et al., 2015; Yang et 

al., 2016) 

ESR* (Hogervorst et al., 

2006; Janssen et al., 2015) 

GSHSLF (Maikawa et al., 

2016) 

AA* (Janssen et al., 2015) 

AASLF (Maikawa et al., 

2016; Strak et al., 2012) 

ESR (Yang et al., 2016) 

GSHSLF (Strak et al., 2012) 

Asthma/Wheeze 

DTT * (Abrams et al., 2017; 

J. T. Bates et al., 2015; Fang 

et al., 2016) 

AA (Fang et al., 2016) 

AASLF (Canova et al., 2014) 

UASLF (Canova et al., 2014) 

GSHSLF (Canova et al., 

2014) 

Lung Cancer Mortality 
GSHSLF * (Weichenthal, 

Crouse, et al., 2016) 

AASLF (Weichenthal, 

Crouse, et al., 2016) 

 



 

Table 2-1 continued    

All-cause Mortality  

AASLF (Atkinson et al., 

2016) 

GSHSLF (Atkinson et al., 

2016) 

Cardiovascular Health   

Microvascular Function DTT (Zhang et al., 2016)  

Myocardial Infarction 
GSHSLF (Weichenthal, 

Lavigne, et al., 2016) 

AASLF (Weichenthal, 

Lavigne, et al., 2016) 

Congestive Heart 

Failure 

DTT* (J. T. Bates et al., 

2015; Fang et al., 2016) 
AA (Fang et al., 2016) 

Ischemic Heart Disease DTT* (Abrams et al., 2017)  

Chronic Obstructive 

Pulmonary Disease 
 

AASLF (Canova et al., 2014) 

UASLF (Canova et al., 2014) 

GSHSLF (Canova et al., 

2014) 

All-cause Mortality  

AASLF (Atkinson et al., 

2016) 

GSHSLF (Atkinson et al., 

2016) 

 

 OPDTT has been linked with various acute cardiorespiratory endpoints beyond 

FeNO in multiple studies (Table 1). Markers of respiratory health, including forced 



 

expiratory volume, asthma, and rhinitis, were more associated with LUR-estimated OPDTT 

than PM2.5 concentration in a 14-year study in the Netherlands (Yang et al., 2016). Another 

study utilized a 10-year data set of modeled OPDTT in Atlanta, Georgia estimated via a 

regression with emission source impacts and found a significant, positive association 

between OPDTT exposure and asthma/wheeze and congestive heart failure emergency 

department (ED) visits in both one- and two-pollutant models (the risk ratio for PM2.5 was 

null in the two-pollutant model), suggesting that OPDTT could explain much of the PM2.5 

impact on these two health endpoints (J. T. Bates et al., 2015). A similar, shorter term (196 

days) epidemiologic study was conducted on OPDTT measurements in Atlanta rather than 

modeled concentrations and showed a similarly significant link between OPDTT exposure 

and asthma/wheezing and ischemic heart disease ED visits despite the small OP sample 

size (Abrams et al., 2017). Finally, particle size may play a role as a study in Los Angeles 

showed an inverse relationship between microvascular function in elderly adults and 5-day 

average OPDTT of PM <0.18 µm but no association for OPDTT of PM 0.18µm ≤ DP ≤ 2.5µm 

or for OPDTT of PM 2.5µm ≤ DP ≤ 10µm, (Zhang et al., 2016) though previously discussed 

studies in Atlanta and the Netherlands found cardiorespiratory outcome associations with 

OPDTT of PM2.5.  

OB SLFGSH has been linked with both acute and chronic health endpoints, including 

myocardial infarction, FeNO, and lung cancer (Table 1). OB SLFGSH was more associated lung 

cancer mortality than PM2.5 concentration (12% increase in risk compared to 5% for PM2.5) 

(Weichenthal, Crouse, et al., 2016). Despite the positive associations found between OB SLFGSH and lung cancer mortality, a study in London found no association between OB SLFGSH 

and all-cause, respiratory, or cardiovascular mortality in any age group of adults (Atkinson 



 

et al., 2016). Future work could obtain additional OP measurements for more robust studies 

and explore health endpoints beyond cardiorespiratory effects while focusing on the health-

relevant OP assays, OPDTT and  OB SLFGSH . 

2.4 Effects of PM Characteristics on OP 

The growing literature on the relationship between OP and health, specifically OB SLFGSH and OPDTT and cardiorespiratory endpoints, drives a need to investigate the effect 

of PM composition on OP to better understand the link between PM and health. Different 

OP assays capture the influence of different species and emissions sources on redox 

reactions and may also vary due to multicomponent interactions (e.g., between metals and 

organics and/or emission sources), causing the spatial and seasonal variations to vary 

between OP assays and OP measurements to not always correlate with each other when 

applied to the same PM. OPAA and OPESR are often correlated due to their large metal 

influences but are not correlated with OPDTT, which has a large organic species dependence 

(Fang et al., 2016; Visentin, Pagnoni, Sarti, & Pietrogrande, 2016; Yang et al., 2014). 

Rather, OPDTT has been shown to be correlated with OPGSH (Godri et al., 2011). OPDTT is 

sensitive to vehicle and biomass burning emissions, while OPAA and OPESR are most 

responsive to vehicle emissions. Overall, the responses of these assays to composition 

needs to be examined in order to correctly interpret the wealth of information these assays 

can provide, and multiple assays may need to be used jointly to more fully understand PM 

OP (Xiong et al., 2017).   

2.4.1 Species Composition 

2.4.1.1 Metals 



 

Select metals have been shown to have significant effects on multiple OP assays at 

varying degrees. Insoluble and soluble transition metals have been correlated with •OH and 

H2O2 generation measured via OPESR and HPLC in PM samples worldwide (Alaghmand & 

Blough, 2007; Boogaard et al., 2012; Hellack et al., 2015; Janssen et al., 2014; Jung et al., 

2006; Kunzli et al., 2006; S. X. Ma et al., 2015; H. Shen & Anastasio, 2011; H. Shen et al., 

2011; Shi et al., 2003). Metal chelators reduced H2O2 and •OH production in ambient 

Californian PM samples by ~78% and ~97%, respectively (H. Shen & Anastasio, 2011; H. 

Shen et al., 2011). Specifically, iron (Fe(II) and Fe(III)) and soluble copper are critical to 

•OH generation and can synergistically increase •OH in SLF (Charrier & Anastasio, 2011; 

H. Shen & Anastasio, 2011; Vidrio, Jung, & Anastasio, 2008). In an OPESR study, the 

addition of desferrioxamine to ambient PM samples collected in Athens, Greece 

completely suppressed the DMPO-OH signal, showing the importance of iron to OPESR 

(Valavanidis, Salika, & Theodoropoulou, 2000). Soluble iron generates roughly six times 

more •OH in SLF than soluble copper (Charrier & Anastasio, 2011). Further, iron can play 

a synergistic role accelerating oxidation of organics and enhancing •OH generation through 

Fenton reactions (Y. Li, Zhu, Zhao, & Xu, 2012; Xiong et al., 2017). Cu (II) is more 

important for H2O2 production than Fe (II), but the rate of H2O2 generation in ambient 

particle extracts collected in California were lower than rates calculated from the measured 

soluble copper by 44 ± 22%, possibly due to H2O2 destruction by soluble iron or a reduction 

in soluble copper reactivity due to organic ligands in the PM (Charrier, McFall, Richards-

Henderson, & Anastasio, 2014; H. Y. Shen & Anastasio, 2012). Soluble manganese and 

vanadium have shown effects on •OH generation measured with HPLC, but soluble cobalt, 

chromium, nickel, zinc, lead, and calcium showed no effect (Charrier & Anastasio, 2011; 



 

Vidrio et al., 2008). •OH generation by metals soluble in SLF requires the presence of AA, 

and other antioxidants, like citrate and GSH, can have no effect or even inhibit •OH 

generation from metals like copper (Charrier & Anastasio, 2011; Vidrio et al., 2008).  

Metals have a larger impact on OP beyond •OH and H2O2 production, as shown by 

OPDTT, OPAA, OP SLFAA , and OP SLFGSH studies. OPAA and OP SLFAA  have shown significant 

correlations with both soluble and total metals, including copper, manganese, lead, zinc, 

and iron (Fang et al., 2016; Godri, Duggan, et al., 2010; Janssen et al., 2014; Pant et al., 

2015; Visentin et al., 2016). OP SLFGSH has been shown to increase with higher iron, lead, and 

aluminum content in ambient PM (Godri, Duggan, et al., 2010; Godri et al., 2011). OP SLFGSH 

and OP SLFAA  both varied significantly between underground subway stations due to the 

presence of metallic trace elements like copper and antimony from brakes and pantographs 

but not from PM2.5 concentration changes from ventilation, tunnel works, or station design, 

implying metal content may be more important than total PM2.5 to these assays (Moreno et 

al., 2017). One study estimated that up to 45% of variation in mass-based OPDTT of diesel 

exhaust particulate samples can be explained by soluble metals (Shinyashiki et al., 2009). 

However, OPDTT is not affected by iron like OPAA and  OP SLFGSH, so OPDTT may not fully 

capture ROS generated through Fenton chemistry or synergistic effects, specifically with 

regards to •OH generation (Xiong et al., 2017). Metals that do significantly impact OPDTT 

include soluble copper and manganese. Charrier, et al. (2012) and Charrier, et al. (2015) 

estimate that up to 78% of the loss of DTT in ambient PM2.5 and PM1 samples collected in 

California was due to soluble copper and manganese (Charrier & Anastasio, 2012) 

(Charrier et al., 2015), but only ~40% of the volume-normalized OPDTT of PM2.5 in Atlanta 

was estimated to be due to soluble metals (Verma, Fang, et al., 2015). OPDTT shows a 



 

nonlinear response to soluble copper and manganese when concentrations of these metals 

are high, and varying compositions with different metal and organic fractions could explain 

the differences between California and Georgia (Charrier & Anastasio, 2012; Charrier et 

al., 2016). The volume-normalized OPDTT of ambient quasi-ultrafine PM in Los Angeles 

and PM2.5 in northern Italy were correlated with other metals, including chromium, 

vanadium, nickel, cadmium, and zinc, but other studies show no correlation between mass-

normalized OPDTT and these metals (Jeng, 2010; Saffari, Daher, Shafer, Schauer, & 

Sioutas, 2014b; Verma et al., 2012; Visentin et al., 2016; Xiong et al., 2017). Volume-

normalized OPDTT is often correlated with PM concentration, so correlations with metals 

other than manganese and copper should be interpreted with caution as the association may 

be due to similar variations in metal and PM concentrations rather than a significant causal 

relationship between OPDTT and metals. Further, only the soluble forms of metals 

participate in redox reactions, so correlations between OP and total metals depends on the 

fraction of total metals that is soluble. Low particle pH due to the presence of ammonium 

sulfate can mobilize metals to react in OP assays (Fang, Guo, et al., 2017).   

2.4.1.2 Organic Species 

A limited number of the OP assays have been found to be sensitive to organic 

species, and those that are tend to be quite responsive. Many studies worldwide (United 

States, Greece, India, China) show a correlation between organic carbon (OC) and/or 

water-soluble organic carbon (WSOC) and OPDTT of PM collected during different seasons 

(Cho et al., 2005; S. Hu et al., 2008; Jeng, 2010; Liu, Zhang, Liu, & Zhang, 2014; Patel & 

Rastogi, 2018; Velali et al., 2016; Verma, Fang, et al., 2015; Verma, Ning, et al., 2009; 

Verma et al., 2011; Vreeland et al., 2017). 88% of variability in volume-normalized OPDTT 



 

of quasi-ultrafine ambient PM in the Los Angeles basin has been explained by WSOC, 

water-insoluble organic carbon (WIOC), elemental carbon, and hopanes, and 60% of 

OPDTT of water-soluble PM2.5 in the southeastern United States has been attributed to 

organic aerosols (Saffari et al., 2014b; Verma, Fang, et al., 2015). Specifically, the 

hydrophobic fraction of water-soluble and water-insoluble organic aerosols contribute to 

mass-normalized OPDTT (Verma et al., 2012). OPDTT is often correlated with polyaromatic 

hydrocarbon species (PAHs) like phenanthrene and pyrene, which, when oxidized, form 

quinones that are known to be DTT active, including phenanthraquinone (PQ), 1,2-

napthaquinone (1,2-NQ), and 1,4-NQ (in decreasing OPDTT order) (Cho et al., 2005; Chung 

et al., 2006; McWhinney, Badali, Liggio, Li, & Abbatt, 2013; Xiong et al., 2017). PAHs 

that are converted to DTT-active quinones can be bound to the surfaces of soot, and black 

carbon coated in 1,4-NQ  significantly increased mass-normalized OPDTT compared to 

untreated black carbon particles (Antinolo, Willis, Zhou, & Abbatt, 2015; McWhinney, 

Badali, et al., 2013; Pant et al., 2015). The methanol extracts of OPDTT are higher than 

water-soluble PM extracts because the less polar solvent can extract hydrophilic and 

hydrophobic organic species, although water-soluble organic PM components are still 

significant contributors to OPDTT and may be more biologically available (Rattanavaraha 

et al., 2011; Verma, Fang, et al., 2015; Verma et al., 2012; Yang et al., 2014). Further, 

soluble forms of metals, including iron and copper, can synergistically increase the effects 

of quinones on OP in multiple assays, such as OPDTT, OPESR, and •OH generation in SLF, 

even if those assays are not sensitive to organic species (Charrier & Anastasio, 2015; Y. Li 

et al., 2012; Xiong et al., 2017). Soluble manganese has shown synergistic effects with 

quinones on OPDTT, while soluble copper appears to have an antagonistic effect with 



 

quinones on the same assay (Yu, Wei, Cheng, Subedi, & Verma, 2018). Contrarily, 

manganese appears to have an antagonistic relationship with quinones on •OH generation 

(H. R. Yu et al., 2018), while quinones and soluble iron or copper react synergistically to 

form •OH (H. R. Yu et al., 2018). Future work investigating the synergistic effects of 

species on different assays as well as the effect of organic species on OP assays, such as 

OPGSH, would be useful to better understand impacts of PM composition on OP. 

Table 2-2. Species showing evidence of an impact on OP, either using correlation 

analyses, measuring OP of pure solutions, or exposing ambient samples to metal 

chelators (note there is no differentiation with the use of SLF or not).  

Assay Species Driving Responses in OP Assay 

DTT 

Metals 

• Soluble non-specific (Shinyashiki et al., 2009) 

• Soluble copper (Charrier & Anastasio, 2012; Charrier et al., 2016; 

Charrier et al., 2015) 

• Soluble manganese  (Charrier & Anastasio, 2012; Charrier et al., 

2016; Charrier et al., 2015) 

Organics 

• OC (including WSOC and WIOC) (Cho et al., 2005; Fang et al., 

2016; S. Hu et al., 2008; Jeng, 2010; Liu, Zhang, et al., 2014; 

Velali et al., 2016; Verma, Fang, et al., 2015; Verma, Ning, et al., 

2009; Verma et al., 2011; Verma et al., 2012; Vreeland et al., 

2017) 

• PAH’s and quinones (Cho et al., 2005; Chung et al., 2006; 

McWhinney, Badali, et al., 2013; Totlandsdal, Lag, Lilleaas, 

Cassee, & Schwarze, 2015) 

• HULIS (Dou, Lin, Kuang, & Yu, 2015; Y. Ma et al., 2017a; 

Verma, Fang, et al., 2015; Verma et al., 2012; Verma, Wang, et 

al., 2015) 



 

Table 2-2 continued  

 

Synergistic Effects 

• Soluble manganese with quinones (H. R. Yu et al., 2018) 

GSH 

Metals 

• Total aluminum (Godri, Duggan, et al., 2010)  

• Total lead (Godri, Duggan, et al., 2010) 

• Total iron (Godri et al., 2011) 

AA 

Metals 

• Soluble copper (DiStefano et al., 2009; Fang et al., 2016; Visentin 

et al., 2016) 

• Total copper (Janssen et al., 2014; Pant et al., 2015) 

• Total iron (Godri, Duggan, et al., 2010; Godri et al., 2011; 

Janssen et al., 2014) 

• Soluble iron (53) 

• Total lead (Godri, Duggan, et al., 2010) 

• Total zinc (Godri et al., 2011) 

• Soluble manganese (Visentin et al., 2016) 

Organics 

• OC (Calas et al., 2018) 

 

 



 

Table 2-2 continued  

ESR 

Metals 

• Total non-specific (Alaghmand & Blough, 2007; Boogaard et al., 

2012; Janssen et al., 2014; Kunzli et al., 2006) 

• Soluble copper (Hellack et al., 2015; Shi et al., 2003) 

• Soluble iron (Arangio, Tong, Socorro, Poschl, & Shiraiwa, 2016; 

Hellack et al., 2015; Y. Li et al., 2012; Makino, Hagiwara, Hagi, 

Nishi, & Murakami, 1990; Valavanidis et al., 2000) 

• Soluble vanadium (Shi et al., 2003) 

Synergistic Effects 

• Soluble iron with anthraquinone (Y. Li et al., 2012) 

• Soluble iron with quinones (Arangio et al., 2016) 

•OH production 

measured via HPLC or 

fluorescence1 

Metals 

• Soluble non-specific (DHBA, BA) (Jung et al., 2006) 

• Soluble copper (DHBA, BA, TPT) (Charrier & Anastasio, 2011; 

DiStefano et al., 2009; H. Shen & Anastasio, 2011; Son et al., 

2015; Vidrio et al., 2008) 

• Soluble iron (BA) (Charrier & Anastasio, 2011; Vidrio et al., 

2008) 

• Total iron (BA) (S. X. Ma et al., 2015) 

• Soluble manganese (BA) (Charrier & Anastasio, 2011; Vidrio et 

al., 2008)  

• Soluble vanadium (BA) (Charrier & Anastasio, 2011; Vidrio et 

al., 2008) 

Organics 

• Quinones (Xiong et al., 2017) 

 



 

Table 2-2 continued 

 

Synergistic Effects 

• Elemental iron with quinones (TPT) (Xiong et al., 2017) 

• Soluble iron with quinones or copper (BA) (Charrier & 

Anastasio, 2015) 

H2O2 production 

measured via HPLC or 

fluorescence1 

Metals 

• Soluble non-specific (POPHAA) (H. Shen et al., 2011) 

• Soluble copper (POPHAA) (Charrier et al., 2014; Wang, 

Arellanes, Curtis, & Paulson, 2010) 

• Soluble iron (POPHAA) (Wang et al., 2010) 

• Soluble zinc (POPHAA) (Wang et al., 2010) 

Organics 

• Quinones (Xiong et al., 2017) 

1probe denoted in parentheses  

Photochemical aging of organic species has been found to be an important factor 

for particle-bound ROS and OPDTT, particularly in conversion of PAH’s to DTT-active 

quinones. The influence of chemical aging can be seen in spatial and temporal variations 

of OP. Volume-normalized OPDTT per elemental carbon (EC) surface area was found to be 

4-5x higher at an urban site than roadside side in Atlanta, suggesting that PAH-coated soot 

requires oxidation through aging to convert EC-surface-bound PAHs to redox-active 

quinones (Fang, Zeng, et al., 2017). Higher mass-normalized OPDTT in Los Angeles was 

found for quasi-ultrafine PM samples collected in the afternoon when OC has a higher 

contribution from secondary processes than morning samples with fresh OC from rush hour 



 

(Saffari et al., 2016; Verma, Ning, et al., 2009). Furthermore, aged emissions and 

oxygenated derivatives of species are often more correlated with OP than their precursor 

chemicals. Diesel PM2.5 exhaust from shipping vessels exhibited higher •OH production in 

SLF for plume exhaust than freshly emitted particles (Kuang et al., 2017). Particle-bound 

ROS measured using a BPEAnit probe showed higher correlations with oxygenated OC 

than total OC of diesel and biodiesel fuels, and higher particle-bound ROS concentrations 

were found in aged diesel particle exhaust from common-rail engines than unaged diesel 

particle exhaust (Pourkhesalian et al., 2015; Stevanovic et al., 2013). The OPDTT per mass 

OC of fresh trash-burning emissions in India was found to be an order of magnitude lower 

than OPDTT of ambient air with significant aged components (Vreeland et al., 2016). The 

oxygenated derivative of 1,4-NQ (5-hydroxy-1,4-NQ) was found to be intrinsically similar 

or more DTT-active than its parent compound (McWhinney, Badali, et al., 2013; 

McWhinney, Zhou, & Abbatt, 2013; Verma, Wang, et al., 2015), and a study in the 

southeastern United States reported higher correlations between mass-based OPDTT of 

water-soluble PM2.5 and more-oxygenated organic aerosols (MO-OOA) than less-

oxygenated organic aerosols, as identified by Aerosol Mass Spectrometry (AMS) (Verma, 

Fang, et al., 2015). Humic-Like Substances (HULIS) is composed of MO-OOA and is 

associated with a dominant fraction of mass-based OPDTT of ambient PM2.5 in the 

southeastern United States (Verma, Fang, et al., 2015). Correlations between OPDTT of 

PM10 in Beijing, China and ammonium and nitrate, tracers of secondary processes, along 

with correlations of OPDTT of total suspended particles in Milan, Italy and global radiation, 

a proxy for secondary oxidizing organics, further the conclusion that aging increases OPDTT 

(Liu, Zhang, et al., 2014; Perrone et al., 2016). Exposure to ozone, a result of 



 

photochemistry, increases ambient particle-bound ROS as shown by DCFH analyses of 

ambient PM samples of various size fractions in New York, Texas, and California 

(Khurshid, Siegel, & Kinney, 2014; Venkatachari et al., 2007; Venkatachari et al., 2005). 

Further, mass-based OPDTT of oxidized flame soot has been found to be 1.5 – 2 times higher 

than soot not exposed to ozone (Holder, Carter, Goth-Goldstein, Lucas, & Koshland, 

2012). Ozone-exposed black carbon exhibits a higher mass normalized OPDTT than 

untreated black carbon, mostly likely due to quinone formation from soot-bound PAH 

oxidation by ozone (Antinolo et al., 2015; Pant et al., 2015). Sulfate is the only secondary 

species consistently found to not significantly contribute to OPDTT, but secondary acids, 

like ammonium sulfate, can have an indirect effect on OP by reducing pH of an aerosol 

and, in turn, solubilizing metals that react in OPDTT (J. T. Bates et al., 2015; Fang, Guo, et 

al., 2017; Fang et al., 2016; Pant et al., 2015; Patel & Rastogi, 2018).  

Multiple chamber studies have investigated the effects of secondary organic 

aerosols (SOA) on OP. Certain species, especially quinone-derived SOA like naphthalene 

SOA, have been shown to have high mass-normalized OPDTT (McWhinney, Badali, et al., 

2013; McWhinney, Zhou, et al., 2013; Tuet et al., 2017). In general, anthropogenic SOA, 

like  m-xylene SOA, toluene SOA, and naphthalene SOA, show higher intrinsic OPDTT 

than biogenic SOA, such as isoprene SOA, α-pinene SOA, and β-caryophylene SOA 

(Jiang, Jang, Sabo-Attwood, & Robinson, 2016; Tuet et al., 2017). Conversely, H2O2 

production in SLF measured with HPLC was higher for α-pinene and β-pinene SOA than 

toluene SOA (Wang, Kim, et al., 2011). Interestingly, adding DTT to the solution analyzed 

by HPLC increased H2O2 production from toluene SOA by a factor of 2.6 but had no effect 

on the pinene SOA (Wang, Kim, et al., 2011). Kramer, et al. (2016) reports that isoprene-



 

derived hydroxyl hydroperoxide (ISOPOOH) showed significantly higher mass-

normalized OPDTT than other isoprene-derived epoxides and SOA, suggesting the 

importance of organic peroxides to OPDTT (Kramer et al., 2016). However, the impact of 

ISOPOOH was only half of the impact of 1,4-NQ (Kramer et al., 2016). It should be noted 

that the OPDTT protocol in Kramer et al. (2016) used a different metal chelator than the 

original, more commonly used method developed in Cho et al. (2005) [EDTA in Kramer 

et al. (2016) and Chelex 100 resin in Cho et al. (2005)], which dampens the catalytic 

generation of certain PM species, like copper and manganese. Based on analyses performed 

at the Georgia Institute of Technology, the OPDTT of 1,4-NQ using the Kramer et al. (2016) 

method is, on average, 1.3-1.5 times lower than the OPDTT response for the same quinone 

using the Cho et al. (2005) method, reflecting that the Kramer et al. (2016) method may 

miss the effects of some species on DTT oxidation. Overall, although differences in 

chamber conditions and OP assay methods exist between studies, anthropogenic SOA 

seems to be more critical to OPDTT than biogenic SOA.  

Finally, volatility of organic molecules may play a significant role in OP with semi-

volatile species significantly impacting OPDTT and particle-bound ROS (Biswas et al., 

2009; Miljevic et al., 2010). After heating ambient quasi-ultrafine PM samples from Los 

Angeles, essentially removing semi-volatile components, OPDTT of the samples 

significantly decreased (Verma et al., 2011).  

2.4.2 Source Contribution 

 Identifying emission sources that contribute to OP could be useful for developing 

air quality control strategies aiming to protect human health. Mass-normalized OPDTT can 



 

vary by a factor of 8 between sources identified using single-particle mass spectrometry 

(Charrier et al., 2015). High correlations between OPDTT and benzo[g]pyrene (BgP), PAHs, 

alkanes, hopanes, and steranes along with transition metals that share similar vehicular 

sources with primary organics imply that vehicle exhaust contributes to OPDTT (Cho et al., 

2005), (Saffari et al., 2014b; Shirmohammadi et al., 2016). Vehicular abrasion and brake 

and tire wear tracers, like metals, have been correlated with OPDTT and OPAA (Fang et al., 

2016; Shirmohammadi et al., 2017). The inclusion of tailpipe emissions within 100m of 

traffic and break and tire wear PM10 emissions within 50m of traffic improved a land-use 

regression estimate of OP SLFGSH (Yanosky, Tonne, Beevers, Wilkinson, & Kelly, 2012). 

Further, the association between OPDTT and brown carbon and/or levoglucosan suggests a 

biomass burning influence on OP (Samara, 2017; Verma et al., 2012). A thorough 

examination of emissions source impacts on OP could provide useful insights into the 

relationships between PM and health. 

2.4.2.1 Vehicles 

 An extensive amount of laboratory and field studies have been conducted showing 

that diesel exhaust is a significant source of particle-bound ROS and OP (Akhtar et al., 

2010; Alaghmand & Blough, 2007; Fujitani, Furuyama, Tanabe, & Hirano, 2017; 

McWhinney, Badali, et al., 2013; Valavanidis et al., 2000). The redox activity of diesel 

exhaust particles (DEP) can vary based on engine configuration, driving conditions, 

photochemical aging of exhaust (as previously discussed), and fuel type (Figure 1) (Fox et 

al., 2015). Research shows that microalgael biodiesel blends have smaller particle-bound 

ROS concentrations than regular diesel (Rahman et al., 2015). Further, volume-normalized 

OPDTT was significantly lower for biodiesel exhaust compared to CARB ultra-low sulfur 



 

diesel (Karavalakis et al., 2017). Conversely, other studies show an increase in particle-

bound ROS and OPESR in biofuels compared to diesel (Godoi et al., 2016; Pourkhesalian 

et al., 2014). OPESR and OPDTT capture different components of ROS generation, with 

OPESR focusing on •OH production and OPDTT measuring chemical depletion by oxidation, 

which may explain the discrepancy between results and emphasizes the importance of 

discerning which of the OP assays is relevant to health.  

Control technologies like selective catalytic reduction (SCR) can reduce the impact 

of both diesel and biodiesel blends on OP and particle-bound ROS by reducing PM 

emissions (Godoi et al., 2016). Active and passive diesel particulate filters (DPF) and diesel 

oxidation catalysts have all demonstrated a removal of volume-normalized particle-bound 

ROS concentrations measured by a DCFH probe by more than 75% on average with 

passive DPF driving the largest reduction (~ 99%) (Pavovic, Holder, & Yelyerton, 2015). 

However, mass-normalized particle-bound ROS concentrations increased ~ 2-3 times in 

downstream particles after active DPF was installed (Pavovic et al., 2015). The EC/PM 

ratio was lower downstream of the active-DPF than the baseline vehicle, suggesting that 

the higher mass-normalized particle-bound ROS was associated with the higher fraction of 

organic compounds (Pavovic et al., 2015). Other studies have supported that DPF and other 

control technologies (e.g., SCR) decrease OPDTT per distance travelled by 60-98% but can 

increase mass-normalized OPDTT up to 3 times higher (Biswas et al., 2009; Geller et al., 

2006). However, not all control technologies on all vehicle types cause higher mass-

normalized OPDTT (Biswas et al., 2009; Cheung et al., 2009). Interestingly, a large 

reduction in OPDTT was seen following the use of a thermodenuder (150 °C) during 

collection of diesel exhaust with various control technologies, which may explain why 



 

certain control technologies that are less effective at removing semivolatile species than 

refractory PM fractions reduce OP less (Biswas et al., 2009).   

 

Figure 2-1. Intrinsic OPDTT (median and standard deviations) of various emission 

sources studied in either ambient or chamber conditions at locations worldwide 

plotted on a log scale. The size fractions of average ambient PM are defined as: 

quasi-ultrafine (≤PM0.18), fine (≤PM2.5), and coarse (≤PM10).  

Gasoline vehicles, and traffic emissions in general, have been associated with 

multiple OP assays, including OPDTT, OPAA, OPESR, OP SLFAA , and OP SLFGSH (J. T. Bates et al., 

2015; Charrier et al., 2015; Fang et al., 2016; Fujitani et al., 2017; Shirmohammadi et al., 

2016; Szigeti et al., 2015; Valavanidis et al., 2000). In the southeastern United States, 

multiple source apportionment studies using positive matrix factorization (PMF) and the 

chemical mass balance method (CMB) have shown that vehicular emissions contribute to 

volume-normalized OPDTT and OPAA uniformly throughout the year with contributions 

ranging between 12% and 32% for OPDTT and ~45% for OPAA (Fang et al., 2016; Verma 

et al., 2014). In Beijing, vehicle-derived HULIS accounted for up to 23% of ambient OPDTT 



 

(Y. Ma et al., 2017a). Light-duty gasoline vehicles were found have the highest intrinsic 

water-soluble OPDTT (nmol min-1 µgsource
-1) out of 8 tested sources in Atlanta (J. T. Bates 

et al., 2015). In-vehicle concentrations of volume-normalized OPDTT have been reported as 

2 times higher than OPDTT at stationary roadside monitoring sites (Vreeland et al., 2017). 

The largest contributors to OPAA in Atlanta were reported to be traffic emissions and 

secondary process, such as metal mobilization by secondary acids, which also dominate 

summertime OPDTT in the southeastern United States (Fang, Guo, et al., 2017; Fang et al., 

2016; Verma et al., 2014). Vehicles were also found to be a dominant source of OPAA in 

Chamonix, France (Samuël et al., 2018). Particle-bound ROS measured using a BPEAnit 

probe found higher correlations with total traffic count than traffic composition, implying 

that total traffic count may be more important than gasoline or diesel vehicle count (Crilley 

et al., 2012). Local traffic as a whole has also been a strong predictor in land-use regression 

(LUR) models for volume-normalized OPESR and OPDTT in the Netherlands and OP SLFGSH in 

London (Yang et al., 2015; Yanosky et al., 2012). Further research is needed to investigate 

if the impacts of diesel and gasoline vehicles can be separated or if it is more useful to look 

at OP impacts of traffic as a whole.  

Vehicle emissions can significantly affect spatial variability of OP. Volume-

normalized OPDTT, OPAA, OPESR, and particle-bound ROS measurements (DCFH) were all 

found to be higher at an underground tunnel site than farm or urban background sites 

(Crilley et al., 2012; Janssen et al., 2014). OPESR of PM10 collected in Germany along a 

motorway showed ~1.4 times higher •OH production rates downwind than upwind in 72% 

of the observations (Hellack et al., 2015). OPESR of PM10 samples in the Netherlands 

showed 3.6 times and 6.5 times higher •OH generation rates at major roadways than urban 



 

background and suburban background sites, respectively (Boogaard et al., 2012). OPDTT 

has been shown to be more spatially homogeneous than OPAA and OPESR (Janssen et al., 

2014; Yang et al., 2015). Multiple studies report only slightly higher volume- and mass-

normalized OPDTT at roadways than urban background sites with ratios of roadway/urban 

background ranging from 1.1 to 1.2 for volume-normalized OPDTT of PM10 in Europe, from 

1.9 to 2.1 for mass-normalized OPDTT of quasi-ultrafine PM in California, and ~1.1 for 

volume-normalized OPDTT of water-soluble PM2.5 in Atlanta (Gao et al., 2017; Jedynska et 

al., 2017; Saffari et al., 2014b; Saffari et al., 2016; Shirmohammadi et al., 2017; Yang et 

al., 2015). The inability of LUR models to capture spatial variability in volume-normalized 

OPDTT in Europe may also be a sign of spatial homogeneity in OPDTT (Jedynska et al., 2017; 

Perrone et al., 2016). Traffic emissions with heterogeneous spatial patterns may account 

for a larger fraction of OPESR and OPAA than OPDTT (which has contributions from more 

homogeneous sources like aged biomass burning), which may explain the increase in 

spatial homogeneity of OPDTT compared to other OP measurements (Fang et al., 2016).  

2.4.2.2 Biomass Burning 

Biomass burning has a significant impact on OPDTT (Figure 1). In a study looking 

at the effect of organic aerosols on OPDTT of waster-soluble PM2.5, biomass burning organic 

aerosols showed significantly higher intrinsic OPDTT (151 ± 20 pmol min-1 µgsource
-1) than 

all other organic aerosols identified (next highest (36 ± 22 pmol min-1 µgsource
-1)) (Verma, 

Fang, et al., 2015). Wildfires in California have been shown to significantly increase mass-

based OPDTT (Verma, Polidori, et al., 2009). Biomass burning has been reported as the 

largest contributor to volume-normalized OPDTT of water-soluble PM2.5 in Atlanta and 

Beijing (J. T. Bates et al., 2015; Y. Ma et al., 2017a). Biomass burning emissions drive 



 

seasonal trends in OPDTT in the southeastern United States, Greece, and France with higher 

concentrations in the winter/spring than fall/summer (J. T. Bates et al., 2015; Calas et al., 

2018; Velali et al., 2016; Verma et al., 2014). Crop-burning does not seem to be a large 

contributor to mass-normalized OPDTT of biomass burning and varies by crop type, with 

highest values for wheat straw burning followed by rice husk and straw burning and then 

barley straw burning (Fushimi et al., 2017). Trash burning, on the other hand, produces 

extremely redox-active particles. Water-soluble OPDTT of trash burning in Bangalore, India 

exceeded 1000 nmol min-1 m-3 (most ambient measurements range between 0.1 and 1.7 

nmol min-1 m-3) and waste incineration contributed up to 21% of ambient HULIS-related 

OPDTT in Beijing (Y. Ma et al., 2017a; Vreeland et al., 2016).  

The relationship between biomass burning and OPAA is less clear. A study in 

Atlanta using CMB and PMF for source apportionment of PM2.5 showed that  biomass 

burning does not significantly contribute to OPAA , but a study in Chamonix, France using 

PMF on PM10 found a high contribution of biomass burning to OP SLFAA  (Calas et al., 2018; 

Fang et al., 2016; Samuël et al., 2018). The discrepancy could be explained by different 

measurement sites (the biomass burning source may be more aged in Atlanta than 

Chamonix), the use of SLF extraction in the Chamonix-based study but water extraction in 

the Atlanta-based study, or different PM sample size fractions (e.g., metal-containing 

mineral dust lofted during burning may have a disproportionate effect on PM10 relative to 

PM2.5)  

2.4.2.3 Other Source Impacts 



 

Road dust was reported to contribute roughly 12% of the volume-normalized OPDTT 

of water-soluble PM2.5 collected during the summer and fall in the southeastern United 

States (Verma et al., 2014). Dust storms and soil dust in China have contributed to volume-

normalized OPDTT of PM10 and PM2.5 samples, respectively (Liu, Baumgartner, et al., 2014; 

Liu, Zhang, et al., 2014; Secrest et al., 2016). However, Saharan dust does not appear to 

significantly contribute to OPDTT (Chirizzi et al., 2017). This difference may be driven by 

how much the PM samples have aged before collection, allowing acidic species, such as 

ammonium sulfate, to form and lower pH enough to solubilize metals and permitting time 

for internal mixing and dissolution.  

OPDTT of ship emissions has been measured between 0.01 and 0.04 nmol min-1 µg-

1, similar to some urban and traffic site measurements (Moldanova et al., 2013). PM10 from 

fireworks in London has been shown to have higher OP SLFGSH and OP SLFAA  than traffic (Godri, 

Green, et al., 2010), but emission from these sources are very localized and may not impact 

OP of most ambient PM.  

The contribution of biogenic emissions to OPDTT is still under debate as ambient 

and chamber study results are mixed (Figure 1). Multiple source apportionment studies 

show that PM2.5 isoprene-derived organic aerosols and secondary organic carbon from 

biogenic sources in the southeastern United States do not contribute significantly to OPDTT 

of water-soluble PM2.5 (J. T. Bates et al., 2015; Verma et al., 2014; Verma, Fang, et al., 

2015). However, a recent study in Chamonix, France using PMF found primary and 

secondary biogenic species to have the highest intrinsic OPDTT of PM10 out of all identified 

sources (Samuël et al., 2018).. Bioaerosols, especially fungal spores, have recently been 

shown to cause significant depletion of DTT, which may disproportionately affect PM10 



 

compared to PM of smaller size fractions and may be causing the high intrinsic OPDTT of 

biogenic aerosols in the Chamonix study (Samake et al., 2017). However, the authors 

caution that these biogenic sources contain black carbon from fossil fuel combustion, 

suggesting imprecision in the source apportionment approach.  

2.5 Size Distribution 

 There is growing interest in the relationship between particle size and OP as size 

impacts the path of particles in the body after inhalation. In general, mass-normalized 

OPDTT decreases with increasing particle size (Chirizzi et al., 2017; Janssen et al., 2014; 

Mugica et al., 2009; Ntziachristos, Froines, Cho, & Sioutas, 2007). Quasi ultrafine PM 

(<0.18µm) was found to have the highest intrinsic OPDTT  in multiple studies in Georgia 

and California (Cho et al., 2005; Fang, Zeng, et al., 2017; S. Hu et al., 2008; Jeng, 2010; 

N. Li et al., 2003). However, submicron PM (0.17µm ≤ DP ≤ 1.0µm in Fresno, California 

and 0.49µm ≤ DP ≤ 1.0µm in Thessaloniki, Greece) was found to have larger mass-

normalized OPDTT than ultrafine PM (<0.17µm and <0.49µm, respectively) (Charrier et al., 

2015; Samara, 2017). Based on a study in London, mass-normalized OP SLFAA  appeared to 

have no significant dependence on particle size, but mass-normalized OP SLFGSH illustrated a 

slight increase with increasing particle size (Godri et al., 2011).  

Volume-normalized OP, which is more relevant to health than mass-normalized 

OP, illustrates consistent peaks near 2 µm across studies. In Atlanta, water-soluble volume-

normalized OPDTT and OPAA peaked within 1-2.5 µm (Fang, Guo, et al., 2017; Fang, Zeng, 

et al., 2017). Similarly, volume-normalized ambient OPDTT in Los Angeles peaked between 

0.18 µm ≤ DP ≤ 2.5 µm, and both volume-normalized OP SLFGSH and OP SLFAA  in London peaked 



 

between 1.9 µm ≤ DP ≤ 10.2 µm (Godri et al., 2011; Zhang et al., 2016). The water-soluble 

fraction of volume-normalized OPDTT and OPAA in Atlanta was found to have a unimodal 

distribution due to fine-mode organics and coarse-mode metals mobilized by acidic species 

like sulfate in PM (Fang, Guo, et al., 2017; Fang, Zeng, et al., 2017). Water-insoluble 

volume-normalized OPDTT illustrated a bimodal distribution, with both fine and coarse 

modes due to DTT active species absorbed on the surfaces of soot and non-tailpipe traffic 

dust, respectively (Fang, Zeng, et al., 2017). The distribution of volume-normalized OPDTT 

varied between urban and roadside sites due to the difference in relative contributions of 

metals and oxygenated organics to PM. OPESR measurements show opposite trends of 

previously discussed OPDTT results with higher production efficiency in larger size 

fractions, specifically 4.6 and 3.1 times higher in PM10 than PM2.5 on a volume- and mass-

normalized basis, respectively (Boogaard et al., 2012). H2O2 and •OH generation measured 

with HPLC had higher rates in PM2.5 than PM10 on a volume-normalized basis but an 

opposing trend on a mass-normalized basis (H. Shen & Anastasio, 2011; H. Shen et al., 

2011). Overall, composition plays a significant role in OP size distribution and it appears 

that submicron and fine PM are most critical to mass-normalized and volume-normalized 

OPDTT, respectively, but may not be the largest contributors for other assays, such as OP SLFGSH 

and OPESR. 

2.6 Synthesis and Recommendations for Future Research 

 An increasing number of health studies have found relationships with OP, driving 

increased interest in acellular OP assays. OP captures the biologically relevant redox 

reactions driven by PM that can lead to oxidative stress, meaning it can be a useful 

multipollutant, multisource health indicator providing knowledge on the relationship 



 

between PM and health beyond what PM mass measurements alone provide. With 

consistent reductions in anthropogenic emissions, aerosol composition will continue to 

change with a growing biogenic fraction, possibly causing the relationship between PM 

and various health outcomes to change. OP, however, should continue to be a strong 

predictor of adverse health as it only captures redox-active species and sources and may 

more closely capture PM components that are related to certain health endpoints than PM 

mass, as observed in multiple studies that show OP exposure to be a better predictor of 

certain adverse health endpoints (e.g. asthma/wheezing, lung cancer, and ischemic heart 

disease) than PM concentration (Abrams et al., 2017; J. T. Bates et al., 2015; Delfino et al., 

2013; Weichenthal, Crouse, et al., 2016; Yang et al., 2016). Further, OP provides insight 

into specific processes that may mediate the health effects of PM, including aging 

(oxidation of quinones and solubilizing metals), and helps address specific questions 

relevant to regulatory initiatives, such as discerning best fuels and vehicle control 

technologies and what PM emission sources should be targeted for reduction. Finally, once 

there is a thorough understanding of what chemical species and interactions drive OP, we 

may be able to rely on just one measurement (OP) that integrates compositional effects 

rather than speciated measurements requiring a suite of instruments for certain types of 

health studies. It should be noted that OP only measures one potential mechanism of PM 

toxicity, oxidative stress, and other mechanisms are likely at work. Nevertheless, OP has 

shown promise within health studies and has potential advantages over PM concentration, 

and, thus, it is a critical area of research.  

Based on current literature, OPDTT and OP SLFGSH appear to be the most relevant OP 

assays to epidemiologic analyses as they both have been associated with acute and chronic 



 

health endpoints, and in some cases, have been found to be more strongly associated with 

adverse cardiorespiratory outcomes than PM concentration. On the other hand, OPAA has 

often been found to have null associations with health outcomes, so even though this assay 

may be informative for the ability of certain PM species to catalyze reactions, it does not 

seem to be relevant to health. More work is needed to confirm the associations between 

OPDTT and OP SLFGSHand reported health outcomes, but it would also be valuable to investigate 

the potential associations of OPDTT and OP SLFGSH with other health endpoints beyond 

cardiorespiratory effects, e.g. birth outcomes, motivated by observations of associations 

with PM in previous studies (H. H. Chang, Reich, & Miranda, 2012; Darrow, Klein, 

Strickland, Mulholland, & Tolbert, 2011; U.S. EPA, 2009). With a growing body of longer 

time-series data of OP, more thorough epidemiologic analyses on the effects of OP on 

chronic health could also be achieved. The impact of particle size on OP health associations 

is also of interest to inform regulatory initiatives.  

 The collected knowledge on species composition and emission source impact on 

OP could be useful for developing PM regulations aimed at protecting human health and 

guiding future research towards health-relevant species and sources. Copper is a critical 

metal in almost every OP assay, and OPDTT appears to be the most sensitive assay to 

organics (especially oxidize organics), though more work is needed to investigate 

synergistic or antagonistic effects of various species and sources and the impact of organics 

on OP SLFGSH(less work has focused on compositional impacts on this assay compared to 

OPDTT). Diesel vehicles are critical to OP due to metal and soot-bound quinone 

concentrations, though the relative importance of diesel and gasoline vehicles versus total 

traffic count has not been fully explored and may change with changing engine 



 

configurations, control technologies, fuel types, and vehicle fleets. The large contribution 

from biomass burning drives temporal variation in OPDTT. Future work investigating local 

and large-scale variations in OP driven by emissions could provide critical information for 

exposure studies.  

When comparing OP studies, it is important to identify the particular method used. 

For example, some studies have modified the original OPDTT method developed by Cho, et 

al. (Cho et al., 2005) by using different metal chelators, reaction times, PM filters, and 

extraction methods, which can affect the magnitudes of and potentially relative 

species/source contributions to OPDTT. Different compositions of extraction fluids affect 

OPDTT of ambient PM (Calas et al., 2017), and the composition of SLF significantly 

impacts the sensitivities of antioxidant depletion assays to various species with AA being 

the most critical antioxidant in SLF for OP responses to metals. For epidemiologic studies, 

both water-soluble and SLF studies (OPDTT and OP SLFGSH) have shown significant 

associations with adverse health outcomes, so the advantages or disadvantages of using 

SLF from a health research standpoint are not clear at this time. Overall, care should be 

taken when comparing study results and designing research.  

 Ultimately, developing “standard” methods for different OP assays that use 

consistent PM size fractions would improve upon the value of comparing studies as well 

as provide a clearer picture of the effects of PM on OP. Overall, the current studies have 

suggested that OPDTT and OP SLFGSH  may be the most relevant OP assays for cardiorespiratory 

health, and traffic and biomass burning emissions significantly impact OP assays due to 

their metal and organic components. Longer term measurements in multiple locations 



 

focusing on OPDTT and OP SLFGSH  would be valuable for future epidemiologic analyses to 

determine the mode of action of PM toxicity, to confirm associations with cardiorespiratory 

endpoints, to identify associations with non-cardiorespiratory endpoints, and to help target 

strategies to better improve health. With a growing measurement database allowing for 

more epidemiologic and source apportionment studies, OP may be a useful multipollutant, 

multisource indicator for elucidating potential relationships between PM and adverse 

health impacts associated with the oxidative stress mechanism.  

  

 

  



 

CHAPTER 3.                                                                      

REACTIVE OXYGEN SPECIES GENERATION LINKED TO 

SOURCES OF ATMOSPHERIC PARTICULATE MATTER AND 

CARDIORESPIRATORY EFFECTS 

Abstract 

 

Exposure to atmospheric fine particulate matter (PM2.5) is associated with 

cardiorespiratory morbidity and mortality, but the mechanisms are not well understood. 

We assess the hypothesis that PM2.5 induces oxidative stress in the body via catalytic 

generation of reactive oxygen species (ROS). A dithiothreitol (DTT) assay was used to 

measure the ROS-generation potential of water-soluble PM2.5. Source apportionment on 

ambient (Atlanta, GA) PM2.5 was performed using the chemical mass balance method with 

ensemble-averaged source impact profiles. Linear regression analysis was used to relate 

PM2.5 emission sources to ROS-generation potential and to estimate historical levels of 

DTT activity for use in an epidemiologic analysis for the period of 1998−2009. Light duty 

gasoline vehicles (LDGV) exhibited the highest intrinsic DTT activity, followed by 

biomass burning (BURN) and heavy-duty diesel vehicles (HDDV) (0.12 ± 0.02, 0.074 ± 



 

0.01, and 0.061 ± 0.03 nmol min-1
 μg-1

source, respectively). BURN contributed the largest 

fraction to total DTT activity over the study period, followed by LDGV and HDDV (43, 

22, and 17%, respectively). DTT activity was more strongly associated with emergency 

department visits for asthma/wheezing and congestive heart failure than PM2.5. This work 

provides further epidemiologic evidence of a biologically plausible mechanism, that of 

oxidative stress, for associations of adverse health outcomes with PM2.5 mass and supports 

continued assessment of the utility of the DTT activity assay as a measure of ROS-

generating potential of particles. 

3.1 Introduction 

 Air pollution exposure is one of the world’s leading environmental health risks, 

causing approximately 7 million deaths worldwide in 2010 (Lim, Vos, & Flaxman, 2013). 

Fine particulate matter (PM2.5) is a prevalent air pollutant, and epidemiologic studies show 

that exposure to PM2.5 increases risk for cardiorespiratory morbidity and mortality 

(Brunekreef & Holgate, 2002; Delfino et al., 2005; Pope et al., 2009). However, the 

mechanisms of toxicity are not well understood. Reactive oxygen species (ROS) either 

transported on particles or catalytically generated by particles through redox reactions are 

suspected to cause injurious cellular responses. This work focuses on the catalytic 

generation of ROS by PM2.5. It is hypothesized that PM2.5 inhalation can induce oxidative 

stress, leading to a variety of health effects, by catalyzing the generation of ROS in excess 

of the antioxidant capacity of the body (Baulig et al., 2003; Donaldson et al., 2001). Small-

scale health studies have linked particulate matter ROS-generating potential to 

inflammation and decreased lung capacity, although inconsistent results highlight the need 



 

for a more comprehensive population-level epidemiologic analysis (Delfino et al., 2013; 

Hogervorst et al., 2006; Janssen et al., 2015). 

ROS-generating potential of PM2.5 may vary by PM2.5 composition. For example, 

quinones and transition metals have been shown to catalyze redox reactions in the body 

(Ghio et al., 2012). Biomass burning organic aerosols and highly-oxidized organic aerosols 

have been identified as having high intrinsic toxicities with regard to ROS-generating 

abilities (Verma, Fang, et al., 2015). This study aims to identify emission sources of PM2.5 

that have the ability to catalytically generate ROS and investigate the relationship between 

these particles and human health. Identifying sources of redox-active PM2.5 rather than 

species is important for policy development and provides an additional understanding of 

the compounds involved in ROS generation.  

A variety of methods are available for measuring the capacity of PM2.5 to catalyze 

redox reactions. The dithiothreitol (DTT) assay is a commonly used acellular assay because 

its response correlates well with biological markers like hemeoxygenase (HO-1) 

expression in cells and exhaled nitric oxide fraction in human subjects (Ghio et al., 2012; 

Hogervorst et al., 2006). Water-soluble and water-insoluble fractions of particulate matter 

exhibit different mechanisms of action in the body, (Verma, Fang, et al., 2015) and while 

both components are important, this research focuses on the water-soluble fraction. A DTT 

assay was used in this study to quantify ROS-generation potential of water-soluble PM2.5 

(WS-PM2.5). Source apportionment techniques were used with linear regression analyses 

to assess intrinsic DTT activity of PM2.5 sources. The model was used to simulate historical 

trends in ambient DTT activity for use in epidemiologic studies. Developing better 



 

indicators of the potential of PM2.5 to impact health facilitates optimization of air pollution 

control strategies. 

3.2 Methods 

3.2.1 Sample Collection and Analysis 

Atlanta is a major urban population center with relatively high emissions of PM2.5 

from a variety of sources (including mobiles sources, biomass burning, etc.) and secondary 

aerosol formation, making it a suitable U.S. location to study particle toxicity. Additionally, 

it is the site of detailed work identifying source impacts on PM2.5 (Balachandran et al., 

2012), which have also been used in prior health studies (Gass, Balachandran, Chang, 

Russell, & Strickland, 2015; J. A. Sarnat et al., 2008). Sampling was conducted at a 

Southeastern Aerosol Research and Characterization (SEARCH) site in Atlanta [Jefferson 

Street (JST)] from June 2012 to April 2013. Ambient PM2.5 was collected using a high-

volume sampler (HiVol, Thermo Anderson, nondenuded, nominal flow rate 1.13 m3/min, 

PM2.5 impactor). Prebaked 8 x 10” quartz filters were used for particle collection. Samples 

were taken from 12 pm (noon) to 11 am, creating 23 h integrated samples. All samples 

were wrapped in prebaked aluminum foil and stored in freezers (-18 °C) until ROS-

generation analysis. Filter extraction processes were similar to those described in detail by 

Verma et al. (2014)   . In brief, 1 in. punches were extracted in 15 mL of deionized water 

via sonication in a water bath for 30 min. Each extract was filtered using a 

polytetrafluoroethylene (PTFE) 0.45 µm pore syringe filter to remove insoluble materials 

and fibers. These WS-PM2.5 samples were used in the DTT analysis.  



 

A semi-automated cell-free DTT assay instrument was developed and used to 

measure the rate at which ambient WS-PM2.5 catalytically generates ROS (J. T. Bates et 

al., 2015), creating a uniquely large data set of 196 23 h integrated measurements. DTT 

acts as a surrogate of the biological reducing agents nicotinamide aldenine dinucleotide 

(NADH) and reduced nicotinamide adenine dinucleotide phosphate (NADPH), and the 

ROS-generating potential of ambient WS-PM2.5 was quantified by the DTT consumption 

rate (i.e. DTT activity). The method of measuring DTT activity is described in detail by 

Cho et al. (2005)   . Briefly, the rate of DTT consumption was measured from a mixture of 

100 μM DTT, a WS-PM2.5 filter sample (3.5 mL) collected using the HiVol sampler, and 

potassium phosphate buffer (0.1 mL, pH 7.4). This mixture was incubated in a 

ThermoMixer (Eppendorf North America, Inc., Hauppauge, NY, USA) at 37 °C. DTT 

consumption was measured at five time steps (4, 13, 23, 30, and 41 min). For each, a 100 

μL aliquot was mixed with 1 mL of 1% (w/v) trichloroacetic acid (TCA) to quench the 

reaction, and 0.5 mL 5,5’-dithiobis(2-nitrobenzoic acid) (DTNB) and 2 mL of 

tris(hydroxymethyl)-aminomethane (Tris) buffer [0.08 M with 4 mM ethyl-

enediaminetetraacetic acid (EDTA)] were added to form 2-nitro-5-mercaptobenzoic acid 

(TNB) by reacting with the residual DTT. A spectrometer was used to measure the light 

absorption of this product to quantify the remaining DTT concentrations. The 

measurements at the five time-steps, along with the initial DTT concentration, were used 

to estimate a linear slope parameter representing the DTT consumption rate (nmol min-1) 

associated with the aerosol sample collected from a known volume of ambient air. Volume-

normalized DTT (DTTv) is the rate of moles of DTT consumed per minute per volume of 

air sampled (nmol min-1 m-3). Mass-normalized DTT (DTTm), with units of nmol min-1 



 

μg-1, was determined by dividing DTTv for each day by total 23 h PM2.5 mass measured 

from a tapered elemental oscillating microblance (TEOM). The recently developed 

analytical system allowed for automated measurements at a rate of one sample per hour 

and the ability to generate large DTT data sets at a reasonable cost (J. T. Bates et al., 2015). 

Other air quality data, including total species concentrations [organic carbon (OC), 

elemental carbon, ions, and metals], were used for source apportionment of total PM2.5. 

Different measurements had to be used for source apportionment than the filters for DTT 

analysis because the source profiles used in the chemical mass balance (CMB) method 

were based on total species concentrations, whereas only water-soluble species were 

measured from the DTT filters. The measurements of total species concentrations were 

collected at JST over the same time period as the DTT filter collection (June 2012 to April 

2013) using methods detailed in Hansen et al. (2006)  , Edgerton et al. (2005)  , and Hansen 

et al. (2003)  .  In brief, total PM2.5 was collected using a Rupprecht & Patashnick model 

2025 sequential FRM monitor. The 24 h integrated samples (from midnight to midnight) 

were collected daily on Teflon filters (47 mm diameter and 2 µm pore size) and were 

collected, processed, and analyzed according to FRM protocols ("Appendix L to Part 50-

Reference Method for the Determination of Fine Particulate Matter as PM2.5 in the 

Atmosphere," 2001). A particle composition monitor (PCM) built by Atmospheric 

Research & Analysis, Inc. was used to measure sulfate, nitrate, ammonium, OC, and black 

carbon (BC) every 3 days. 24 h integrated samples of ions were collected on Teflon filters 

(47 mm diameter and 2 µm pore size) and analyzed using ion chromatography. 24 h 

integrated samples of OC and BC were collected on quartz filters (37 mm diameter) and 

measured using thermal/optical reflectance. Denuders (annular for the ions and activated 



 

carbon honeycomb for OC and BC) were used for removal of select gases. Flow through 

the PCM was maintained at 16.7 L/min. Metals, including aluminum, calcium, copper, 

iron, potassium, manganese, lead, silicon, titanium, and zinc, were measured from the FRM 

filter samples using X-ray fluorescence. These measurements were available daily.  

3.2.2 Source Apportionment 

Using collocated measures of total PM2.5 and PM2.5 species (ions, carbon, and 

metals), PM2.5 source impacts were constructed. Source apportionment was performed on 

the ambient PM2.5 measurements using the CMB model version 8.2 with month-specific 

ensemble-based source profiles for PM2.5 that combined source impacts from three 

receptor-based models (CMB-LGO, CMB-MM, and Positive Matrix Factorization) and a 

chemical transport model (Community Multi-scale Air Quality model) (Balachandran et 

al., 2012; Gass et al., 2015; J. A. Sarnat et al., 2008). Sources in these profiles include light-

duty gasoline vehicles (LDGV), heavy-duty diesel vehicles (HDDV), soil dust (SDUST), 

biomass burning (BURN), ammonium sulfate (AMSULF), ammonium bisulfate 

(AMBSULF), ammonium nitrate (AMNITR), and not otherwise apportioned organic 

carbon (OTHER_OC), which mostly contains secondary biogenic carbon. To correct for 

temporal misalignment between DTT measurements collected from noon to 11 am and 

source impact estimates from midnight to midnight, the sources identified were linearly 

interpolated to the time period over which the DTT filters were taken. 

3.2.3 Linear Regression  

The impact of specific sources of PM2.5 on DTT activity was estimated using a 

multivariate linear regression model (Figure 3-1).  The regression identifies the 



 

relationship between the measured times series of WS-PM2.5 DTT activity and the 

estimated time series of source impacts on total PM2.5. The use of total PM2.5 for sources 

in the regression was required for applying the regression to previous years for which 

source impacts were only available for total PM2.5 and not WS-PM2.5. PM2.5 sources 

rather than species were investigated in this work for the following reasons: First, the 

ROS-generation potential of emission sources circumvents the problem that some of the 

bulk species measurements actually represent many species that are expected to have 

different health impacts. For example, what is measured as OC encompasses many 

different chemical species, including those expected to significantly generate ROS (e.g., 

quinones and other humic-like substances) versus those less so (Charrier & Anastasio, 

2012; Cho et al., 2005; Verma et al., 2012).  Additionally, the chemical composition of 

OC varies seasonally; therefore, the ROS-generation potential per unit of OC is not stable 

over time (Verma, Fang, et al., 2015). This leads to the second reason of using sources: 

stability of the model over time. The composition of sources, such as vehicle emissions 

and biomass burning, is more constant over time, and the source profiles used in this 

work are consistent from 1998 to 2013; therefore, a model trained on 2012-2013 data can 

be used to backcast estimates to earlier years. Finally, using source impacts rather than 

species significantly reduces the number of independent variables in the model, many of 

which are highly correlated when using just species.  



 

 

Figure 3-1. Measured DTT activity plotted against DTT activity estimated using the 

regression model. This data is for the 2012-2013 period. The R2 between estimated 

and measured DTT is 0.49. 

DTT activity was treated as the dependent variable, with sources as the 

independent variables. All programming was conducted using the statistical software 

package R 3.0.2. The assumption of a linear relationship between DTT activity and 

sources was supported by graphs of joint probability density functions (jpdf) between 

measured DTT activity of WS-PM2.5 and concentrations of each individual source impact 

that illustrated linear relationships. An F test was used to assess the significance of each 

source impact in the model on estimating DTT activity. Coefficients of sources with p 

values of the F statistic >0.05 were not considered statistically significant. Using a 

backward elimination approach, the least significant source was removed from the model 

and least squares regression was performed again with one fewer independent variable. 

This process was repeated until only significant coefficients remained (Table A-1). 

Ammonium sulfate was not included in the model because additional work performed 

during this study and by others show that sulfate alone is not DTT-active. This was 



 

supported by direct laboratory experiments of a sulfate-containing solution in which DTT 

activities of blank filters and filters with only sulfate were compared and found to be 

similar (Figure A-8-2). We also performed regression analyses in which source impacts 

had been normalized to a standard deviation of one to investigate the sensitivity of DTT 

activity to each source and provide further evidence of the differing contributions to DTT 

activity of each source impact. 

3.2.4 Historical DTT estimation 

The DTT activity model was used to backcast estimated water-soluble DTT activity 

of daily PM2.5 for the greater metropolitan Atlanta area for the period from August 1998 to 

December 2009 (a period during which DTT activity measurements were not available but 

daily speciated air quality measurements were available, allowing source apportionment of 

PM2.5). It was assumed that the chemical composition of PM2.5 source impacts has not 

changed significantly over time so that source profiles could be applied to all years from 

1998 to 2013. Vegetation in Georgia has not changed significantly over the past decade, 

making biomass burning source profiles relatively stable. Additionally, the EC/OC ratio 

(the main driver of vehicle source profiles) of average vehicle fleets in the 20 county non-

attainment Atlanta calculated using MOVES 2010 are only ~20% different between 

previous years (averaged over 1998—2009) and 2012 (U. S. Environmental Protection 

Agency, 2009). These reasons, along with the reasons for using source impacts in the linear 

regression, support using a model trained on 2012—2013 data to backcast DTT estimates 

for earlier years. Additionally, it was assumed that the DTT activity estimated at one 

location (JST) using the regression applies to the 5 county metro Atlanta area used in the 

epidemiologic study because DTT activity per volume of air has been shown to be spatially 



 

uniform (Verma et al., 2014). To obtain estimates of DTT activity from 1998 to 2009, daily 

concentrations of PM2.5 from each source were multiplied by their respective coefficients 

in the model and then summed to estimate daily total DTT activity. This resulting DTT 

time series was then used in an epidemiologic analysis to investigate the link between DTT 

activity and emergency department (ED) visits for asthma/wheezing and congestive heart 

failure. 

3.2.5 Epidemiologic Modeling  

We conducted time series analyses using modeling methods and control for 

confounding variables employed in our previously reported epidemiologic analyses (Gass 

et al., 2015; Strickland et al., 2010; Winquist, Schauer, Turner, Klein, & Sarnat, 2015) to 

characterize epidemiologic associations between health events and PM2.5, estimated DTT 

activity, and measures of PM2.5 species at JST. The outcome was the daily number of ED 

visits with a primary International Classification of Disease, 9th Revision, (ICD-9) code of 

asthma or wheeze (493 and 786.07) or congestive heart failure (428) for a patient with a 

home ZIP code within the Atlanta 5 county metro area (Fulton, DeKalb, Gwinnett, Cobb, 

Clayton) recorded in an Atlanta hospital from Aug 1, 1998 to Dec 31, 2009 (other outcome 

groups that are not presented here include chronic obstructive pulmonary disease, 

pneumonia, and ischemic heart failure; in preliminary examinations, none of these showed 

significant associations with DTT activity or with PM2.5 mass). Over the study period, 

263,665 and 70,587 ED visits were recorded for asthma/wheezing and congestive heart 

failure, respectively. The primary air quality variables of interest were 24 h averaged 

estimated DTT activity and 24 h averaged PM2.5 from JST (models were run for each of 

these variables separately as well as models with both variables included). Because health 



 

effects of pollution may be observed over several subsequent days, the exposures were 

modeled as lag 0—2 (average pollutant level for that day, the previous day, and the day 

before). This analysis was modeled as a Poisson generalized linear regression allowing for 

over-dispersion using SAS 9.4 statistical software (SAS Institute, Cary, NC). 

The covariates in this model were chosen on the basis of prior knowledge of 

variables that could potentially act as temporal confounders between ED visits and daily 

pollution levels. Models controlled for temporal trends using transformed cubic splines 

with monthly knots.  Linear, quadratic, and cubic terms were included for mean daily dew 

point (lag 0—2), maximum daily temperature, and minimum daily temperature (lag 1—2). 

Other variables included indicators of hospital contribution time periods (not all hospitals 

provided data for the whole time period August 1998 to December 2009; the model 

controlled for the subset of days that the data for each hospital was available for), season 

of year, day of week, and holiday indicators.  Interaction terms were included between 

season and maximum temperature (linear, quadratic, and cubic) and between season and 

day of week because the effects of the latter variables can change according to season. The 

use of the maximum temperature from that day as well as the lagged minimum temperature 

was based on previous analyses showing that this temperature control was highly predictive 

of ED visits while minimizing covariate collinearity. Sensitivity analyses were conducted 

varying age category (pediatric ED visits versus all ED visits), geographic extent (20 

county Atlanta area versus 5 county Atlanta area), and ICD code priority (any 

asthma/wheeze or congestive heart failure code versus primary asthma/wheezing or 

congestive heart failure code). Results for these analyses remained similar to those 

presented. 



 

Risk ratios and their 95% confidence intervals were calculated for estimated DTT 

activity in a single pollutant model, total PM2.5 in a single pollutant model, and estimated 

DTT activity and total PM2.5 in a two-pollutant model for lag 0—2.  The risk ratios 

represent the relative risk of ED visits per unit increase in DTT activity or PM2.5 mass. The 

interquartile ranges (IQR, a measure of variability that reflects the difference between the 

75th percentile and the 25th percentile of a distribution) of DTT activity and PM2.5 were 

used as exposure units.  For example, if the risk ratio was 1.08, an increase in pollution by 

1 IQR unit would increase the risk of ED visits for the illness in question by 8%.  The two-

pollutant model allows for the assessment of health outcome associations of DTT activity 

controlling for total PM2.5 mass, providing additional evidence that any measured 

association with health outcomes represents the effects of ROS-generating potential.  

3.3 Results and Conclusions 

3.3.1 Source Contribution to DTT activity 

This paper investigates the differing ROS-generation capabilities of various source 

impacts on PM2.5 and their relationships to acute health effects. First-level analysis on the 

relationship between DTT activity and PM2.5 looked at the correlation coefficients between 

DTT activity, species, and PM2.5 source impacts (Table 3-1 and Table A-2). Volume-

normalized DTT activity (DTTv, nmol min-1 m-3) was positively correlated with PM2.5 (R 

= 0.57), indicating that one or more components of this pollutant contribute to its ROS-

generating capability. The negative correlation between DTT activity normalized by PM2.5 

mass (DTTm, nmol min-1 μg-1) and total PM2.5  (R =  -0.25) suggests that certain species, 



 

such as sulfate, that contribute to total PM2.5 mass do not on their own contribute much to 

the ROS-generating capability. These correlations support the regression results. 

Table 3-1. Pearson correlation coefficients between DTT activity and CMB-

estimated sources for the 2012-2013 period.  

 
Total 

PM
2.5

 LDGV HDDV SDUST BURN AMSULF AMBSLF AMNITR OTHER 

OC 

DTTv 
nmol min-1 m-3 

0.57 0.56 0.27 0.18 0.63 0.30 -0.02 0.32 0.08 

DTTm 
nmol min-1 μg-1 

-0.25 0.34 -0.29 0.25 0.25 -0.16 -0.29 0.22 -0.47 

 

Advanced analysis involved the development of a regression relating DTT activity 

of WS-PM2.5 to total PM2.5 source impacts. The model was developed using DTT activity 

measurements in Atlanta, GA from June 2012 to April 2013 and source impacts estimated 

from the CMB method applied to collocated total PM2.5 and species measurements, leading 

to a linear relationship between the ROS activity of WS-PM2.5 (DTTa) and source impacts 

on total PM2.5: 

 𝐷𝑇𝑇𝑎 =  0.066 +  0.12 𝐿𝐷𝐺𝑉 +  0.061 𝐻𝐷𝐷𝑉 +  0.074 𝐵𝑈𝑅𝑁 (3-1) 

DTTa acts as a multi-pollutant, multi-source indicator, a measure integrating across species 

and sources with respect to their oxidative potential. Equation (3-2) has an R2 of 0.49 and 

mean squared error of DTT activity of 0.013 nmol min-1 m-3 (4.0% of mean of 

measurements). Cross-validation was performed to evaluate this model. A total of 10% of 

the DTT measurements was removed; the regression coefficients were reevaluated; and the 



 

mean-squared error was calculated. This process was repeated 50 times, and the average 

mean-squared error over 50 iterations was 0.011 nmol min-1 m-3 (3.4% of the mean of 

measurements).  

From this analysis, we find that gasoline vehicle emissions exhibited the highest 

intrinsic DTT activity, as shown by their coefficient in the regression (nmol min-1 μg-1
source), 

which is consistent with studies showing links between DTT activity and oxygenated OC 

and metals (Cho et al., 2005; Verma et al., 2014; Verma, Fang, et al., 2015). Diesel particles 

have been shown to be DTT-active; however, most of the DTT activity occurs in the water-

insoluble fraction of diesel particles (Verma et al., 2012) and, thus, was not measured in 

this work and is not captured by our approach, consistent with its relatively low intrinsic 

activity (i.e. lowest coefficient in the model). The high intrinsic DTT activity of biomass 

burning is most likely driven by its high oxygenated OC content (Verma et al., 2014; 

Verma, Fang, et al., 2015). 

 

Figure 3-2. Daily estimated DTT activity of WS-PM2.5 from Aug 1998 to Dec 2009 

calculated using the regression. The pie chart shows the average contribution of 

each source over the time period. 



 

While gasoline vehicles exhibited the highest intrinsic toxicity in this analysis, 

biomass burning accounted for the highest fraction of total estimated DTT activity on a per 

volume of air basis (Figure 3-2). Biomass burning, light-duty gasoline vehicles, and heavy-

duty diesel vehicles contributed 43, 22, and 17% (standard deviations: 16, 11 and 11%), 

respectively. Results from measurements and estimated historical DTT activity suggest a 

strong seasonal trend, with higher values in the winter than summer, driven mostly by 

biomass burning emissions. The largest source of biomass burning PM2.5 in Atlanta is 

prescribed burns, occurring primarily from winter to early spring (Tian et al., 2009). This, 

along with the lower wintertime mixing heights, results in a strong seasonal trend in DTT 

activity. Mobile source emissions are more evenly spread throughout the year.  

Table 3-2. Regression coefficients and standard errors for each source in the DTT 

regressions with normalized dataa.  

 LDGV HDDV BURN AMSULF AMBSLF OTHER_OC 

DTTv 
nmol min-1 m-3 

0.33 

(<0.01) 

0.13 

(0.018) 

0.44 

(<0.01) 
- - - 

DTTm 
nmol min-1 μg-1 

0.22 

(0.068) 
- 

0.21 

(0.078) 

-0.25 

(0.077) 

-0.28 

(0.077) 

-0.32 

(0.092) 

aStandard errors are in parentheses. The coefficients for SDUST and 

AMNITR were not statistically significant and were not included in the regressions. 

Normalized regressions were used to further investigate sensitivity of DTT activity 

to each source, and results suggest that gasoline vehicles and biomass burning drive the 

variation in DTT activity of WS-PM2.5 (Table 3-2). The negative coefficients in the 

normalized DTTm regression provide further evidence that ammonium sulfate is not 

significantly DTT-active. Although OC is usually correlated with DTT activity, 



 

OTHER_OC (linked to secondary OC formation)(Balachandran et al., 2012) identified 

during source apportionment was not found to be a significant contributor to DTT activity, 

likely because it consists mostly of biogenic components derived from isoprene and terpene 

oxidation, which are not as DTT-active as biomass burning and mobile source WS-PM2.5 

(Verma, Fang, et al., 2015). 

Uncertainties in the DTTa regression arise from measurement error, interpolation 

of data, source apportionment, and possible incomplete source information in the model.  

A non-zero intercept in the DTTa regression is an indicator of model misspecification, 

which could arise from a missing source. The intercept is partly due to artifacts collected 

on the undenuded filters used for the DTT analysis and smaller contributions from other 

sources. Regressions between OC from the undenuded filters used for DTT analysis and 

OC from the denuded SEARCH data set used for source apportionment were created to 

investigate the presence of positive artifacts that may affect DTT activity, leading to the 

following relationship:  

 OCDTT_Filter  =  1.48 ∗  OCSEARCH_Filter  (R2 =  0.72)  (3-2) 

Equation (3-2) indicates that the filters used for DTT analysis had on average ~1.5 times 

the concentration of OC as the denuded filters used for source apportionment, consistent 

with the presence of a positive OC artifact on the DTT filters.  

3.3.2 Health Analysis  

The health model used daily PM2.5 source impacts from 1998 to 2009 to produce 

daily DTT activity estimates for an epidemiologic analysis on acute health effects. The 



 

average estimated DTT activity over the time period was 0.44 nmol min-1 m-3, with a 

standard deviation of 0.24 nmol min-1 m-3. The IQR for estimated DTT activity and PM2.5 

were 0.21 nmol min-1 m-3 and 8.3 µg m-3, respectively. Time series analyses using 

emergency ED visit data showed that estimated DTT activity was positively associated 

with ED visits for both asthma/wheeze and congestive heart failure (Figure 3-3). The risk 

ratio for DTT activity of WS-PM2.5 in a two-pollutant model (with DTT activity and total 

PM2.5) for asthma/wheeze was 1.015 [95% confidence interval (CI) = 1.002—1.027] per 

IQR increase. The risk ratio for WS-PM2.5 DTT activity with total PM2.5 in a two-pollutant 

model for congestive heart failure was 1.024 (95% CI = 1.004—1.044) per IQR increase. 

Each risk ratio was significant at a 95% level. Estimated DTT activity was the only single 

pollutant measure out of several tested pollutant measures (PM2.5, O3, elemental carbon, 

and OC) that exhibited a significant link to congestive heart failure. Further, in two-

pollutant models with DTT activity and PM2.5, included in the model simultaneously, 

estimated DTT activity was significantly associated with asthma/wheeze and congestive 

heart failure, while PM2.5 was not associated with these outcomes (Figure 3-3). These 

results are interesting in that DTT activity is likely not estimated as well as PM2.5 is 

measured, and overall, they provide support that DTT activity may be a driver of health 

effects from PM2.5. 



 

(a)   (b)  

Figure 3-3. Effect of ROS (by estimated DTT activity) on ED visits for (a) 

asthma/wheeze and (b) congestive heart failure in the Atlanta 5 county area, from 

Aug 1, 1998 to December 31, 2009, with 0—2 day lag. The model labeled “DTT 
only” or “PM2.5 only” illustrates the results from the model run only with DTT 

activity or total PM2.5 mass as the exposure variable, respectively. The model labeled 

“DTT and PM2.5” illustrates the results from the two-pollutant model, in which both 

DTT activity and total PM2.5 mass were used as exposure variables. 

The observed associations between estimated DTT activity and cardiorespiratory 

ED visits are consistent with the hypothesis that oxidative stress is a mechanism of particle 

toxicity. Furthermore, the association between estimated DTT activity and asthma/wheeze 

and congestive heart failure and a lack of association between PM2.5 and these health 

effects in the two-pollutant models support the interpretation that endogenous ROS-

generation potential may be a property of particulate matter responsible, in part, for 

detrimental health effects. Thus, DTT activity may be a helpful multipollutant, multisource 

indicator of the potential health consequences of PM2.5 exposure, complementary to PM2.5 

mass. 

DTT-active components of ambient WS-PM2.5 potentially pose a larger risk to 

human health than the components that do not significantly generate ROS, which is 



 

supported by the observed association between estimated DTT activity and asthma/wheeze 

and congestive heart failure ED visits.  Given the potential implications of these results on 

assessing the effectiveness of control strategies and regulations, verification of the study 

results and advancements in this research area are important. Much of the mass in PM2.5 is 

sulfate and, in many locations, biogenically-derived secondary OC (Hidy et al., 2014), 

which have water-soluble fractions that are not as DTT active as other species. The links 

between ROS, biomass burning and vehicles as sources, and both respiratory and 

cardiovascular health outcomes can focus controls on those sources.  

This study is the first to estimate population-level health effects of a measure of 

ROS activity and to use an epidemiologic approach to linking PM2.5 ROS to health 

endpoints.  Our results suggest that reducing pollutant emissions associated with WS-PM2.5 

DTT activity may measurably decrease ED visits associated with asthma and wheezing 

attacks and congestive heart failure. Additional studies exploring DTT/health associations 

in other populations or using spatially distributed measurements could also be useful for 

elucidating the relationship between DTT activity and health outcomes. By presenting 

further evidence of oxidative stress as a potential mechanism for particle toxicity, this work 

provides epidemiologic evidence of a biologically plausible mechanism for the observed 

associations of PM2.5 concentration with cardiorespiratory effects. 

 

  



 

CHAPTER 4.                                                                      

SOURCE IMPACT MODELING OF SPATIOTEMPORAL TRENDS 

IN PM2.5 OXIDATIVE POTENTIAL ACROSS THE EASTERN 

UNITED STATES 

Abstract 

Oxidative potential (OP) of particulate matter measures the ability of particles to 

catalytically generate reactive oxygen species while simultaneously depleting antioxidants, 

leading to oxidative stress and, in turn, inflammation in the respiratory tract and 

cardiovascular system. OP measurements have been linked with adverse cardiorespiratory 

endpoints, such as asthma/wheezing, lung cancer, and ischemic heart disease. However, 

measurements of OP are limited, restricting the area over which epidemiologic analyses 

can be performed. In this work, a modeling approach is developed and evaluated that uses 

limited measurements of water-soluble OP and PM2.5 source impact analysis to estimate 

OP over a large spatial domain (eastern United States). The dithiothreitol (DTT) assay was 

used to measure daily OP of water-soluble PM2.5 from June 2012 to July 2013 across four 

sites in the southeastern United States. Daily PM2.5 source impacts were estimated using 

CMAQ-DDM during the same time period and related to OPDTT measurements via 

multivariate linear regression. This regression was then applied to spatial fields of daily 

CMAQ-DDM source impacts across the eastern United States to provide daily spatially-

varying OPDTT estimates. Backward selection during regression development showed 

vehicle and biomass burning emissions to be significantly predictive of OPDTT, as observed 

in previous studies. The fire source impact was the largest contributor to OPDTT (29%) 



 

across the study domain during the study time period, and both spatial and seasonal 

variations were largely driven by fires. Vehicular impacts, especially diesel impacts, were 

more significant in urban areas. This CMAQ-DDM modeling approach provides a 

powerful tool for integrating OP measurements from multiple locations and times into a 

model that can provide spatiotemporal exposure fields of OPDTT across a wide spatial 

domain for use in health analyses, and the results presented offer insight into the large-

scale spatial distribution of OPDTT driven by emission source impacts.  

4.1 Introduction 

 Fine particulate matter (PM2.5) is estimated to have contributed to 3.2 million 

premature deaths in 2010 and to roughly 5% of all cardiorespiratory deaths across the 

globe, but the biological mechanisms are not fully understood (Lim et al., 2012). There is 

growing evidence that particulate matter exposure can induce systemic oxidative stress in 

the body, leading to inflammation in various organ systems (Baulig et al., 2003; Donaldson 

et al., 2001; Strak et al., 2012). Oxidative stress occurs when there is an imbalance of 

reactive oxygen species (ROS) and antioxidant defenses. Various acellular assays exist to 

measure the ability of PM components to initiate and/or propagate redox reactions that 

catalytically generate ROS while simultaneously depleting antioxidants, otherwise known 

as the oxidative potential (OP) of PM, and may characterize biologically relevant 

components of PM2.5 that can lead to oxidative stress. The dithiothreitol (DTT) assay is a 

commonly used acellular OP measurement technique, and multiple epidemiologic analyses 

have illustrated links between OPDTT and acute cardiorespiratory endpoints, including 

asthma and wheezing attacks, congestive heart failure, ischemic heart disease, and 

microvascular function (Abrams et al., 2017; J. T. Bates et al., 2015; Yang et al., 2016; 



 

Zhang et al., 2016). In a large fraction of those studies, OPDTT was found to have a higher 

risk ratio than PM2.5 mass in both one- and two-pollutant models, suggesting that the redox 

reactions that the OPDTT assay captures are, at least partially, responsible for some of the 

observed PM-related health impacts. However, due to the constraints on current 

measurement technologies, epidemiologic research using OPDTT measurements in the 

United States has been restricted to specific urban sites in California and Georgia (Abrams 

et al., 2017; Delfino et al., 2013; Zhang et al., 2016). Having a capability to estimate OPDTT 

in locations where measurements are not available could provide valuable data for 

extensive epidemiologic analyses across larger study domains, offer insight into population 

exposures to OPDTT, and guide decision-making on future locations of interest for OPDTT 

measurements to better capture spatial variability.  

 A limited number of studies have attempted to estimate OP where and when 

measurements are not available. Land-use regression (LUR) modeling has been used in 

Europe to simulate OP using various assays, including OPDTT (Jedynska et al., 2017; Yang 

et al., 2015). However, LUR models developed for one site may not be applicable to other 

locations. The objective of the current work is to develop a modeling approach more 

generally applicable to multiple locations at urban and regional scales and identify source 

impacts on OP. Previous studies have shown that emission source impacts can successfully 

be used as explanatory variables in regression analyses to estimate OPDTT (J. T. Bates et 

al., 2015; Fang et al., 2016; Samuël et al., 2018). Multiple source apportionment techniques 

exist and have been used to investigate source impacts on OPDTT in previous work, 

including the Chemical Mass Balance (CMB) method, single-particle mass spectrometry, 

and Positive Matrix Factorization (PMF), but these methods are limited to identifying 



 

source impacts at one location (J. T. Bates et al., 2015; Charrier et al., 2015; Samuël et al., 

2018; Verma et al., 2014). Here, a linear regression modeling approach is used with a 

photochemical air quality modeling approach for source impact analysis to estimate OPDTT 

across a large spatial domain extending beyond the locations of limited observational data. 

Utilizing source impacts rather than individual species reduces the number of predictor 

variables and the challenge of collinearity between independent variables. Further, source 

impact analyses can provide useful information for regulatory initiatives along with 

elucidating the effects of bulk species, such as organic carbon (OC), on OP as their effects 

relate to different sources. 

OPDTT of water-soluble PM2.5 was measured using a semi-automated instrument at 

four locations in the southeastern United States as part of the Southeastern Center for Air 

Pollution and Epidemiology (SCAPE) study (J. T. Bates et al., 2015). PM2.5 source 

apportionment was performed during the same time period of the OPDTT measurements 

across the eastern United States. Biases in source impacts were minimized using two data 

assimilation techniques (Y. Hu et al., 2014; C. E. Ivey, Holmes, Hu, Mulholland, & 

Russell, 2016). Linear regression analysis was used to relate these bias-corrected source 

impacts at the measurement sites to OPDTT observations, and the final model was applied 

to source impact predictors across the entire modeling domain to estimate OPDTT across the 

eastern United States. These results provide estimates of the large-scale spatiotemporal 

trends in OPDTT and add to the growing knowledge on the relationships between emission 

sources and OPDTT. Further, while the approach has been applied to OPDTT measurements, 

other OP assay measurements (e.g., using ascorbic acid or electron spin resonance) could 

be used in a similar fashion.  



 

 

4.2 Methods 

4.2.1 Sample Collection and Analysis 

 OPDTT measurements during SCAPE have been described in detail previously (J. 

T. Bates et al., 2015; Verma et al., 2014). Briefly, PM2.5 was collected on pre-baked 8 x 10 

in. quartz filters using non-denuded Thermo Anderson high-volume samplers at four 

locations in the southeastern United States, two urban [Atlanta, GA (ATL) and 

Birmingham, AL (BHM)] and two rural [Yorkville, GA (YRK) and Centerville, AL 

(CTR)] sites, all of which were part of the Southeastern Aerosol Research and 

Characterization Study (SEARCH) network sites (Hansen et al., 2003) (Figure B-1). 

Samples in ATL were taken daily from June 2012 through April 2013 from 12 pm (noon) 

to 11 am DST (23 h integrated samples) while a trailer was deployed with a high-volume 

sampler to the three other sites on a monthly basis: June 2012 and December 2012 at YRK 

and June 2013 to July 2013 at CTR and BHM (same collection hours). OPDTT was analyzed 

using a semi-automated instrument based on the DTT assay protocol described in Cho et 

al. (2005) (J. T. Bates et al., 2015).  

 Total PM2.5 concentration and speciated measurements, including 11 elements (Na, 

Al, Si, K, Ca, Ti, Mn, Fe, Cu, Zn, Pb) and five major components (OC, elemental carbon 

(EC), nitrate, ammonium, sulfate), were needed for the data assimilation techniques used 

for bias reduction in source apportionment analyses (described in detail later). These 

speciated measurements were obtained from the U.S. Environmental Protection Agency’s 

Chemical Speciation Network (CSN) (142 sites) across the eastern United States and from 



 

the SEARCH network at the OPDTT measurement sites (4 sites) (Figure B-1). The methods 

for speciated analysis at CSN sites is detailed in Solomon et al., (2014),   and speciated 

analysis techniques at SEARCH sites are described in detail in Hansen et al. (2003), 

Edgerton et al. (2005), and Hansen et al. (2006). Measurements were screened for validity 

using species specific detection limits (DL) and uncertainties.  

4.2.2 PM2.5 Source Impact Estimation  

 Source apportionment of PM2.5 was performed using a hybrid chemical transport-

receptor model approach with a secondary species bias correction algorithm to obtain best 

estimates with minimized biases (S. Hu et al., 2008; Y. Hu et al., 2014). First, PM2.5 and 

relevant species (OC, EC, nitrate, ammonium, sulfate) were modeled using the Community 

Multiscale Air Quality model (CMAQ) version 5.0.2, and gridded sensitivities of those 

species to source-specific emissions were estimated using the direct-decoupled method 

(CMAQ-DDM) applied to three-dimensional air quality models and extended to include 

the capability to follow PM (Byun & Schere, 2006; Cohan, Hakami, Hu, & Russell, 2005; 

Dunker, 1981, 1984; Napelenok, Cohan, Hu, & Russell, 2006). Simulations were run with 

the CB05 chemical mechanism using a 12 km x 12 km resolution grid with 13 vertical 

layers of different thicknesses. The Weather Research Forecast (WRF) model version 3.6.1 

was applied with 35 vertical layers to generate the necessary meteorological fields. 

Emissions were processed using the Sparse Matrix Operator Kernel for Emissions 

(SMOKE) version 3.6 with the 2011 National Emissions Inventory and grouped into 16 

source-specific categories: agriculture (AG), aircraft (AC), biogenic (BI), coal (CL), dust 

(DU), fire (FI—including wildfire, prescribed burning, and agricultural burning), fuel oil 

(FO), metal processing (MT), natural gas combustion (NAT), non-road gasoline (NG), 



 

non-road diesel (ND), on-road gasoline (OG), on-road diesel (OD), other (OT—any 

remaining unapportioned emissions), residential wood burning (WO), and seasalt (SS) 

(detailed description of each source in Table B-1)(CEP, 2003). These categories were 

grouped from previous work dividing SMOKE emissions into 33 source specific categories 

using SCC codes (Y. Hu et al., 2014). The final source impact estimates include primary 

and secondary PM2.5 contributions by source. CMAQ-DDM was applied to a domain 

covering a majority of the eastern continental United States and parts of Canada during the 

OPDTT measurement time period (June 2012 through July 2013) to estimate sensitivity of 

PM2.5 and major components (OC, EC, nitrate, ammonium, sulfate) to each emission 

source. Source impacts on relevant metals (any metals measured at the OPDTT sites, 

including: Na, Al, Si, K, Ca, Ti, Mn, Fe, Cu, Zn, Pb) were assessed by applying source-

specific PM2.5 composition profiles from SPECIATE to daily PM2.5 source-specific 

impacts.  

 Biases in daily CMAQ-DDM source impacts were minimized using a hybrid 

chemical transport-receptor model approach (Y. Hu et al., 2014). Because emission source 

impacts are not measured directly, this technique utilizes a receptor model approach with 

CMAQ-DDM source impacts to minimize biases in primary species (relevant metals, EC, 

and primary OC). This method is described in detail in Hu et al. (2014)  . Briefly, CMAQ-

DDM estimates are designated as the “baseline” source impacts (𝑆𝐴𝑖,𝑗𝑏𝑎𝑠𝑒) for species i and 

source j. These baseline estimates are inputs to the objective equation (4-1), along with 

speciated measurements (𝑐𝑖𝑜𝑏𝑠), simulated species concentrations from CMAQ (𝑐𝑖𝑠𝑖𝑚), and 

uncertainties of those two inputs (𝜎𝑐𝑖𝑜𝑏𝑠 and 𝜎𝑐𝑖𝑠𝑖𝑚).  



 

𝑋2 = ∑ [[𝑐𝑖𝑜𝑏𝑠−𝑐𝑖𝑠𝑖𝑚−∑ 𝑆𝐴𝑖,𝑗𝑏𝑎𝑠𝑒(𝑅𝑗−1)𝐽𝑗=1 ]2
𝜎𝑐𝑖𝑜𝑏𝑠2 +𝜎𝑐𝑖𝑠𝑖𝑚2 ]𝑁𝑖=1 + Γ ∑ 𝑙𝑛(𝑅𝑗)2𝜎ln (𝑅𝑗)2𝐽𝑗=1  (4-1) 

The optimization equation is run for each day that measurements are available at each 

observational site in order to optimize 𝑅𝑗 by minimizing the objective function 𝑋2. 𝑅𝑗 

values are linear day-specific and site-specific adjustment factors for each source j. 

Adjustment calculations are constrained by the uncertainties of species observations, 

uncertainties in CMAQ modeled species concentrations, and uncertainties in source 

contribution due to emission errors expressed as the log of the estimated uncertainty (𝜎𝑐𝑖𝑜𝑏𝑠, 

𝜎𝑐𝑖𝑠𝑖𝑚 , 𝑎𝑛𝑑 𝜎ln (𝑅𝑗), respectively) so that source impact adjustments vary with uncertainty in 

species. In other words, the uncertainties weight the adjustment of source impacts so that 

components with larger uncertainties are weighted less, allowing more uncertain species 

and source impacts to vary more. 𝑅𝑗 is also constrained between 0.1 and 10 due to the 

similarities between source categories leading to possible collinearities that could create 

unrealistic source impact adjustments. Γ is a term introduced to balance the two sides of 

equation (4-1). Nonlinear optimization using sequential quadratic programming is 

employed to minimize this objective function (Fletcher, 1987; Gill, Murray, & Wright, 

1981).  

In this work,  𝑅𝑗  values were calculated for 146 measurement sites across 202 days 

with available speciated data for specific sites resulting in 12,211 data points with 17 

species on which to perform the optimization. Voronoi tessellation was used to spatially 

interpolate these 𝑅𝑗  values from the 146 speciated measurement sites to all 12km x 12km 



 

CMAQ-DDM grids. 𝑅𝑗values were also linearly temporally interpolated across days 

without speciated measurement data when 𝑅𝑗  could not be calculated. Final interpolated 𝑅𝑗values were applied to 𝑆𝐴𝑖,𝑗𝑏𝑎𝑠𝑒 at each 12km x 12km CMAQ-DDM grid to obtain daily 

primary adjusted source impacts and to reconstruct daily simulated species concentrations 

across the modeling domain using the following equations:  

𝑆𝐴𝑖,𝑗𝑎𝑑𝑗 = 𝑅𝑗 ∗ 𝑆𝐴𝑖,𝑗𝑏𝑎𝑠𝑒 (4-2) 

𝑐𝑖𝑎𝑑𝑗 = 𝑐𝑖𝑠𝑖𝑚 + ∑ 𝑆𝐴𝑖,𝑗𝑏𝑎𝑠𝑒 ∗ (𝑅𝑗 − 1)𝐽𝑗=1    (4-3) 

Secondary species, including ammonium, sulfate, nitrate, and secondary OC, can 

comprise a large fraction of PM2.5 and have seasonal and spatial biases in CMAQ, so source 

impacts were further adjusted using a secondary species correction algorithm described in 

detail in Ivey, et al. (2016)  .  Briefly, this method reduces biases in the secondary species 

to zero at observation sites using a data assimilation technique that weights the differences 

between observations and simulated species by the magnitude of source impacts and 

distributes this weighted difference across source impacts. This secondary species 

correction method along with the hybrid chemical-transport receptor model achieve 

optimized estimates of CMAQ-DDM PM2.5 source impacts across the eastern United 

States. Previous evaluation has shown that these methods greatly reduce biases in modeled 

species concentrations and result in source impacts that are in line to prior studies where 

measurements are available (Y. Hu et al., 2014; C. Ivey, Holmes, Hu, Mulholland, & 

Russell, 2014; C. E. Ivey et al., 2016). Normalized mean biases for bulk species (EC, OC, 

nitrate, ammonium, and sulfate) all fell to ≤ 27%. Certain trace metals (specifically 

titanium and calcium) were the most uncertain species due to emissions uncertainties 



 

(Table B-2). For total PM2.5, from which the source impacts used in OPDTT regression 

development are derived [equation (4-4)], the normalized mean biases were -5.4% across 

the modeling domain and -1.5% at OPDTT measurement sites during the study time period 

(Table B-2).  

Table 4-1. Average source impact estimates on species in μg m-3 after applying 

primary and secondary corrections with spatial and temporal interpolation. 

Averages are available across the entire eastern United States modeling domain 

(Eastern US) and at locations of monitoring data that the regression was trained on 

(OPDTT measurement sites).  

 AC AG BI CL DU FI FO MT NAT OG NG OD ND OT SS WO 

Eastern US 0.02 0.35 0.35 0.86 0.35 0.74 0.55 0.07 0.34 0.39 0.17 0.29 0.38 0.83 0.08 0.30 

OPDTT 

measurement 

sties 

0.04 0.21 0.30 1.2 0.34 0.49 0.68 0.37 0.41 0.75 0.18 0.60 0.54 1.33 0.09 0.22 

*Abbreviations: Agriculture (AG), Aircraft (AC), Biogenic (BI), Coal (CL), Dust 

(DU), Fire (FI), Fuel Oil (FO), Metal Processing (MT), Natural Gas Combustion 

(NAT), Non-road Gasoline (NG), Non-road Diesel (ND), On-road Gasoline (OG), 

On-road Diesel (OD), Other (OT), Residential Wood Burning (WO), and Seasalt 

(SS) 

4.2.3 Regression Development  

The impacts of specific emission sources on OPDTT of PM2.5 were estimated using 

multivariate linear regression analyses. The sixteen identified CMAQ-DDM source 

impacts at each OPDTT measurement site were related to OPDTT observations using methods 

similar to those developed in Bates, et al. (2015) but applied to multiple OPDTT 

measurement sites and using more source impacts. Source-specific intrinsic OPDTT were 



 

assumed to be similar across measurement locations, and thus OPDTT data from all four 

measurement sites were used in one regression. Doing so enabled sufficient data for 

regression training and ensured availability of sufficient OPDTT measurements per season 

so that specific sources that were dominant during specific seasons (such as prescribed 

burning in the winter) were not missed. In model development, OPDTT was the dependent 

variable and 16 CMAQ-DDM source impacts the independent variables. First, each source 

impact was included in the regression, resulting in an R2 of 0.48 (adjusted R2 of 0.43) 

(Table 4-2). Next, each source impact with a negative coefficient was removed from the 

regression as a negative association was assumed physically unreasonable because the DTT 

assay should only measure positive or null associations between PM2.5 and OPDTT. Then, 

backwards selection was used to remove source impacts that did not significantly impact 

OPDTT. One by one, the source with the coefficient with the highest p value above the 

selection criteria (p value ≤ 0.05) was removed and the regression was re-run until all 

coefficients had a p value within the selection criteria. A tight selection criteria was used 

because the causal relationships between source impacts and OPDTT were of more interest 

than prediction performance, though performance remained relatively high even with the 

strict selection criteria (adjusted R2 of 0.35). Sensitivity analysis with a looser selection 

criteria was performed and is discussed in detail later. The final regression was applied to 

daily source impacts at a 12km x 12km resolution across the eastern United States to 

estimate spatiotemporal trends in OPDTT across a wide study domain.  

 

 



 

Table 4-2. Regression coefficients and standard errors for the regression with all 

source impacts included (ALL) and for the final regression with only source impacts 

that significantly impact OPDTT (FINAL). All values [except the intercept (int) in 

(10-2) nmolDTT min-1 m-3] are in units (10-2) nmolDTT min-1 μgsource for ease of 

comparison of standard errors to coefficients.  

 Int 
(10-2) 

AC 
(10-2) 

AG 
(10-2) 

BI 
(10-2) 

CL 
(10-2) 

DU 
(10-2) 

FI 
(10-2) 

FO 
(10-2) 

MT 
(10-2) 

NAT 
(10-2) 

OG 
(10-2) 

NG 
(10-2) 

OD 
(10-2) 

ND 
(10-2) 

OT 
(10-2) 

SS 
(10-2) 

WO 
(10-2) 

ALL 

coefficient 

14.1 -113.1 -2.2 3.0 1.3 0.1 13.7 -1.1 2.8 7.3 2.1 30.8 5.6 -1.4 -0.1 -22.7 4.8 

Standard 

error 

2.9 24.0 3.7 2.1 1.7 1.4 2.1 1.7 2.4 2.8 0.8 9.7 3.7 4.4 1.5 24.7 2.9 

FINAL     

coefficient 

17.3 - - - - - 11.1 - - 5.8 2.2 - 6.7 - - - - 

Standard 

error 

1.7 - - - - - 1.9 - - 2.3 0.8 - 2.4 - - - - 

*Int: intercept 

A comparison between regression results using CMAQ-DDM source impacts and 

previous results using CMB source impacts at the Atlanta measurement site was performed 

to evaluate the consistency of source impacts identified as significant to OPDTT using 

various source apportionment techniques. To achieve this, the CMAQ-DDM source 

impacts were grouped into source impacts similar to those identified by CMB, including 

biomass burning (BURNCMB), gasoline vehicles (GASCMB), and diesel vehicles (DIESCMB). 

The CMAQ-DDM source impacts FI and WO were grouped into biomass burning 

(BURNCMAQ), OG and NG into gasoline vehicles (GASCMAQ), and OD and ND into diesel 

vehicles (DIESCMAQ), and the regression was re-run with these 3 source impacts along with 

the other CMAQ-DDM source impacts (AC, AG, BI, CL, DU, FO, MT, NAT, OT, and 



 

SS) using the same methods described earlier for the measurement site in Atlanta, GA to 

enable direct comparison with the CMB results [equation (4-6)]. Results are discussed 

below. 

4.3 Results and Discussion 

4.3.1 Source Impacts on OPDTT 

 First-level analysis on the relationship between OPDTT and PM2.5 source impacts 

used Pearson’s linear correlation analyses (Table 4-3). OPDTT shows the highest correlation 

with fire, natural gas combustion, and vehicle (OG, NG, OD, ND) source impacts. Previous 

work has reported on the correlations between these OPDTT measurements and species 

(Abrams et al., 2017; J. T. Bates et al., 2015; Verma et al., 2014).  

Table 4-3. Pearson’s correlation coefficients between final adjusted source impacts 
and OPDTT across all measurements sites. 

 

A regression equation was developed using the methods described earlier to further 

investigate the relationship between source impacts and OPDTT as well as to produce a 

model than can simulate OPDTT across the entire study domain where measurements do not 

yet exist. The model was trained on a total of 187 OPDTT data points [equation (4-4)]: 

OPDTT = 0.17 + 0.11*FI + 0.056*NAT + 0.022*OG + 0.067*OD  (4-4) 

 AC AG BI CL DU FI FO MT NAT OG NG OD ND OT SS WO 

OPDTT -0.05 0.19 -0.01 0.25 -0.06 0.44 0.08 0.00 0.39 0.34 0.26 0.40 0.39 0.15 0.24 0.17 



 

This model has an R2 of 0.36 (adjusted R2 of 0.35) and a mean squared error of 0.011 

nmolDTT min-1 m-3 (3.6% of mean of measurements) (Figure B-2). Cross-validation with 

10% withholding was performed as an evaluation of the model robustness. The process of 

training the regression on a random sampling of 90% of the data was repeated 50 times, 

and the average mean-squared error over those iterations was found to be ~ 0.008 nmolDTT 

min-1 m-3 (2.6% of the mean of measurements). The R2 compares well to previously 

reported LUR models in Europe that have a median R2 of 0.33 across LUR models of 

different regions (Jedynska et al., 2017).  

The large, non-zero intercept (accounting for roughly 56% of the OPDTT across the 

modeling domain and during the modeling period) implies model misspecification. It is 

mostly likely due to uncertainties in measurements and source apportionment but may also 

be due to missing sources and filter artifact issues. The PM2.5 samples used for OPDTT 

analyses were collected without the use of a denuder, allowing semivolatile species to 

condense onto the filter, and semivolatile species have been shown to have significant 

impacts on OPDTT (Biswas et al., 2009). The artifactual condensation of OPDTT-active 

semivolatile organic species is not captured well by this CMAQ-DDM source 

apportionment method that uses data assimilation of OC measurements taken with a 

denuder. Along with the semivolatile species, an unspecified source, such as bioaerosols, 

which have recently been shown to impact OPDTT (Samake et al., 2017), as well as the 

potential synergistic relationships between sources that are not captured using the 

multivariate linear modeling approach, may be responsible for part of the unnapportioned 

OPDTT driving the intercept. 



 

Multiple studies have shown results of the importance of gasoline and diesel 

vehicles and biomass burning to OPDTT in the southeastern United States using various 

source apportionment methods, including PMF, CMB, and Aerosol Mass Spectrometry 

(AMS) measurements (J. T. Bates et al., 2015; Verma et al., 2014; Verma, Fang, et al., 

2015). Equation (4-4) further supports this conclusion using CMAQ-DDM source 

apportionment. Natural gas combustion also has a substantial impact in equation (4-4), but 

little work has been performed investigating the OP of this source. Natural gas combustion, 

as modeled here, has very little primary PM2.5 but leads to increased nitrate formation and 

the associated ammonium which have both been correlated with OPDTT in Beijing, China 

(Liu, Zhang, et al., 2014). However, in the Indo-Gangetic Plain, ammonium, nitrate, and 

sulfate were negatively correlated with OPDTT (Patel & Rastogi, 2018). Without more 

evidence, it is unknown at this time if the significant, positive relationship between CMAQ-

DDM identified natural gas combustion and OPDTT is due to a realistic causal link or if this 

source is a marker for secondary processes and/or season due to similar temporal trends 

between these two variables with higher values in the winter than summer.  

A previous study showed success estimating OPDTT in Atlanta, GA over a long time 

period using CMB source impacts, which was found to have a positive link with 

cardiorespiratory endpoints, so we compared the CMAQ-DDM regression technique to the 

CMB-derived regression to evaluate the consistency of results.  

OPDTT = 0.095 + 0.12* GASCMB + 0.061* DIESCMB + 0.074*BURNCMB  (4-5) 

R2=0.49 (J. T. Bates et al., 2015) 

OPDTT = 0.12 + 0.023*GASCMAQ + 0.063*DIESCMAQ + 0.12*BURNCMAQ (4-6) 



 

R2=0.41 

Each final regression resulted in the same significant source impacts with p values <0.05, 

suggesting consistency between methods. Equations (4-5) and (4-6) support the conclusion 

that fires and vehicle sources, specifically on-road diesel and on-road gasoline vehicles, 

significantly contribute to OPDTT in Atlanta, GA, even when different source 

apportionment methods are used. The coefficient for diesel vehicles are remarkably similar 

between equations (4-5) and (4-6). The BURNCMB coefficient is roughly half the 

BURNCMAQ coefficient; however, the total magnitude of BURNCMAQ is roughly half the 

magnitude of BURNCMB, so overall contribution of BURN to OPDTT is consistent between 

the two models. The largest difference between equations (4-5) and (4-6) is the coefficients 

for gasoline vehicles. CMAQ-DDM captures the secondary formation of both OC and 

nitrate, leading to additional PM2.5 mass from this source; so, GASCMAQ is, on average, 

roughly twice GASCMB. However, the coefficient for GASCMAQ is less than half of the 

coefficient for GASCMB, so the differences in GAS coefficients between equations (4-5) 

and (4-6) cannot be driven purely by differences in magnitudes of the source alone. The 

inconsistency between the two gasoline vehicle source coefficients could be driven by a 

difference in source apportionment formulations: CMAQ-DDM is based on sensitivity of 

PM2.5 to 2011 source specific NEI emissions, and CMB is based on a priori source profiles 

developed using 2001 and 2002 measurement data, while recent measurements of more 

advanced technology vehicles show changes in those profiles. Nevertheless, the fact that 

the same emission sources were significant in both models after backward selection 

strongly supports that these sources are critical to OPDTT. Further, the sources in the 

regressions are consistent with previous studies showing high source-specific OPDTT for 



 

biomass burning and vehicle sources (J. Bates, Fang, et al., 2018; Charrier et al., 2015; 

Velali et al., 2016; Verma et al., 2014; Verma, Fang, et al., 2015), further suggesting that 

the CMAQ-DDM source impact derived model [equation (4-4)] is capturing the correct 

sources relevant to OPDTT. 

4.3.2 Spatial Variation in Estimated OPDTT across the Eastern United States 

 Equation (4-4) was applied to daily adjusted CMAQ-DDM source impacts across 

the eastern United States. Although measurements of OPDTT were isolated to the 

southeastern United States, developing the spatial fields for the eastern United States 

assumes that the source specific intrinsic OPDTT is applicable across the eastern United 

States. This is supported by studies in California, Japan, China, France, and Greece that 

have shown that vehicles and biomass burning contribute to OPDTT with relatively similar 

OPDTT levels (when comparably measured) (J. Bates, Fang, et al., 2018; Charrier et al., 

2015; Fujitani et al., 2017; Y. Ma et al., 2017b; Samuël et al., 2018; Velali et al., 2016; 

Verma, Polidori, et al., 2009).  

 

(a)  (b)  

Figure 4-1. Average of (a) CMAQ-derived and bias corrected PM2.5 in μg m-3 

(average 6.3 μg m-3 with minimum 0.5 μg m-3 and maximum 131.7 μg m-3) and (b) 

estimated OPDTT in nmolDTT min-1 m-3 (average 0.30 nmolDTT min-1 m-3 with 



 

minimum 0.13 nmolDTT min-1 m-3 and maximum 14.1 nmolDTT min-1 m-3) from June 

1, 2012 to July 30, 2013 across the eastern United States. 

Although the PM2.5 and OPDTT spatial distributions have somewhat similar patterns, 

there are some key differences due to differences in source contributions. The spatial 

variation in water-soluble OPDTT is mainly driven by fires (south Georgia, eastern North 

Carolina), which are the largest overall contributors to estimated OPDTT during this time 

period due to their large concentrations and high coefficient in equation (4-4) (Figure 4-1). 

The large contribution of fires to overall OPDTT across the eastern United States modeling 

domain is consistent with previous studies performed in Atlanta, GA finding prescribed 

burning to be a major factor of OPDTT of ambient PM2.5 (J. T. Bates et al., 2015; Verma et 

al., 2014). The high concentrations of fire-driven OPDTT in south Georgia (Figure 4-2) is 

driven by a significant acreage of prescribed burning (1,412,869 acres were approved by 

permits to be burned in the southwestern corner of Georgia during the years 2012 and 2013, 

which represents ~50% of the total acreage allowed to be burned in Georgia during that 

time period, even though that area only represents 21% of the counties in Georgia). Other 

modeled fire hotspots, specifically in North Carolina and Texas, capture wildfires that 

occurred in these states in November 2012 and March through April 2013 (NOAA National 

Centers for Environmental Information, 2012). Because the PM2.5 concentrations during 

these fires were so high, a spatial distribution of estimated OPDTT driven by only natural 

gas combustion, on-road diesel, and on-road gasoline is presented (Figure B-3) to show 

patterns in estimated OPDTT driven by sources with more consistent concentrations over 

time. Further, although the wildfires have been shown to create PM2.5 with high OPDTT 

(Verma, Polidori, et al., 2009), the largest PM2.5 concentrations from fires were outside of 

the OPDTT measurement locations and not captured by the OPDTT observations that the 



 

model [equation (4-4)] was trained on. The OPDTT measurement sites have higher on-road 

vehicle source impacts and lower fire impacts, on average, than across the eastern United 

States (Table 4-1), so PM2.5 composition of these sites may not be representative of 

locations with the highest OPDTT (e.g. where wildfires occur). Most of the fire impacts 

captured at OPDTT measurement sites are likely prescribed and residential burning or aged 

emissions from larger fires (Tian et al., 2009). Therefore, the very high OPDTT estimates at 

wildfires is uncertain, and future OPDTT measurements during wildfires would be useful to 

evaluate model results and the applicability of equation (4-4) to other locations in the study 

domain.  

(a)  (b)  

(c)  (d)  

Figure 4-2. Specific source impacts on OPDTT across the Eastern United States 

averaged from June 1, 2012 to July 30, 2013, including (a) on-road gasoline (b) on-

road diesel (c) fires and (d) natural gas combustion. Note, the plots have different 

color scales so that spatial distributions are visible. 

 



 

     

Figure 4-3. Estimated contribution of source impacts to apportioned OPDTT 

averaged from June 1, 2012 through July 30, 2013.  

On-road vehicle emissions concentrate OPDTT in urban areas. The large 

contribution of diesel vehicles to OPDTT at the measurement sites is most likely driven by 

the dominance of diesel vehicles in Atlanta, GA and Birmingham, AL (Figure 4-3).  

 Very limited OPDTT measurements exist to evaluate modeling results outside of the 

Southeast. Two studies have reported volume-normalized OPDTT in Illinois, specifically at 

the University of Illinois at Urbana-Champaign (Wang, Plewa, Mukherjee, & Verma, 

2018; Xiong et al., 2017). ~25 samples were taken between June 2016 and June 2017 

during different seasons, with OPDTT measurements ranging between 0.1 and 0.2 nmol min-

1 m-3, which is in agreement with the combined diesel, gasoline, and fire impacts from the 

model-estimated OPDTT in Illinois. Further, the average estimated OPDTT at the CSN and 

SEARCH sites from June 2012 through July 2013 is 0.34 nmol min-1 m-3 with a range from 

0.15 nmol min-1 m-3  to 1.4 nmol min-1 m-3, which is in line with water-soluble OPDTT 

measurements taken near CSN and SEARCH sites in Georgia (0.12—0.60 nmol min-1 m-

3) (Fang et al., 2016) and California (0.13—1.7 nmol min-1 m-3) (Eiguren-Fernandez et al., 

2010; Verma, Ning, et al., 2009). 



 

4.3.3 Temporal Trends in Estimated OPDTT 

Temporal trends in estimated OPDTT show large day to day variability, also seen in 

measurements (Figure 4-4, Figure B-4, Figure B-5). In Atlanta, GA, estimated OPDTT has 

the highest monthly averages from November 2012 to March 2013 (excluding February) 

driven, in part, by prescribed burning. Previous studies have shown that OPDTT in Atlanta, 

GA is driven by biomass burning with higher values in winter and spring, when prescribed 

burning is more frequent (and allowed in counties surrounding Atlanta), than in summer 

and fall (J. T. Bates et al., 2015). Further, the largest spikes in estimated OPDTT in Atlanta, 

GA are driven by fires and occur during the prescribed burning legal period.  

Temporal trends in OPDTT across the eastern United States agree with the seasonal 

trends of measured and modeled OPDTT in Atlanta, GA. OPDTT values are, on average, 

highest in the winter months November 2012 through December 2012 and March 2013. 

The seasonal trend across the modeling domain is, again, driven by fire emissions due to 

their large contribution to OPDTT during the study time period (Figure 4-4, Figure B-4, 

Figure B-5).  

 



 

 

 

Figure 4-4. Daily source impacts on estimated OPDTT across (a) all measurement 

sites (CSN and SEARCH sites across eastern United States) and at (b) OPDTT 

measurement site in Atlanta, GA from June 1, 2012 through July 30, 2013.  

4.3.4 Uncertainty Analysis in OPDTT Regression 

 One limitation of using CMAQ-DDM source impacts in regression analyses is the 

possibility of correlation between source impacts. In this study, on-road diesel and non-

road diesel were highly correlated (Pearson’s linear correlation coefficient of 0.69) ( 

Table B-3). Therefore, due to the presence of covariance in these model parameters, a 

sensitivity analysis was performed by changing which source impacts were used as 

independent variables. After backwards selection, each excluded source was added back to 

the model [equation (4-4)] to develop twelve new regressions with five source impacts 

(fires, natural gas combustion, on-road diesel, on-road gasoline, and the added source). 

Coal combustion, residential wood burning, and biogenics each slightly increased the R2 

of the model compared to equation (4-4) and had positive coefficients with p values <0.11 

(all other sources had p values > 0.15 or negative coefficients). Additionally, previous 

studies have shown causal relationships, either directly or indirectly, between OPDTT and 



 

byproducts of coal combustion, residential wood burning, and biogenic emissions, so 

additional models were developed using combinations of these three variables (J. T. Bates 

et al., 2015; Fang, Guo, et al., 2017; Samuël et al., 2018). When coal combustion and 

biogenics were included in the model either together or with all three variables (coal 

combustion, biogenics, and residential wood burning), neither source remained significant 

at a p value ≤ 0.10 level. When biogenics and residential wood burning were included 

(sensitivity model 1), both sources remained significant at a p value ≤0.10 level and the R2 

slightly increased to 0.38 (Table 4-4). When coal and residential wood burning were 

included (sensitivity model 2), again, both sources remained significant (at p value ≤ 0.05 

level), while natural gas combustion lost significance (p value of 0.17), so NG was 

removed, resulting in an R2 of 0.38 and the lowest intercept of any model (Table 4-4). The 

lower intercept implies that sensitivity model 2 captures more of the source impacts on 

water-soluble OPDTT. Nevertheless, with the available OPDTT measurement data, equation 

(4-4) was selected as the best model to be applied for spatial mapping of OPDTT across the 

eastern United States because of the backwards selection process. The spatial distributions 

of OPDTT estimated using equation (4-4) and each sensitivity model (Figure B-6) are highly 

correlated (Pearson’s linear correlation coefficients; equation (4-4) & sensitivity model 1: 

0.995, equation (4-4) & sensitivity model 2: 0.996, sensitivity model 1 & sensitivity model 

2: 0.998).  

 

 



 

Table 4-4. Regression coefficients and standard errors for sensitivity models 1 and 2 

in the sensitivity analysis. All values are in units (10-2) nmolDTT min-1 μgsource for ease 

of comparison of standard errors to coefficients.  

 
Int 

(10-2) 

BI 

(10-2) 

CL 

(10-2) 

FI 

(10-2) 

NAT 

(10-2) 

OG 

(10-2) 

OD 

(10-2) 

WO 

(10-2) 

Sensitivity Model 1  

coefficient 

14.9 3.9 - 11.4 5.6 2.3 6.4 5.4 

Standard error 1.9 2.0 - 1.9 2.4 0.8 2.4 2.8 

Sensitivity Model 2 

coefficient 

14.0 - 3.3 11.6 - 2.2 6.9 6.4 

Standard error 2.1 - 1.3 1.9 - 0.8 2.3 2.6 

Including coal and residential wood burning results in the model with the highest 

R2 and lowest intercept, even though natural gas combustion was removed from the model, 

suggesting that the relationship between natural gas combustion and OPDTT in equation (4-

4) may be due to similar seasonal variations rather than a causal relationship. Further, coal 

combustion results in significant sulfate, which has been shown to reduce pH of aerosols 

significantly, thus mobilizing metals and having an indirect positive effect on OPDTT (Fang, 

Guo, et al., 2017) while not having significant OPDTT activity itself. Coal combustion also 

includes trace metals, such as selenium, that have unknown effects on OPDTT due to lack 

of research. Future work could investigate whether the link between coal combustion and 

OPDTT is direct, indirect, or both. Furthermore, when p value constraints are relaxed (p 

value ≤ 0.10 rather than ≤ 0.05), residential wood burning is included in both sensitivity 

analysis models. This source is a biomass burning source, similar to fires, which have been 



 

shown to significantly impact OPDTT  (J. T. Bates et al., 2015; Y. Ma et al., 2017b; Samuël 

et al., 2018; Velali et al., 2016; Verma et al., 2014; Verma, Fang, et al., 2015). The 

difference in coefficients between residential wood burning and fires may be driven by 

different fuel types. Residential wood burning may produce lower OPDTT, driving a lower 

and more uncertain coefficient, or the localized nature of the emissions may be difficult to 

capture in a chemical transport model with 12 km grids and a regression trained on limited 

measurement sites. The spatially heterogeneous nature of the wildfires in the CMAQ-DDM 

impacts also presents uncertainty in the spatial distribution estimates of OPDTT as equation 

(4-4) was trained on different types of fire impacts (mostly prescribed burns) than those 

that occurred in Texas and North Carolina.  

Because on-road and non-road diesel were so highly correlated, testing was done 

replacing one variable for another in equation (4-4) and observing the changes in the 

regression coefficient. When on-road diesel was replaced with non-road diesel in the 

regression, non-road diesel remained significant with a p value ≤ 0.05 (coefficient of 0.084 

nmolDTT min-1 μgND with a standard error of 0.028 nmolDTT min-1 μgND) and the R2 of the 

model changed insignificantly (R2 of 0.366 within nonroad-diesel versus R2 of 0.362 on-

road diesel). Therefore, the effects of on-road versus non-road diesel may not be able to be 

differentiated using this method. A sensitivity analysis was performed by combining on-

road and non-road diesel together into one diesel source, but the total source was not as 

predictive as using either one of the individual sources. Further, when both on-road and 

non-road diesel were included in the model, neither had significant coefficients.  

 



 

4.4 Conclusion 

 In this work, a first-principles, chemical transport model-based source 

apportionment modeling method is used to estimate OPDTT of water-soluble PM2.5 across a 

large spatial domain, integrating the limited measurements of OPDTT. Vehicles, including 

gasoline and diesel vehicles, and fires are critical emission sources to OPDTT. Further 

research needs to be conducted on the impact of natural gas combustion on OPDTT, perhaps 

differentiating the effect of natural gas combustion, secondary processing, and season. The 

direct and indirect effects of coal combustion may also be of interest, as well as the 

differences between OPDTT of residential wood burning and fire emissions. The prevalence 

of the major sources of OPDTT suggest widespread population exposures, especially in 

urban cities and areas with significant biomass burning, to PM2.5 components that can 

potentially cause oxidative stress and lead to adverse health effects.  

The approach presented in this work can incorporate multiple OPDTT measurement 

locations and times. The biggest limitation of this modeling method is limited OPDTT data 

availability. Model results are limited by the data that the model was trained on and the 

source impacts that affected measurement locations. Future measurements, especially 

beyond the southeastern United States and within large wildfires, can be incorporated to 

improve the robustness of the regression and to further evaluate modeling results. OP 

measurements of fresh and aged PM2.5 from wildfires is a future area of research of interest 

for health. Additional observations throughout the study domain could also be used to test 

the assumption that source-specific intrinsic OPDTT is similar spatially and temporally and 

a regression trained on data in Georgia and Alabama can be applied to other states. Further, 

training the model on additional OPDTT measurements closer to localized emissions, such 



 

as residential wood burning and non-road diesel at construction sites, could help the 

regression differentiate impacts of sources. Future work could utilize measurements using 

other OP assays, such as the glutathione assay or total OPDTT (including water-soluble and 

insoluble components) rather than water-soluble OPDTT. Overall, the source apportionment 

modeling method can be used to estimate OPDTT (or other OP measurement methods) 

across larger spatial and temporal domains, which may be useful for future epidemiologic 

studies investigating the association between OP and various health endpoints.  

 

 

  



 

CHAPTER 5.                                                                      

SPATIAL DOWNSCALING OF CMAQ PM2.5 USING FINE-SCALE 

VEHICLE EMISSIONS AND CONCENTRATION DATA IN A 

STATISTICAL MODEL 

Abstract 

 Epidemiologic studies investigating the link between air pollution and human 

health require spatially and temporally resolved air quality data with minimal biases. 

Specifically, studies interested in adverse effects of traffic exposure would benefit from air 

quality data that can accurately capture how air pollutant exposures vary with distance to 

roadways. Current monitoring data cannot capture steep spatial gradients in pollutant 

concentrations due to sparse availability. Chemical transport model estimates are often at 

too coarse of a grid resolution to simulate high concentrations near roadways (≤500m), and 

fine-scale emissions and dispersion model data do not capture regional emissions or 

photochemical reactions, a major source of secondary pollutants like PM2.5. This work 

develops a spatial statistical downscaling model under a Bayesian hierarchical framework 

to simulate comprehensive PM2.5 concentrations resulting from local and regional sources 

as well as secondary formation at geocoded locations for a birth cohort analysis in Atlanta, 

GA. A statistical approach is utilized for its computational efficiency, specificity in output 

location, and ability to estimate uncertainties. The model is trained on observational data 

sets from nine locations and uses CMAQ, link-based roadway emissions and/or RLINE 

dispersion model results, and meteorology as predictors. Results show that the spatial 

distribution of PM2.5 estimates is heavily dependent on the choice of fine-scale data inputs 



 

(emissions or RLINE) and number of observational data points in the model training data 

set. Further, daily CMAQ was found to provide sufficient spatiotemporal information, so 

using annual-average dispersion model results in the statistical downscaling model 

framework led to unphysical results. The high spatial correlation between the CMAQ and 

RLINE concentration fields led to a negative RLINE coefficient, driving concentrations on 

roadways lower than concentrations in rural areas. Overall, the presented statistical 

downscaling method provides a basis for future fine-scale spatial modeling work, but the 

temporal resolution of RLINE inputs needs to be improved before successful application.  

5.1 Introduction 

Air pollution exposure presents a serious risk to human health with links to adverse 

outcomes like cardiorespiratory morbidity and mortality, decreased cognitive abilities, and 

lower infant birth weight (Brunekreef & Holgate, 2002; H. H. Chang et al., 2012; Darrow 

et al., 2011; Delfino et al., 2005; Fonken et al., 2011; Pope et al., 2009). Particularly, the 

link between traffic emissions and deleterious health is of growing concern due to 

increasing urbanization (HEI Panel on the Health Effects of Traffic-Related Air Pollution, 

2010). However, population-based health studies on vehicle emissions have been limited 

by the lack of a dense air pollutant ground monitoring network. Air quality observations 

are often not available daily and do not capture intraurban variability in heterogeneous 

pollutant concentrations, leading to exposure measurement error in populations living near 

roadways (Gryparis, Paciorek, Zeka, Schwartz, & Coull, 2009; S. E. Sarnat et al., 2010; 

Wilson, Kingham, Pearce, & Sturman, 2005). Air quality modeling can create spatially and 

temporally resolved concentration fields, providing estimated concentrations where and 

when measurements are not available. However, air quality model estimates are often at a 



 

coarser grid resolution than the spatial resolution of health data used in epidemiologic 

studies or do not incorporate all emissions and chemistry necessary for predicting total 

pollutant concentration. For example, photochemical air quality models like CMAQ 

(Community Multiscale Air Quality model) incorporate local and regional emissions as 

well as secondary chemical formation but typically do not capture the steep spatial 

gradients in heterogeneous pollutants emitted from traffic due to their use of coarse grid 

resolutions (typically 4-36 km). Dispersion models and vehicle emission data can capture 

steep spatial gradients in pollutants emitted on roadways but often do not model chemistry 

or regional emissions. A spatial downscaling method linking fine scale dispersion model 

outputs or vehicle emissions to photochemical air quality model simulations that include 

local and regional emissions and chemistry for secondary formation could be used to 

improve exposure assessment for advanced, spatially resolved epidemiologic analyses. 

This method could incorporate the strengths of both dispersion and photochemical air 

quality models while minimizing their biases and limitations.  

Multiple methods exist to improve spatial resolution of air quality model estimates 

by combining air quality model outputs, including coupled modeling, hybrid methods, and 

land-use regression techniques. Coarse-grid chemical-transport models, such as CMAQ 

and EMEP (European Monitoring and Evaluation Programme), with grid sizes ranging 

from 4km x 4km to 50 km x 50 km have been coupled with meteorological and dispersion 

models with fine grid scales, such as AERMOD (AMS/EPA Regulatory Model), HAPEM 

(Hazardous Air Pollutant Exposure Model), and ADMS (Atmospheric Dispersion 

Modeling System), to capture variability within chemical-transport model grid cells 

(Beevers et al., 2013; Isakov, Irwin, & Ching, 2007; Theobald, Simpson, & Vieno, 2016). 



 

Hybrid methods add estimates of background pollution obtained from monitoring data or 

photochemical air quality models with zeroed out emissions to fine spatial resolution 

dispersion model data to estimate pollutant concentrations at scales as small as 100m x 

100m (Arunachalam et al., 2014; Shih Ying Chang et al., 2017; Dionisio et al., 2013; Stein, 

Isakov, Godowitch, & Draxler, 2007). Land-use regression variable models incorporate 

landscape characteristics, such as elevation and distance to roadways, with data from 

monitors and air quality models of various grid sizes (Marshall, Nethery, & Brauer, 2008; 

Michanowicz et al., 2016). Statistical downscaling is computationally less expensive than 

other methods that directly model unobserved pollutant spatiotemporal concentration fields 

(Fuentes & Raftery, 2005; Paciorek, 2012). Further, statistical downscaling under a 

Bayesian hierarchical modeling framework treats the intercept and the slope between PM2.5 

observations and modeled concentrations as spatially and temporally correlated random 

effects, overcoming the challenge of spatial misalignment between the point-referenced 

monitoring measurements and gridded air quality modeling data. Because intercepts and 

slopes are modeled as smooth spatial surfaces, pollutant concentrations can be estimated 

at any point location within a grid cell, which is useful for epidemiologic studies with 

resident-specific data. Finally, the use of a unified Bayesian hierarchical framework 

ensures that uncertainties in parameter estimates are fully accounted for and allows 

uncertainty propagation in the form of prediction intervals and prediction standard 

deviations that can be readily used in health impact studies. This work describes the 

development and evaluation of a statistical downscaling model developed under a Bayesian 

hierarchical framework that downscales coarse-grid photochemical air quality model 



 

estimates using fine-scale roadway emissions or modelled pollutant concentrations to 

provide air pollutant concentration estimates at geocoded locations.   

Statistical downscaling has previously been used to calibrate daily PM2.5 and ozone 

concentrations from CMAQ and has been applied to investigate inconsistencies between 

climate model outputs and observations (Berrocal, Craigmile, & Guttorp, 2012; Berrocal, 

Gelfand, & Holland, 2010a, 2010b). Here, an existing statistical downscaler formulated 

under a Bayesian hierarchical framework that originally was used to estimate surface PM2.5 

from satellite-derived aerosol optical depth (AOD) is modified to use CMAQ and 

dispersion model data or roadway emission data to simulate daily PM2.5 estimates at 

resident homes, specifically homes near roadways as vehicle pollution is of interest to 

human health (H. H. Chang, Hu, & Liu, 2014). Fine particulate matter (PM2.5) is the 

pollutant of interest in this work due to its significant association with adverse health 

impacts (Darrow et al., 2011; Franklin, Zeka, & Schwartz, 2007; Pope et al., 2009). The 

model application in this study uses gridded 12km CMAQ estimates rather than AOD data 

with 250m roadway pollution data as land-use variables. The model is trained on available 

monitoring data to predict daily concentrations during 2005 at geocoded locations across 

Atlanta, GA where health data for a birth cohort analysis is available. Sensitivities of the 

model to input parameters were tested by using both roadway emissions and dispersion 

modeled traffic impacts as inputs. 

5.2 Method 

5.2.1 Spatial Downscaler Development 



 

The model used in this work is based on previous work by Chang, et al. (2014) 

calibrating AOD measurements with PM2.5 ground level observations using a Bayesian 

hierarchal approach. In this study, gridded CMAQ estimates, rather than AOD, are 

downscaled using PM2.5 observations. The spatial statistical downscaling model takes the 

form: 

                   𝑃𝑀2.5(𝑥, 𝑡) = 𝛼𝑜(𝑥, 𝑡) + 𝛼1(𝑥, 𝑡)𝐶𝑀𝐴𝑄(𝑥, 𝑡) +  𝜀(𝑥, 𝑡)  (5-1) 

where 𝛼𝑜(𝑥, 𝑡) and  𝛼1(𝑥, 𝑡) account for the additive bias (intercept) and multiplicative 

bias (slope), respectively, and 𝑃𝑀2.5(𝑥, 𝑡) denotes the 24 h averaged PM2.5 concentration 

from an air quality ground monitor at location x and on day t. x is a point-referenced geo-

location. The intercept and slope are treated as spatially and temporally correlated random 

effects and are assumed to be location and day-specific, allowing 𝛼𝑜(𝑥, 𝑡) and  𝛼1(𝑥, 𝑡) to 

be estimated at locations and on days without PM2.5 measurements via spatial-temporal 

interpolation. Residual errors represented by 𝜀(𝑥, 𝑡) are assumed to be independently 

normal with mean zero.  

 The spatio-temporal regression coefficients are defined by the following two 

second-level linear regression models:  

𝛼𝑜(𝑥, 𝑡) = 𝛽𝑜(𝑥) + 𝛽𝑜(𝑡) +  𝛾𝑜𝑍𝑜   (5-2) 𝛼1(𝑥, 𝑡) = 𝛽1(𝑥) + 𝛽1(𝑡) +  𝛾1𝑍1    (5-3) 

where 𝛽𝑖(𝑥) and 𝛽𝑖(𝑡) denote the unobserved correlated random effects that capture the 

spatial and temporal trends, respectively, in the intercepts (for i=0) and slopes (for i=1). 

The parameters 𝛾𝑜 and 𝛾1are fixed-effect regression coefficients associated with land use 



 

variables (including roadway emissions or modeled vehicle pollutant concentrations) and 

meteorological variables Z0 and Z1, respectively. By substituting equations (5-2) and (5-3) 

into equation (5-1), the vector 𝛾1 can be interpreted as the interaction effects between 

CMAQ and covariates Z1 on PM2.5 concentrations. Spatial random effects 𝛽𝑜(𝑥) and 𝛽1(𝑥) 

are determined using a tapered exponential covariance structure that depends on distance 

from monitor, and temporal random effects 𝛽𝑜(𝑡) and 𝛽1(𝑡)  are modeled using a first-

order random walk (H. H. Chang et al., 2014).  

 Statistical inference is carried out under a Bayesian framework with prior 

distributions being assigned to all unknown parameters. Details on variance selection can 

be found in Chang, et al. (2014)  . Estimation is carried out using a Markov Chain Monte 

Carlo (MCMC) techniques. 50,000 iterations were used in the MCMC method, with the 

first 25,000 samples being discarded as pre-convergence burn-in. 500 samples from the 

distributions of the coefficients are applied to inputs at all other desired locations, creating 

a distribution of results with means and standard errors of the estimates at each site. All 

analyses are carried out in R version 2.15.0 using an analytic code we developed. 

In the application of the model to Atlanta, GA, meteorological data from WRF 

(Weather Researching Forecast model), including wind speed and temperature, are used in 

equation (5-2) to determine the slope in equation (5-1). Either vehicle emissions or 

roadway concentration data are used to determine the intercept in equation (5-1) using 

equation (5-3). Vehicle emissions are obtained from the Atlanta Regional Commission 

(ARC) while roadway primary PM2.5 concentrations are modeled using the dispersion 

model RLINE (Research LINE model). CMAQ and RLINE concentrations are adjusted to 

minimize biases using observational data with previously evaluated methods in Friberg, et 



 

al. (2016) and Zhai, et al. (2016), respectively. ARC emissions and RLINE concentrations 

are provided to the downscaler at a 250m resolution, allowing the statistical downscaling 

model to use these inputs to downscale 12 km CMAQ data.  

5.2.2 Inputs for Atlanta Application 

5.2.2.1 Monitoring Data 

The regression coefficients for CMAQ are trained on daily or every 3-day 24 h 

averaged observational PM2.5 data at monitoring locations. Nine monitor locations around 

the Atlanta area are used, eight urban sites and one rural site (Figure 5-1).  

 

Figure 5-1. Locations of PM2.5 monitors in Atlanta, GA used in this study. 

Observational data from these monitors are used in the statistical downscaling 

model training data set.  

5.2.2.2 Meteorology 

Daily meteorological data over the year 2005 are provided by the Weather Research 

and Forecasting Model (WRFv3.3.1, 13 vertical layers, Pleim-Xiu land surface model). 

Weather variables are included as spatial and temporal predictors in the multiplicative bias 



 

terms [equations (5-3)]. Based on sensitivity analyses with various meteorological 

variables, wind speed and temperature were determined to be the most relevant 

meteorological variables to predicting PM2.5 in this model, so only these variables are used 

in the application to Atlanta, GA. 

5.2.2.3 CMAQ  

CMAQ is a state-of-the-science Eulerian-grid regional chemical transport model 

(Byun & Schere, 2006). The use of CMAQ in the statistical downscaling model accounts 

for photochemical evolution of PM2.5 as well as the impacts of regionally scaled sources. 

Daily PM2.5 CMAQ results are obtained for the year 2005 at a 12km grid resolution from 

the Environmental Protection Agency’s (EPA) PHASE CMAQ runs (CDC National 

Environmental Public Health Tracking Network, CMAQ v4.7, carbon bond mechanism 

CB05, 24 vertical layers, 2002 National Emissions Inventory (NEI) with the Sparse 

Operator Kernel Emissions (SMOKE), meteorology from WRF v3.3.1). The 12km CMAQ 

simulations had been previously blended with ambient ground observations to reduce bias 

using a method detailed in Friberg et al. (2016)  . Briefly, the PM2.5 spatiotemporal 

concentration dataset was built using weighted fields of (1) ratios of daily adjusted CMAQ 

result to annual mean observations and (2) a method obtaining temporal variance from 

observations and spatial structure from annual mean CMAQ values. The weight of the 

averages depends on distance to a monitor. This data fusion method and resulting CMAQ 

fields have been previously evaluated in Friberg et al. (2016)  . 

5.2.2.4 Fine-scale Vehicle Emissions and Concentrations 



 

Fine-scale spatial distribution is defined by information from either ARC roadway 

emissions or EPA’s RLINE vehicle pollutant concentration estimates. Roadway data was 

chosen in this application as an increasing number of environmental justice and 

epidemiologic studies, including birth cohort analyses, want pollutant concentration 

information near roadways for accurate exposure assessment. Each of these inputs are static 

variables representing an average day in 2010.  

Hourly PM2.5 emissions from vehicles are available for 43,712 individual highway 

links (e.g. sections of roadway) in Atlanta, GA based on ARC’s 20-county activity-based 

travel demand model (D'Onofrio, 2016). These values are averaged over 24 hours and 

across the highway links, resulting in PM2.5 data in g/m/day (assuming a representative 

weekday) (Figure 5-2). These values are then averaged over 250m grid cells for input into 

the statistical downscaling model. Emissions were developed using link-level information, 

including road type and location, traffic volume, and vehicle type and speed, with emission 

factors obtained from the Motor Vehicle Emission Simulator 2010b (MOVES20120b) (U. 

S. Environmental Protection Agency, 2012). More detail on Atlanta roadway emission 

development can be found in the Atlanta Roadside Emissions Exposure Study (D'Onofrio, 

2016). PM2.5 vehicle emissions are considered to have a lognormal distribution. 

 



 

(a)   (b)    

Figure 5-2. (a) Link-based PM2.5 emissions in g/m/day for a representative day in 

2010 obtained from ARC and (b) 2005 annual average RLINE PM2.5 concentrations 

Annual-average RLINE data used in this study is publicly available and the 

description of model specifications is available in Zhai, et al. (2016)(Figure 5-2). Briefly, 

RLINE was run with the 2010 ARC emissions previously described and hourly 

meteorology generated for the year 2005 using AERMET (Cimorelli et al., 2005; U.S. 

Environmental Protection Agency, 2004) and AERMINUTE (U.S. Environmental 

Protection Agency, 2015) with a modified version of the Stability ARray (STAR) method 

(U. S. Environmental Protection Agency, 1997) grouping meteorological variables into 78 

categories that were then used to simulate annual average concentrations (S. Y. Chang et 

al., 2015; D'Onofrio, 2016; Zhai et al., 2016). PM2.5 estimates from RLINE were calibrated 

using a linear regression of log-transformed RLINE with Chemical Mass Balance-Gas 

Constraint (CMB-GC) mobile source impact estimates derived using data from three 

monitor sites and a priori source profiles (Balachandran et al., 2012; Zhai et al., 2016). 

This calibration substantially reduced the normalized mean bias of the model results. 

Further description of RLINE calibration can be found in Zhai, et al. (2016)  . Annual 

average RLINE results were used to provide the spatial pattern of mobile source impacts 

because results at finer temporal scales (e.g., hourly) were found to be biased during 



 

periods with low dispersion. No major highways were opened or closed during this period, 

supporting the use of annual average 2010 emissions and RLINE concentrations to predict 

daily concentrations as each day should have similar spatial on-road emissions patterns.  

5.3 Results 

 The statistical downscaling method [equation (5-1)] was applied to Atlanta, GA to 

obtain daily estimates of PM2.5 during 2005 at geocoded locations where birth cohort data 

were available, resulting in 365 days with 25,289 estimates. The ability of the statistical 

downscaling model to simulate concentrations at specific locations reduces computational 

time by only producing results where necessary rather than at each grid cell in the study 

domain. The statistical downscaling model was run three times: once with ARC emissions 

as a land-use input in Z0 (ARC), once with ARC emissions as a land-use input in Z0 and 

less observational data used to train the coefficients (ARC - Obs), and once with RLINE 

concentration estimates a land-use inputs in Z0 (RLINE).  For the ARC-Obs model run, one 

in three day observations rather than daily data were used at a rural site (Yorkville, GA) 

over a period of four months, simulating what might be available at other measurement 

locations. These three model runs were used to test sensitivities of the statistical 

downscaling model to land-use inputs and the size of the observational training data set, 

i.e. the number of available observations. Each run used the meteorological variables wind 

speed and temperature from WRF and daily 12km CMAQ data as inputs.  

For each model run, PM2.5 concentration was found to be negatively associated with 

wind speed as advection removes particulate pollution from the area (Table 5-1). However, 

PM2.5 was positively associated with CMAQ estimates, ARC emissions, and temperature. 



 

Interestingly, the coefficient for RLINE was negative, suggesting a possible correlation 

between RLINE and CMAQ as both provide spatial information about pollutant 

concentration and may counter balance each other. The high coefficient for temperature 

was most likely driven by increased photochemistry in the summer, leading to an increase 

in secondary PM2.5 formation most often in the form of ammonium sulfate.  

Table 5-1. Beta coefficients for spatial and temporal predictors with standard errors 

in parentheses. Each coefficient applies for one interquartile range increase in each 

predictor variable.   

 Intercept CMAQ ARC or RLINE Temperature Wind Speed 

ARC - obs -49.93 (±15.4) 4.33 (± 1.81) 1.17 (± 0.72) 3.06 (± 0.76) -1.09 (± 0.24) 

ARC -50.02 (±14.9) 3.46 (± 1.81) 0.45 (± 0.66) 2.93 (± 0.69) -1.25 (± 0.23) 

RLINE -48.40 (±16.1) 4.70 (± 2.00) -0.45 (± 0.49) 2.92 (± 0.75) -1.25 (± 0.23) 

 

Furthermore, p values of all coefficients except those for ARC and RLINE (and 

CMAQ used in the ARC model run) are less than 0.05. Large p values for ARC and RLINE 

coefficients imply uncertainty in these coefficients and that the information that might be 

provided by the roadway emissions or RLINE is provided by other inputs, e.g., CMAQ, 

that also use roadway emissions for modeling PM2.5 concentrations. However, including 

ARC or RLINE as land-use variables in the regression seem to improve model performance 

as root mean squared error is reduced (Table 5-2). 



 

Table 5-2. Root mean squared error of CMAQ results, the ARC model run, and the 

RLINE model run averaged over all sites over the entire study period.  

 

CMAQ ARC RLINE 

RMSE 6.40 2.68 2.32 

 

The resulting estimates using different land-use variables have significantly 

different annual means and standard deviations averaged over the estimated 25,289 points 

(Table 5-3). These large differences in mean concentration and standard deviations are 

driven by the coefficients for CMAQ and the land-use variables ARC or RLINE, as the 

intercept and coefficients for other variables do not change greatly with varying inputs 

(Table 5-1). Further, there is a lack of correlation between the model runs with different 

land-use inputs (ARC or RLINE) (Table 5-3), suggesting the fine-scale data used in the 

model can significantly impact results. 

Table 5-3. Evaluation statistics for the three model runs with different inputs and/or 

training data sets. Statistics are calculated using annual averages at each estimated 

location (25,289 points). 

 

Mean (SD) Median Min Max 

Spearman Spatial Correlation 

Coefficients 

 ARC ARC - Obs RLINE 

ARC 15.68 (0.56) 15.66 12.97 17.37 1 0.83 0.28 

ARC - Obs 17.73 (3.00) 16.27 9.32 26.98 0.83 1 0.25 

RLINE 16.84 (0.95) 16.59 13.52 21.29 0.28 0.25 1 



 

  As with the means and standard deviations, the annually-averaged spatial 

distributions of PM2.5 concentrations differ greatly between model runs (ARC, ARC-Obs, 

RLINE). The spatial plots for the ARC and ARC-Obs model runs illustrate that the final 

estimates are heavily dependent on the number and values of observations (Figure 5-3). 

With very limited observational data that is highly concentrated in urban regions, the 

statistical downscaling model is sensitive to any changes in monitor inputs, especially in 

rural areas with fewer monitors.  

 

Figure 5-3. 2005 annual-average PM2.5 concentration fields estimated by the 

statistical downscaler at the 25,289 grids in Atlanta, GA. The results include the 

ARC-Obs model run (left), the ARC model run (middle), and the RLINE model run 

(right). Higher concentrations are in red and lower concentrations are in blue.  

 Further, the spatial distribution of the concentration estimates for the RLINE run 

are unphysical (Figure 5-3). Lower concentrations of PM2.5 are located on and near the 

highways, while higher concentrations are located in rural areas. This phenomenon results 

from the negative coefficient for RLINE (Table 5-1). CMAQ captures the spatial and 

temporal PM2.5 trend well enough that RLINE, which only provides spatial information, 

does not provide additional information to the model. In other words, the statistical 

downscaling model relies most heavily on CMAQ while RLINE results are non-

informative. Also, the RMSE of the statistical downscaling model with just CMAQ is 

significant and positive (Table 5-2), so including a correlated variable with a negative 



 

coefficient would reduce the error. Even though the results of the RLINE model run 

perform well at the observational sites with lower RMSE than CMAQ (Table 5-2), it does 

not accurately predict concentrations at other locations due to the negative RLINE 

coefficient.  

5.4 Discussion and Conclusions  

The statistical downscaling method proved to be an efficient way to use CMAQ data 

in order to estimate PM2.5 concentrations at specific geocoded locations. However, the 

results are highly sensitive to the size of the observational training data set and the land use 

variables used. The estimate for each geocoded location is based on one regression model 

that is trained on relatively few data points; therefore, these data points have to accurately 

represent the spatial distribution of the study area and downscaling results are sensitive to 

any changes. Additional measurements that better capture the spatial variation in PM2.5 

across the study domain, such as more observations in rural areas or near roadways, would 

be helpful.  

Furthermore, though the statistical downscaling approach proved effective with ARC 

emissions as land use variables, the results were unphysical when using RLINE 

concentrations as a land use variable with lower PM2.5 concentrations on the roadways than 

in rural areas. This phenomenon is driven by the negative RLINE coefficient in the model 

due to correlations between CMAQ and RLINE. Both CMAQ and RLINE data sets had 

previously been adjusted and calibrated using observations in the study area using methods 

described in Friberg, et al. (2016) and Zhai et al. (2016), respectively. Therefore, the 

statistical downscaling model may not have been able to differentiate the observation-



 

calibrated inputs with the observational training data set. Further, CMAQ and RLINE were 

correlated at the monitoring stations, and the the daily, observation-corrected CMAQ 

captured the spatio-temporal variability in PM2.5 well enough that including annual-

average, observation-calibrated RLINE as a land-use variable did not add additional 

information. Because CMAQ provided temporal information as well as spatial information, 

the model relied more heavily on CMAQ than the temporally static RLINE input, as shown 

by the higher coefficient (Table 5-1), which, along with the correlation between CMAQ 

and RLINE, led to a negative RLINE coefficient. Perhaps if RLINE was run on a daily 

basis, the model would perform better. Future work is needed to investigate the use of 

CMAQ and RLINE inputs that have not been calibrated with observations, using additional 

monitoring stations in the model training data set that were not used to calibrate CMAQ or 

RLINE, and/or using daily RLINE data. Overall, these results suggest that the statistical 

downscaling model approach would benefit from additional work improving temporal 

resolution of RLINE and obtaining more measurements for the observational training data 

set before RLINE and CMAQ are used together to predict pollutant concentrations at 

geocoded locations for health studies.  

 

  



 

CHAPTER 6.                                                                      

APPLICATION AND EVALUATION OF TWO MODEL FUSION 

APPROACHES TO OBTAIN AMBIENT AIR POLLUTANT 

CONCENTRATIONS AT A FINE SPATIAL RESOLUTION (250M) 

IN ATLANTA 

Abstract 

 Epidemiologic studies rely on accurately characterizing spatiotemporal variation in 

air pollutant concentrations. This work presents two model fusion approaches that use 

publicly available chemical transport simulations, dispersion model simulations, and 

observations to estimate air pollutant concentrations at a neighborhood-level spatial 

resolution while incorporating comprehensive chemistry and emissions sources. The first 

method is additive and the alternative method is multiplicative. These approaches are 

applied to Atlanta, GA at a 250m grid resolution to obtain daily 24 h averaged PM2.5 and 

1 h max CO and NOx concentrations during the years 2003 through 2008 for use in health 

studies. The modeled concentrations provide comprehensive estimates with steep spatial 

gradients near roadways, secondary formation and loss, and effects of regional sources that 

can influence daily variation in ambient pollutant concentrations.  Results show high 

temporal and spatial correlation and low biases across monitors, providing accurate 

pollutant concentration estimates for epidemiologic analyses.  

6.1 Introduction 



 

 Air pollution has been linked to adverse health effects, including cardiorespiratory 

morbidity and mortality (Brunekreef & Holgate, 2002; Delfino et al., 2005; Pope et al., 

2009) and adverse birth outcomes (H. H. Chang et al., 2012; Darrow et al., 2011). A 

limitation of many population-based health studies is the inability to estimate steep spatial 

gradients in intraurban pollutant exposures driven by local emission sources, like vehicle 

traffic on roadways. Simulation studies show that an inability to accurately capture spatial 

variability in heterogeneous pollutants can bias risk ratio estimates in epidemiologic studies 

(Goldman et al., 2011), and errors in exposure misclassification due to spatial variability 

assumptions are especially important for epidemiologic studies of long-term pollutant 

exposures (Wilson et al., 2005).  

Reliance on air quality observational data for exposure analyses can introduce 

exposure measurement error because the lack of a dense monitoring network can result in 

unobserved spatial variation in pollutant concentrations (Gryparis et al., 2009; S. E. Sarnat 

et al., 2010; Wilson et al., 2005). Air quality modeling addresses this problem by creating 

spatially and temporally resolved concentration fields constructed from simulating 

emissions, chemistry, physics, and meteorology impacting pollutants. However, specific 

model results are often limited by either spatial resolution or an inability to capture 

complex chemistry and a vast array of emissions sources. Two types of emissions-based 

models are commonly used: chemical transport models and dispersion models (e.g., 

Gaussian plume and variants). Eulerian grid-based chemical transport models simulate the 

transport and chemical transformation of pollutants emitted from thousands of emissions 

sources over a large spatial domain. However, because all emissions are evenly distributed 

within one computational grid (often 36km2 but seldom below 1km2), these models do not 



 

simulate local effects of individual sources and, thus, can miss steep spatial gradients that 

occur on scales < 1km. An example of a local source that can drive steep spatial gradients 

in pollutants is vehicles on roadways (Weijers, Khlystov, Kos, & Erisman, 2004). 59.5 

million people lived within 500m of heavily trafficked roads in 2010, and PM2.5 mass and 

component concentrations can double close to road sources (Beevers et al., 2013; 

Rowangould, 2013; Zhu, Hinds, Kim, & Sioutas, 2002). These high concentrations on 

roadways are not discernable using low resolution grids, leading to the need for additional 

exposure assessment methods to accurately characterize pollutant gradients in urban areas. 

Dispersion models can capture these gradients by using plume, puff, or particle 

representations but often do not take into account regional emissions or non-linear 

chemical reactions that contribute to the formation of major pollutants, like fine particulate 

matter (PM2.5). They are also not used to derive daily estimates over large spatial domains 

(1000s of km’s) due to model parameter limitations. Additionally, all types of models are 

subject to biases from model parameters and inputs. Therefore, neither chemical transport 

models nor dispersion models alone can estimate temporally and spatially resolved air 

pollutant concentration fields with comprehensive emission precursor information and 

chemistry. Reducing exposure misclassification by improving spatial and temporal 

resolution of air pollutant concentration estimates, reducing model biases, including 

emissions from all sources, and simulating chemistry in best-estimate simulations of 

concentrations is critical to minimizing error in epidemiologic studies. 

Different methods have been utilized to reduce error and improve spatial resolution 

of air pollutant concentration estimates at unmonitored locations while maintaining 

chemistry and regional emission impacts. Land-use regression (LUR) variable models have 



 

proven effective tools for fine-scale modeling by incorporating landscape characteristics, 

such as elevation and distance to roadway, with data from monitors and/or dispersion 

models (Marshall et al., 2008; Michanowicz et al., 2016). However, LUR models are 

specific to one study area with particular land-use characteristics. Other modeling 

approaches utilize various techniques to combine observations and/or different model 

outputs to represent intraurban air pollution. One method uses linear combinations of 

wavelet basis functions to blend data from monitors, the photochemical model CMAQ 

(Community Multiscale Air Quality model) (Byun & Schere, 2006), and the plume 

dispersion model AERMOD (AMS/EPA Regulatory Model) (Cimorelli et al., 2005; 

Crooks & Isakov, 2013) while another method nests the local dispersion model ADMS-

Urban (McHugh, Carruthers, & Edmunds, 1997) in the regional photochemical model 

CAMx (Comprehensive Air Quality Model with Extensions) (ENVIRON International 

Corporation, 2014; Stocker, Hood, Carruthers, Seaton, & Jockel, 2014). “Hybrid” methods 

add fine-scale dispersion model outputs to broader-scale estimates of pollutant 

concentrations, often referred to as background concentrations. Previous hybrid studies 

have used observations from central monitoring stations after subtracting out 

concentrations due to local emissions for estimates of urban background (Stein et al., 

2007). Other work utilized chemical transport models, like CMAQ, run without local 

emissions to determine urban background (Dionisio et al., 2013; Stein et al., 2007). An 

advanced method for calculating urban background was developed using space-time 

ordinary kriging to combine monitoring data, CMAQ, and CMAQ with zeroed out 

emissions (Arunachalam et al., 2014). These background estimates are added to model 

outputs from dispersion models like AERMOD and RLINE (Research LINE model) 



 

(Snyder et al., 2013) and/or Lagrangian models like HYSPLIT (Hybrid Single Particle 

Lagrangian Integrated Trajectory model) that characterize primary concentrations from 

stationary and roadway sources (S. Y. Chang et al., 2017; Dionisio et al., 2013; Stein et al., 

2007). Care must be taken with these hybrid methods to prevent double-counting of 

emissions in the dispersion models and background calculations. Here, methods are 

developed for fusing multi-model and observational data to estimate total pollutant 

concentrations from local and regional sources at a fine spatial resolution without needing 

to estimate the urban background a priori with a separate chemical transport model run 

without direct emissions of the pollutants of interest. Removing the need to simulate 

background concentrations using multiple photochemical air quality model runs and 

instead calculating urban background empirically can save computational time and prevent 

the methods from missing the chemistry and secondary formation or loss associated with 

local sources that chemical transport models cannot simulate if those emissions are zeroed 

out. We present the development of two novel, computationally efficient model fusion 

approaches to estimate air pollutant concentrations at a fine spatial resolution with 

comprehensive emissions and chemistry and their applications to the Atlanta, GA region.  

Each model fusion method developed in this work uses mathematical combinations 

of outputs from a chemical transport model that provides chemistry and local and regional 

emission sources and a dispersion model that provides fine spatial resolution simulations 

of inert pollutants from a local source, along with limited observations as available. One 

method is an additive approach and the other is a multiplicative approach. Both methods 

are applied to Atlanta, GA using simulations from the chemical transport model CMAQ 

and RLINE. RLINE is a steady-state dispersion model that simulates near surface releases 



 

of primary and chemically inert pollutants from line-sources, like vehicles on roadways 

(Snyder et al., 2013), and with 1.6 billion vehicles worldwide, the association between 

mobile source emissions and disease development is of particular concern (HEI Panel on 

the Health Effects of Traffic-Related Air Pollution, 2010). Emissions from road 

transportation are estimated to be the largest source contribution to premature deaths due 

to PM2.5 pollution in the United States (Caiazzo, Ashok, Waitz, Yim, & Barrett, 2013), and 

previous studies have shown that resolving steep spatial gradients in pollutant 

concentration near roadways is beneficial to epidemiologic studies (S. Y. Chang et al., 

2017). Results of the model fusion applications include a time series of daily concentration 

estimates of 1 h maximum carbon dioxide (CO) and nitrogen oxides (NO + NO2 = NOx) 

and 24 h PM2.5 at a 250m grid resolution across Atlanta, GA during the years 2003 through 

2008. Although the applications of these methods focus on vehicles as local sources, the 

methods can be extended to other local, non-roadway facilities. Overall, the inclusion of 

comprehensive regional and local sources and chemistry with fine-scale spatial gradients 

can provide comprehensive estimates of pollutant concentrations, reducing biases in 

exposure estimates used for epidemiologic analyses. Results are currently being used in 

spatiotemporal epidemiologic analyses of birth outcomes associated with air pollution and 

city planning and environmental justice studies investigating the relationships between air 

pollution, health, socio-economic factors, and infrastructure characteristics (Davis et al., 

2017).  

6.2 Methods 

 This work describes the development of two novel methods that fuse data from 

multiple models and observations to create comprehensive estimates of air pollutant 



 

concentrations at a fine spatial resolution. The two model fusion approaches combine 

results from a chemical transport model (CTM) and dispersion model (DISP) to obtain 

pollutant concentration estimates. The model fusion approaches are applicable to pollutants 

whose small scale spatial variation is captured by the dispersion model.  

Although these model fusion methods could theoretically simulate many types of 

pollutants using inputs from different types of models, the specific applications of these 

methods presented in this paper fuse annual-average outputs from the local-scale dispersion 

model RLINE (250m resolution) and daily simulations from the regional-scale CMAQ 

model (12km resolution) (Byun & Schere, 2006) to estimate daily 24 h averaged PM2.5 and 

1 h maximum NOx and CO concentrations at a 250m field resolution over Atlanta, GA 

from 2003 through 2008. CMAQ results are used as the CTM inputs because CMAQ is a 

state-of-the-science Eulerian-grid chemical transport model. RLINE is chosen as the 

dispersion model because roadway pollution is of interest to the epidemiologic analyses 

utilizing the results of this work and RLINE is a newly developed and well evaluated line-

source model built to handle link-based emissions for roadways. Due to the presence of 

biases in both models, CMAQ and RLINE results were adjusted using observations and 

data fusion methods a priori, before model estimates were fused together (Friberg et al., 

2016; Zhai et al., 2016). Such biases are present in the raw air quality model results due to 

model formulation (e.g., RLINE is subject to high biases under low dispersion conditions 

(Zhai et al., 2016), while CMAQ biases exist due to errors in numerical dispersion (Byun 

& Schere, 2006) and model inputs, like emissions data and meteorological fields). Both the 

data-fused CMAQ and observation-calibrated RLINE results for the pollutants of interest 

during the years 2003 through 2008 are publicly available and have been evaluated in 



 

previous work (Friberg et al., 2016; Zhai et al., 2016). Although use of pre-calibrated CTM 

and DISP results is viewed as preferable due to biases in each individual model, it is not a 

prerequisite for the applications of these model fusion methods. Furthermore, while mobile 

sources are responsible for a majority of the urban-area emissions of NOx and CO, they 

have a smaller contribution to PM2.5 concentrations in the area, which, along with high 

biases on and near roadways in RLINE results for NOx and CO, led to the development of 

slightly different model fusion approaches. One method uses an additive approach and is 

applied to provide daily concentration fields of particulate matter (PM2.5), which includes 

substantial secondary source contributions that are relatively spatially homogeneous. The 

second method uses a multiplicative approach and is applied to estimate spatiotemporal 

fields of the gaseous pollutants CO and NOx which have steep concentration gradients near 

roadways. Both approaches were tested with all three pollutants as a sensitivity analysis 

(Table C-2). 

6.2.1 Model Fusion Methods 

6.2.1.1 Additive Method for Fine Particulate Matter (PM2.5)  

The first step in the additive model fusion method is to remove primary roadway 

PM2.5 from the CTM estimates to avoid double counting of roadway emissions included in 

both the CTM and DISP outputs. To achieve this, the fine-scale DISP values are averaged 

into the coarser grid resolution matching the CTM computational grid (for clarity, the 

averaged DISP values at the coarser resolution will be referred to as 𝐷𝐼𝑆𝑃̅̅ ̅̅ ̅̅ ̅coarse). 𝐷𝐼𝑆𝑃̅̅ ̅̅ ̅̅ ̅coarse 

PM2.5 values, which represent primary roadway PM2.5 concentrations, are subtracted from 

the CTM estimates, leaving an estimate of urban background (as defined as all secondarily 



 

formed PM2.5 and primary PM2.5 from all sources excluding vehicles) at the CTM grid 

resolution. Next, results of this subtraction, i.e. the urban background at the coarse CTM 

resolution, are smoothed to the fine-scale grid resolution matching the DISP spatial 

resolution using a triangulation-based linear interpolation. These smoothed results 

represent urban background at a fine spatial resolution. Finally, because dispersion 

processes are linear, the initial DISP estimates are added to the interpolated urban 

background at each matching grid location, adding primary roadway PM2.5 back into the 

estimates and producing the final pollutant concentration approximations at the same 

spatial resolution of the dispersion model [equation (6-1)]. 

            𝑃𝑀2.5 =  [(𝐶𝑇𝑀 − 𝐷𝐼𝑆𝑃̅̅ ̅̅ ̅̅ 𝑐̅𝑜𝑎𝑟𝑠𝑒)𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑] + 𝐷𝐼𝑆𝑃  (6-1) 

In equation (6-1), PM2.5 is the PM2.5 concentration estimates at the desired fine spatial 

resolution resulting from the model fusion method (which is the same resolution as the 

dispersion model), CTM is the chemical transport model PM2.5 estimates, 𝐷𝐼𝑆𝑃̅̅ ̅̅ ̅̅ ̅coarse is the 

DISP estimates averaged to match the grid resolution of the CTM, and DISP is the 

dispersion model estimates at the desired fine spatial resolution. To summarize, 

concentrations of primary roadway PM2.5 are placed in their respective locations inside 

CTM grids after removing average roadway primary PM2.5 from the CTM estimates to 

avoid double counting. The result is daily concentration estimates of total fine particulate 

matter incorporating chemistry and complete local and regional emissions at a fine spatial 

resolution that matches the DISP inputs.  

6.2.1.2 Multiplicative Method for Gaseous Pollutants (CO and NOx)  



 

 In the application of the additive method to CO and NOx, it was found that biases 

in the input model data led to negative concentration estimates in urban background and 

final concentrations. The averages of the dispersion model estimates at the coarser grid 

resolution, i.e. the CTM grid resolution (𝐷𝐼𝑆𝑃̅̅ ̅̅ ̅̅ 𝑐̅𝑜𝑎𝑟𝑠𝑒), were higher than chemical transport 

model estimates at the same grid cell on certain days, leading to negative concentrations 

when 𝐷𝐼𝑆𝑃̅̅ ̅̅ ̅̅ ̅coarse values were subtracted from CTM estimates (see Appendix C for details). 

In general, when specific locations within a 12km grid cell have concentrations much 

higher than background, leading to high 𝐷𝐼𝑆𝑃̅̅ ̅̅ ̅̅ ̅coarse estimates, or background is small 

compared to the variation captured in the dispersion model, the additive method can lead 

to negative predictions due to errors in the model inputs.  

To avoid this phenomenon, instead of subtracting, CTM estimates are divided by 𝐷𝐼𝑆𝑃̅̅ ̅̅ ̅̅ ̅coarse values in the multiplicative method. This division results in linear adjustment 

factors for each grid cell at the coarser resolution. These adjustment factors physically 

represent the inverse fraction of total pollutant that is estimated to be primary from 

roadways. The spatial field of these adjustment factors is smoothed to the fine grid scale 

of the DISP estimates using triangulation based linear interpolation. Finally, each 

adjustment factor at the fine spatial resolution is multiplied by the DISP value at the 

matching grid cell to obtain final concentration estimates [equation (6-2)].  

                     𝐺𝑎𝑠 = [(𝐶𝑇𝑀 𝐷𝐼𝑆𝑃̅̅ ̅̅ ̅̅ 𝑐̅𝑜𝑎𝑟𝑠𝑒⁄   )𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑] ∗ 𝐷𝐼𝑆𝑃   (6-2) 

To summarize, this method rescales the DISP estimates using the linear relationship 

between CTM estimates and DISP values to obtain air pollutant estimates at the spatial 

resolution of the DISP simulations. If the linear adjustment factor is higher than one, the 



 

total pollutant concentration estimated by the CTM is higher than the primary roadway 

concentration estimated by the 𝐷𝐼𝑆𝑃̅̅ ̅̅ ̅̅ ̅coarse, and the estimates from DISP will be scaled 

higher to match the total concentration. If the linear adjustment factor is below one, the 𝐷𝐼𝑆𝑃̅̅ ̅̅ ̅̅ ̅coarse estimate of primary roadway pollutant concentration is higher than the CTM 

estimate of total pollutant concentration, implying that the DISP model is biased high, and 

the linear adjustment factor will scale the DISP estimate down. Although applications of 

the multiplicative method were limited to the gaseous pollutants NOx and CO, this method 

should be applied to any pollutant with biases in model input estimates (such as overly 

rapid vertical dispersion in CMAQ leading to biased low surface concentrations and 

excessive accumulation of pollutants due to wind direction aligning with roadway links in 

RLINE leading to biased high concentrations) that lead to higher 𝐷𝐼𝑆𝑃̅̅ ̅̅ ̅̅ ̅coarse than the CTM 

estimates. 

6.2.2 Methods for Developing Inputs for Application of Model Fusion Techniques to 

Atlanta, GA 

6.2.2.1 Chemical Transport Model Input  

CMAQ is a state-of-the-science Eulerian-grid regional chemical transport model 

incorporating emissions from a myriad of sources and complex chemistry, including 

gas/particle partitioning (Byun & Schere, 2006). The use of CMAQ in these model fusion 

methods accounts for photochemical evolution of the pollutants (loss and formation) as 

well as the impacts of regionally scaled sources. In Atlanta, specifically, much of the PM2.5 

is formed through secondary processes, such as the production of ammonium sulfate (Zhai, 

Mulholland, Russell, & Holmes, 2017), secondary organic aerosol (SOA) from both 



 

anthropogenic and biogenic sources (Kleindienst et al., 2010), and CO from the 

photochemical degradation of biogenic emissions (Choi, Osterman, Eldering, Wang, & 

Edgerton, 2010; Hudman et al., 2008). For the model fusion applications, daily CMAQ 

fields for 24 h PM2.5, maximum daily 1 h concentration of CO, and maximum daily 1 h 

concentration NOx during the years 2003 through 2008 were obtained from previous work 

by Friberg et al. (2016) that developed a data fusion method to optimize CMAQ outputs. 

In the Friberg et al. (2016) data fusion method, observational data is blended with the 

Environmental Protection Agency’s (EPA) PHASE CMAQ runs at 12km resolution [CDC 

National Environmental Public Health Tracking Network, CMAQ v4.7, carbon bond 

mechanism (CB05), 24 vertical layers, emissions obtained from the 2002 National 

Emissions Inventory run with the Sparse Operator Kernel Emissions (SMOKE), 

meteorology obtained from the Weather Research and Forecasting Model (WRF) v3.3.1]. 

Briefly, the algorithm in Friberg et al. (2016) utilizes a weighted average of one method 

that corrects daily CMAQ estimates for annual- and seasonal-biases (CMAQ1) and a 

second method the uses temporal variance from observations and spatial structure from the 

annual mean CMAQ field to obtain optimized air pollutant concentration fields (CMAQ2). 

The weight of the averages is based on a temporal variance that weights the second method 

(CMAQ2) heavier near monitors and the first method (CMAQ1) heavier away from 

monitors. Further details on this method and evaluation of this observation-fused CMAQ 

data set can be found in Friberg et al. (2016). The resulting simulations, which we will refer 

to as “OBS-CMAQ”, exhibit much less bias in the three pollutants of interest (daily 24 h 

PM2.5 and 1 h maximum CO and NOx) than the raw EPA PHASE CMAQ simulations, 

providing more accurate inputs to the model fusion approaches than raw CMAQ. For 



 

sensitivity analyses, the model fusion methods were also run with CMAQ outputs that were 

not calibrated with daily observations. Instead, CMAQ was only adjusted for annual means 

and seasonal biases using methods and regression coefficients described in detail in Friberg 

et al. (2016). In other words, the model fusion methods were run with CMAQ2 results for 

a sensitivity analysis and an estimate of the performance of the model fusion methods away 

from monitors where CMAQ2 is weighted more heavily in the OBS-CMAQ estimates. 

6.2.2.2 Dispersion Model Input 

RLINE is a steady-state line-source dispersion model developed by the U.S. EPA 

to simulate primary and chemically inert pollutants (Snyder et al., 2013). RLINE was 

chosen as the dispersion model for the application of these model fusion methods because 

it is designed to simulate primary concentrations from line-sources, such as mobile traffic. 

For the applications of the model fusion approaches, publicly available annual average 

RLINE fields during the years 2003 through 2008 developed in previous work were used 

(Zhai et al., 2016). Briefly, Zhai et al. (2016) ran RLINE using hourly meteorology 

generated for years 2003 through 2008 using AERMET (Cimorelli et al., 2005; U.S. 

Environmental Protection Agency, 2004) and AERMINUTE (U.S. Environmental 

Protection Agency, 2015) and link-based emissions from the Atlanta Regional 

Commission’s (ARC) 20-county activity-based travel demand model (D'Onofrio, 2016). 

Zhai et al. (2016) utilized a modified version of the STability ARray (STAR) method to 

group  meteorological variables, including wind direction, wind speed, and Monin-

Obukhov length, into 78 categories to simulate annual mean impacts of on-road mobile 

sources on pollutant concentrations (S. Y. Chang et al., 2015; U. S. Environmental 

Protection Agency, 1997; Zhai et al., 2016). ARC emissions were only available for 2010 



 

and, thus, were scaled to prior years to account for changes in vehicular traffic and 

emissions. Roadway link pattern and vehicle type distribution did not change significantly 

during the study time period and annual average MOVES emissions for the 20-county 

Atlanta area were available for each year of the study period, so MOVES emissions were 

used to calculate year-specific annual average link-based emissions via scaling of 2010 

ARC emissions. Using these year-adjusted annual average link-based emissions and data 

on frequency of occurrence for each of the 78 meteorological categories for each year, 

annual average RLINE concentration estimates at 250m resolution were developed for 24 

h PM2.5 and 1 h maximum CO and NOx for the years 2003 through 2008 over Atlanta, GA.  

 The RLINE results were found to be biased high, so Zhai et al. (2016) developed a 

method to calibrate the results using linear regressions with observations, in this case using 

five monitors for CO and seven monitors for NOx in the Atlanta, GA area. PM2.5 from 

RLINE was calibrated using a linear regression of log-transformed RLINE with Chemical 

Mass Balance-Gas Constraint (CMB-GC) mobile source impact estimates derived using 

data from three monitor sites and a priori source profiles (Zhai et al., 2016). This 

calibration substantially reduced the normalized mean bias of the model results, so these 

calibrated simulations, which we will refer to as “OBS-RLINE”, were used in the model 

fusion approaches. Further description of RLINE calibration and evaluation of these 

methods and results can be found in Zhai et al. (2016).  

6.3 Results 

The additive and multiplicative model fusion methods were applied to obtain daily 

estimates of 24 h average PM2.5 and 1 h maximum NOx and CO for Atlanta, GA during 



 

the years 2003 through 2008. The general mathematical equations for the model fusion 

methods [equations (6-1) and (6-2)] can be rewritten to apply to the specific inputs used in 

this work, expressed in equations (6-3) and (6-4).  

𝑃𝑀2.5(𝑥, 𝑑) =  [(𝑂𝐵𝑆-𝐶𝑀𝐴𝑄(𝑙, 𝑑) − 𝑂𝐵𝑆-𝑅𝐿𝐼𝑁𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑐𝑜𝑎𝑟𝑠𝑒(𝑙, 𝑦))𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑] + 𝑂𝐵𝑆-𝑅𝐿𝐼𝑁𝐸(𝑥, 𝑦)   (6-3) 

   𝐺𝑎𝑠(𝑥, 𝑑)  = [(𝑂𝐵𝑆-𝐶𝑀𝐴𝑄(𝑙, 𝑑) 𝑂𝐵𝑆-𝑅𝐿𝐼𝑁𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑐𝑜𝑎𝑟𝑠𝑒(𝑙, 𝑦)⁄   )𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑] ∗ 𝑂𝐵𝑆-𝑅𝐿𝐼𝑁𝐸(𝑥, 𝑦)      (6-4) 

In equations (6-3) and (6-4), pollutant concentration estimates are provided at 250m grid 

cells located at x for each day d, daily OBS-CMAQ and annual-average 𝑂𝐵𝑆 − 𝑅𝐿𝐼𝑁𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑐𝑜𝑎𝑟𝑠𝑒 estimates are provided at 12km grid cell locations l, and annual-

average OBS-RLINE estimates are provided for each year y. Equations (6-3) and (6-4) are 

specific to the model fusion applications presented in this work using previously developed 

OBS-CMAQ and OBS-RLINE data, but the methods could be applied to other models at 

various grid and time scales.  

The additive and multiplicative model fusion methods are represented graphically 

for an example year (2005) (Figure 6-1, Figure C-1, Figure C-2).  



 

 

Figure 6-1. Additive model fusion steps and results for 2005 annual average PM2.5. 

First, the fine resolution (250m) OBS-RLINE field is averaged to a 12km grid 

matching the OBS-CMAQ grid (b), which is subtracted from the OBS-CMAQ 12km 

field (a).  These results are spatially interpolated to 250m resolution matching the 

OBS-RLINE grid resolution (c) and then added to the 250m resolution OBS-RLINE 

field (d) to provide a 250m resolution model-fused annual average PM2.5 field (e). 

Note: each plot has a different color scale in order to show the spatial distributions 

clearly. 

Annual average results for the same year are depicted for 1 h maximum NOx and CO using 

the multiplicative method (Figure 6-2).  

  

Figure 6-2. Multiplicative model fusion results for annual averages of 1 h maximum 

CO (ppb) (left) and NOx (ppb) (right) for the year 2005. 



 

Plots of annual averages of each pollutant for all years of the study period can be found 

in the supplemental (Figure C-3, Figure C-4, Figure C-5). Major highways are clearly 

visible on spatial distribution maps of the resulting model fusion estimates for each 

pollutant (Figure 6-1, Figure 6-2, Figure C-3, Figure C-4, Figure C-5), indicating an ability 

of the model fusion methods to yield small-scale spatial gradients in pollutant 

concentration. Consistently high concentrations in the central part of Atlanta are due to 

vehicle emissions from the Downtown Connector where three interstates (I-20, I-85, and 

I-75) merge into one eight-lane highway [the busiest section experienced over 272,000 

vehicles per day in 2005 (Cimorelli et al., 2005)], other roadway traffic in the region, a 

railyard, and other major sources west of the Downtown Connector. 

6.3.1 Monitoring Data for Evaluation  

Performances of OBS-CMAQ, OBS-RLINE, and model fusion results for each 

pollutant were evaluated using available urban and rural monitoring stations in the Atlanta 

region: eight monitors for PM2.5, five monitors for CO, and five monitors for NOx. These 

same monitoring sites were used in the data assimilation methods to reduce bias in the 

model inputs (OBS-CMAQ and OBS-RLINE), but a sensitivity analysis was performed on 

the model fusion methods using CMAQ inputs that had not been adjusted with daily 

observations. Observations were taken from monitors that are part of the Central Speciation 

Network (CSN) and Southeast Aerosol Research and Characterization network (SEARCH) 

network and monitors operated by the Georgia Environmental Protection Department (GA 

EPD) (Table C-1) (Edgerton et al., 2005; Hansen et al., 2003; Paul A. Solomon et al., 

2014). There were multiple PM2.5 monitoring instruments at Yorkville and South Dekalb 

during the study period, so observations from each monitor were averaged into one value 



 

for that site before evaluating model performance. Data were available daily or every 3 

days, depending on the site, and available during the entire study time period (years 2003 

through 2008) except for one PM2.5 monitor and one CO monitor, each missing one year 

of data (Table C-1).  

6.3.2 Evaluation of Model Fusion Methods  

Results of the model fusion methods’ applications to PM2.5, NOx, and CO in 

Atlanta, GA were compared to monitoring data to assess and evaluate model fusion 

performance using the publicly available OBS-CMAQ and OBS-RLINE simulations 

(Table 6-1, Table 6-). These model fusion data are being used in current epidemiologic and 

environmental justice studies. Model fusion concentration estimates were compared to 

available site-day measurements paired in time and space during the entire study period 

(years 2003 through 2008). Evaluation statistics were calculated per available site-day for 

each monitor, averaged into annual values for each monitor, and then averaged over all 

monitoring sites for each year during the study period. The median, minimum, and 

maximum values over the time period are reported (Table 6-1).  

 

 

 

 

 



 

Table 6-1. Evaluation statistics are the median, with minimum and maximum in 

parentheses, of year-specific averages (2003 through 2008) of the statistics for eight, 

five, and five monitors for PM2.5 (µg/m3), CO (ppb), and NOx (ppb), respectively, 

located in Atlanta, GA. Statistics are available for OBS-CMAQ, additive (PM2.5) 

and multiplicative (NOx and CO) model fusion results using OBS-CMAQ and OBS-

RLINE as inputs (Model Fusion), and additive (PM2.5) and multiplicative (NOx and 

CO) model fusion results with OBS-RLINE and CMAQ simulations that have not 

been adjusted using daily observations, representing a 100% withholding, as inputs 

(Model Fusion Withholding).  

 24-hr PM2.5 1-hr max CO 1-hr max NOx 

Mean    

OBS-CMAQ 
16.4 

(13.8—16.9) 

748.2 

(538.7—897.4) 

58.4 

(43.2—63.2) 

Model Fusion 
16.7 

(13.7—17.0) 

737.4 

(528.5—890.7) 

56.5 

(41.6—61.0) 

Model Fusion Withholding 
17.0 

(14.1—17.4) 

745.3 

(530.6—906.1) 

57.3 

(42.7—62.7) 

Observations 
15.7 

(11.0—16.1) 

787.8 

(477.3—928.2) 

68.8 

(48.1—77.3) 

RMSEa    

OBS-CMAQ 
2.1 

(1.8—2.6) 

232.7 

(182.2—326.4) 

36.1 

(31.2—39.1) 

Model Fusion 
1.9 

(1.8—2.3) 

206.3 

(138.7—250.1) 

36.8 

(31.2—38.0) 



 

Table 6-1 continued 

Model Fusion Withholding 
5.7 

(5.4—6.0) 

428.7 

(310.5—505.1) 

54.8 

(52.2—65.4) 

Mean Biasb    

OBS-CMAQ 
0.8 

(-0.08—1.2) 

-42.9 

(-86.8— -29.3) 

-11.3 

(-13.0— -4.0) 

Model Fusion 
1.0 

(0.2—1.3) 

-51.6 

(-98.1— -36.5) 

-13.9 

(-15.3— -8.4) 

Model Fusion Withholding 
1.2 

(0.7—1.8) 

-50.5 

(-84.5— -32.4) 

-12.5 

(-14.2— -7.1) 

Normalized Mean Biasc (%)    

OBS-CMAQ 
5.7 

(-0.3—6.8) 

3.4 

(-0.3—12.7) 

15.4 

(9.3—37.1) 

Model Fusion 
6.9 

(1.5—8.0) 

0.2 

(-1.7—8.4) 

4.3 

(0.9—22.2) 

Model Fusion Withholding 
7.8 

(4.4—11.1) 

1.1 

(-2.2—10.1) 

8.3 

(4.4—26.5) 

Mean Errord    

OBS-CMAQ 
1.5 

(1.3—1.8) 

183.7 

(154.1—267.6) 

25.3 

(22.4—26.5) 



 

Table 6-1 continued 

Model Fusion 
1.5 

(1.4—1.9) 

143.5 

(105.3—181.5) 

24.9 

(22.6—27.6) 

Model Fusion Withholding 
4.2 

(3.8—4.3) 

285.2 

(210.0—369.5) 

37.9 

(32.6—43.6) 

Normalized Mean Errore (%)    

OBS-CMAQ 
10.4 

(8.5—11.4) 

27.7 

(22.5—37.0) 

48.4 

(44.6—64.6) 

Model Fusion 
9.9 

(9.0—12.1) 

23.8 

(15.6—25.7) 

39.6 

(35.3—55.3) 

Model Fusion Withholding 
27.3 

(26.5—29.1) 

40.4 

(36.4—45.0) 

61.0 

(59.5—74.7) 

Temporal Rf    

OBS-CMAQ 
0.98 

(0.89—0.99) 

0.93 

(0.91—0.95) 

0.98 

(0.89—1.0) 

Model Fusion 
0.99 

(0.92—0.99) 

0.93 

(0.92—0.95) 

0.98 

(0.89—1.0) 

Model Fusion Withholding 
0.77 

(0.73—0.79) 

0.54 

(0.52—0.59) 

0.60 

(0.58—0.62) 

aRoot-mean squared error: √𝒎𝒆𝒂𝒏((𝑪𝒎 − 𝑪𝒐)𝟐) ; Co: daily observed 

concentration; Cm: daily modeled concentration 



 

Table 6-1 continued 

bMean bias: 𝒎𝒆𝒂𝒏(𝑪𝒎 − 𝑪𝒐) ; Co: daily observed concentration; Cm: daily modeled 

concentration 

cNormalized mean bias: (𝒎𝒆𝒂𝒏(𝑪𝒎)𝒎𝒆𝒂𝒏(𝑪𝒐) − 𝟏) ∗ 𝟏𝟎𝟎 ; Co: daily observed concentration; 

Cm: daily modeled concentration 

dMean error:𝒎𝒆𝒂𝒏(|𝑪𝒎 − 𝑪𝒐|) ; Co: daily observed concentration; Cm: daily 

modeled concentration 

eNormalized mean error: 
∑|𝑪𝒎−𝑪𝒐|∑ 𝑪𝒐 ∗ 𝟏𝟎𝟎; Co: daily observed concentration; Cm: 

daily modeled concentration 

fPearson’s correlation coefficient  

Further evaluation of the model fusion algorithms was conducted by rerunning the 

model fusion methods for each pollutant over the entire study period (years 2003 through 

2008) with CMAQ results that were adjusted for annual and seasonal biases using 

regression coefficients developed in Friberg et al. (2016) but do not incorporate the daily 

observations that were used in the evaluation. These results allow the evaluation of the 

model fusion approaches against daily observations without using those same observations 

in the model fusion inputs (OBS-CMAQ), providing a 100% withholding test for the model 

fusion results. This evaluation can be used to assess model fusion performance away from 

monitors that rely on CMAQ information more than observations due to the nature of the 

data fusion method used to develop OBS-CMAQ (Friberg et al., 2016). Even without 

fusing CMAQ inputs with daily observations, the model fusion methods perform well with 

median normalized mean biases of 7.8%, 1.1%, and 8.3% for 24 h average PM2.5, 1 h 

maximum CO, and 1 h maximum NOx, respectively, across available observation site-days 

during the years 2003 through 2008 (Table 6-1). Temporal correlations were lower for the 



 

100% withholding test than for the model fusion estimates with OBS-CMAQ (100% 

withholding model fusion R = 0.77, 0.54, and 0.60 for PM2.5, CO and NOx, respectively; 

model fusion with OBS-CMAQ R = 0.99, 0.93, 0.98 for PM2.5, CO and NOx, respectively) 

(Table 6-1). These results show that for temporal correlation, the inputs to the model fusion 

processes greatly impact evaluation statistics. The model fusion algorithms combine two 

model simulations and do not adjust them with observations to reduce biases, so 

adjustments with daily observations a priori increases temporal correlations. However, the 

biases and errors are relatively low for the 100% withholding test, indicating that the model 

fusion methods are generally unbiased in capturing concentrations away from monitors 

where the OBS-CMAQ inputs are not affected significantly by daily observations due to 

the data fusion method utilized and described in Friberg et al. (2016).  

6.3.3 Comparison of Model Fusion Results to OBS-CMAQ 

Performances of the applications of the model fusion methods to PM2.5, CO, and 

NOx in Atlanta were compared to the performance of OBS-CMAQ to investigate the value 

of finer spatial resolution estimates (Table 6-1, Table 6-, Figure 6-3). The performance 

metrics between the model fusion results and OBS-CMAQ are comparable, which is to be 

expected as the performance of the model fusion methods relies heavily on model inputs, 

including OBS-CMAQ. There is general improvement in the medians and ranges of 

normalized mean bias and normalized mean error for model-fused 1 h maximum CO and 

NOx estimates compared to OBS-CMAQ estimates. These minimized biases and errors 

show the value in the model fusion methods’ capabilities to incorporate OBS-RLINE 

information and obtain finer spatial resolution.  



 

Performance metrics for 24 h averaged PM2.5 do not vary significantly between 

OBS-CMAQ and model-fused results because mobile sources are not the dominant source 

of PM2.5 in the region. Most of the PM2.5 in the southeastern United States is secondary 

(including ammonium sulfate and secondary biogenic pollutants) (Zhai et al., 2017). OBS-

RLINE only provides adjustments to the primary mobile source impacts while OBS-

CMAQ and monitoring data include primary and secondary PM2.5 from all sources, so 

OBS-RLINE contributes less information to total PM2.5 than to total NOx and CO (which 

are dominated by vehicles emissions) driving the larger performance increase between 

model-fused and OBS-CMAQ NOx and CO compared to model-fused and OBS-CMAQ 

PM2.5. Nevertheless, the model-fused PM2.5 performs well compared to OBS-CMAQ 

simulations and provides results at a 16-times finer spatial resolution. In other words, the 

model fusion methods perform well and estimate steep spatial gradients in concentrations 

that cannot be simulated by OBS-CMAQ due to limitations of the coarse grid resolution.  

Spatial correlation analyses illustrate the contribution of both OBS-CMAQ and 

OBS-RLINE to the model fusion results. Spatial correlation (Pearson’s linear correlation 

coefficient) values were calculated across monitoring locations using annual averages 

during the years 2003 through 2008 (Table 6-).  

 

 

 

 



 

Table 6-2. Median of spatial Pearson’s correlation coefficients over the study period 

with minimum and maximum in parentheses. Values are estimated using the annual 

averages of available observation sites and additive (PM2.5) and multiplicative (NOx 

and CO) model fused results (250m resolution) with OBS-CMAQ and OBS-RLINE 

as inputs, OBS-CMAQ (12km resolution), and OBS-RLINE simulations (250m 

resolution) during the years 2003 through 2008. 

 Model Fusion OBS-CMAQ OBS-RLINE 

24-hr avg. PM2.5 
0.60 

(0.34—0.77) 

0.61 

(0.37—0.80) 

0.38 

(0.16—0.62) 

1-hr max CO 
0.98 

(0.97—1.00) 

0.84 

(0.78—0.91) 

0.96 

(0.93—1.00) 

1-hr max NOx 
0.84 

(0.76—0.89) 

0.78 

(0.72—0.83) 

0.74 

(0.68—0.77) 

The spatial correlations for 1 h maximum CO and NOx multiplicative model fusion 

results are substantially higher than spatial correlations for OBS-CMAQ results due to the 

finer spatial resolution of the model-fused estimates, which incorporate OBS-RLINE 

results and more accurately capture the steep gradients in the pollutant concentrations. 

Furthermore, spatial correlations for model-fused estimates are larger than spatial 

correlation values for OBS-RLINE for each pollutant because the model fusion methods 

use OBS-CMAQ to capture chemistry and sources that OBS-RLINE does not account for, 

providing more comprehensive and accurate estimates (note that the OBS-RLINE median 

spatial correlation for PM2.5 is low because this model only captures primary PM2.5 from 

roadways, not total PM2.5 from multiple primary sources and secondary processes that are 

captured by monitors). Thus, the simulations from both observation-fused models used as 



 

inputs (OBS-CMAQ and OBS-RLINE) contribute to overall performance of the model 

fusion methods. Finally, the ranges of spatial correlations for 24 h averaged PM2.5 are large 

and median values relatively small compared to NOx and CO because it is more difficult 

for models to capture small spatial variations. Secondary pollutant formation makes PM2.5 

more spatially uniform than NOx and CO, resulting in observations varying less between 

monitors.  

Annual average model fusion estimates using OBS-CMAQ and OBS-RLINE as inputs 

were compared to annual average OBS-CMAQ simulations at each 250m grid cell across 

the entire spatial domain, rather than just monitoring locations, to investigate the effects of 

obtaining finer spatial resolution estimates across the study area. Many 250m model fusion 

results agree well with 12km OBS-CMAQ simulations, as shown by the majority of model 

fusion values falling near a 1:1 line with OBS-CMAQ values (Figure 6-3), but the 250m 

model fusion estimates capture more extreme concentrations (mostly at roadways) that are 

averaged out in 12km OBS-CMAQ simulations but captured by OBS-RLINE.  

(a)  (b)  (c)   

Figure 6-3. Density scatter plots of annually averaged model fusion estimates at each 

250m grid cell versus annual average OBS-CMAQ values at the corresponding grid 

cells during the years 2003-2008 for (a) 24 h average PM2.5 (µg/m3) by additive 

method, and (b) 1 h maximum CO (ppb) and (c) 1 h maximum NOx (ppb) by 

multiplicative method. A higher density of points is in yellow and lower density in 

blue. Black lines represent 1:1 lines. 



 

Vertical lines on the density scatter plots (Figure 6-3) show the ability of the model 

fusion methods to capture gradients within one 12km grid cell by illustrating the 

distribution of model fusion estimates for one OBS-CMAQ estimate. Many of the highest 

estimates are found directly on or near major roadways, which are in accordance with 

observations (Beevers et al., 2013; Cong, Qu, & Yang, 2016; J. Sarnat, 2017a).  

6.3.4 Sensitivity Analyses 

The multiplicative pollutant method was tested with 24 h average PM2.5 to 

investigate the utility of the multiplicative pollutant model fusion method with other 

pollutants that have larger background contributions than NOx and CO. Overall 

performance for model fused 24 h average PM2.5 estimates using the multiplicative method 

was poorer than the additive method (Table C-2). This lower performance results from the 

many sources of particulate matter contributing to urban background, so primary roadway 

PM2.5 is being scaled by a heterogeneous mixture of particulate matter including both 

primary emissions and secondary formation. The multiplicative method can magnify errors 

when compared to the additive method. Additionally, the additive method was applied to 

1 h maximum NOx and CO, in spite of the occasions when some of the final concentrations 

go negative, for comparison to the multiplicative approach. Overall, the statistics between 

the additive and multiplicative methods are comparable for NOx and CO, with a slightly 

more negative mean bias and higher mean error for the additive method. However, the 

incorrect negative concentration estimates using the additive approach persisted 

throughout the time period with 72% and 14% of the days for 1 h maximum NOx and CO, 

respectively, producing at least one 250m gird cell in the domain with a value below zero. 

Therefore, when determining which model fusion method to use for a specific pollutant, if 



 

𝐷𝐼𝑆𝑃̅̅ ̅̅ ̅̅ ̅coarse values are higher than CTM values at certain locations due to biased high 

dispersion model outputs and/or biased low CTM values, the multiplicative model fusion 

method should be used to avoid unphysical results. In these cases, the background 

concentrations are often very low, i.e. a majority of the concentration of that pollutant is 

from primary vehicle emissions (when using RLINE as the dispersion model input). 

Otherwise, the additive model fusion method should be used to limit biases and errors. 

However, with relatively short run times, both model fusion methods can be tested and 

evaluated against observations to determine the best method on an individual basis.  

6.4 Discussion 

 Capturing steep spatial gradients in pollutant concentrations near roadways is 

critical for exposure assessment in epidemiologic studies. Monitoring stations are too 

sparse to accurately capture spatial gradients in pollutant concentration and can miss very 

high concentrations near roadways. Some air quality models can estimate fine spatial 

resolutions (dispersion models) but do not simulate atmospheric chemistry processes or 

incorporate regional emission sources. Other models, like chemical transport models, can 

simulate atmospheric processing and comprehensive emission sources but typically at a 

coarse resolution (> 1km). The model fusion methods presented in this work utilize the 

strengths of both types of models (i.e., the regional chemical transport model CMAQ and 

the line dispersion model RLINE) and compares well to other air quality modeling 

techniques (H. Yu et al., 2018). The time limiting factor of these model fusion approaches 

is running the chemical transport model and dispersion model for inputs, but there is 

publicly available chemical transport and dispersion model data. These methods limit 

computational time by  avoiding the need to re-run a chemical transport model with zeroed 



 

out emissions to obtain background concentration estimates  (Arunachalam et al., 2014; S. 

Y. Chang et al., 2017; Stein et al., 2007), presenting a relatively quick approach for 

obtaining finely-resolved spatial concentration estimates that avoids double counting of 

emissions. Fast run times allowed for the rapid development and evaluation of a long-term 

series of daily data for multiple pollutants. Additionally, by calculating “urban 

background” within the model fusion methods rather than a priori by zeroing out local 

emissions in CMAQ, the chemistry and secondary loss/formation that arise from the local 

emissions are not sacrificed.  

Results shown in this paper are specific to daily 12km OBS-CMAQ and annual-

averaged 250m OBS-RLINE inputs, but neither spatial nor temporal resolutions of both 

the inputs and outputs are fixed in these methods. Spatial resolution can change by 

adjusting the interpolation step. Additionally, these model fusion methods can be applied 

to other pollutants and can be used with simulations from different models as inputs if those 

data are more readily available or the focus of the study is capturing spatial gradients near 

local sources of emissions other than roadways.  

There are three main limitations of the model fusion methods presented in this 

paper. First, the evaluation statistics, specifically temporal correlation, of these methods 

are dependent on the performance of the inputs. Specifically, in the applications presented 

in this paper, much of the daily variation in the results is due to the daily variation in the 

observations used to calibrate CMAQ. Although raw CMAQ, RLINE, or other model 

inputs can be used in the model fusion processes, a thorough evaluation of model inputs 

and adjusting these fields to reduce biases using methods such as the ones presented in 

Friberg et al. (2016) and Zhai et al. (2016) are recommended before resulting model fields 



 

are fused in the model fusion methods. Additionally, fusing input CMAQ and RLINE with 

observations incorporates monitor information into estimating urban background and 

capturing the spatial gradients near roadways, which the model fusion methods alone do 

not achieve. Simulating steep spatial gradients in the dispersion model is critical because 

the fusion methods rely on the dispersion model inputs to capture all fine scale spatial 

variation in the pollutant of interest. Second, the interpolation step assumes that the urban 

background, as defined as pollution derived from all sources except the primary mobile 

fraction, can be linearly interpolated in space. If the urban background consists mostly of 

spatially uniform pollutants that vary smoothly in space, this assumption holds true. In 

Georgia, roughly 60% of the PM2.5 mass is secondary, which is spatially smooth (Zhai et 

al., 2017). However, if the background pollution is dominated by spatially heterogeneous 

pollutants with strong local sources surrounded by steep spatial gradients that are not 

captured in the dispersion model inputs, this assumption may not hold true. In this work, 

NOx and CO are spatially heterogeneous in the study area, but the major local source 

driving this heterogeneity is vehicles and is captured by the OBS-RLINE inputs and is, 

thus, not included in urban background. Finally, for the multiplicative fusion method, the 

DISPcoarse values must all be non-zero to avoid mathematical impossibilities due to division 

by zero. If DISPcoarse is zero, implying that there is no primary pollutant in that coarse grid 

cell estimated by the dispersion model, i.e. if there is no primary pollution associated with 

vehicles on roadways using OBS-RLINE, the CTM value should be assumed as the total 

concentration of the area without undergoing the model fusion process, though this would 

not be expected to occur often and did not occur in these applications. 



 

One limitation with evaluating these model fusion approaches is the lack of 

monitoring stations surrounding roadways. There is very limited near-roadway data to 

calibrate OBS-RLINE with to reduce bias in spatial gradient estimates. The lack of 

monitoring stations with daily data also limits the ability to evaluate the spatial gradients 

simulated by the model fusion methods on a daily basis using daily OBS-CMAQ and 

annual averaged OBS-RLINE as inputs. Nevertheless, these model fusion approaches 

compare well to available data and estimates near roadways are similar to measurements 

on roadways from other studies, including the more recent near-road monitoring study in 

Atlanta (J. Sarnat, 2017a).   

Overall, the model fusion results capture high pollutant concentrations at roadways 

that OBS-CMAQ alone cannot while also retaining complex chemistry and contributions 

from sources that OBS-RLINE does not simulate. The fine spatial resolution of the 

resulting pollutant concentrations is useful for reducing exposure measurement error in 

health studies of spatially heterogeneous pollutants impacted by chemistry, such as studies 

investigating pollutant exposure while living in close proximity to roadways. More broadly, 

these model fusion results have many applications for epidemiologic analyses, city 

planning, and environmental justice studies that require pollutant concentration data at a 

fine spatial resolution.  

 

  



 

CHAPTER 7.                                                                      

INTRAURBAN SPATIAL VARIATION IN OXIDATIVE 

POTENTIAL DRIVEN BY VEHICLE EMISSIONS IN ATLANTA 

Abstract 

 The link between vehicle emissions and health has been of increasing interest to 

epidemiologic and environmental justice studies due to the possibility of rapid urbanization 

leading to disproportionately high exposures in near-road environments. However, health 

studies on traffic exposure are impacted by the inability of observations to fully capture 

within-city spatial variability in pollutant concentration fields, especially steep spatial 

gradients near roadways. Observations for particulate matter (PM) oxidative potential 

(OP), a property of PM that measures a particle’s ability to induce harmful redox reactions 

in the body, are especially limited as the development of acellular OP measurement 

techniques is relatively recent. Exposure to OP leads to higher risks for asthma/wheezing 

attacks, ischemic heart disease, and lung cancer than PM mass, and vehicle-derived PM 

from tailpipe emissions, brake/tire wear, and secondary formation have high intrinsic OP. 

This work develops and applies a model capable of estimating intraurban variability of OP 

driven by vehicle sources to better understand health impacts of traffic, particularly to 

vulnerable populations. A model fusion technique is used with dispersion and chemical 

transport model outputs to estimate vehicle-derived primary and secondary PM2.5 in 

Atlanta, GA at a 250m resolution. These vehicle PM2.5 estimates are multiplied by a 

vehicle-specific intrinsic OP value to estimate ambient levels of vehicle-derived OP. These 

vehicle-derived OP results are added to OP estimates from fires, regional sources, and 



 

natural gas combustion that are interpolated to a fine spatial resolution to develop OP 

estimates of ambient PM from comprehensive emission sources for evaluation against 

measurements. Results show higher OP estimates near roadways, but other source impacts, 

like biomass burning and regional sources, make OP estimates more spatially 

homogeneous than estimated vehicle-derived PM2.5 in Atlanta. The OP estimates are biased 

high at the roadside monitoring site but not at the urban monitoring site, possibly due to 

high biases in RLINE PM2.5 on roadways or overestimation of intrinsic vehicle OP near 

highways. The intrinsic vehicle OP value may need to be differentiated for gasoline and 

diesel engines and/or be estimated as a spatially varying value to capture the effects of 

photochemistry on OP of vehicle PM emissions. 

7.1 Introduction 

 Particulate air pollution has been associated with multiple health endpoints, 

including cardiorespiratory effects, adverse birth outcomes, and cancer (U.S. EPA, 2009). 

One limitation of epidemiologic studies on fine particulate matter (PM2.5) is exposure error 

due to an inability of observational data to capture intraurban spatial variability driven by 

concentrated emission sources, such as vehicle emissions on heavily trafficked highways 

(Goldman et al., 2011). Air quality monitoring stations are spatially sparse due to cost 

limitations and are sited for regulatory purposes, e.g., to capture community-scale 

exposures. While the recently initiated near-road monitoring network is providing 

increased information on pollutant concentrations near certain busy highways, the near-

road monitoring locations are very limited with only one or two locations in most larger 

cities and have been shown to be insufficient for capturing pollutant dynamics in areas near 

the monitors (J. Sarnat, 2017b). Together, this means that observational data lack the 



 

information desired to characterize fine scale spatiotemporal pollutant concentrations 

wanted for epidemiology studies.  

 Dispersion models and model fusion techniques have previously been applied to 

estimate PM2.5 concentrations in an urban environment at a fine spatial resolution. For 

example, RLINE (Research LINE model), a steady-state line-source model developed to 

model primary, chemically inert roadway concentrations, was applied in Atlanta and 

Detroit as part of health research and city planning efforts (D'Onofrio, 2016; J. Sarnat, 

2017b; Snyder et al., 2013). A recently developed model fusion technique combined 

RLINE with CMAQ (Community Multiscale Air Quality model) to simulate daily PM2.5 

at a 250m resolution in Atlanta, GA without sacrificing secondary formation and regional 

source impacts (J. Bates, Pennington, et al., 2018). Because vehicle source impacts and 

secondary aerosol formation are critical for OP, this model fusion method was applied to 

vehicle source impacts from CMAQ-DDM to estimate intraurban spatial variability in 

vehicle-derived OP. First, the model fusion method was applied to estimate daily vehicle-

derived PM2.5 at a 250m resolution across Atlanta, GA. These daily fine-scale vehicle PM2.5 

fields were then multiplied by an intrinsic vehicle OP value and added to OP estimates of 

other sources, like biomass burning, to estimate the intraurban OP concentrations at a 250m 

resolution. The intrinsic vehicle OP value was obtained from previous studies that 

measured OP with a dithiothrietol (DTT) assay. OPDTT has been shown to be associated 

with numerous acute cardiorespiratory effects, which is why modeling OP specifically 

using the DTT assay was chosen for this work (Abrams et al., 2017; J. Bates, Fang, et al., 

2018; J. T. Bates et al., 2015; Fang et al., 2016; Yang et al., 2016; Zhang et al., 2016). Data 



 

collected at three sites in Atlanta, GA are used with the model-fused OPDTT estimates to 

evaluate the ability of the modeling method to capture within-city variability in OPDTT. 

7.2 Methods 

 The impact of vehicle emissions on intraurban spatial variability in OPDTT was 

estimated using dispersion modeling and model fusion techniques. Briefly, OPDTT was 

measured from water-soluble PM2.5 filters collected at three locations within Atlanta, GA 

using an acellular DTT assay. Previously developed RLINE results were used in a model 

fusion algorithm with CMAQ-DDM identified vehicle source impacts to estimate the 

primary and secondarily-formed vehicle-related PM2.5 in Atlanta, GA at a 250m resolution. 

Then, these results were multiplied by an intrinsic OPDTT value for vehicle emissions to 

estimate vehicle-driven spatial variability of OPDTT in Atlanta, GA. Fires and natural gas 

combustion-related PM2.5, which have previously been identified as having impacts on 

OPDTT (J. Bates, Weber, et al., 2018), were also multiplied by their intrinsic OPDTT and 

added to the vehicle-derived OPDTT to produce spatiotemporal fields of comprehensive 

water-soluble OPDTT across Atlanta, GA.  

7.2.1 PM2.5 sampling and DTT analysis 

Water-soluble PM2.5 OPDTT was measured at three sites in the Atlanta area using a 

semi-automated acellular DTT assay developed based on methods in Cho, et al. (2005) (J. 

T. Bates et al., 2015).  Details of the measurement methods, study area, and results are 

found elsewhere (Tuet et al., 2017).  Briefly, PM2.5 was collected daily on pre-baked 8 x 

10 in. quartz filters from 12 pm (noon) – 11 am using a non-denuded Thermo Anderson 

high-volume sampler. Details are described in Fang, et al. (2015) . Samples were collected 



 

at three locations: Jefferson Street (JST) from June 2012 through April 2013, roadside site 

(RS) from September 2012 through October 2012 and January 2012 through February 

2013, and Georgia Tech rooftop lab (GT) from July 2012 through August 2012 (Figure 

7-1). RS is directly on the Downtown Connector, a strip of roadway where three interstates 

(I-20, I-85 and I-75) merge into one eight-lane highway (the busiest section experienced 

over 272,000 vehicles per day in 2005)(Georgia Department of Transportation, 2005). JST 

is an urban measurement site ~2.4km from the Downtown Connector next to a railyard and 

residential district. The GT site is on the roof of a three story building in the middle of 

Georgia Tech’s campus, ~0.44km from the Downtown Connector (Figure 7-1). 

 

Figure 7-1. Locations of OPDTT measurement sites in Atlanta, GA.   

7.2.2 Dispersion Modeling 

 RLINE was chosen as the dispersion model for these analyses because it is an 

advanced, well-evaluated model designed to simulate primary concentrations from 

emissions of “line-sources”, such as automobiles on highways. In Zhai et al. (2016), 



 

annual-averaged primary roadway PM2.5 was modeled for 2011 at a 250m resolution using 

RLINE with 2010 link-based emissions from the Atlanta Regional Commission’s (ARC) 

20-county activity-based travel demand model (D'Onofrio, 2016; Zhai et al., 2016). 

Roadway link pattern and vehicle type distribution did not change significantly between 

2010 and 2011, so it was assumed that the spatiotemporal patterns of the 2010 emissions 

could be used with 2011 meteorology to produce 2011 air pollutant concentration data. 

RLINE was run with hourly meteorology generated using AERMET (Cimorelli et al., 

2005; U.S. Environmental Protection Agency, 2004) and AERMINUTE (U.S. 

Environmental Protection Agency, 2015). A modified version of the STability ARay 

(STAR) method was used to group the meteorological variables wind direction, wind 

speed, and Monin-Obukhov length into 78 categories that were used with weighting 

techniques to generate annual-average fields (S. Y. Chang et al., 2015; U. S. Environmental 

Protection Agency, 1997; Zhai et al., 2016). High biases existed in the RLINE results due 

to over-accumulation of pollutants when wind direction aligns with roadway link, so Zhai, 

et al. (2016) developed a method to calibrate RLINE estimates with observations. A linear 

regression of log-transformed RLINE results with vehicle PM2.5 identified using Chemical 

Mass Balance with Gas Constraint (CMB-GC) was used to correct RLINE primary PM2.5 

concentrations (Zhai et al., 2016). This calibration method substantially reduced 

normalized mean biases in the model results, so these calibrated simulations, which we will 

refer to as “OBS-RLINE”, were used in these analyses. Further description of RLINE 

calibration and evaluation of these methods and results can be found in Zhai et al. (2016)  

. 

 



 

 

Figure 7-2. 2011 annual-average OBS-RLINE of the impacts of on-road emissions to 

primary PM2.5 (µg m-3)  in Atlanta, GA. 

7.2.3 PM2.5 Model Fusion Process 

 Because RLINE does not simulate secondary formation of PM2.5 from non-linear 

chemical reactions, and chemical aging has been shown to significantly impact the OPDTT 

of aerosols (J. Bates, Fang, et al., 2018), a model fusion approach was applied to estimate 

vehicle-derived PM2.5, including secondary formation. This model fusion approach and 

evaluation is described in detail in Bates, et al. (2018)   . Briefly, this method combines 

dispersion and chemical transport (CTM) air quality model outputs to obtain air pollutant 

concentrations at the spatial resolution of the dispersion data. The CTM provides the 

regional sources, temporal variation, and chemical transformations of pollutants, while the 

dispersion model provides the fine spatial resolution of the impacts of roadway emissions 

on primary traffic-related air pollutants (TRAPs). First, the dispersion model data is 

averaged into the resolution of the CTM data. Then, the CTM data is divided by the CTM-

grid resolution averaged dispersion model data, producing linear adjustment factors for the 

dispersion data. These adjustment factors are smoothed to the grid resolution of the 

dispersion model data using triangulation based linear interpolation and then multiplied by 



 

the fine-scale dispersion model data. Overall, this method rescales the dispersion model 

data using the linear relationship between CTM estimates and dispersion values (J. Bates, 

Pennington, et al., 2018). In this work, OBS-RLINE is the dispersion model and CTM data 

is obtained from CMAQ with the direct-decoupled method (CMAQ-DDM) applied to 

three-dimensional air quality models and extended to include the capability to follow 

particulate matter (Byun & Schere, 2006; Cohan et al., 2005; Dunker, 1981, 1984; 

Napelenok et al., 2006).  

Daily CMAQ-DDM data for on-road gasoline and on-road diesel PM2.5 from June 

2012 through April 2013 (during the OPDTT measurement time period) were obtained from 

Bates, et al. (2018)   . Briefly, on-road vehicle impacts were estimated for the eastern United 

States using CMAQ-DDM at a 12km x 12km grid resolution with 13 vertical layers of 

thickness, with chemistry from the Weather Research Forecasting (WRF) model v3.6.1 

with 35 vertical layers and source-specific emissions from the Sparse Matrix Operator 

Kernel for Emissions (SMOKE) v3.6 with the 2011 National Emissions Inventory (CEP, 

2003; Y. Hu et al., 2014). Biases in source impacts were reduced using two advanced data 

assimilation techniques: a CTM-receptor model hybrid method with speciated 

measurements and a secondary species correction algorithm (J. Bates, Weber, et al., 2018; 

Y. Hu et al., 2014; C. E. Ivey et al., 2016). These methods were previously applied and 

evaluated in Hu, et al. (2014) and Ivey, et al. (2016). Briefly, the CTM-receptor hybrid 

method adjusts source impacts using a receptor model based equation by minimizing biases 

in modeled primary species using speciated measurements (Y. Hu et al., 2014). The 

secondary species correction algorithm reduces biases in secondary species (ammonium, 

sulfate, nitrate, and secondary organic carbon) to zero at observation sites by distributing 



 

weighted differences between modeled concentrations and speciated measurements across 

source impacts. The differences are weighted by source impact magnitudes. These adjusted 

CMAQ-DDM on-road gasoline and diesel source impacts were previously evaluated, 

finding that the data assimilation techniques greatly reduced biases in modeled species 

concentrations and resulted in source impacts that were in line with prior studies where 

measurements were available (J. Bates, Weber, et al., 2018; Y. Hu et al., 2014; C. E. Ivey 

et al., 2016). The Atlanta, GA area of the CMAQ-DDM modeling grid was isolated for the 

model fusion process applied in this work (Figure 7-3). On-road gasoline and on-road 

diesel were combined into one vehicle source to match the PM2.5 concentrations estimated 

by RLINE. 

 



 

 

Figure 7-3. CMAQ-DDM (µg m-3) identified vehicle source impacts (on-road 

gasoline + on-road diesel) on PM2.5  in Atlanta, GA (extracted from previously 

developed data for eastern United States (J. Bates, Weber, et al., 2018)) averaged 

from June 1, 2012 through April 30, 2013.  

All three OPDTT measurement sites exist within one 12km x 12km CMAQ-DDM 

grid, so the daily CMAQ-DDM vehicle source impacts were combined with the annual-

average OBS-RLINE data using the previously described model fusion method to obtain 

results at a 250m resolution. The daily CMAQ-DDM results from June 2012 through July 

2013, providing temporal information, were fused with 2011 annual-average (temporally 

static) OBS-RLINE, providing fine spatial resolution data, resulting in daily estimates for 

on-road primary and secondarily-formed vehicle PM2.5 at a 250m resolution in Atlanta, GA 

from June 2012 through April 2013 (Figure 7-4). 



 

 

Figure 7-4. Model fused PM2.5 (µg m-3) from vehicles in Atlanta,GA , averaged from 

June 1, 2012 through April 30, 2013.  

7.2.4 Estimation of OPDTT spatial fields 

  Previous work has investigated the intrinsic OPDTT of vehicle-derived PM2.5 using 

CMAQ-DDM source impacts (J. Bates, Weber, et al., 2018). The intrinsic OPDTT of on-

road gasoline and on-road diesel were found to be 0.022 nmol min-1 µggas
-1 and 0.067 nmol 

min-1 µgdies
-1, respectively, with an average of 0.045 nmol min-1 µgveh

-1. This average value 

of intrinsic OPDTT for mobile-source PM2.5 was applied to the model fused PM2.5 values to 

estimate intraurban spatial trends in on-road mobile source-related OPDTT in Atlanta, GA 

(Figure 7-5). Comprehensive water-soluble OPDTT from multiple sources was also etimated 

by adding source-specific OPDTT for fires, natrual gas combustion, and regional sources to 

the on-road mobile source-related OPDTT. These sources have been previously found to be 

the major contributors to OPDTT in the eastern United States (J. Bates, Weber, et al., 2018). 

Source-specific OPDTT was obtained by interpolating source-specific PM2.5 concentrations 

from CMAQ-DDM at a 12km resolution to a 250m resolution matching the grids of the 



 

model-fused data using triangulation based linear interpolation. These interpolated PM2.5 

fields were multiplied by their respective intrinsic OPDTT values obtained from previous 

work (Figure D-1) and then added to the vehicle-derived OPDTT etimates to obtain OPDTT 

of ambient PM2.5 from comprehensive emission sources in Atlanta, GA (Figure 7-5). 

Source-specific intrinsic OPDTT values were obtained from the coefficients in a regression 

relating fires, natural gas combustion, on-road diesel, and on-road gasoline to OPDTT and 

from the intercept for the regional source (J. Bates, Weber, et al., 2018). The intrinsic 

values are 0.11 nmol min-1 µgfire
-1, 0.056 nmol min-1 µgnatrual_gas

-1, and 0.17 nmol min-1 

µgregional
-1 for the fire, natural gas combustion, and regional sources, respectively.   

7.3 Results  

 The three OPDTT measurement locations in Atlanta, GA span across ~3km. The 

ratios in the OPDTT measurements for RS/JST and GT/JST are 1.12 ± 0.37 and 0.81 ± 0.18, 

respectively, with maximum of daily ratios of 2.16 and 1.33, respectively. The ratios in 

vehicle impacts on PM2.5 is significantly higher, with RS/JST values of 6.1 and 3.0 for 

primary OBS-RLINE PM2.5 and model-fused vehicle PM2.5 and GT/JST values of 1.4 for 

both primary OBS-RLINE PM2.5 and model-fused vehicle PM2.5
 during the OPDTT 

measurement time periods. OPDTT has been found to be more spatially uniform than other 

OP assays due to contributions from secondary organic species, which are more 

homogeneously distributed than other species, like metals (Verma et al., 2014; Yang et al., 

2015). The OPDTT measurements used in this work were performed on total water-soluble 

PM2.5, not just vehicle-related PM2.5, and includes contributions from more spatially 

homogeneous source impacts, such as aged prescribed burning. When additional source 

impacts (fires, natural gas combustion, regional sources) are included in estimated OPDTT 



 

across Atlanta (Figure 7-5), the ratios of OPDTT between sites become smaller, with an 

average of 1.5 for RS/JST and 1.1 for GT/JST, suggesting that these additional sources 

make OPDTT more spatially uniform within Atlanta. However, there is still significant 

intraurban spatial variability in estimated OPDTT that can affect exposure analyses for 

epidemiologic studies (Figure 7-5). 

 (a) (b)  

Figure 7-5. Estimated OPDTT (nmol min-1 m-3) due to (a) on-road vehicles and (b) all 

sources (fires, natural gas, on-road vehicles, regional) in Atlanta, GA averaged from 

June 1, 2012 through April 30, 2013. Note the differences in color bar on each plot 

to better show spatial distribution. 

   

Spatial correlation analyses were used to investigate the relationship between 

water-soluble OPDTT observations and primary PM2.5 vehicle source impacts from OBS-

RLINE and primary and secondary PM2.5 vehicle source impacts from the model fused 

results (Figure 7-4). The spatial Pearson’s linear correlations between OPDTT and OBS-

RLINE and model fused PM2.5 data are 0.55 and 0.48, respectively. Interestingly, the 

primary roadway impacts from OBS-RLINE have a slightly higher spatial correlation with 

OPDTT than the primary and secondary impacts from the model fusion data. There may be 



 

a heterogeneous intraurban component to OPDTT driven by primary roadway emissions, 

e.g., driven by copper.  

The normalized mean biases in estimated vehicle-driven OPDTT are -76%, -57%, 

and -31% at JST, GT, and RS, respectively, and the temporal Pearson’s linear correlation 

coefficients between estimated and measured OPDTT are 0.41, 0.36, and 0.29 at JST, GT, 

and RS, respectively. The very negative biases are expected because the estimated OPDTT 

is only from vehicle impacts, not total water-soluble PM2.5 impacts that include highly 

OPDTT-active sources like biomass burning. The biases increase in negativity the farther 

away from the roadway due to the increase in contribution from other sources to OPDTT. 

When other sources, such as fires and natural gas burning, are added to the OPDTT 

estimates, the normalized mean biases in estimated OPDTT increase to 1.0%, 47%, and 45% 

at JST, GT, and RS, respectively, and the temporal Pearson’s linear correlation coefficients 

between estimated and measured OPDTT become 0.59, 0.39, and 0.29 at JST, GT, and RS, 

respectively. These results suggest that the model fused data with all included sources of 

OPDTT can estimate OPDTT at urban sites, like JST, with fairly high accuracy. However, the 

estimates are biased high at the roadway measurement site. The high bias at the RS site for 

OPDTT estimates from all sources (vehicles, fires, natural gas combustion, and regional 

sources) could be due to biases in the model fused PM2.5 estimates (driven by high biases 

in OBS-RLINE) on roadways causing an overestimation of PM2.5 on roads. An alternate 

hypothesis for the high bias is that primary vehicle emissions may not contribute 

signficantly to ambient OPDTT, so using one inrinsic value for vehicle-driven OPDTT may 

overestimate OPDTT. In other words, the intrinsic vehicle OPDTT may increase with 

photochemical aging, causing it to vary spatially and be potentially lower on roadways. It 



 

is also possible that one intrinsic value cannot be used for the entire vehicle fleet. If gasoline 

and diesel engines have significnatly different intrinsic OPDTT values, the contribution of 

on-road vehicles to OPDTT will depend upon the vehicle fleet makeup.  

Table 7-1. Normalized mean biases of OPDTT estimates using different source 

impacts at each measurement site.  

 JST GT RS 

OPDTT from vehicles -76% -57% -31% 

OPDTT from all sources 1.0% 47% 45% 

 

7.4  Discussion 

Generally, the intraurban spatial distribution of estimated vehicle-driven OPDTT is 

greater than the variation observed in OPDTT measurements, but the measurements 

incorporate OPDTT from other sources, such as biomass burning, that are more spatially 

homogeneous than vehicle PM2.5. Inclusion of fires, natural gas combustion, and regional 

sources in the OPDTT estimates resulted in a more spatially homogeneous field with smaller 

ratios between urban and roadside observational sites. Nevertheless, there is still significant 

heterogeneity within Atlanta in the estimated OPDTT fields that could lead to 

disproportionate exposures.  

A source of uncertainty in the estimated OPDTT fields (Figure 7-5) is the “total” 

vehicle intrinsic OPDTT value averaged from gasoline and diesel emission estimates. 



 

Different engines may produce PM2.5 with significantly different OPDTT, meaning the 

vehicle fleet composition will affect ambient OPDTT. The vehicle impact on the spatial 

distribution of OPDTT is further complicated by the different components of vehicle 

emissions.  Metal emissions (e.g., copper from brake and tire wear) will be highest near 

the roadway, but photochemical aging of diesel PM2.5 has been shown to increase OPDTT 

due to quinone formation from poly aromatic hydrocarbons (PAHs), reducing the rapid 

decrease in OPDTT away from roadways that would be expected from copper emissions 

(Antinolo et al., 2015; J. Bates, Fang, et al., 2018; McWhinney, Gao, Zhou, & Abbatt, 

2011). Future work with OBS-RLINE and fused data focusing on individual diesel and 

gasoline sources and possibly spatially varying intrinsic OPDTT estimates would be 

valuable to discerning the different impacts of each vehicle type on OPDTT spatial 

distribution.  

Furthermore, it should be noted that there are signficinatly more data at the JST site 

than the other two measurement locations. The limited OPDTT measurements at each site 

do not incorporate each season at each location. Because OPDTT varies temporally, with 

higher values in the winter than summer, the temporal correlations presented in this work 

may be affected by the lack of data. For example, during the GT measurement time period 

(July 2012 through August 2012) and RS measurement time period (September 2012 

through October 2012 and January 2012 through February 2013), the correlations between 

JST measurements and OPDTT estimates are -0.01 and 0.61, respectively, (compared to 0.59 

during the JST measurement period) showing a significant difference for the GT 

measurement time period, i.e. the summer. The model-fused results may not capture 

temporal variability in OPDTT as well in summer. 



 

Overall, these results suggest that vehicles signficantly contribute to ambient OPDTT 

at urban and roadside sites, and this model fusion approach with intrinsic OPDTT values 

appears to accurately estimate OPDTT at urban sites, though more measurement data would 

be useful for further evaluation. The model fused results overpredict OPDTT at the roadside 

site possibly due to overestimation of intrinsic OPDTT of the vehicle fleet by averaging 

gasoline and diesel intrinsic OPDTT, assumption of a spatially static intrinsic OPDTT for 

vehicle emissions, or high biases in OBS-RLINE estimated primary PM2.5 on roadways. 

Nevertheless, OPDTT is an area of research with growing interest and increasing evidence 

of epidemiologic relevance, so the modeling techniques presented in this work could 

provide useful tools for estimating ambient intraurban OPDTT spatial concentration fields 

for exposure and epidemiologic analyses.  

 

  



 

CHAPTER 8.                                                                      

SUMMARY OF CONCLUSIONS AND FUTURE RESEARCH 

8.1 Summary of Conclusions 

The dissertation presents the development, application, and evaluation of models 

capable of simulating historical and regional spatiotemporal trends in OPDTT of ambient 

PM2.5 for epidemiologic and environmental justice studies. OPDTT of daily ambient PM2.5 

was estimated from August 1, 1998 through December 31, 2010 at a measurement site in 

Atlanta, GA and from June 1, 2012 through July 30, 2013 across the eastern United States 

using multivariate regressions with two source apportionment techniques: the receptor 

model CMB and the chemical transport model CMAQ-DDM. Each of these source impact 

analyses found biomass burning and vehicles with both gasoline and diesel engines to 

significantly impact ambient OPDTT. The estimated OPDTT concentration fields across the 

eastern United States suggest widespread exposure to PM2.5 sources with elevated OPDTT, 

with populations in urban areas and near fires having highest exposures. Further, OPDTT 

was found to be higher in the winter and spring in the southeastern United States due to 

increased prescribed burning.  

The estimated OPDTT historical time series in Atlanta, GA was used in an 

epidemiologic analysis that showed OPDTT to have higher risk ratios for asthma/wheezing 

and congestive heart failure emergency department visits than PM2.5 mass in both one- and 

two-pollutant models. These results provide epidemiologic evidence of a biologically 

plausible mechanism, oxidative stress, that may be responsible, in part, for specific 



 

cardiorespiratory effects of PM2.5 and that OPDTT is a health-relevant property of PM2.5 

useful for future health research. Work performed globally corroborates these conclusions 

by presenting strong associations between OPDTT and adverse health outcomes, such as 

microvascular function, asthma, and ischemic heart disease. OP SLFGSH has also been 

associated with adverse health outcomes, such as lung cancer, while no significant links 

between OP SLFAA  or OPAA and cardiorespiratory outcomes have been found. Therefore, 

OPDTT and OP SLFGSH appear to be the acellular assays that capture the redox reactions most 

relevant to cardiorespiratory endpoints. The CMAQ-DDM modeling technique for OPDTT 

presented in this dissertation can be useful for integrating future measurements of OP, 

including assays other than the DTT assay, and developing large-scale spatial fields of OP 

with limited observational data for future multi-city and/or regional epidemiologic 

analyses.  

Additionally, two methods were developed for modeling fine-scale spatial fields of 

urban air pollutants, including PM2.5, CO, NOx, and OPDTT. First, a statistical model was 

developed under a Bayesian hierarchal framework to downscale daily 12km CMAQ using 

either fine scale (250m resolution) annual-averaged mobile source emission fields or 

primary roadway pollutant concentration fields from RLINE as land-use regression 

variables. The model was applied to estimate daily PM2.5 at geocoded locations in Atlanta, 

GA in 2010.  While the approach combining the raw emissions with CMAQ led to viable 

results, using the RLINE fields led to unphysical results with higher PM2.5 concentrations 

in rural areas than on roadways. This phenomenon was linked to the limited observational 

data on which to train the model and the spatial correlations between the CMAQ and 

RLINE fields. In other words, the CMAQ fields captured sufficient spatial variation in 



 

PM2.5 concentration so that the RLINE and CMAQ data spatially covaried. The CMAQ 

inputs also provided temporal data, while the RLINE data was temporally static, driving 

the model to rely more heavily on the CMAQ data and estimate a negative coefficient for 

RLINE.  

Model fusion methods were also developed and applied to estimate daily 24 h 

averaged PM2.5, 1 h maximum NOx, 1 h maximum CO, and 24 h averaged OPDTT at a 250m 

resolution in Atlanta, GA. The model fusion methods used linear combinations of CMAQ 

and RLINE to develop concentration fields at a fine spatial resolution without sacrificing 

chemical formation and regional emissions, which can be a large component of pollutants 

like PM2.5 in the southeastern United States. Two approaches were developed to fuse 

CMAQ and RLINE due to model biases: an additive method that was applied to PM2.5 and 

a multiplicative method that was applied to NOx, CO, and OPDTT. The model fusion 

estimates for PM2.5, NOx, and CO in Atlanta showed high concentrations on and near 

roadways, decreasing rapidly with distance from roads with spatial gradients in line with 

observations. Model fusion estimates had higher spatial and temporal correlations with 

observations than CMAQ and RLINE, suggesting that these methods have potential for 

creating air pollutant concentration estimates with minimal biases for exposure and 

epidemiologic analyses. These fine scale data could be useful for assessing 

disproportionate pollutant exposures within an urban area and are currently being used in 

city planning, environmental justice, and health analyses. The speed of these model fusion 

algorithms allow rapid application to long time series of data and the flexibility of these 

methods allows application to other model inputs, pollutants, and study areas.  



 

The multiplicative model fusion method was applied to estimate within-city spatial 

variation of OPDTT of ambient PM2.5 in Atlanta, GA from June 2, 2012 through July 30, 

2013. The model fusion method used daily CMAQ-DDM PM2.5 on-road vehicle source 

impacts (gasoline and diesel) and annual-averaged primary PM2.5 from RLINE to estimate 

total (primary and secondary) on-road vehicle-related PM2.5 at a 250m resolution in 

Atlanta, GA. This on-road PM2.5 impact was multiplied by an estimate of intrinsic OPDTT 

from vehicles to estimate intraurban spatial variation of vehicle-driven OPDTT. This result 

was then added to OPDTT estimates of other sources found to significantly impact OPDTT, 

including fires, natural gas combustion, and regional sources, that were calculated by 

multiplying their source-specific intrinsic OPDTT values by their PM2.5 contributions 

linearly interpolated to a 250m spatial resolution. The intraurban spatial fields of OPDTT 

are relatively spatially uniform due to source impacts like biomass burning and regional 

sources, but there are peaks on roadways driven by vehicle emissions. High spatial 

correlations between OPDTT and RLINE or model-fused vehicle PM2.5 imply that vehicle 

concentrations can potentially be used to estimate small-scale spatial variations in OPDTT. 

A small bias in OPDTT estimates at an urban site but a high bias in OPDTT estimates at a 

roadway site imply overestimation of OPDTT near roadways possibly due to biased-high 

RLINE PM2.5 results, a need for separate intrinsic values for gasoline and diesel vehicles, 

or an overestimation of intrinsic OPDTT values. The intrinsic OPDTT of vehicle emissions 

increases with photochemical aging, so assuming a static intrinsic OPDTT of vehicles may 

overestimate the impact of primary emissions from traffic. Nevertheless, this research 

presents the first insight into within-city variation of ambient OPDTT in Atlanta driven by 



 

vehicles and this model fusion method provides a solid foundation for future work 

investigating small-scale spatial variations of OP for health analyses. 

Overall, the models developed in this dissertation as well as their associated 

spatiotemporal fields of air pollutant concentrations can be valuable tools for future 

epidemiologic, environmental justice, and city planning studies wanting to develop 

exposure data using information beyond the limited observational data available.  

8.2 Future Research 

8.2.1 OPDTT measurements for further evaluation of source impact results 

Because biomass burning was found to be a significant contributor to ambient 

OPDTT in the southeastern United States, fires may be a major focus of future health 

research. With decreasing vehicle emissions, biomass burning is becoming an increasing 

fraction of OPDTT (Figure 8-1), making exposure to biomass burning a growing concern. 

    

Figure 8-1. Annual average contributions to apportioned OPDTT in Atlanta, GA for 

1999 (left) and 2009 (right). 

 Heavily populated cities may be significantly impacted by health-related 

particulate matter from fires if aging increases OPDTT as the fire impacts that hit cities often 

have travelled far and aged significantly. OPDTT measurements in and downwind of fire 



 

plumes would be useful for assessing the change in toxicity over time and if population 

exposures in urban areas should be a concern. Such studies could investigate the interaction 

of fire plumes with anthropogenic emissions and how the resulting chemistry alters the OP 

of the resulting particulate matter. Additionally, OPDTT measurements in and near fires 

could also be used to further evaluate the CMAQ-DDM-estimated spatiotemporal fields of 

OPDTT presented in chapter 4. In that work, wildfires and prescribed burning were the major 

driver of the spatial variation in OPDTT across the eastern United States, but these fires may 

not have impacted the OPDTT measurement sites from which the observational data was 

gathered to train the model. Having OPDTT measurements in and near fires would help 

assess if the high OPDTT estimates near fires produced using CMAQ-DDM modeling are 

within reason.  

OPDTT measurements of ambient PM2.5 outside of the southeastern United States 

could also be useful in evaluating the eastern United States OPDTT spatial fields presented 

in chapter 4 and for adjusting these fields using data assimilation techniques, OPDTT 

measurements across multiple sites in Atlanta, GA could be used to further evaluate results 

presented in chapter 7. Measurements could be used to test the assumption that a regression 

trained on data from only four OPDTT measurement sites in the southeastern United States 

can be applied across the entire eastern United States. In other words, OPDTT measurements 

in northern states, like Illinois, could be used to evaluate the hypothesis that source-specific 

intrinsic OPDTT values are similar across the United States, if not globally. Furthermore, 

any additional OPDTT measurements could be integrated into the model development 

process presented in chapter 4. More observations would increase the size of the model 

training data set and improve upon the robustness of the model. Especially useful would 



 

be measurements near localized emissions, like residential burning and construction sites 

with heavy diesel truck impacts, that may not be represented at the OPDTT measurement 

sites used in chapter 4. There is growing interest in OP in Europe, Canada, China, and 

elsewhere, and OPDTT measurements globally could be used in a similar fashion to the 

method presented in chapter 4 to model OPDTT, or other OP assays, in other regions.  

Each source-impact model developed in this dissertation has large intercepts, 

suggesting model misspecification and possibly missing sources. As described in chapter 

3, the intercept could be driven by artifacts that condensed on the OPDTT filters but not on 

the filters collected post-denuder used for speciated measurements in CMB. Future 

measurements of OPDTT on both filters collected using denuded and non-denuded systems 

could be used to test this hypothesis while providing evidence of whether volatile organic 

species are OPDTT-active or not.  

Another area of interest for future work would be collecting total OPDTT data, rather 

than water-soluble OPDTT data. The models developed in chapters 3 and 4 related PM2.5 

source impacts to water-soluble OPDTT to derive source-specific intrinsic OPDTT values. 

These intrinsic values assume that the ratio of water-soluble OPDTT to total PM2.5 is 

constant. Using total OPDTT measurements to train the models would build upon our 

knowledge on the relationship between OPDTT and source impacts, though water-soluble 

results may be more relevant to health.  

8.2.2 Updated Source Impact Analysis 

The distinction between intrinsic OPDTT of diesel and gasoline vehicles is uncertain 

and differs between the CMB and CMAQ-DDM approaches presented in chapters 3 and 4. 



 

The CMAQ-DDM method estimates a larger contribution from diesel vehicles than 

gasoline vehicles while the CMB method predicts a larger contribution from gasoline 

vehicles than diesel vehicles in Atlanta, GA. It would be useful to update the CMB profiles 

using speciated data collected more recently than 2001 and 2002 (the time period that the 

source profiles used in chapter 3 were developed for). If the profiles for gasoline and/or 

diesel changed significantly from 2003 to the present, the intrinsic OPDTT of vehicles may 

also have changed. These updated profiles could be used to re-run the analysis in chapter 

3 to determine if the impacts of gasoline and/or diesel vehicles on OPDTT have changed 

over time.  

The impacts of secondary concentrations versus primary emissions on OPDTT are 

also of increasing interest. As sources and organic species age, their intrinsic OPDTT values 

increase. A CMAQ-DDM approach with multivariate regression, like presented in chapter 

4, may be useful in modeling this phenomenon. The organic carbon component of each 

source identified by CMAQ-DDM can be separated into primary and secondary organics. 

These components could then be used as separate independent variables in the OPDTT 

source impact model, resulting in individual coefficients (i.e., intrinsic OPDTT estimates) 

for primary and secondary organic carbon for each source. Also, certain species, like 

ammonium sulfate or ozone, can be used as markers of photochemical activity and/or age 

of pollutants. Integrating an “aging” term in the OPDTT source impact model may improve 

performance and minimize the intercept. Introducing a seasonal variable may provide 

insight into the causal link (or lack thereof) between natural gas combustion and OPDTT 

and may reduce the intercept. 



 

8.2.3 Integrating new measurements and updated modeling for intraurban pollutant 

concentration estimates 

One major limitation of the statistical downscaling model presented in chapter 5 is 

the lack of observational data on which to train the model. However, since the time of the 

original model evaluation, additional near-road monitoring sites have been established in 

the Atlanta area that could be used in the model training data set. Further, RLINE could be 

run on a daily basis, rather than an annual-average basis, and then input to the statistical 

downscaler. Providing temporally variable fine-scale data may potentially alleviate the 

problem of the statistical downscaler relying too heavily on CMAQ. Further, the statistical 

downscaler was applied to PM2.5, a relatively spatially homogeneous pollutant. CMAQ can 

capture the spatial variation in PM2.5 with 12km grids but may not be able to capture the 

spatial patterns of more heterogeneous pollutants, like NOx and CO. Applying the 

statistical downscaler to a more heterogeneous pollutant may result in RLINE becoming 

more informative in the model and lead to more realistic results. The existing model 

framework could also be adjusted to have spatially and temporally varying regression 

coefficients for RLINE, rather than the current fixed-effect regression coefficients that are 

used for land-use variables, that could minimize spatial biases in RLINE (especially high 

biases on roadways). Non-linear relationship terms may also be introduced as previous 

work has shown that calibrating RLINE with CMB-derived source impacts using monitor 

data is best done with non-linear fits (Zhai et al., 2016).  

The model fusion methods for estimating intraurban spatial fields of OPDTT in 

Atlanta, GA presented in chapter 7 relied upon RLINE data that used emissions from the 

total vehicle fleet, including gasoline and diesel vehicles, and an intrinsic OPDTT value that 



 

had been averaged between diesel and gasoline estimates. Future work running RLINE 

with separate gasoline and diesel emissions would improve upon the estimates produced 

in chapter 7 as these two engine types have different intrinsic OPDTT values. The model 

fusion method could be run twice in Atlanta, GA, once for diesel and once for gasoline 

vehicles, then multiplied by their respective intrinsic OPDTT values and added together. 

This update could be especially important around the Downtown Connector, where the 

vehicle fleet is dominated by gasoline engines, and I-285, a major route for diesel 18-

wheelers. Further, the OPDTT estimates and CMAQ-DDM results used in the model fusion 

process are from 2012 through 2013, but the RLINE data was only available for 2011 at 

the time of the study. The gasoline and diesel RLINE impacts could be run for 2012 and 

2013 to match the CMAQ-DDM and OPDTT data sets. Finally, a static intrinsic OPDTT value 

was used in the work presented in chapter 7. However, it has been shown that 

photochemical aging and exposure to ozone increases OPDTT of diesel exhaust. Flexible 

intrinsic OPDTT values that change with distance from roadway and/or ozone concentration 

may improve intraurban OPDTT estimates. Near-roadway intrinsic OPDTT estimates could 

be obtained by applying the method developed in chapter 3 using CMB source impact 

analysis with urban OPDTT data to roadside OPDTT data.  

8.2.4  Global OP research initiatives 

 Current research suggests that the DTT assay and glutathione assay in surrogate 

lung fluid (GSHSLF) are the most relevant acellular OP assays for health outcomes, while 

the ascorbic acid assay, no matter if SLF is used or not, has no association with adverse 

cardiorespiratory outcomes. Because OPDTT is significantly impacted by organic species, 

but it does not appear that OPAA is, the cumulative health study results may suggest that 



 

organic species play a significant role in cardiorespiratory impacts due to PM-mediated 

oxidative stress, a hypothesis worthy of future research. Additionally, the utility of SLF in 

OP assays, or if direct assessment of OP from filters is sufficient for health associations, 

may be an area for future review. Additional epidemiologic studies to confirm the 

relationship between OP and cardiorespiratory endpoints, as well as to explore other health 

outcomes that are known to be affected by particulate matter exposure, such as birth 

defects, would be useful to further asses the oxidative stress hypothesis of particulate 

matter, determine the utility of OP in health studies, and improve our understanding on the 

relationship between particulate matter and health.  

 

 

 

 

 

 

 

 

 

 

 



 

APPENDIX A.                                                                

SUPPLEMENTAL MATERIAL FOR CHAPTER 3 

To correct for temporal misalignment between DTT measurements collected from 

12 pm (noon) to 11 am and source impact estimates from midnight to midnight, the sources 

identified were scaled by fixed ratios. For example, suppose total PM2.5 used for source 

impact estimation was measured from midnight to midnight on day 1 on filter 1 and from 

midnight to midnight on day 2 on filter 2. The filter used to measure DTT activity of WS-

PM2.5 was collected from noon on day 1 to 11 am on day 2 on filter 3. To achieve a 

measurement of total PM2.5 from noon to 11 am matching the filter collection period of 

filter 3, we would multiply 12/24*PM2.5_filter1 + 11/24*PM2.5_filter2, making the total 

weighting 23/24*PM2.5 to match the 23-hr integrated samples of WS-PM2.5 DTT activity. 

Table A-1. Coefficients, standard errors (in parentheses) and p values for the DTT 

regression with all sources and for the regression with only sources that have 

statistically significant coefficients used to create the historical DTT estimates for 

the epidemiologic study. 

 Intercept LDGV HDDV SDUST BURN AMSULF AMBSLF AMNITR OTHER_OC 

Coefficients 

nmol min-1 μg-1 

0.004 

(0.028) 

0.12 

(0.023) 

0.051 

(0.029) 

0.017 

(0.015) 

0.061 

(0.013) 

0.032 

(0.0095) 

0.0072 

(0.017) 

0.014 

(0.018) 

0.007 

(0.010) 

p values 0.90 <0.01 0.084 0.26 <0.01 <0.01 0.67 0.45 0.53 

Coefficients 

nmol min-1 μg-1 

0.066 

(0.021) 

0.12 

(0.022) 

0.061 

(0.025) 

- 

0.074 

(0.010) 

- - - - 

p values <0.01 <0.01 0.018 - <0.01 - - - - 



 

 

Table A-2. Pearson correlation coefficients between volume normalized DTT 

(DTTv, nmol min-1 m-3) and species concentration and mass normalized DTT 

(DTTm, nmol min-1 µg-1) and species concentration measured from June 2012 – 

April 2013. 

 

 

 

Figure A-8-2. Results from an experiment comparing the DTT activity of a blank 

filter (filter 1) to filters with water-soluble sulfate (filters 2-7) showing that there is 

no significant difference between the blank filters and water-soluble sulfate filters. 

 

  

 
Total 

PM2.5 

SO4
2- NO3

- NH4
+ EC OC Al Ca Cu Fe K Mn Pb Si Ti Zn 

DTTv 0.56 0.33 0.30 0.44 0.54 0.49 0.05 0.27 0.50 0.39 0.51 0.36 0.34 0.14 0.12 0.52 

DTTm -0.25 -0.34 0.22 -0.02 -0.03 -0.22 0.09 0.42 0.20 0.35 0.14 0.32 0.11 0.23 0.17 0.24 



 

APPENDIX B.                                                               

SUPPLEMENTAL MATERIAL FOR CHAPTER 4 

Table B-1. A description of each of the 16 emission source categories used in the 

CMAQ-DDM modeling. 

Source Description of Included Source Categories 

Agriculture 

Industrial processes and miscellaneous area sources: food and agriculture, agricultural 

production (livestock and crops), eggs and poultry production, manure handling, beef 

cattle feedlots, fertilizer application, domestic and wild animal waste emissions, 

country grain elevators 

Aircraft 

Mobile sources, miscellaneous area sources, and internal combustion engines: 

aircraft, aircraft/rocket engine firing and testing, fixed and rotary wing aircraft L & 

TO Exhaust 

Biogenic 

Primary and secondary biogenic PM resulting from volatile organic carbon (VOC) 

emissions from vegetation and nitrogen oxide (NO) emissions from soil estimated 

from the Biogenic Emissions Inventory System (BEIS) in SMOKE coupled with 

CMAQ to use WRF meteorology 

 

 



 

Table B-1 continued 

Coal 

External combustion boilers, industrial processes, stationary source fuel combustion, 

waste disposal: electric generation with coal (anthracite, bituminous/subbituminous, 

lignite, waste coal), commercial units, space heaters, residential units, government 

solid waste disposal 

Dust  

Industrial processes, miscellaneous area sources, mobile sources, and waste disposal: 

construction, paved and unpaved roads, agricultural production of crops, paved and 

unpaved haul roads with gasoline and diesel traffic at industrial, landfill and 

construction sites, demolitions 

Fire 

Waste disposal, treatment, and recovery and miscellaneous area sources: open 

burning, agricultural field burning, forest wildfires, managed burning (logging 

debris), prescribed burning for forest management, prescribed burning on rangeland 

Fuel Oil 

External combustion boilers, internal combustion engines, stationary source fuel 

combustion, and industrial processes (residual oil, distillate oil): electric generation, 

oil and gas production, commercial/institutional units, space heaters, residential units, 

engine testing, chemical manufacturing plants, food and agricultural equipment, 

metal production equipment, mineral production equipment, process heaters, flares, 

pulp and paper mill equipment, rubber and plastic production equipment, 

miscellaneous manufacturing industrial equipment,  

 



 

Table B-1 continued 

Metal 

Industrial processes and miscellaneous area sources: primary and secondary metal 

production, fabricated metal products, repair shops, welding repair shops 

Natural Gas 

Combustion 

External combustion boilers, internal combustion engines, industrial processes, 

petroleum and solvent evaporation, waste disposal, stationary source fuel 

combustion: electric generation, industrial processes, oil and gas production, 

commercial/institutional units, space heaters, engine testing, chemical manufacturing 

equipment, food and agriculture equipment, metal production equipment, mineral 

production equipment, petroleum industry (process heaters, flares, incinerators), pulp 

and paper and wood production equipment, rubber and plastic production equipment, 

surface coating operational equipment, organic solvent evaporation equipment, 

miscellaneous manufacturing industrial equipment (heaters, incinerators, and flares), 

solid waste disposal (government, commercial/institutional, and industrial) 

Non-road 

Diesel 

Mobile sources and internal combustion engines: off-highway diesel vehicles, marine 

vessels, pleasure craft, military marine vessels, diesel railroad equipment, diesel 

industrial equipment (fork lifts) 

Non-road 

Gasoline 

Mobile sources: off-highway gasoline vehicles, marine vessels, pleasure craft, 

gasoline railroad equipment 

 



 

Table B-1 continued 

On-road 

Diesel 

Mobile sources: Highway diesel vehicles 

On-road 

Gasoline 

Mobile sources: Highway gasoline vehicles 

Wood burning 

Waste disposal, external combustion boilers, industrial processes, stationary source 

fuel combustion: solid waste incineration, trench burner for wood, firefighting, wood 

pallet burning, open burning of wood solid waste at commercial/institutional sites, 

electric generation with wood/bark waste, space heaters, in-process wood fuel use at 

industrial facilities, wood boilers for electric utility, industrial sites, and 

commercial/institutional facilities, residential wood burners  

Seasalt Estimated from PM sodium and chloride concentrations 

Other All remaining emission sources 

 

 

 

 



 

Table B-2. Normalized mean biases in PM2.5 species after bias correction algorithms 

and temporal interpolation have been applied. Biases presented in the table are 

averaged over all CSN and SEARCH sites (146 sites) across the eastern United 

States and across the OPDTT measurement sites (4 sites). 

 PM2.5 OC EC NO3
- NH4

+ SO4
- Na Al Si K Ca Ti Mn Fe Cu Zn Pb 

CSN and 

SEARCH 

sites 

-0.05 0.01 0.27 0.01 0.01 0.00 0.14 0.62 0.90 0.31 0.92 1.34 -0.28 -0.26 0.40 0.41 -0.60 

OPDTT 

measure-

ment sties 

-0.02 -0.01 0.17 0.17 -0.05 -0.01 0.16 -0.36 0.17 0.20 1.63 1.20 -0.19 0.00 0.61 0.58 -0.68 

 

Table B-3. Pearson’s linear correlation coefficients between CMAQ-DDM source 

impacts used in regression development. 

 

 AC AG BI CL DU FI FO MT NAT OG NG OD ND OT SS WO 

AC 1 -0.03 0.14 -0.02 0.07 0.12 -0.02 0.18 0.14 -0.02 0.13 0.14 0.06 0.26 0.08 -0.09 

AG  1 -0.38 0.13 -0.20 0.08 0.00 0.13 0.50 0.30 0.17 0.42 0.17 -0.22 0.16 0.26 

BI   1 0.10 0.22 -0.10 0.18 0.08 -0.30 0.00 0.33 0.01 0.07 0.43 -0.21 -0.32 

CL    1 -0.12 0.04 0.40 0.36 0.30 0.19 0.38 0.38 0.41 0.07 0.02 0.11 

DU     1 0.03 -0.18 -0.10 -0.14 -0.09 -0.04 0.03 -0.02 0.12 -0.10 -0.10 



 

Table B-3 continued 

 

 

FI      1 0.02 -0.09 0.16 0.11 -0.06 0.19 0.11 0.15 0.22 0.00 

FO       1 0.15 0.10 0.16 0.25 0.11 0.13 0.25 0.01 -0.11 

MT        1 0.22 0.08 0.42 0.24 0.21 0.10 -0.11 0.06 

NAT         1 0.28 0.15 0.39 0.39 -0.03 0.23 0.41 

OG          1 0.34 0.43 0.41 0.07 0.17 0.16 

NG           1 0.52 0.60 0.32 -0.05 -0.01 

OD            1 0.69 0.27 0.13 0.23 

ND             1 0.26 0.05 0.24 

OT              1 -0.03 -0.03 

SS               1 0.22 

WO                1 



 

 

Figure B-1. Locations of CSN and SEARCH monitoring sites within the study 

domain whose data were used to minimize bias in CMAQ-DDM estimates. CSN sites 

are represented as black dots and SEARCH sites are represented as red asterisks. 

SEARCH site locations are also where OPDTT measurement sites are. 

 



 

 

Figure B-2. Measured OPDTT versus regression-estimated OPDTT with the 1:1 line in 

red.  

 

 

Figure B-3. OPDTT driven by natural gas combustion, on-road diesel, and on-road 

gasoline (no fire impacts) averaged from June 2012 to July 2013. 

 



 

 

 

 



 

 

Figure B-4. Temporal trends in source impacts on estimated OPDTT at the Atlanta, 

GA measurement site. Note: The plots are on different y-scales to show daily 

variations in OPDTT. 

 

 



 

 

 

Figure B-5. Temporal trends in source impacts on estimated OPDTT across the 

modeling domain. Note: The plots are on different y-scales to show daily variations 

in OPDTT. 

 



 

(a) (b)  

  (c) (d)  

Figure B-6. OPDTT estimated using source impacts and coefficients in sensitivity 

models 2 ((a) and (b)) and 3 ((c) and (d)), with ((a) and (c)) and without ((b) and (d)) 

fire impacts to see the spatial distributions without large concentrations from 

wildfires. 

  



 

APPENDIX C.                                                             

SUPPLEMENTAL MATERIAL FOR CHAPTER 6 

When applying the additive method to 1 h maximum CO and NOx, it was found 

that the method produced negative values at a small amount of 250m grid cells on certain 

days. For daily estimates during 2005, 49 and 259 days for CO and NOx, respectively, 

produced at least one negative value in the final results, with a maximum of 15% of the 

329,472 grid cells over Atlanta below zero. These negative values are driven by the fact 

that the 12km average of OBS-RLINE is higher than the 12km OBS-CMAQ at certain 

locations, driving negative background concentrations. At specific locations, OBS-RLINE 

can be biased high when wind direction aligns with a link of emissions and OBS-CMAQ 

can be biased low if vertical diffusion occurs too rapidly. Specifically for 2005 annual 

average results, 36 and 75 out of 143 urban background grid cells for CO and NOx, 

respectively, were below zero after the subtraction step (CTM- 𝐷𝐼𝑆𝑃̅̅ ̅̅ ̅̅ ̅coarse ), implying, 

unrealistically, that 25% and 52% of the urban background concentrations for CO and 

NOx, respectively, were negative. This negative urban background is then interpolated and 

added to 250m RLINE, which are not high enough to bring the estimates above zero at 

some grid locations.  



 

 

Figure C-1. Multiplicative model fusion steps and results for 2005 annual average 

CO. First, the fine resolution (250m) OBS-RLINE field is averaged to a 12km grid 

matching the OBS-CMAQ grid (b). OBS-CMAQ 12km field (a) is divided by the 

12km OBS-RLINE (b).  These results are spatially interpolated to 250m resolution 

matching the OBS-RLINE grid resolution (c) and then multiplied by the 250m 

resolution OBS-RLINE field (d) to provide a 250m resolution model-fused annual 

average CO field (e). Note: each plot has a different color scale in order to show the 

spatial distribution clearly. 

 



 

 

Figure C-2. Multiplicative model fusion steps and results for 2005 annual average 

NOx. First, the fine resolution (250m) OBS-RLINE field is averaged to a 12km grid 

matching the OBS-CMAQ grid (b). OBS-CMAQ 12km field (a) is divided by the 

12km OBS-RLINE (b).  These results are spatially interpolated to 250m resolution 

matching the OBS-RLINE grid resolution (c) and then multiplied by the 250m 

resolution OBS-RLINE field (d) to provide a 250m resolution model-fused annual 

average NOx field (e). Note: each plot has a different color scale in order to show the 

spatial distribution clearly. 

 



 

 

Figure C-3. Annual average PM2.5 concentrations (µg/m3) estimated using the 

additive model fusion process for each year of the study period (2003 through 2008). 

 

Figure C-4. Annual average 1-hr maximum NOx concentrations (ppb) estimated 

using the multiplicative model fusion process for each year of the study period (2003 

through 2008). 



 

 

Figure C-5. Annual average 1-hr maximum CO concentrations (ppb) estimated 

using the multiplicative model fusion process for each year of the study period (2003 

through 2008). 

Table C-1. Monitor information, including network names, whether the monitor is 

located in an urban or rural location, and years that data are available. If there is no 

month listed, data are available for the entire year. 

Species Site Name Network(s) 
Location 

type 
Years Available 

PM2.5  

JST SEARCH urban 2003-2008 

YRK SEARCH, GA EPD rural 2003-2008 

SDK CSN, GA EPD urban 2003-2008 

 Forest Park CSN rural 2003-2008 

 Kennesaw CSN urban 2003-2008 



 

Table C-1 continued 

 Doraville CSN urban 2003-2008 

 E. Rivers CSN urban 2003-2008 

 Fire Station 8 CSN urban 2003-2006; 2008 

 JST SEARCH urban 2003-2008 

NOX YRK SEARCH, CSN rural 2003-2008 

 SDK CSN urban 2003-2008 

 Tucker CSN urban 2003-2006 

 Georgia Tech CSN urban 2003-2008 

 Conyers CSN rural 2003-2008 

 JST SEARCH urban 2003-2008 

CO YRK SEARCH rural 2003-2008 

 SDK CSN urban 05/2003-08/2008 

 Roswell Rd CSN urban 2003-2008 

*JST: Jefferson Street; YRK: Yorkville; SDK: South Dekalb 

 

 



 

Table C-2. Evaluation statistics for model fused estimates of PM2.5 (µg/m3), CO 

(ppb), and NOx (ppb) using each model fusion method.  

 PM2.5 CO NOx 

Mean    

Multiplicative Method 
17.9 

(14.0—18.4) 

737.4 

(528.5—890.7) 

56.5 

(41.6—61.0) 

Additive Method 
16.7 

(13.7—17.0) 

725.5 

(511.8—881.9) 

55.6 

(40.4—59.4) 

Observations 
15.7 

(11.0—16.1) 

787.8 

(477.3—928.2) 

68.8 

(48.1—77.3) 

RMSEa    

Multiplicative Method 
5.4 

(4.0—6.2) 

206.3 

(138.6—250.1) 

36.8 

(31.2—38.0) 

Additive Method 
1.9 

(1.8—2.3) 

206.1 

(146.0—244.0) 

37.6 

(33.7—39.4) 

Mean Biasb    

Multiplicative Method 
2.0 

(1.1—2.6) 

-51.6 

(-98.1— -36.5) 

-13.9 

(-15.3— -8.4) 

Additive Method 
1.0 

(0.2—1.3) 

-66.0 

(-107.9— -45.0) 

-15.3 

(-16.9— -9.7) 



 

Table C-2 continued 

Normalized Mean Biasc    

Multiplicative Method 
11.3 

(5.3—15.9) 

0.2 

(-1.7—8.4) 

4.3 

(0.9—22.2) 

Additive Method 
6.9 

(1.5—8.0) 

-0.6 

(-5.2—8.3) 

2.4 

(-0.7—20.8) 

Mean Errord    

Multiplicative Method 
4.6 

(3.5—5.3) 

143.5 

(105.3—181.5) 

24.9 

(22.6—27.6) 

Additive Method 
1.5 

(1.4—1.9) 

152.5 

(121.4—191.8) 

27.3 

(25.3—29.6) 

Normalized Mean 

Errore  
  

Multiplicative Method 
29.9 

(27.0—34.6) 

23.8 

(15.6—25.7) 

39.6 

(35.3—55.3) 

Additive Method 
9.9 

(9.0—12.1) 

25.0 

(17.7—27.4) 

42.4 

(38.0—57.0) 

Temporal Rf    

Multiplicative Method 
0.99 

(0.92—0.99) 

0.93 

(0.92—0.95) 

0.98 

(0.89—1.0) 



 

Table C-2 continued 

Additive Method 
0.99 

(0.92—0.99) 

0.94 

(0.94—0.96) 

0.97 

(0.96—0.98) 

aRoot-mean squared error: √𝒎𝒆𝒂𝒏((𝑪𝒎 − 𝑪𝒐)𝟐) ; Co: observed concentration; Cm: 

modeled concentration 

bMean bias: 𝒎𝒆𝒂𝒏(𝑪𝒎 − 𝑪𝒐) ; Co: observed concentration; Cm: modeled concentration 

cNormalized mean bias: (𝒎𝒆𝒂𝒏(𝑪𝒎)𝒎𝒆𝒂𝒏(𝑪𝒐) − 𝟏) ∗ 𝟏𝟎𝟎 ; Co: observed concentration; Cm: 

modeled concentration 

dMean error:𝒎𝒆𝒂𝒏(|𝑪𝒎 − 𝑪𝒐|) ; Co: observed concentration; Cm: modeled 

concentration 

eNormalized mean error: 
∑|𝑪𝒎−𝑪𝒐|∑ 𝑪𝒐 ∗ 𝟏𝟎𝟎; Co: observed concentration; Cm: modeled 

concentration 

fPearson’s correlation coefficient 

  



 

APPENDIX D.                                                             

SUPPLEMENTAL MATERIAL FOR CHAPTER 7 

 

 

Figure D-1. Estimated OPDTT of fires (top) and natural gas combustion (bottom) in 

Atlanta, GA. 
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