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Purpose: Four-dimensional computed tomography �4D CT� can provide patient-specific motion

information for radiotherapy planning and delivery. Motion estimation in 4D CT is challenging due

to the reduced image quality and the presence of artifacts. We aim to improve the robustness of

deformable registration applied to respiratory-correlated imaging of the lungs, by using a global

problem formulation and pursuing a restrictive parametrization for the spatiotemporal deformation

model.

Methods: A spatial transformation based on free-form deformations was extended to the temporal

domain, by explicitly modeling the trajectory using a cyclic temporal model based on B-splines. A

global registration criterion allowed to consider the entire image sequence simultaneously and

enforce the temporal coherence of the deformation throughout the respiratory cycle. To ensure a

parametrization capable of capturing the dynamics of respiratory motion, a prestudy was performed

on the temporal dimension separately. The temporal parameters were tuned by fitting them to

diaphragm motion data acquired for a large patient group. Suitable properties were retained and

applied to spatiotemporal registration of 4D CT data. Registration results were validated using large

sets of landmarks and compared to consecutive spatial registrations. To illustrate the benefit of the

spatiotemporal approach, we also assessed the performance in the presence of motion-induced

artifacts.

Results: Cubic B-splines gave better or similar fitting results as lower orders and were selected

because of their inherently stronger regularization. The fitting and registration errors increased

gradually with the temporal control point spacing, representing a trade-off between achievable

accuracy and sensitivity to noise and artifacts. A piecewise smooth trajectory model, allowing for a

discontinuous change of speed at end-inhale, was found most suitable to account for the sudden

changes of motion at this breathing phase. The spatiotemporal modeling allowed a reduction of the

number of parameters of 45%, while maintaining registration accuracy within 0.1 mm. The ap-

proach reduced the sensitivity to artifacts.

Conclusions: Spatiotemporal registration can provide accurate motion estimation for 4D CT and

improves the robustness to artifacts. © 2011 American Association of Physicists in Medicine.

�DOI: 10.1118/1.3523619�
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I. INTRODUCTION

The advent of four-dimensional �4D� computed tomography

�CT� has allowed patient-specific respiratory motion infor-

mation to be incorporated into radiation therapy planning

and delivery. 4D CT provides multiple three-dimensional

�3D� CT volumes, representing the patient at different stages
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of the breathing cycle.
1–4

The additional patient data imply

an order of magnitude increase in the workload required to

obtain a 4D treatment plan. Deformable registration is the

tool that can facilitate partial automation of the 4D planning

process.
5

It can provide the motion fields which are required

for automating tasks such as recontouring of anatomic

structures,
6

patient-specific margin definition,
7

or 4D treat-

ment plan evaluation.
8

Deformable image registration is also

an enabling tool for alternative applications of respiratory-

correlated imaging such as ventilation imaging,
9

motion

compensation,
10,11

or motion modeling.
12,13

Although exten-

sive validation is required before extending the clinical use

of deformable image registration, it is expected to become a

standard methodology in radiotherapy.
14,15

Deformable image registration can be described as the

task of finding a suitable geometric transformation between

corresponding image data, such that a transformed image

becomes similar to another one.
16

While the concept of im-

age registration is easily described, the underlying numerical

problem is difficult to solve. Mainly because the registration

problem is ill-posed. Small changes of the input images may

lead to very different registration results. Moreover, the so-

lution might not be unique. Salient image information might

be sparse or ambiguous, and the acquisition process might

have introduced noise and artifacts. To facilitate the process,

prior knowledge about the deformation should be incorpo-

rated in the registration framework in order to favor solutions

with plausible physical characteristics. Explicit parametric

restrictions can constrain the optimization to transformations

that represent suitable properties. This approach can offer a

reduction of the search space by making the description more

problem-specific and consequently improve the robustness of

the optimization process.

An example are spatiotemporal registration schemes,

which consist in a global formulation of the motion estima-

tion problem for temporal image sequences. Rather than es-

timating frame-to-frame displacements individually, the en-

tire sequence is considered simultaneously, allowing to

enforce the temporal coherence of the deformation across the

sequence. By making assumptions such as smoothness about

the temporal variations of the transformation, these ap-

proaches often enable a more compact and restrictive de-

scription of the full motion estimation problem. Spatiotem-

poral deformable registration has received considerable

attention in literature, mostly in cardiac image analysis,
17–26

but more recently also for respiratory-correlated imaging of

the thorax.
27–29

Usually, a 3D-4D formulation is utilized to

find a smooth time-dependent deformation field that aligns

all images from a given input sequence with a reference im-

age, which can be a frame of that same sequence.
18,22–24,27,29

Sometimes, spatial as well as temporal alignment of multiple

image sequences is desirable, leading to a 4D-4D registration

framework.
20,21,25,28

In comparison to conventional diagnostic CT, 4D CT im-

ages tend to be acquired at lower spatial resolution and are

characterized by higher noise levels because of the low ra-

diation dose per image. In addition, an alarmingly high num-

ber of acquisitions contains motion-induced artifacts,
30

mainly due to irregular patient breathing during image acqui-

sition. In the case of artifacts, the image information can be

considered locally invalid, as it does not correspond to the

patient anatomy. Clinical use of the estimated motion fields

requires them to be as close to the unknown reality as pos-

sible. A problem-specific, spatiotemporal deformation model

could contribute in reducing sensitivity to local image irregu-

larities and render the motion estimate more plausible and

potentially more representative of the patient’s breathing mo-

tion under these challenging circumstances.

In this study, we develop a spatiotemporal registration

scheme for lung motion quantification in respiratory-

correlated sequences. Our primary objective is to obtain a

low-dimensional representation of the 4D deformation

model, capable of accurately representing the respiratory mo-

tion, while being more robust to artifacts and increased noise

levels. The approach consists of a 3D-4D problem formula-

tion in which temporal regularization is pursued by explicitly

modeling the trajectory of moving structures. With respect to

previous work on spatiotemporal registration, we specifically

focus on respiratory-correlated image sequences and develop

and evaluate a cyclic trajectory model for representing the

motion over an entire breathing cycle. In addition, the chosen

parametrization reflects our aim to improve registration ro-

bustness by rendering the deformation model more problem-

specific.

II. METHOD

The spatiotemporal transformation will be developed in-

crementally. We first describe a conventional spatial registra-

tion, of which the proposed method can be seen as an exten-

sion. Next, the temporal dimension is considered separately

and the method for modeling the trajectory is detailed. The

sought spatiotemporal deformation function is obtained by

combining both.

II.A. Problem description

Consider a 4D sequence, represented by an intensity func-

tion f�i ,k��R with i�I�Z
3 and k�K�Z; I and K being

the set of spatial and temporal sample indices, respectively.

We wish to analyze the motion with respect to the 3D refer-

ence frame at time index kr�K. The task of motion estima-

tion throughout the 4D sequence is formulated as the search

for the unknown spatiotemporal transformation Tst, defined

for I�K�R
3, where Tst�i ,k� represents the location of a

point at time k which was at position i at time kr.

II.B. Spatial registration

Consider the subproblem of retrieving the transformation

Ts �in which s stands for spatial� between the reference vol-

ume and the frame at time k. A continuous representation is

employed for the spatial transformation using free-form de-

formations based on B-splines,
31
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Ts�x� = x + �
j�J

aj�j�x� , �1�

where x�X is the continuous spatial coordinate associated

with I, J�Z
3 is the set of spatial parameter indices consid-

ered for basis functions �j�x�=�n�x /h− j� with h�R the

uniform spatial control point spacing, and �n the tensor prod-

uct of one-dimensional B-spline kernels of degree n. We

used cubic B-splines for the spatial basis functions �n=3�.
The parameters of Ts are the B-spline coefficients aj�R

3

�one for each component of the deformation�, i.e., Ts is fully

characterized by specifying a= �aj�j�J.

We define a similarity criterion Js, based on the mean

squared intensity differences with respect to the samples of

the reference volume,

Js�Ts,k� =
1

NI
�
i�I

�f�Ts�i�,k� − f�i,kr��
2, �2�

with NI the number of spatial samples considered. We chose

this criterion because of its fast computation time and the

smoothness of the resulting search space. For simplicity, no

explicit regularization term was included in the criterion. For

now, only the influence of the parametrization of the defor-

mation function was explored. Evaluating the intensity func-

tion f at nongrid positions requires a continuous representa-

tion for which we used cubic B-spline interpolation,

f�x,k� = �
i�I

di�
n�x − i� . �3�

Coefficients di are found quickly from the image intensities

using recursive filtering.
32

Solving the spatial registration problem for frame k comes

down to estimating the optimal parameters a� in the sense of

the criterion Js,

a� = arg min
a

Js�Ts;k� . �4�

By solving Eq. �4� consecutively for all k�K except kr, a

solution to the 4D motion estimation problem can be com-

posed. Solutions obtained for previous k values can be used

to initialize subsequent registrations.

II.C. Trajectory modeling

Temporal sequences enable modeling the temporal varia-

tions of the estimated deformations. Tissue trajectories are

expected to evolve smoothly and continuously over time,

allowing to introduce constraints which enforce the temporal

coherence of the deformation across the sequence. This is

similar to the approach described for the spatial dimensions.

Nonetheless, the temporal dimension is handled separately as

it is inherently different. For instance, in the case of

respiratory-correlated CT, the sequence is periodic and the

number of temporal samples is low compared to spatial

samples.

Trajectory model. Let t�T be the continuous coordinate

associated with K and suppose for simplicity T= �0, te�. Let

Tt�x , t� denote the trajectory of a point at position x at the

reference time tr. The search for Tt is limited to continuous

and smooth functions of t, by expressing it using a suitable

set of basis functions ��l�l�L,

Tt�x,t� = x + �
l�L

bl�l�t� . �5�

L�Z is the set of temporal parameter indices and bl�R
3 the

coefficients of the basis functions. We adopted uniform

B-spline basis functions
17,20,22,27

of order m�N, �l�t�
=�m�t /s− l� with s�R the temporal control point spacing,

because of their good approximation properties, computa-

tional simplicity, and implicit smoothness. In Ledesma-

Carbayo et al.,
22

temporal B-splines were found to work at

least as well as harmonic functions.
18,19,23

Figure 1�a� shows

a schematic, one-dimensional representation of a trajectory

model based on cubic B-splines �m=3�, with five internal

control points �s= te /5� placed uniformly along the consid-

ered interval �0, te�. Evaluating Tt near the borders of the

interval requires taking into account control points with non-

zero weight just outside the interval. It can be seen that a

total of eight degrees of freedom is considered, represented

by the B-spline coefficients b0 to b7.

Smooth trajectory model. The trajectory model can be fur-

ther constrained by incorporating a priori knowledge of the

motion, leading to a more restrictive parametrization. For

instance, 4D CT data are inherently periodic. In addition,

trajectories can be expected to be smooth functions of time.

The trajectory can be made periodic and smooth throughout

the entire cycle by imposing the same order of smoothness to

the endpoints as the rest of the trajectory, thus obtaining

Tt�Cm−1�T�. This leads to the set of m conditions

(a)

(b) (c)

FIG. 1. �a� Schematic representation of a trajectory model based on cubic

B-splines, with eight control points �dots� placed uniformly inside and just

outside �0, te�. Each corresponds to a B-spline kernel �l �dotted line� and

Tt�x , t� �solid curve� is found by combining the scaled kernels �dashed line�.
��b� and �c�� Alternative, representation with a cyclic temporal axis wrapped

around the trajectory. Large control points indicate a constraint is applied.

�b� The smooth trajectory model Tt and �c� the piecewise smooth trajectory

model Tt
�.
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�zTt�x,0�

�tz
=

�zTt�x,te�

�tz
for z = �0, . . . ,m − 1� . �6�

As will be shown, each condition results in a linear equation

for the model parameters, allowing to express one of the

parameters in function of the others. A schematic represen-

tation of a trajectory satisfying Eq. �6� is shown in Fig. 1�b�.
A cyclic time axis is shown to illustrate the placement and

the influence of the control points. The banded control points

indicate that a constraint is applied.

Piecewise smooth trajectory model. Due to the limited

temporal resolution of 4D CT, and depending on the degrees

of freedom considered in Eq. �5�, the smoothness constraint

might be too restrictive, leading to locally reduced represen-

tation accuracy in regions where the velocity is varying rap-

idly. This can be the case for the end-inhale phase where fast

inversion of the motion takes place. Alternatively, we can

locally relax the smoothness constraints and propose a piece-

wise smooth trajectory representation Tt
�. A similar expan-

sion as Eq. �5� is utilized for Tt
� but, assuming end-inhale

corresponds to t=0, a single constraint is applied at end-

inhale,

Tt
��x,0� = Tt

��x,te� . �7�

This condition leads to periodic trajectories �C0 continuity�,
but allows a discontinuity in the velocity at end-inhale �Fig.

1�c��. In this case, the sections near end-inhale are param-

etrized independently which implies a local increase of con-

trol points and degrees of freedom.

Temporal constraints. It is instructive to consider the ef-

fect of the temporal constraints on the trajectory model. For

instance, as deformation is estimated with respect to a refer-

ence, by definition

Tt�x,tr� = x . �8�

This condition allows to express one B-spline coefficient in

terms of the others, effectively removing one degree of free-

dom from the system, i.e.,

blr
= − �

l�L,l�lr

bl

�l�tr�

�lr
�tr�

, �9�

in which we constrained the parameter blr
associated with the

basis function �lr
, which is nonzero at tr. Following

Ledesma-Carbayo et al.,
22

introducing Eq. �9� into Eq. �5�
and regrouping terms for each of the parameters allows the

temporal model to be expressed using a smaller set of con-

strained basis functions,

�l
c�t� = �l�t� −

�l�tr��lr
�t�

�lr
�tr�

, �10�

that only generates trajectories that satisfy Eq. �8�.
In the following, we will denote Lc the set of temporal

indices of basis functions to which constraints �6� and �8�
have been applied.

II.D. Spatiotemporal registration

Estimating the motion in a 4D CT sequence by perform-

ing consecutive spatial registrations using Eq. �1� fails to

exploit the temporal relation between the frames. This is

remedied by modeling the trajectory as in Eq. �5�. A global

approach is found by coupling the temporal and the spatial

deformation model,

Tst�x,t� = x + �
j�J

�
l�Lc

cj,l�j�x��l
c�t� . �11�

The result is a linear, spatiotemporal deformation function,

separable in space and time. A straightforward extension to

the temporal dimension of Eq. �2� leads to the criterion

Jst�Tst� =
1

NK
�

k�K

Js�Tst,k� �12�

to be optimized with respect to the parameters

c= �cj,l�j�J,l�Lc. We will use Tst and Tst
� in reference to the

spatiotemporal deformation models obtained when using the

smooth and piecewise smooth temporal models Tt and Tt
�,

respectively.

II.E. Motion mask extraction

Breathing motion is characterized by sliding of the liver

and lungs, resulting in a discontinuity of the motion at the

pleural wall.
33,34

Accurate matching in these regions requires

a complex spatial transformation, even though the remainder

of the deformation can be considered smooth. We previously

addressed this issue
35

by automatically extracting a motion

mask, dividing the thorax into moving �lungs, mediastinum,

and abdomen�, and less-moving regions �the remainder�.
Motion masks were computed for all frames of f . The

result is the division of the thorax into two subregions

Iin ,Iout�I, roughly representing the inner and outer thoracic

structures. For each of the subregions, a separate registration

problem can be formulated following the method described

by Wu et al.,
33

with the advantage that the search can be

limited to spatially smooth deformations. In the following,

we focused on the inner thoracic structures.

II.F. Optimization

The spatiotemporal approach allows a more restrictive pa-

rametrization of the transform and reduces the total number

of degrees of freedom of the 4D motion estimation problem

compared to consecutively applying Ts. However, directly

minimizing Eq. �12� considers all degrees of freedom simul-

taneously, increasing the dimensionality of the optimization

problem with respect to one 3D-3D registration. In response,

a multiresolution approach was employed, allowing to

gradually increase the complexity of the problem. The reso-

lution of the spatial dimensions of both the image sequence

and the B-spline control point grid of the transformation was

doubled in each of three consecutive resolution levels. The

final image resolution was set to 2 mm. We previously found

that, in combination with a motion mask, a control point grid

spacing h=32 mm provided a good compromise between
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registration efficiency and accuracy. The temporal dimen-

sion, characterized by low resolution, remained unmodified

throughout the optimization.

Each level was handled using a quasi-Newton approach in

the form of the limited memory BFGS method
36

because of

its high precision and improved rate of convergence with

respect to simple gradient descent algorithms.
37

The proce-

dure started from a zero deformation, and subsequent levels

were initialized by upsampling the solution found at the pre-

vious level. The required partial derivatives of the similarity

criterion can be calculated explicitly, for instance, for Tst,

�Jst�Tst�

�cj,l

=
2

NKNI
�

k�K

�
i�I

�f�Tst�i,k�,k�

− f�i,kr��
� f�Tst�i,k�,k�

�x

�Tst�i,k�

�cj,l

. �13�

�f /�x is found by deriving Eq. �3�, while �Tst /�cj,l can be

calculated considering Eq. �11�. For instance, for the q-th

spatial component,

� f�x,k�

�xq

= �
i�I

di

��n�xq�

�xq
�
��q

�n�x� − i�� , �14�

�Tst�i,k�

�cj,l,q

= �j�x��l
c�t� . �15�

II.G. Implementation

The registration algorithms were implemented in C��.

Evaluating Tst�i ,k� was performed using B-LUTs:
38

a fast,

low memory B-spline implementation based on a look-up

table of B-spline tensor products �n�x�. Registration algo-

rithms were multithreaded and executed on an eight-core

system. The execution times depended on the specifics of the

4D CT data set. Consecutively registering all frames of f

using Ts required between 5 and 10 hours, whereas Tst and

Tst
� required about twice as much time.

In comparison, the most expensive step for the spatiotem-

poral approach is the calculation of �Tst /�c in Eq. �13�. In the

current implementation, this requires multiple table look-ups

due to the presence of the modified basis functions �l
c in Eq.

�15�, compared to only one for calculating �Ts /�a.

III. EXPERIMENTS

Three types of experiments were performed to validate

the spatiotemporal deformation model. First, we conducted a

prestudy on the temporal dimension of the model separately.

Breathing patterns are patient-specific and strong interpatient

and intercycle variability has been reported which can affect

cycle duration, motion amplitude, and speed of the

movement.
39–41

By fitting the trajectory models to motion

data covering many cycles and measured on a large set of

patients, we ensured the temporal parametrization is flexible

enough to capture the dynamics of respiratory motion.

The most suitable temporal parameter values were re-

tained and used for the spatiotemporal deformation models.

The latter were applied to the registration of 4D CT images

of the thorax. Extensive spatial validation of the registrations

was performed using large sets of landmarks. The registra-

tion accuracy was compared to the conventional frame-to-

frame approach. In a final experiment, the benefit of the spa-

tiotemporal approach was illustrated, by assessing the

performance in the presence of artifacts.

III.A. Temporal fit of diaphragm motion data

Data description. We used projection sequences of cone-

beam computed tomography �CBCT� acquired at the Neth-

erlands Cancer Institute �Amsterdam, the Netherlands� for

image-guidance of 33 lung cancer patients treated by radio-

therapy with the protocol described by Sonke et al.
42

Cone-

beam projections consist of planar x-ray images, acquired

from rotating views around the patient. They were acquired

at 5.5 fps over 200° with a 50°/min gantry rotation speed for

4D CBCT imaging.
43

Projections are 5122 matrices with

0.82 mm2 spatial resolution �0.522 mm2 at the isocenter�.
257 sequences of cone-beam projection images �5–19 per

patient� were analyzed.

The motion was analyzed by extracting the craniocaudal

position of a diaphragm dome using an adapted version
41

of

the algorithm developed to extract a respiratory signal for 4D

CBCT reconstruction.
43,44

The extraction resulted in a 2 min

1D+t signal per acquisition with 0.52 mm spatial and 5.5 fps

temporal resolutions, i.e., two of the four dimensions of the

sought 4D model at fine resolution but for only one point of

space. In addition to the largeness of the dataset, the projec-

tion images are advantageous because they have higher cran-

iocaudal and temporal resolutions than 4D CT images. As

such, the diaphragm motion data provided a valuable bench-

mark for tuning the temporal parametrization of the deforma-

tion models.

Experiments. Each signal was split in respiratory cycles

by detecting the end-inhale peaks after smoothing out the

local minima. Each cycle was analyzed separately by assum-

ing periodicity, similar to 4D CT images. The temporal mod-

els described in Sec. II C were fitted to each cycle with the

optimal solution in the least squares sense. The influence of

the trajectory model parameters was evaluated: we varied the

B-spline order m and the control point spacing s, or equiva-

lently the number of control points. In addition, we verified

the suitability of a smoothness constraint at end-inhale by

comparing Tt and Tt
�.

The similarity between the measured and the fitted signals

was evaluated using the root mean square �RMS� of their

difference. Results for each patient were averaged and the

group mean over all patients was computed. The results were

analyzed both globally and per respiratory phase by dividing

each cycle into ten equitemporal phase bins, as it is typically

done in current 4D CT scanners.

III.B. Spatiotemporal registration of 4D CT

Data description. We used 4D CT data sets of six nons-

mall cell lung cancer patients acquired at the Léon Bérard

Cancer Center �Lyon, France� for the purpose of radio-
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therapy planning on a Philips 16-slice Brilliance Big Bore

Oncology Configuration �Phillips Medical Systems, Cleve-

land, OH�. Acquisitions were performed in helical mode us-

ing a table pitch of 0.1, 400 mA s effective exposure �80 mA

tube current� at 120 kV.

Respiratory-correlated reconstruction was performed

through simultaneous acquisition of a respiratory surrogate

signal, provided by the Pneumo Chest pressure belt �Lafay-

ette Instrument, Lafayette, IN�. Reconstruction yielded ten

3D CT frames at approximately 1�1�2 mm3 spatial reso-

lution.

Experiments. The spatiotemporal deformable registration

approaches Tst and Tst
� , as described in Sec. II D, were ap-

plied to all 4D CT data sets. In addition to the normal set of

constraints used for Tt and Tt
�, constraint �8� was enforced for

all registrations. Deformable registration was performed with

respect to the middle frame �time point tr=5�, roughly cor-

responding to end-exhale. The position of end-exhale has

been reported to be more reproducible than end-inhale,
42,45

making it a suitable reference to analyze breathing motion.

For validation purposes, anatomical landmarks were iden-

tified in the lung region using a semiautomatic software

tool.
46

The system automatically provided a set of well-

distributed, distinctive points with index pr�I in the lung

region of the end-exhale frame. Observers identified the cor-

responding positions pk�I of the points in frame k, using a

custom designed interface and aided by initial estimates pro-

vided by the system. Points coinciding with artifacts were

excluded. The system initially provided 130 distinctive

points and the procedure was stopped after 100 points were

successfully identified in the corresponding frames.

For all six patients, 100 point correspondences were pro-

vided between the end-exhale and the end-inhale frame, and

the process was repeated by a second observer. The mean

distance between the annotations was 0.5 mm �0.9 mm stan-

dard deviation�. For patients 1–3, a single observer provided

100 correspondences for each of the frames of the 4D CT,

resulting in a total of 900 manually identified landmarks for

each of the three data sets. The manual annotations were

compared to the corresponding point positions estimated

through registration by computing the target registration er-

ror �TRE�,

TRE = 	Tst�pr,k� − pk	 . �16�

The registration results were also compared to those ob-

tained when performing consecutive 3D registrations using

Ts, described in Sec. II B. The same multiresolution and op-

timization scheme was applied as in the spatiotemporal case.

Since no temporal regularization is applied in the case of Ts,

the results are considered as a reference indicating the

achievable registration accuracy when allowing all temporal

degrees of freedom.

III.C. Registration of 4D CT with artifacts

Data description. To dispose of a ground truth, we con-

structed a 4D CT acquisition with artifacts fa by introducing

a simulated, motion-induced artifact in the 4D CT of patient

2, characterized by large motion. A midinhalation frame �k
=8� was altered by modifying a series of axial slices halfway

the lungs. Ten slices starting from slice index i2= ia in the

end-exhale frame �k=5� were copied to the same location in

the target frame, i.e.,

fa�i,k� = 
 f�i,5� for k = 8, i2 � �ia,ia + 10�

f�i,k� otherwise.
� �17�

The procedure resulted in an axial slab of 20 mm along the

craniocaudal direction, containing an inconsistent view of

the patient anatomy with respect to the surrounding slices.

This resembles the situation of a frame locally influenced by

erroneous tagging of the respiratory phase or irregular

breathing during image acquisition.

Experiments. The simulated sequence fa was registered in

the same way as described in the previous experiment. The

registration results were compared to those obtained using

consecutive 3D registrations. By comparing also to the re-

sults obtained for the original sequence, the sensitivity of the

methods to locally introduced artifacts was evaluated.

The registration accuracy was assessed by using the land-

marks identified in the original, unmodified 4D CT acquisi-

tion. The analysis is performed at two levels. First, we com-

puted a global evaluation of the TRE, taking into account all

TABLE I. Group mean of the RMS of the difference between the measured motion of the diaphragm dome in the

craniocaudal direction and fitted functions for the two temporal models with different number of control points

and B-spline degrees. For degrees 0 and 1, both models are equivalent.

Spline degree m

Internal control points

4 5 6 7 8 9 10

Group mean RMS �mm� of Tt

0 2.65 2.25 1.95 1.72 1.53 1.39 1.27

1 1.25 0.98 0.83 0.72 0.63 0.57 0.51

2 1.17 0.89 0.77 0.67 0.60 0.54 0.49

3 1.17 0.87 0.76 0.66 0.59 0.53 0.48

Group mean RMS �mm� of Tt
�

2 0.70 0.56 0.47 0.40 0.34 0.30 0.27

3 0.67 0.55 0.47 0.40 0.35 0.30 0.27
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landmarks. Second, a local analysis was performed by only

considering landmarks located within five slices of the arti-

fact.

IV. RESULTS

IV.A. Temporal fit of diaphragm motion data

The fitting results are summarized in Table I for a variety

of B-spline functions. Constant B-splines �m=0� gave much

poorer results than other degrees. This is not surprising, since

they produce piecewise constant functions which cannot de-

scribe the continuity of the respiratory motion. Linear

B-splines �m=1� gave residuals of the same order, but were

found significantly worse than quadratic �m=2� and cubic

splines �m=3� for all tested models �p�3�10−4�. Cubic

B-splines consistently gave better results than quadratic

splines, although the difference was not significant for all

tested models in Table I. As they also inherently impose a

stronger temporal regularization, which is our purpose, they

were selected for the rest of the study.

The influence of the number of control points can also be

seen from Table I. For both models, the residual of the fit

was proportional to the spacing of the control points s: the

Pearson’s product-moment correlation coefficient was

greater than 0.99. As expected, the number of control points

is a trade-off between the achievable representation accuracy

and the parameters of the fitted function.

We used box and whisker plots to further illustrate the

distribution of fitting errors. The box extends from the lower

�p25%� to the upper quartile �p75%� of the data, with a hori-

zontal line at the median and a � symbol at the mean. The

whiskers extend from the box to the most extreme value

below p25%+0.75� �p75%− p25%�, the remaining points are

considered outliers. Outliers were not plotted for clarity.

Figure 2 illustrates the global fitting errors and the errors

per respiratory phase bin for Tt and Tt
� �using five internal

control points and m=3�. The overall performance of Tt
� was

much better than for Tt. The largest discrepancies can be

observed near end-inhale �0%�. At this phase, the change of

speed was too sudden to be described by the smooth trajec-

tory model Tt and the residual was found to be significantly

higher �p�2�10−3� than at all other phases for all tested

values of m and s. This was not the case for the piecewise

smooth Tt
� model, which resulted in more homogeneous re-

siduals per phase because the smoothness constraint is re-

laxed at end-inhale.

TABLE II. Summary of the temporal properties for the registration methods when using cubic splines for the

spatiotemporal methods, and a control point spacing of either 2 or 2.5 frames. The amount of temporal control

points �CPs� reflect the internal CP as well as the ones required at the border. The number of degrees of freedom

�DOF� are the number of CP, reduced by the number of constraints. As an example, we list the resulting number

of parameters required to register the inner thoracic region �Iin� for patient 1.

Properties

Representation

Ts Tst Tst
�

s=1 s=2 s=2.5 s=2 s=2.5

Temporal CP 9 8 7 8 7

Continuity at t=0 / C2 C2 C0 C0

Constraints 0 4 4 2 2

Temporal DOF 9 4 3 6 5

Parameters 63 882 28 392 21 294 42 588 35 490
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FIG. 2. Box and whisker plots of the RMS errors per patient after fitting the models to the diaphragm motion data, using with five internal control points and

m=3. �a� The RMS over the entire cycle; �b� the RMS per phase bin.
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IV.B. Spatiotemporal registration of 4D CT

We retained the temporal representations with four and

five internal control points for the spatiotemporal models,

which corresponds to s=2.5 and 2 frames, respectively. Table

II summarizes the temporal characteristics of the registration

methods.

Trajectories obtained for landmarks with large displace-

ments are plotted in Fig. 3. The landmark positions identified

manually throughout the 4D CT are also shown and were

linearly interpolated for clarity. The estimates obtained using

Ts were interpolated using cubic splines. The trajectories of

the spatiotemporal methods were directly obtained from the

continuous 4D transforms. All trajectories were projected on

the sagittal plane, where motion predominantly occurs. Over-

all, the obtained trajectories appear very similar. The spa-

tiotemporal trajectories tend to be smoother than Ts. The

main difference between Tst and Tst
� is visible at end-inhale

�bottom of the plot�. At this point, Tst
� tends to be pointier and

in some cases visibly closer to the corresponding landmark.

Note that deviations between the estimated trajectories and

the measured landmark trajectories are partially due to the

landmark identification process, which was performed in

voxel index space, while the trajectories evolve in the con-

tinuous space. This effect will also contribute to the registra-

tion errors evaluated using the landmarks.

For patients 1–3, landmarks were available for all frames

of the 4D CT. The global registration accuracy is summa-

rized in Table III in terms of the mean TRE based on 900

landmarks each. For spacing s=2 frames, the group mean

TRE of both spatiotemporal methods was within 0.1 mm of

Ts. When increasing the temporal control point spacing from

2 to 2.5, the mean TRE increased gradually �1.27�1.17 mm

for Tst
� and 1.18�1.03 mm for Tst

� �, but remained compa-

rable to Ts. For clarity, only results using a spacing of 2

frames will be shown in the following.

For patients 1–3, the registration errors were also ana-

lyzed for each frame separately. Figure 4�a� corresponds to

the group mean TRE of the entire 4D CT and Fig. 4�b� shows

the group mean TRE per frame. The mean TRE over the

entire 4D CT was comparable for all methods, although Tst

performed slightly worse. The analysis per phase revealed

that most discrepancies in TRE are located near end-inhale

�0%, 10%, and 90%�. Tst
� generally obtained an accuracy

closer to Ts for these phases.
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FIG. 3. Trajectories projected on the sagittal plane, for

some landmarks with large displacements of patients

1–3. The trajectories obtained using the respective reg-

istration methods are plotted along with the manually

identified landmark positions throughout the 4D CT

�pk�. For all trajectories shown, at least two landmark

positions coincided at end-exhale, corresponding to po-

sition �0,0�.
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FIG. 4. Box and whisker plots of the group mean TRE for patients 1–3 for which landmarks were available in all frames, using m=3 and s=2 frames. �a� The

combined registration errors for the entire 4D registration. Each box is drawn based on 2700 landmarks. �b� TRE per phase bin. For each frame, the

registration error is estimated from 300 landmarks. The 50% phase bin corresponds to the reference frame.
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A separate, more extensive evaluation of the accuracy of

the end-exhale to end-inhale registration is listed in Table IV

for patients 1–6. Tst
� consistently outperforms Tst in terms of

mean TRE. The difference in group mean TRE between Tst
�

and Ts was below 0.1 mm. In contrast, the difference in mean

TRE between Ts and Tst was above 0.1 mm for five out of six

patients, and the group mean TRE was almost 0.2 mm

higher. This confirms the results reported when fitting the

diaphragm motion data in Sec. IV A, where it was found that

the smooth temporal model resulted in larger errors near end-

inhale.

Table III shows relatively small differences in group mean

TRE over the entire 4D CT, suggesting comparable perfor-

mance for all registration methods. This measure was found

misleading, as it tends to average out the differences due to

the large numbers of measurements �2700 landmarks for

each method�. Further analysis showed that the performance

of Tst varied considerably from patient to patient. While for

patient 1, all methods obtained very similar results, differ-

ences in TRE of the order of 0.5 mm were found at certain

breathing phases for patient 2 �Fig. 5, note the change in

scale with respect to Fig. 4�.

IV.C. Spatiotemporal registration of 4D CT with
artifacts

The registration accuracy obtained for the sequence fa is

summarized in Table V. We only report results using the

piecewise smooth spatiotemporal model Tst
� . We also list the

TRE obtained for the original 4D CT, corresponding to pa-

tient 2. With respect to the original 4D CT, the local and

global TREs of Ts and Tst
� are within 0.1 mm. After inserting

the artifact, the global TRE more than doubles for Ts, while

the TRE of the spatiotemporal method increases only mar-

ginally. Locally, the influence of the artifact is even more

noticeable for Ts. For the spatiotemporal approach, however,

the local TRE remains below 2 mm.

Figure 6 shows the motion fields obtained using Ts and Tst
�

for the inner thoracic region. The top row corresponds to the

original 4D CT acquisition of patient 2. Both methods pro-

duce very similar motion fields. The main differences can be

observed near the diaphragm. The bottom row corresponds

to the sequence with artifacts fa. In this case, strong pertur-

bations can be observed in the motion field obtained using

Ts. The influence of the introduced artifact is also noticeable

for Tst
� , but the changes in the motion field are less dramatic.

In Fig. 7, three examples are given of motion fields in the

presence of real artifacts. The artifacts are shown in the first

column and are generally most clearly visible near the dia-

phragm. The second column shows the motion fields ob-

tained using Ts. Strong perturbations can be seen, mainly in

the part of the motion field that maps to the region of the

artifact; i.e., slightly above the location of the artifacts. The

spatiotemporal approach tends to be less influenced by the

artifacts. The resulting motion fields are noticeably smoother

making them more plausible from a physiological point of

view.

V. DISCUSSION

Temporal constraints. In Sec. IV A, the smooth and piece-

wise smooth temporal models were compared at equal con-

trol point spacing �see Fig. 2�. The difference in temporal

constraints between Tt and Tt
� results in a different number of

TABLE III. The mean TRE obtained over the nine frames for patients 1–3

based on 900 landmarks each and its group mean �GM�. The registration

error ��1 SD� of the 3D registration is compared to the accuracy obtained

for the spatiotemporal algorithms with m=3 and s=2 frames. The original

landmark distance �Original� is given to illustrate the magnitude of the mo-

tion.

Patient

TRE for 4D CT

�mm�

Original Ts Tst Tst
�

1 3.47�2.14 0.96�0.66 1.02�0.71 1.00�0.69

2 6.41�3.99 1.20�0.96 1.37�1.13 1.27�1.09

3 3.65�3.04 1.11�1.14 1.17�1.08 1.16�1.15

GM 4.51�3.15 1.09�0.94 1.19�0.99 1.14�1.00

TABLE IV. The mean TRE ��1 SD� obtained by evaluating the registration

only at end-inhale for patients 1–6 based on 100 landmarks each, and its

GM. The registration error of the 3D registration �Ts� is compared to the

accuracy obtained for the spatiotemporal algorithms �Tst and Tst
� � using

m=3 and s=2 frames. The original landmark distance �Original� is given to

illustrate the magnitude of the motion.

Patient

TRE for end-inhale

�mm�

Original Ts Tst Tst
�

1 6.34�2.94 0.94�0.51 0.98�0.56 0.96�0.57

2 14.00�7.17 1.44�1.04 1.95�1.88 1.56�1.34

3 7.67�5.03 1.51�1.66 1.63�1.66 1.53�1.70

4 7.33�4.86 1.79�2.71 1.97�3.00 1.96�2.92

5 7.09�5.08 1.43�1.39 1.54�1.49 1.48�1.39

6 6.68�3.67 1.18�0.80 1.32�1.13 1.25�0.95

GM 8.19�4.97 1.38�1.53 1.57�1.78 1.46�1.65

TABLE V. The mean TRE for the 4D CT sequence with simulated artifacts

�fa� and for the original, unmodified 4D CT �f� corresponding to patient 2.

The evaluation is limited to the frame where the artifact is introduced. The

global TRE is based on 100 landmarks. The local TRE is based on 24

landmarks, all within five slices of the inserted artifact. The registration

error of the 3D registration �Ts� is compared to the accuracy obtained for the

spatiotemporal algorithm �Tst
� using m=3 and s=2 frames�. The original

landmark distance �Original� is given to illustrate the magnitude of the mo-

tion.

Measure Data

TRE

�mm�

Original Ts Tst
�

Global f 9.00�3.93 1.42�1.30 1.44�1.16

fa 3.17�3.47 1.57�1.20

Local f 11.40�3.74 1.38�1.44 1.46�1.05

fa 6.82�4.38 1.90�1.22
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degrees of freedom at equal control point spacing. We there-

fore also performed a comparison between both models at

equal degrees of freedom. The global performance of Tt was

still significantly worse �p�4�10−2� compared to the cor-

responding Tt
� models �see Table I for Tt

� with two control

points less than Tt�. In addition, despite the global increase in

degrees of freedom, the high fitting residual at end-inhale

remained for Tt.

This confirms that a local increase in control points �as is

the case for the piecewise smooth model Tt
�� is more efficient

in terms of number of parameters, to obtain an accurate rep-

resentation throughout the respiratory cycle. It should not be

excluded that other piecewise models can be found, requiring

less degrees of freedom, while obtaining a similar accuracy.

These could consist in making sensible assumptions about

the trajectory near end-inhale that can be translated into con-

straints, eliminating one or both of the additional degrees of

freedom.

The end-exhale phase, although also characterized with

inversion of the motion, did not require further investigation

of the constraints. It has been reported that respiratory mo-

tion tends to be asymmetrical,
45,47

spending more time near

end-exhale than end-inhale. Phase bins near end-exhale will

represent relatively small deformation with respect to each

other. Uniformly spaced control points with respect to these

bins will lead to a spatially higher control point density near

end-exhale, allowing a more accurate representation, even in

the presence of smoothness constraints. This is confirmed by
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FIG. 5. Box and whisker plots of TRE for patients 2 for which landmarks were available in all frames, using m=3 and s=2 frames. �a� The combined

registration errors for the entire 4D registration. Each box is drawn based on 900 landmarks. �b� TRE per phase bin. For each frame, the registration error is

estimated from 100 landmarks. The 50% phase bin corresponds to the reference frame.

(a) (b)

FIG. 6. Motion fields in the presence of simulated artifacts: the top row

corresponds to the original 4D CT acquisition of patient 2, the bottom row

corresponds to the modified sequence fa in which an artifact was inserted at

position ia. �a� Coronal view of the motion field obtained for Ts and �b�
corresponding view of the motion field obtained for Tst

� using m=3 and

s=2 frames.

(a) (b)

FIG. 7. Three examples of motion fields in the presence of real artifacts. �a�
Motion fields obtained for Ts and �b� Tst

� using m=3 and s=2 frames.

175 Vandemeulebroucke et al.: Spatiotemporal motion estimation for 4D CT 175

Medical Physics, Vol. 38, No. 1, January 2011



the trajectories depicted in Fig. 3, where two to three land-

marks coincided with the end-exhale position.

From a temporal constraints point of view, Tt
� is related to

the trajectory model developed by Castillo et al.,
29

where a

compressible flow algorithm is extended with local trajectory

modeling to perform 4D motion estimation for 4D CT. In

this case, however, one-way �and not cyclic� trajectories

were sought between end-inhale and end-exhale, thus not

requiring further attention at end-inhale. Cubic polynomials

�equivalent to four degrees of freedom� were found to pro-

vide sufficient flexibility to parametrize the sought trajecto-

ries spanning six frames of the 4D CT. This corresponds well

to the six degrees of freedom �Tst
� with a temporal control

point spacing of 2� describing the trajectory over 10 frames.

Spatiotemporal registration. The principal aim of this

study was to develop a low-dimensional spatiotemporal de-

formation model to improve robustness of the subsequent

registration. We pursued a restrictive parametrization and

strong temporal regularization, as these were expected to re-

duce sensitivity to noise and artifacts. The parametrization

was thoroughly investigated, both spatially and temporally,

to ensure that an accurate representation of breathing motion

was maintained.

Based on the fitting experiments of the diaphragm motion

data, cubic temporal B-splines were found to perform best

and were selected for the temporal parametrization. The

value of the temporal control point spacing s was found to

represent a trade-off between achievable accuracy on one

hand and an increase of parameters on the other, the latter

likely to increase sensitivity to noise and artifacts. In prac-

tice, its value should reflect the needs of the application and

the quality of the images. Using s=2 frames, the spatiotem-

poral models obtained results comparable to the reference Ts

method and was considered a suitable compromise for the

4D CT images dealt with in this study.

From a parametrization point of view, the Tst model rep-

resents interesting characteristics. Minimal curvature is en-

forced throughout the entire cycle, and about a third less

parameters are required with respect to Tst
� . Unfortunately,

detailed analysis revealed larger TRE near end-inhale for Tst,

indicating the smooth model fails to capture the full extent of

the motion. Even though trajectories are expected to be

smooth functions of time, a temporally smooth parametriza-

tion was found to provide a less accurate representation due

to the low temporal resolution of respiratory-correlated im-

aging and the control point grid. Using Tst
� a uniform perfor-

mance over the breathing cycle was obtained for all patients,

and the group mean TRE was within 0.1 mm of the reference

Ts, for both s=2 and 2.5 frames.

The improved matching of Tst
� at end-inhale comes at the

price of two additional temporal degrees of freedom with

respect to the smooth model. Nonetheless, with respect to Ts,

this model reduces the number of parameters to be estimated

during registration by 33% and 45% for s=2 and 2.5 frames,

respectively �Table II�. The impact of this compact, spa-

tiotemporal parametrization was illustrated in the experiment

in which a simulated motion-induced artifact was introduced

in a 4D CT sequence. The motion field obtained using spa-

tiotemporal registration was found to be considerably less

influenced by the artifact, in comparison to the result ob-

tained using Ts.

Influence of binning and tagging. In Sec. II, we made the

assumption that the fourth image dimension was time. This

allowed us to interpret Tt as a trajectory in function of time

and its derivatives as velocity and acceleration. In the case of

4D CT imaging, each frame is composed of data acquired at

different times and different table positions. The interpreta-

tion of the fourth image dimension is closely related to the

binning of acquired data, which is usually based on a surro-

gate signal.

The 4D CT data presented here were obtained from

phase-based binning, which is by far the most common pro-

cedure. For each acquired cycle, the reconstruction of the

different frames is performed by selecting projections

equally spaced in time. Ignoring the nonperiodic nature of

breathing motion, the images obtained in this fashion can be

considered equivalent to a temporal sequence. Alternative

binning criteria
48,49

have been proposed. In particular,

amplitude-based binning is expected to provide frames uni-

formly spaced with respect to organ displacement. For such

images, other smoothness constraints at end-inhale and even

end-exhale might be more suitable.

For all data presented, individual cycles were detected by

providing tags at end-inhale. The diaphragm motion data

were artificially made periodic at end-inhale, to allow fitting

the cyclic trajectory models. This procedure can be held

partly responsible for the rapid changes at end-inhale and

contributes to the fitting residuals. To quantify the effect, we

repeated the experiments when tagging at end-exhale. Com-

paratively larger residuals were observed at end-exhale, in-

dicating the influence of the tagging position. The highest

residuals were, however, still observed at end-inhale, con-

firming they are indeed caused by the sudden change in mo-

tion.

Robustness to artifacts. Thoroughly evaluating the perfor-

mance in the presence of artifacts is difficult due to the ab-

sence of a ground truth for the underlying image. The im-

proved robustness of the spatiotemporal approach was

therefore illustrated using a simple experiment based on

simulated data and through visual inspection of motion fields

for real artifacts. Further analysis of the behavior of the spa-

tiotemporal model in the presence of artifacts or noise is

required. In particular, the influence of the temporal size and

location of artifacts merits attention.

In the 3D, Eq. �2�, and 4D criteria, Eq. �12�, regularization

terms penalizing undesirable properties of the deformation

field were not included. The present study was limited to

investigating the impact of explicit parametric restrictions.

Regularization penalties will provide additional robustness

and are expected to be complementary to the parametric con-

tributions. In addition, the spatiotemporal framework allows

regularization schemes to be extended to the temporal di-

mension, as in Ref. 50.

Applications of spatiotemporal motion analysis. Spa-

tiotemporal deformation model �11� was applied to 4D CT of

the thorax in a 3D-4D registration framework. The model
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can also be applied to spatiotemporal motion analysis be-

tween sequences. By relaxing condition �8� which constrains

the deformation at the reference frame, the model can be

applied to a 4D-4D, frame-to-frame registration framework.

By replacing criterion �12� with a suitable similarity mea-

sure, other modalities and even multimodal problems can be

studied. This is similar to the 4D-4D registration method for

respiratory-correlated images described by Schreibmann et

al.
28

or the spatiotemporal alignment of cardiac sequences

presented by Perperidis et al.
21

In comparison, our method

assumes only frame-to-frame spatial deformations without

temporal shifts and constrains deformations to a cyclic tra-

jectory. These assumptions limit the degrees of freedom and

should be well suited to analyze motion patterns between, for

instance, respiratory-correlated 4D CT, 4D CBCT �Ref. 43�
or 4D magnetic resonance images.

51

VI. CONCLUSION

We developed a spatiotemporal deformation model for de-

formable registration of respiratory-correlated images of the

thorax. The model was obtained by extending spatial free-

form deformations to the temporal domain, using a cyclic

trajectory model based on cubic B-splines. A piecewise

smooth temporal parametrization was found most suitable to

account for the rapid changes in velocity at end-inhale. The

spatiotemporal modeling resulted in a considerably more

compact description of the deformation model. Spatiotempo-

ral registration leads to comparable registration results while

improving the robustness to artifacts.
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