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Natural systems are undeniably subject to random fluctuations, arising from either environmental

variability or thermal effects. The consideration of those fluctuations supposes to deal with noisy

quantities whose variance might at times be a sizable fraction of their mean levels. It is known that,

under these conditions, noisy fluctuations can interact with the system’s nonlinearities to render

counterintuitive behavior, in which an increase in the noise level produces a more regular behavior. In

systems with spatial degrees of freedom, this regularity takes the form of spatiotemporal order. An

overview is presented of the mechanisms through which noise induces, enhances, and sustains ordered

behavior in passive and active nonlinear media, and different spatiotemporal phenomena are

described resulting from these effects. The general theoretical framework used in the analysis of these

effects is reviewed, encompassing the theory of stochastic partial differential equations and coupled

sets of ordinary stochastic differential equations. Experimental observations of self-organized

behavior arising out of noise are also described, and details on the numerical algorithms needed in the

computer simulation of these problems are given.
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I. INTRODUCTION: ORDER OUT OF NOISE

Randomness is a common feature in our daily experi-
ence. Nature, either animate or inanimate, exhibits fluc-
tuations at every scale we look at it. Whether we direct
our efforts to scrutinize the natural world or we tailor
more or less sophisticated experimental setups, the pres-
ence of uncertainties and noise is pervasive. Let us state
from the beginning that noise, the central concept in this
review, is going to be used as a generic term encompass-
ing both thermally controlled internal fluctuations and
parametric, or in general, environmental variability. Its
origin, internal or external, will be distinguished in spe-
cific examples.

Classical statistical mechanics has developed canoni-
cal formalisms over the years, mostly intended to de-

scribe the behavior of macroscopic systems in equilib-
rium, after averaging over a large number of, apparently
uninteresting, random microscopic degrees of freedom.
In systems operating far from equilibrium, on the other
hand, random fluctuations have nontrivial effects, as
shown by a large body of work that has been developed
in the past three decades. The relevance of those results
is to be better perceived, with the recent surge of inter-
est in areas such as nanotechnology and cell biology.
Those fields involve systems characterized by two fea-
tures: they are small in size and exhibit a complex non-
linear behavior. The relative importance of fluctuations
increases with decreasing system size, whereas the com-
plex nonlinear dynamics interacts nontrivially with the
noise. It is therefore necessary to bridge the gap be-
tween the advances in stochastic dynamics, mostly theo-
retical, that have been developed over recent years and
newly developed experimental settings, such as those of-
fered by the nanosciences and biosciences. This is the
aim of the present review.

Whatever its origin, noise is usually considered, al-
most by definition, as a source of disorder in physical
systems. However, it is well known that random fluctua-
tions can conspire with nonlinearities to enhance regular
behavior in simple time-dependent systems. There are
two main ways in which this can happen. First, noise can
help a multistable system to cross a potential barrier
separating different stable states. If, for an optimal noise
level, the �stochastic� crossing times statistically match a
deterministic time scale �either internal or external� of
the system, a more regular behavior may arise, in the
form of a higher periodicity, for instance. This is the
mechanism underlying phenomena such as stochastic
resonance �Gammaitoni et al., 1998�, coherence reso-
nance �Lindner et al., 2004�, and noise-induced transport
�Reimann, 2002�. Second, noise can destabilize existing
steady states and induce new ones, which could corre-
spond to states of higher regularity, via noise-induced
transitions �Horsthemke and Lefever, 1984�. In any of
these two contexts, the system has to be nonlinear, or
rendered effectively nonlinear by the noise terms.

In spatially extended systems, the local dynamics is
coupled between neighboring sites, a feature that is con-
spicuously absent in purely temporal systems. Under
these conditions, steady states become macroscopic

phases, and transitions and bifurcations take the form of
bona fide phase transitions. A description in terms of
phases leads to the concept of order: certain phases can
be interpreted as being more ordered than others, as a
result of a coarse-grained description for which a zero
field corresponds to a disordered mixture of different
microscopic states, while a nonzero field arises as a co-
herent, ordered average of identical microscopic states.
Within this framework, and as a generalization of the
noise-induced transitions already mentioned, the past
decade has witnessed the emergence of a wealth of ex-
amples in which noise induces phase transitions in spa-
tially extended systems �García-Ojalvo and Sancho,
1999�. More importantly and rather counterintuitively,
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an increase of noise intensity frequently leads to more
ordered phases.

Order can also take the form of a spatially structured
phase arising from a uniform, featureless one via a
pattern-forming bifurcation. Evidence of such noise-
driven patterns has been reported both theoretically and
experimentally. More recently and again based on zero-
dimensional effects mentioned above, this time involv-
ing noise-mediated resonances, spatial coupling has also
revealed itself to be an order-enhancing element in
those situations in which regularity arises as a result of a
resonant barrier crossing induced by noise.

This review provides a description of the ordering in-
fluence of noise in self-organizing extended systems. The
present section is intended to highlight the most charac-
teristic experimental setups in which the effects of spa-
tiotemporal noise can be investigated. Although few ex-
perimental systems beyond prototypical ones mainly in
chemical and electronic contexts have been extensively
studied so far from this perspective, quite a number of
ongoing realizations will be illustrated ranging from hy-
drodynamical to optical devices. In any case, special at-
tention should be given to promising developments, es-
pecially in biophysical settings �see Sec. I.A.6�, where
the present level of control and modeling should foster
the study of effects from either internal or external fluc-
tuations. In the second part of Sec. I, typical theoretical
models, basic stochastic concepts, and standard noise-
induced phenomenologies in nonextended dynamical
systems are briefly reviewed in separate subsections.
Section II presents an overview of the theoretical and
numerical methodologies that have been developed in
recent years to characterize noise-induced order. The
scenarios leading to ordering noise-induced phase tran-
sitions and stationary patterns are described in Secs. III
and IV, respectively. Section V reviews recent evidence
of the constructive effect of spatial coupling in phenom-
ena such as stochastic and coherence resonance, unveil-
ing hidden coherences of the corresponding systems free
from fluctuations. Section VI, on the other hand, dis-
cusses those cases, mostly in active media, in which
noise-effective regimes enable us to interpret spatiotem-
poral dynamical behaviors arising purely out of noise.
Finally, Sec. VII gives an overview of the active influ-
ence of noise on classical phenomena such as synchroni-
zation and control, and in particular discusses intriguing
examples of chaos control by noise in different contexts.

A. Noise in macroscopic systems

A quantitative assessment of the ordering effects of
noise in extended systems requires a careful control of
the statistical properties of the fluctuations in time and,
in some situations, also in space. To that end, different
experimental settings have been designed in recent years
that allow an adequate control of the driving forces act-
ing on a variety of macroscopic systems. In some situa-
tions, the noise is internal and cannot be varied in a
controlled way, but a joint experimental and theoretical
analysis may allow a meaningful characterization of its

effect. In this section, we present an overview of differ-
ent experimental implementations that have been used
in these investigations, either because internal noise has
macroscopic effects or because it is possible to introduce
spatiotemporal external noise in a controlled way. The
examples encompass different fields in physics, chemis-
try, and biology.

1. Hydrodynamics patterns and turbulence

Hydrodynamic systems are intrinsically spatially ex-
tended, and are naturally affected by random fluctua-
tions, both thermal and external. Accordingly, they were
among the first experimental systems in which the ef-
fects of spatiotemporal noise were studied. In Rayleigh-
Bénard convection �Chandrasekhar, 1981�, for instance,
a transition separates different regimes of heat flow
when a horizontal layer of fluid is heated from below.
When fluctuations are ignored, the transition is sharp
and continuous, with a diverging effective susceptibility
similar to that found in second-order phase transitions.
In order to determine whether these characteristics re-
mained when the experimentally unavoidable thermal
fluctuations were considered, Swift and Hohenberg
�1977� developed a model �see Sec. I.B.3� that has since
become canonical in nonequilibrium physics �Cross and
Hohenberg, 1993�.

Experimental studies of Rayleigh-Bénard convection
allowed an indirect estimation of the amplitude of hy-
drodynamic fluctuations, by comparison with a stochas-
tic Landau model �Meyer et al., 1987�. A similar com-
parison was later performed with the stochastic Swift-
Hohenberg model �Hohenberg and Swift, 1992�. Figure
1 shows experimental images of the vertical fluid flow
below �a�,�b� and above �c�,�d� the convective instability

FIG. 1. Spatial noisy precursor in Rayleigh-Bénard convec-

tion. Experimental shadowgraph images �left� and the corre-

sponding structure function �right� of a Rayleigh-Bénard cell

below �top� and above �bottom� the onset of convection are

shown. From Wu et al., 1995.
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threshold �Wu et al., 1995�. The real field images show a
disordered state below the bifurcation �a� and an or-
dered hexagonal phase in the convective regime �c�. The
structure function �defined as the Fourier transform of
the correlation function� above threshold �d� exhibits a
pattern of six well-defined maxima, hexagonally located.
Below threshold �b�, even though it corresponds to a
disordered phase, the structure function displays an un-
derlying preferred wavelength �with no preferred direc-
tion�, anticipated by internal noise of hydrodynamic ori-
gin. These noisy precursors will be discussed in Sec.
IV.A.

Besides pattern formation, hydrodynamic systems
have also been used to study the effect of external fluc-
tuations at the onset of turbulence. Gollub and Steinman
�1980� applied a spatially uniform, temporally fluctuating
temperature difference between the horizontal plates of
a Rayleigh-Bénard cell as it was driven to turbulence.

Spatially uniform fluctuations have also been applied
in experimental studies of a vertically vibrated horizon-
tal fluid layer under the influence of parametric noise,
and undergoing a Faraday instability �Berthet et al.,
2003�. In this case, as in the case of Rayleigh-Bénard
convection described above, a controlled spatially uni-
form noise is relatively straightforward to apply as
proven. However, the case of a spatiotemporal noise,
fluctuating randomly also in space, is still challenging. A
possible way of implementing such a noise source, in a
somewhat related although different context, is by
means of the thermal laser writing technique developed
by Semwogerere and Schatz �2002� to imprint computer-
controlled patterns on Bénard-Marangoni flows.

2. Liquid crystals

Nematic liquid crystals have long been used as model
systems in pattern-forming experiments, due to their
high controllability. This property also makes them use-
ful for studying the effects of noise. Accordingly, early
experiments were devoted to this issue, especially those
regarding electroconvection. In this phenomenon, a con-
vective flow of the liquid crystal sets in under the influ-
ence of an external electric field of sufficient intensity.
Brand et al. �1985� studied the effect of a spatially uni-
form noise �superimposed to the external electric field�
on the transition to turbulence in electroconvection.
Their results showed, in contrast with those of Gollub
and Steinman �1980� described previously, that noise
substantially affected the threshold for the onset of tur-
bulence, delaying it significantly. Rehberg et al. �1991�
investigated the arousal of precursor patterns below, but
close to, the onset of electroconvection, again driven by
noise of internal origin. Shadowgraph images of the fluid
flow in the liquid-crystal layer are shown in Fig. 2 both
below and above the threshold of electroconvection.
The noisy precursor that appears below threshold in the
form of fuzzy rolls is clearly observed.

Electrohydrodynamic convection has also been used
to study the induction of on-off intermittency by di-
chotomic noise �John et al., 1999�. Once again, noise was

applied uniformly in space. Finally, it should also be
mentioned that, still for nematic materials, a simpler
phenomenology has been studied that does not involve
fluid flow instabilities. This is the so-called Freédericksz
transition, in which only the orientation of the nematic
director changes. The dynamics of fluctuations at onset
was addressed by Sagués et al. �1988�, whereas a com-
plete phase diagram of this system, in the presence of a
spatially uniform noise superimposed to an externally
applied magnetic field, was determined by Wu and An-
dereck �1990�.

3. Chemical reactions

As we have seen above, generating a controllable
noisy forcing that fluctuates randomly not only in time,
but also in space, is a challenging task. A much more
advantageous perspective is offered by chemical sys-
tems, in particular by the photosensitive variant of the
Belousov-Zhabotinsky �BZ� reaction �Kuhnert, 1986�. In
this system, the illumination level acts on the species
ruthenium�II�-bipyridyl, a light-sensitive catalyst of the
reaction, thereby controlling its excitability �Sagués and
Epstein, 2003�. By projecting a certain illumination pro-
file, which can be easily generated by a computer, on a
two-dimensional BZ reaction chamber, we gain a precise
local control of the dynamical parameters of the system,
with good resolution both in time and in space. In that

FIG. 2. Spatial structure of a nematic liquid crystal below �top�
and above �bottom� the onset of electroconvection. From

Rehberg et al., 1991.
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way, noisy forcing with predetermined statistics and tem-
poral and spatial correlation can be readily applied to
the experimental system.

Early experimental observations of wave nucleation
in media with disordered excitability, i.e., under time-
independent and space-dependent noise, were reported
by Maselko and Showalter �1991� and Steinbock et al.
�1995�. These experiments, which were not designed spe-
cifically to address the effects of disorder on chemical
waves, reported the presence of chemical BZ waves
propagating in membranes in which the reaction catalyst
had been imprinted with an ink jet printer. A bit later
other studies followed, this time specifically devoted to
analyzing the effects of external �parametric� noise on
wave propagation. Sendiña-Nadal et al. �1998� investi-
gated the effect of quenched disorder on the propaga-
tion of waves in a light-sensitive BZ medium. Figure 3
shows comparisons, for both one and two dimensions, of
the propagation speed �upwards� of an initially planar
wave, relating the cases of uniform �left side in each
plot� and random �right� illumination profiles. Within
the illumination range used, the speed of planar waves
decreases linearly with the light intensity �Sendiña-
Nadal et al., 1997�. Static disorder was produced by spa-
tial patches of random dichotomic illumination, with the
same average light intensity as in the homogeneous part.
Figure 3 shows that in the effectively one-dimensional
setup �top plot�, planar fronts moved slower under noisy
illumination than in the homogeneous situation. Strik-
ingly, the opposite behavior is found in the two-
dimensional configuration �bottom plot�, with the front
moving faster than without disorder.

Similar setups have been used profusely in recent
years to study the effects of spatiotemporal noise in ex-
citable media. Sendiña-Nadal et al. �2000�, for instance,
reported the Brownian motion of spiral waves induced
by temporally correlated noise. Figure 4 shows results
for three characteristic correlation times and fixed inten-
sity of the noise. It is clear that the mobility of the spiral
tip depends on the correlation time. For values of this

correlation time different enough from T /2�, with T the
rotation period of the spiral wave, the trajectories have
the form of entangled filaments and are confined to a

bounded area of the medium. Contrarily, close to T /2�
the wandering motion spans over a larger region, even-
tually reaching the boundaries where the spiral wave fi-
nally dies out. The physical interpretation of this behav-
ior is straightforward. At fixed noise intensity, for small
correlation time the effect of random forcing must dis-
appear, since fast, bounded fluctuations will be averaged
out by the system. On the other hand, for large correla-
tion times the spiral tip loses mobility, because the noise
realization does not change appreciably during a rota-
tion of the spiral wave. The effect of noise is thus re-
markably enhanced at resonance with the rotation pe-
riod.

Other examples where the photosensitive BZ reaction
has been used are described in Secs. V and VI. Another
light-sensitive chemical reaction that has been employed
for this type of investigation is the Turing pattern-

forming CDIMA reaction �Muñuzuri et al., 1999�. This

reaction will be introduced in Sec. IV.

A different chemical context that has been analyzed

in pattern-formation studies is that of heterogeneous ca-

talysis and, in particular, the catalytic oxidation of CO

on Pt single-crystal surfaces. This process has proven to

be excitable under certain conditions, exhibiting a rich

dynamical behavior �Imbihl and Ertl, 1995�. Recently,

local control of this process has been demonstrated us-

ing a mobile focused laser beam �Wolff et al., 2003�. This

type of result indicates that spatiotemporal random fluc-

tuations can be induced in the temperature of the Pt

surface in a controlled way. In a different development

related with this experimental situation, Wehner et al.

�2005� studied experimentally the role of different types

FIG. 3. Propagating BZ wave fronts on light-sensitive disor-

dered media. �a� Quasi-one-dimensional setup and �b� two-

dimensional setup with randomly distributed square patches of

illumination. The bright vertical stripe in the middle of each

plot corresponds to an unexcitable region separating regions of

uniform �left from the stripe� and random �right from the

stripe� illumination. From Sendiña-Nadal et al., 1998.
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of noise on domain nucleation and growth in CO oxida-
tion on Ir surfaces.

Finally and more oriented into a chemical engineering
context, other instances of the interaction between pat-
terning and noise are those related to turbulent mixing
�Ottino, 1989; Reigada et al., 1997� and localized corro-
sion �Costa et al., 1991; Punckt et al., 2004�.

4. Electronic systems

Besides being an interesting fundamental problem in
itself, electronic noise in semiconductor structures has
been recently harnessed to introduce random fluctua-
tions in a controlled way in coupled arrays of electronic
dynamical elements. Following a long tradition of using
electronic circuits to study a wide variety of dynamical
systems, ranging from classical chaotic oscillators �Car-
roll and Pecora, 1991� to neuronal dynamics �Nagumo
et al., 1962�, arrays of noise-driven electronic circuits
have been used to demonstrate experimentally the exis-
tence of spatiotemporal stochastic resonance �Löcher
et al., 1996�, noise-enhanced propagation �Löcher et al.,
1998�, noise-enhanced synchronization �Lorenzo and
Pérez-Muñuzuri, 1999�, noise-induced excitability
�Báscones et al., 2002�, doubly stochastic resonance
�Zaikin et al., 2001�, and locking of coherence resonance
oscillators �Han et al., 1999� among others.

The simplest way to generate well-controlled elec-
tronic noise is by amplifying the shot noise produced by
a resistor or a diode. Such a noise generator is cost ef-
fective and compact enough to allow independent noise
sources to be applied onto the different elements in an
array of coupled electronic circuits. An example of an
experimental setup using such a source of spatiotempo-
ral noise is given in Fig. 5. In this case, Löcher et al.
�1998� built a chain of 32 diode resonators coupled bidi-
rectionally with their nearest neighbors by a simple re-
sistance. Shot noise generated by pn junction diodes was

applied to each one of the resonators, and noise-
enhanced propagation was observed. For a higher con-
trol of the applied random fluctuations, computer-
generated noise can be applied directly to the circuit, or
commercially available function generators can be used.
These solutions are, however, evidently less cost effec-
tive and flexible.

In a different type of study, investigations of noise-
induced phenomena in semiconductor nanostructures
have been recently undertaken by means of theoretical
models �Stegemann et al., 2005�. It is to be expected that
in the near future these studies will reveal novel con-
structive influences of noise in spatially extended nano-
structures.

5. Optical devices

Nonlinear optical devices have been traditionally used
as model systems in nonlinear dynamics, due to their
high controllability in experiments and to the existence
of theoretical models, stemming from first principles,
that represent very accurately their behavior. The study
of spatiotemporal dynamics requires broad-area optical
setups, in which the transverse cross section of light
beams �and the size of all associated optics� is suffi-
ciently larger than any characteristic spatial scale.
Broad-area optical systems have been used in recent
years in pattern-formation studies, with potential appli-
cations in parallel information processing �Barland et al.,
2002�.

A particular system that has been used to study the
effect of spatiotemporal noise in optical setups is based
on the nonlinear optical properties of liquid crystals,
specifically the dependence of their refraction index on
the light intensity. This property allows the appearance
of patterns in single feedback setups such as that shown
in the top panel of Fig. 6. In that experiment �Lou-
vergneaux et al., 2004�, a broad beam of light propagates
through a liquid-crystal layer, onto which it is injected
back after being reflected off a mirror. It is well known
that light propagation coupled with a light-intensity-
dependent refractive index leads to spatial patterns for
large enough injected intensity, resulting from an abso-
lute instability of the homogeneous state. In the pres-
ence of a small tilt of the mirror, a regime of convective
instability sets in prior to the absolute instability. As pre-
dicted by Santagiustina et al. �1997�, noise excites the
system in the convectively unstable region, as shown in
the bottom panel of Fig. 6. Similar results have been
obtained in a free-electron laser, along the direction of

FIG. 4. Brownian motion of

spiral waves in the noisy light-

sensitive BZ reaction. Panels

�a�–�c� display the whole tip tra-

jectory for increasing values of

the noise correlation time. The

arrow indicates the initial posi-

tion of the tip. From Sendiña-

Nadal et al., 2000.

FIG. 5. Array of diode resonators driven by independent

sources of electronic noise. From Löcher et al., 1998.
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light propagation �Bielawski et al., 2005�. In these cases,
a comparison with theoretical predictions allows an esti-
mate of the noise intensity, which, on the other hand,
cannot be controlled externally in these setups.

Control of the applied spatiotemporal noise is pos-
sible, however, in a liquid-crystal setup, by acting opti-
cally upon the liquid-crystal layer. Sharpe et al. �2003�
applied a random illumination pattern onto a liquid-
crystal light valve by means of an additional liquid-
crystal display, in order to investigate experimentally the
occurrence of stochastic resonance in a two-dimensional
system.

In a different context, it is worth mentioning the the-
oretical and experimental study of Vodonos et al. �2004�.
These authors proposed a thermodynamic interpretation
of multiple pulse formation in passively mode-locked la-
sers, reporting �among other observations� the occur-
rence of a noise-induced phase transition in this system,
with the noise coming from spontaneous-emission fluc-
tuations that were injected from an external source.

6. Biophysical and biochemical systems

Biological systems at the cellular level are naturally
subject to random fluctuations at different scales, rang-
ing from the biochemical noise created by the inherent
stochasticity of the reactions between biomolecules
�which are usually present in the cell in small numbers�
to the population noise created in neuronal tissue by
thousands of background synapses impinging on a given
neuron. As a result of this richness of phenomenological

scenarios and motivations, a large number of studies
have been devoted to determine the effect of noise on
cellular behavior at many different levels. Particular at-
tention must be paid to studies in stochastic resonance,
at both the single-neuron �Gluckman et al., 1996� and
behavioral �Russell et al., 1999� levels. Research into sto-
chastic effects in gene expression has also acquired spe-
cial relevance in recent years �Raser and O’Shea, 2005�.

Less attention has been devoted, however, to spa-
tiotemporal noise, at least from an experimental per-
spective, probably due to the difficulty, once more, of
designing an experimental protocol capable of providing
adequate control of externally applied fluctuations in
this particular context. Jung et al. �1998� reported on the
possibility of chemically controlling the level of sponta-
neous calcium activity, which they interpreted as back-
ground noise, in cultured glial cells. The control was ob-
tained through the application of the neurotransmitter
kainate at varying concentration levels: the general cal-
cium activity increases with the kainate dose. Their re-
sults showed that under high activity conditions calcium
waves were nucleated out of noise, as shown in Fig. 7.

The number of theoretical studies that have examined
the role of spatiotemporal noise in the self-organization
of cellular processes is larger. Pálsson and Cox �1996�,
for instance, used a stochastic model to describe the
competition between circular and spiral waves observed
experimentally in populations of Dictyostelium discoi-

deum amoebae �Lee et al., 1996�. Many theoretical ef-
forts have also been devoted to study the role of sto-
chasticity in intracellular calcium signaling �Shuai and
Jung, 2002; Falcke, 2003�. Discrete stochastic simula-
tions have also been used to argue that biochemical
noise could play a relevant role in the pole-to-pole os-
cillation of a certain protein that the bacterium Escheri-

chia coli uses to determine its center �Howard and
Rutenberg, 2003�.

Recent biological setups offer the possibility of intro-
ducing experimentally spatiotemporal noise in a con-
trolled way. We now describe two experimental systems
in which the state of the art is ready for the introduction

FIG. 6. Noise-driven convective instability in a liquid-crystal

layer. Top: Single feedback mirror setup. Bottom: Spatiotem-

poral representation of the dynamics of a one-dimensional ver-

tical section of the liquid-crystal layer. Space is represented

vertically and time horizontally. Increasing intensities of the

input laser beam are shown from left to right, leading to the

regimes described in the plot. Adapted from Louvergneaux et

al., 2004.

FIG. 7. �Color online� Snapshot sequences �time increasing

from left to right and top to bottom� showing the concentra-

tion of calcium ions in a culture of glial cells. The authors

interpret the structure at the top right corner at times 3–6 as a

noise-induced wave. From Jung et al., 1998.
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of noise. These systems fit very well with the methodol-
ogy presented in this review.

In the first case �Limberis and Stewart, 2000�, a large
amount of kinesin molecular motors are deposited in a
substrate that contains tubulin filaments, aligned in par-
allel and immobilized. When a microchip is laid on this
construction, kinesins attach to it and initiate a direct
transport or rotation of the microchip. Mathematically,
this system consists of a set of independent degrees of
freedom coupled globally through the microchip. This is
an example of exact mean-field coupling. Fluctuations
can be introduced through the control parameters of the
system.

In the second example, a neural culture derived from
dissociated rat hippocampus is prepared in a coverslip in
one- or two-dimensional patterns �see Fig. 8�. The con-
nectivity between neurons is local. This system can
present inhibitory, excitable, and oscillatory behavior,
depending on the synaptic strength between neurons,
which is chemically controlled. Signal propagation and
information transport have been studied by Feinerman
et al. �2005�. Neural connectivity and the presence of a
percolation transition in two-dimensional neural cul-
tures have been examined by Breskin et al. �2006�. These
systems are sensitive to external inputs such as electro-
magnetic stimulation �Rotem and Moses, 2006�, and are
thus worthy candidates ready to be studied under the
influence of controlled fluctuations.

Finally, novel visualization techniques are being de-
veloped for the monitoring of spatiotemporal activity in
biological systems. These types of techniques should al-
low experimentalists to quantify the effect of fluctua-
tions in extended biological systems. For example,
propagation-induced phase contrast imaging allows the
observation of excitable cardiac activity at high spatial
resolution in a noninvasive way. Using that technique,
Hwang et al. �2004� have observed contractile cellular
motion, in the form of spiral waves, in cultured ventricle
cells of rats �see Fig. 9�. This type of spatiotemporal dy-
namics is analogous to that exhibited by the Belousov-
Zhabotinsky reaction �see Sec. I.A.3�, which as shown in
this review has been substantially used in studies of
noise-induced spatiotemporal order. Thus, one can ex-
pect that applying random perturbations in a controlled
way to the system underlying Fig. 9 would lead to new

insights into the role of noise in biological media.

7. Other examples

Back to a physical context, two other situations in
which the constructive effect of noise has been investi-
gated in relation to pattern-forming systems are those of
plasma physics �Dinklage et al., 1999� and interfacial so-
lutal growth �González-Cinca et al., 2001�.

On the other hand, the first theoretical example of
a noise-induced phase transition was reported by
Mikhailov �1979� on a population dynamics model of the
Lotka-Volterra type, which has been frequently used in
ecological modeling. A similar result was obtained more
recently by Lai and Liu �2005�.

Recently, studies of global-scale climate models have
also addressed the influence of noise. Examples include
the importance of stochastic resonance on millennial-
scale climate variability during glacial times �Ganopolski
and Rahmstorf, 2002� and the occurrence of coherence
resonance in those types of models �Perez-Muñuzuri
et al., 2005�.

B. Model scenarios

There is substantial evidence of self-organized behav-
ior in spatially extended systems, as illustrated by previ-
ous examples. We review in this section a series of ge-
neric models that have been developed over the years to
describe these phenomena.

1. Discrete systems versus continuous media

Spatially continuous extended media, such as fluids
and chemical systems, are described by field variables
obeying partial differential equations. A very common
example is the reaction-diffusion equation,

FIG. 8. Examples of two-dimensional neural cultures plated

on �a� a glass coverslip and �b� a multielectrode array. Figure

provided by E. Moses �Weizmann Institute of Science, Israel�.

FIG. 9. Spiral wave of contractile activity in a culture of rat

ventricle cells. From Hwang et al., 2004.
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���x,t�

�t
= f��� + D�2� , �1�

where ��x , t� is a field �scalar or vector� that describes

the state of the system at the spatial location x at time t.
A discretization procedure is commonly used, as shown
in Sec. II, to transform the continuous partial differen-
tial equation to be analyzed into a set of coupled ordi-
nary differential equations, after approximating the con-
tinuous space by a lattice. In the case of Eq. �1�, for
example, assuming a regular Cartesian lattice, the dis-
cretization leads to

d�i�t�

dt
= f���i�� +

D

�x2 �
j�nn�i�

��j − �i� , �2�

where the sum term, which runs over the set of nearest

neighbors of cell i, represents a possible choice for the

discrete version of the Laplace operator and �x denotes
the lattice spacing.1 The relation between the discretized

field and the real one is �i�t�=��i�x , t�, where i

= �i1 , i2 , . . . , id� and d is the space dimension. The corre-
sponding approach for stochastic differential equations
is presented in Sec. II.A.

Formulations like that shown in Eq. �2� arise not only
as approximations to continuous models, but also as ba-
sic descriptions of arrays of dynamical elements coupled
locally to their neighbors. These types of models have
been frequently considered in studies of noise-induced
order in distributed media �see, for instance, Sec. V�.

2. Phase transitions

Transitions between macroscopic phases provided the
first examples of self-organized behavior in spatially ex-
tended systems �Stanley, 1971�. Phase transitions take
the system, upon variation of a given parameter, from a
disordered state characterized by a zero average field to
an ordered state with a nonzero average field or vice
versa. The dynamics of phase transitions can be de-
scribed in terms of models based on partial differential
equations. The simplest one is the time-dependent
Ginzburg-Landau model �Hohenberg and Halperin,
1977�,

��

�t
= a� − b�3 + D�2� + ��x,t� , �3�

where ��x , t� stands for a spatiotemporal white noise rep-
resenting thermal fluctuations. This model exhibits an
equilibrium continuous transition from order to disorder

when the temperature �noise intensity �2�kBT�, acting
as the control parameter, is increased. Numerical simu-
lations �Toral and Chakrabarti, 1990� located the critical

point at �c
2�0.38 for a=b=1/2 and D=2, on a two-

dimensional square lattice. This phase transition is char-
acterized by a behavior near the critical point that be-

longs to the universality class of the two-dimensional
Ising model. Other examples of phase transitions and
their corresponding universality classes have been dis-
cussed in detail by Hohenberg and Halperin �1977�.
Here, in Sec. III, we focus mostly on nonequilibrium
situations in which counterintuitively an increase of the
external noise can induce a phase transition from a dis-
ordered phase to an ordered one.

3. Pattern formation

Perhaps the most clearly recognizable instance of spa-
tial order is given by the emergence of stationary pat-
terns from featureless states. The study of pattern for-
mation out of equilibrium has been an active field of
research in recent decades �Cross and Hohenberg, 1993�.
In its basic form, a stationary pattern arises out of a
disordered state via an instability at zero frequency and
nonzero wave number. A simple model exhibiting such
bifurcation is the Swift-Hohenberg equation, first devel-
oped to describe the effect of hydrodynamic fluctuations
near the onset of Rayleigh-Bénard convection �Swift
and Hohenberg, 1977�, and later extended to the deter-
ministic case as a basic model of pattern formation
�Cross and Hohenberg, 1993�. The model reads

��

�t
= a� − �3 − ��2 + k0

2�2� + ��x,t� , �4�

where ��x , t� is an additive white noise as in Eq. �3� and

a denotes a control parameter. In the absence of noise,

Eq. �4� has a trivial, homogeneous solution at �=0. The
stability of this disordered phase can be studied by lin-
earizing Eq. �4� and examining the temporal evolution of

the Fourier mode ��t�=�� exp�ik ·x+	t�, where ��
1.
Substituting the latter expression into the linear version

of Eq. �4� leads to 	=a− �k0
2−k2�2. The trivial solution

�=0 becomes unstable when 	�0; in particular, k=k0

represents the most unstable wave number, and controls
the wavelength of the emerging pattern at threshold

�ac=0�. Another length scale, corresponding to the aver-
age distance between defects as the pattern emerges, can
be determined when the control parameter is slowly
swept through the bifurcation point. This length hap-
pens to depend logarithmically on the additive noise in-
tensity �Lythe, 1996�.

An alternative phenomenology of pattern formation
is associated to the well-known Turing instability �Tur-
ing, 1952�, which applies to two-variable �activator-
inhibitor� reaction-diffusion systems with long-range in-
hibition. The appropriate model we refer to here is
the Epstein-Lengyel scheme adapted to the photosensi-
tive version of the CDIMA �chlorine dioxide–iodine–
malonic acid� reaction �Muñuzuri et al., 1999� mentioned
in Sec. I.A.3,

�u

�t
= a − cu − 4

uv

1 + u2 − ��x� + �2u ,
1In what follows, we consider �x=1 unless otherwise stated.
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�v

�t
= ��cu −

uv

1 + u2 + ��x� + d�2
v	 , �5�

where u�x , t� and v�x , t� represent the dimensionless con-
centrations of the species iodine and chlorine dioxide,

respectively. The parameters a, c, d, and � are positive,

and � represents the illumination.
Noise effects in relation to both Swift-Hohenberg and

Turing-like patterns will be addressed in Sec. IV.

4. Waves in active media

Self-organization can also take the form of spatiotem-
poral structures traveling in a coherent way through a
spatially extended system. Such behavior is characteris-
tic of excitable media, and gives rise to a large variety of
propagating patterns, such as wavefronts, spiral waves,
and scroll rings, depending on the dimensionality of the
system �Mikhailov, 1994�. A particular experimental re-
alization of an excitable medium that will be discussed in
this review is the Belousov-Zhabotinsky reaction, al-
ready mentioned in Sec. I.A.3, and in particular its pho-
tosensitive version, which allows for a direct application
of controlled external spatiotemporal noise. This system
can be described by the two-variable Oregonator model
�Field et al., 1972; Tyson and Fife, 1980�,

�u

�t
=

1

�
�u − u2 − 
fv + ��x��

u − q

u + q
	 + Du�2u ,

�v

�t
= u − v + D

v
�2

v , �6�

where u represents one of the intermediate species of

the reaction and v is the photosensitive ruthenium cata-
lyst. Du and D

v
stand for the corresponding diffusion

coefficients �D
v

is assumed zero hereafter to reproduce
the fact that the catalyst is immobilized in the experi-
mental setups that will be considered here�. The param-

eters f, q, and � are related to the kinetics of the BZ

reaction. The multiplicative parameter � accounts for
the external forcing and is assumed directly proportional
to the intensity of illumination.

A simplified version of the above-described model
was developed by Barkley �1991� with the goal of ob-
taining a computationally efficient model for the nu-
merical description of spatially extended excitable me-
dia. The Barkley model reads

�u

�t
=

1

�
u�1 − u��u −

v + b

a
	 + D�2u ,

�v

�t
= u − v . �7�

In this model, the illumination enters via the parameter

b. This system exhibits a transition between excitable
and oscillatory local dynamics controlled by the param-

eter b.
Generically, activator-inhibitor systems are described

by the pair of equations

�u

�t
=

1

�
f�u,v� + D�2u ,

�v

�t
= g�u,v� . �8�

The corresponding nullcline plots for the zeros of the
kinetic functions are shown in Fig. 10. Clearly their in-
tersections locate the �single or multiple� steady states of
the homogeneous system. Normally, the nullcline of the
inhibitor variable is very simple, just a straight line, for
instance. In contrast, the nullcline for the activator has a
nonlinear shape that allows for multiple solutions. A
single crossing at the left or right branches corresponds
to excitable conditions, whereas a crossing at the middle
�unstable� branch is a signature of oscillatory behavior.
Triple crossings, as easily imagined, correspond to
bistable situations. The effects of controlled external
noise on different excitability regimes will be reviewed
in Secs. V.B and VI.A.

5. Synchronization: Local versus global coupling

Another compelling example of self-organization in
nonlinear systems is synchronization �Pikovsky et al.,
2003�. In particular, a great deal of attention has been
paid to the synchronization of a large number of globally
coupled oscillators. The standard model in this context is
that of Kuramoto �1981�,

d�i�t�

dt
= i +

C

N
�

j

sin��j − �i� . �9�

This model describes the behavior of a set of N coupled

phase oscillators, whose phases are denoted by �i�t� and

natural frequencies by i, assumed, for the sake of gen-
erality, to be distributed randomly. This model can be
generalized, as described in Sec. VII.A, to represent the
dynamics of excitable units �active rotators�. Ignoring
the effects of randomness on pure Kuramoto-like oscil-
lators 
for a recent reference, see Hong et al. �2005��, we
limit this review and consider constructive effects of
noise on arrays of active rotators under additive fluctua-

FIG. 10. Nullcline plots for a generic activator-inhibitor sys-

tem. The cubic nullcline corresponds to u; the two straight

lines are nullclines for v in the cases of excitable �solid� and

oscillatory �dashed� dynamics.
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tions. From another perspective, much effort has also
been devoted to study the synchronization between
noisy chaotic oscillators as well as to the synchronization
of chaotic oscillators to an external �sometimes random�
signal. Both global and local coupling realizations of
these scenarios will be briefly reviewed in Sec. VII.B.

C. Stochastic modeling

Several issues must be taken into account when mod-
eling random effects in spatially extended nonlinear sys-
tems. The generic framework to study these problems is
the theory of stochastic processes. Moreover, since the
phenomena of interest are normally time dependent,
one has to think in terms of dynamical equations. Fi-
nally, given that the processes involved can be expected
to have a very-well-controlled deterministic dynamical
evolution, our stochastic tools have to be compatible
with deterministic descriptions in a clear way. This re-
duces the number of possible theoretical descriptions:
either Langevin-like stochastic differential equations for
the relevant variables or dynamical equations for the
probability density �master or Fokker-Planck equations�
of these variables. Both approaches complement each
other, and the choice of the more appropriate one de-
pends on the specific observables.

In light of these considerations, our chosen approach
will start by modeling a real system via deterministic
differential equations and incorporate random forces in
a subsequent, well-justified step. From this equation,
one can derive the Fokker-Planck equation when neces-
sary.

Within this generic framework, other points need
some attention. Depending on the origin of the noise,
one must distinguish between internal and external fluc-
tuations, a distinction that is frequently closely related to
that between additive and multiplicative noise. As will
become evident throughout this review, these consider-
ations are highly relevant for the influence that noise
sources may have on a given system. Another important
issue is the existence of correlations of the fluctuations
in space and/or time. In some situations, the influence of
these correlations is somewhat straightforward, while in
other cases it is far from trivial.

1. Stochastic differential equations

Most of the systems we are interested in reside in a

d-dimensional world. This means that our variables
�fields or concentrations� depend on time and space. The
starting deterministic models are based on partial differ-
ential equations, and when randomness is introduced we
transform them into stochastic partial differential equa-
tions �SPDEs�. A representative example is the deter-
ministic reaction-diffusion equation,

���x,t�

�t
= f„��x,t�,�… + D�2��x,t� , �10�

where ��x , t� represents the density of a physical observ-

able, f„��x , t� ,�… is a nonlinear function of the field �,

and � denotes the relevant control parameter. The
above example can be made more complicated when
considering vector fields, higher-order derivatives, or
nonlocal operators. The effect of fluctuations is intro-

duced through a stochastic process or noise ��x , t� with
well controlled statistical properties. As a result, we ex-
pect that the new equation governing our system will
have the generic form

��

�t
= f��,�� + g�����x,t� + D�2� . �11�

This is the most standard example of SPDE that will be
analyzed here.2 Situations with noise entering nonlin-
early are rather complicated to handle �Sagués et al.,
1984; Santos et al., 2001� and are not going to be consid-
ered.

2. Internal versus external fluctuations

Randomness can have different origins in a real sys-
tem. The unavoidable randomness associated with
physical first principles gives rise to internal fluctuations.
For very small systems, the quantum uncertainty prin-
ciple fixes the order of magnitude of the smallest energy

fluctuations �, where � is Planck’s constant and  is the
characteristic frequency of the fluctuating variable or de-
gree of freedom. A second source of randomness has a
statistical origin and is related with the finite number of

elements N composing our system. These fluctuations

are of order N1/2. Finally, the second law of thermody-
namics implies that any single element of a system in

contact with a thermal bath at absolute temperature T

will exhibit energy fluctuations of magnitude kBT, where

kB is the Boltzmann constant.
Since we are dealing with macroscopic systems, we

will not consider quantum fluctuations. Neither will we

focus on the statistical fluctuations related with finite N,
which are better studied using master equations. With
respect to internal noise, our aim here is to consistently
incorporate thermal fluctuations using the framework of
SPDEs. The simplest and most well-founded method be-
gins with the consideration of the deterministic relax-
ational model,

��

�t
= − �

�F

��
, �12�

where � stands for a kinetic coefficient representing dis-

sipation and F denotes a free energy or Lyapunov func-
tional, which we consider to have the following form:

F
�� = �
V

�f��� +
1
2 ����2�dV . �13�

f��� denotes the local energy density and the squared
gradient introduces a first-order coupling in space. The

2We use the notation of ��x , t� for additive and ��x , t� for
multiplicative noises.
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equilibrium state of the system corresponds to the global
minimum of this free-energy functional,

�F

��
= 0. �14�

Thermal internal fluctuations are introduced by adding a
noise term,

��

�t
= − �

�F

��
+ ��x,t� . �15�

If the noise is Gaussian with zero mean and correlation,

��x,t���x�,t��� = 2�kBT��x − x����t − t�� , �16�

one can prove that the probability distribution of the

field � obeys the expected Boltzmann equilibrium law,

P�
��� � exp�−
F
��

kBT
� . �17�

Actually the strategy of adding a noise term to a deter-
ministic equation is of common use even in the absence
of more fundamental statistical-mechanics-like argu-
ments, because this is indeed the simplest way to explore
the effects of fluctuations in a system where determinis-
tic motion is well known or dominant.

A more interesting situation arises in experimental
systems that have a well-established deterministic dy-
namics, but where some external parameter is allowed
to fluctuate in a well-controlled way. Examples of these
cases, some mentioned in Sec. I.A, are liquid crystals
under fluctuating electromagnetic fields or photosensi-
tive chemical reactions, including the Belouzov-
Zhabotinsky and CDIMA reactions. In the general
framework of Eq. �10�, this situation is modeled by let-

ting the control parameter � fluctuate around a certain
mean value,

�→ � + ��x,t� . �18�

This leads to a SPDE of the generic form given by Eq.
�11�.

3. Additive versus multiplicative noise

From the previous analysis, one could conclude erro-
neously that internal noise is always additive and that
external noise is multiplicative. This is frequently the
case but with remarkable exceptions. In some particular
situations, one can have multiplicative internal noise
with a steady Boltzmann distribution �Ramírez-Piscina
et al., 1993�, or additive external noise, such as in the
CDIMA reaction under the influence of a fluctuating
illumination 
see Eq. �5�� �Sanz-Anchelergues et al.,
2001�.

4. White versus colored noise

So far we have assumed, sometimes implicitly, that the
noise terms were Gaussian and white. This is a very rea-
sonable assumption for internal noise, which represents
many irrelevant degrees of freedom evolving in very
short temporal and spatial scales. Nevertheless, in real-

istic experiments in which noise is introduced through
some external device, one has to take into account the
spatiotemporal structure of the fluctuations. One can
then prescribe that noise is still Gaussian but with a cor-
relation given, in its one-dimensional version, by

��x,t���x�,t��� = �0
2C� �x − x��

	
,
�t − t��

�
	 , �19�

where �0
2 measures the intensity of the fluctuations and

C�x , t� is the correlation function, with 	 denoting the

noise correlation length and � its correlation time. A
Gaussian white noise, such as that given by Eq. �16�, is

obtained in the limit 	→0 and �→0. This approxima-
tion simplifies the analytical calculations and is justified

if the parameters 	 and � are much smaller than any
other temporal and spatial scales in the system. Two
other interesting limits are worthy of comment. If we

take the limit �→�, we have a frozen noise ��x�, also

known as spatial disorder. Instead, taking the limit 	

→�, we account for global fluctuations ��t�. These last
two cases are not easily handled when trying to get ana-

lytical results in d-dimensional problems and will be dis-
cussed only occasionally in this review.

D. Constructive effects of noise in pure temporal dynamical

systems

Historically, the first scenarios in which the construc-
tive role of fluctuations was reported were related to
purely temporal dynamical systems modeled by the ge-
neric equation

dq

dt
= f�q� + g�q���t� , �20�

where q�t� denotes the relevant variable and ��t� repre-
sents a Gaussian white noise, with temporal correlation,

��t���t��� = 2�2��t − t�� . �21�

The probability distribution P�q , t� obeys a Fokker-
Planck equation, written in the Stratonovich interpreta-
tion �see Sec. II.A.1� as

�P

�t
= −

�

�q
f�q�P + �2

�

�q
g�q�

�

�q
g�q�P , �22�

which has a steady distribution with natural boundaries,

Pst�q� =
N

g�q�
exp��q f�q��

�2g2�q��
dq�� . �23�

Using this simple formulation, it was found that noise
can have ordering effects, which will now be recalled
using several representative phenomena.

1. Noise-induced transitions

In the 1980s, noise was found to induce transitions in
nonlinear systems by generating new maxima in the
probability distribution function �Horsthemke and Lefe-
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ver, 1984�. From the solution �23� one can obtain in a
straightforward way the equation satisfied by the ex-

trema of Pst,

f�q� − �2g��q�g�q� = 0. �24�

Equation �24� shows that in the presence of multiplica-

tive noise 
i.e., provided that g�q� is not constant� new
extrema may arise that are different from the determin-

istic solutions f�q�=0. The appearance of new extrema,
and/or the disappearance of old ones, at some critical

value of �2 can be interpreted as a noise-induced transi-
tion. In spatially extended systems, noise-induced tran-
sitions between macroscopic phases can arise. This phe-
nomenology will be reviewed in Sec. III.

2. Stochastic resonance

In a second breakthrough, random forcing was seen to
enhance the response of bistable systems to weak peri-
odic driving, a popular phenomenon that came to be
known as stochastic resonance �SR� �Wiesenfeld and
Moss, 1995�. The situation was later extended to other
types of driving signals �not only periodic� and nonlinear
systems �not only bistable�, as discussed by Gammaitoni
et al. �1998� and Anishchenko et al. �1999�. The simplest
model for SR is

dq

dt
= q − q3 + A0 cos��t + �� + ��t� , �25�

which exhibits bistability between the states qm= ±1, in

the absence of external signal �A0=0�. One can check
numerically, and prove analytically, that the system is
entrained to the periodic perturbation even for small
amplitudes, provided the intensity of the noise is large
enough. In this sense, noise is able to amplify the small

amplitude A0 of the forcing to produce a large periodic

response of amplitude qm�A0. Different quantities
have been proposed to quantify this phenomenon, the
most extended of which relies on the calculation of the
signal-to-noise ratio at the input frequency from the
power spectral density of the output signal. This observ-
able exhibits a maximum for intermediate values of the
noise intensity, indicating an optimal response induced
by noise. The influence of spatial coupling on this behav-
ior will be reviewed in Secs. V and VI.

3. Coherence resonance or stochastic coherence

An external driving signal is in fact not necessary to
organize a temporally coherent output in a stochastic
nonlinear system, provided the system has itself an in-
trinsic time scale. This is the case of noisy precursors
near nonlinear instabilities of periodic orbits �Wiesen-
feld, 1985; Neiman et al., 1997�. Probably the simplest
example is that provided by the dynamics of a single
variable in a tilted periodic potential �Sigeti and
Horsthemke, 1989�. A two-variable systems-based de-
scription of this phenomenon was proposed quite a long
time ago �Gang et al., 1993� and particularly in relation
to activator-inhibitor models operating in excitable re-

gimes but close to a Hopf bifurcation �Pikovsky and
Kurths, 1997�. In this case, the system exhibits for some
intermediate values of the noise intensity a quasioscilla-
tory behavior, i.e., there is a noticeable degree of coher-
ence of the output signal without any input signal. If no
noise is present, the system displays a constant steady
state. This noise-induced coherence has been called au-
tonomous or internal stochastic resonance, or, popularly,
coherence resonance, although we believe that the term
stochastic coherence is more appropriate and use it
throughout this review. The standard scheme is the
FitzHugh-Nagumo model, which takes the form �Pik-
ovsky and Kurths, 1997�

dx

dt
= x −

x3

3
− y ,

�
dy

dt
= x + a + ��t� . �26�

For small values of � and a slightly larger than unity, the

variable x exhibits spikes at certain random times whose
statistical characteristics depend on the noise intensity,
exhibiting stochastic coherence.

A measure of the degree of coherence between the

pulses is the coherence parameter R,

R =
��ti

2�

ti�
, �27�

where ti denotes the interspike interval preceding pulse i

and �ti
2� stands for the variance of this random process.

This parameter gives an idea of the coherence or peri-
odicity of the pulses. What one observes is that for a
finite value of the noise intensity this parameter has a
minimum, thus indicating an optimal degree of coher-
ence. The result is that noise unveils a characteristic
time scale hidden in the system. Similar phenomena in
spatially extended systems will be described in Sec. V.

4. Noise-induced transport

A final phenomenon of noise-induced regularity in
pure dynamical systems is the appearance of transport
phenomena due to the presence of fluctuations in sys-
tems far from equilibrium. Here we simply mention two
situations without further discussion. The first case in-
volves the overdamped motion of a particle on a peri-
odic asymmetric �ratchet� and flashing potential under
the action of an additive white noise. In the stationary
regime, the particle exhibits a nonzero average velocity,
a counterintuitive result given the lack of an external
driving force. Several versions of this so-called ratchet
effect exist, involving different conditions for the poten-
tial and the noise that lead to both spatial and temporal
symmetry breaking.

The second case is represented by particles in the
above-mentioned tilted potentials. In the absence of
noise, particles will remain forever trapped in a local
minimum, but when the additive noise is present they
can escape, overcoming the barrier and creating in this
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way a net material flux. A thorough description of both
phenomena can be found in the review by Reimann
�2002�.

II. METHODOLOGICAL APPROACHES

We introduce in this section Langevin and Fokker-
Planck equations for systems with spatial degrees of
freedom, and discuss analytical and numerical ap-
proaches that allow us to extract information from the
highly intractable equations that describe stochastic
nonlinear media.

A. Stochastic partial differential equations and lattice

equations

Stochastic differential, ordinary or partial, equations
can be derived in several ways, ranging from ad hoc pro-
posals to more elaborate methods using, for instance,
master equation expansions. A generic model, repre-
senting most of the situations described in the Introduc-
tion, can be written, in a slightly more compact form
than in Eq. �11�, as

��

�t
= f��,�� + g��,����x,t� , �28�

where ��x , t� is a field or density variable at point x and

time t. The deterministic term f�� ,�� is a function of the

field and its spatial derivatives �=� /�x, and ��x , t� de-
notes a spatiotemporal random process or noise whose
statistical properties need to be specified. Usually this
noise can be assumed to be Gaussianly distributed and,
without loss of generality, to have zero mean. Its spa-
tiotemporal correlation function has the generic form
given by Eq. �19�.

A Gaussian white noise is obtained in the limit 	→0

and �→0, for which the correlation �19� reduces to

��x,t���x�,t��� = 2�2��x − x����t − t�� . �29�

The function g�� ,�� represents the coupling with the
noise, which can be explicitly dependent on the field
�multiplicative noise� or not �additive noise�, and can
also include spatial derivatives.

For practical simulation purposes and mathematical
simplification, one can work in a lattice and take the

continuous limit when necessary. Dividing space into N

cells of size �x, Eq. �28� can be rewritten as

d�i�t�

dt
= fi����� + gij������j�t� , �30�

where indices i and j=1, . . . ,N denote the cell location,3

so that �i�t�=��i�x , t�, and ��� represents the set of �i

variables. Discretization of the noise correlation �19� is
immediate, and in the white noise case Eq. �29� leads to

�i�t��j�t��� = 2
�2

�x
�ij��t − t�� . �31�

These transformations reduce the SPDE �28� to a set of
coupled SODE’s �30�.

The description given above has been restricted for
simplicity to a one-dimensional space, but extension to a

d-dimensional space is straightforward. Examples of the
transformations between continuous and discrete de-
scriptions can found exhaustively throughout this re-
view.

1. Stochastic calculus: Stratonovich and Itô interpretations

Studies on SDEs have established the need of care-
fully interpreting stochastic integrals involving multipli-
cative noise terms white in time �Stratonovich, 1967;
Horsthemke and Lefever, 1984; Gardiner, 1989�. This
problem appears in different forms; here we discuss it in
relation with the derivation of algorithms for numerical
integration. This approach will also be very useful in the
derivation of Fokker-Planck equations.

We begin by performing a formal integration of Eq.
�30� for a generic kind of noise,

�i�t + �t� = �i�t� + �
t

t+�t

fi„���t���…dt�

+ �
t

t+�t

gij„���t���…�j�t��dt�. �32�

A naive expansion at t�= t of the functions fi and gij

would lead to

�i�t + �t� = �i�t� + fi„���t��…�t + gij„���t��…Xj�t�

+ ¯ , �33�

where Xi�t� is a new stochastic process, defined by the
integral

Xj�t� � �
t

t+�t

�j�t��dt�. �34�

This simple algorithm is correct up to first order in �t,
provided the noise has temporal structure �colored
noise�, but it is incorrect if the noise is delta correlated
�white noise� as in Eq. �31�, which is the most common
assumption.

The white-noise hypothesis is founded on a sound
physical argument for noise representing unknown de-
grees of freedom, which usually evolve in temporal and
spatial scales much shorter than those of the more rel-
evant variables of the system. Moreover, the assumption
of a delta correlation in time implies that the corre-
sponding stochastic process is Markovian, which is in-
deed an important simplification from the point of view
of the theory of stochastic processes. The price to pay is
that the stochastic integral appearing in the last term of
Eq. �32� is not uniquely defined. As a consequence, the
algorithm defined by Eq. �33� has to be revised. As a
matter of fact, when the noise is white in time, the sto-
chastic integral defined in Eq. �34� is the definition of the

3Throughout it is assumed that repeated indices are summed
from 1 to N, except where indicated. In some cases, summa-
tions will be written explicitly for the sake of emphasis.
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Wiener increment Xi�t�=�Wi�t�, which is the simplest
known Gaussian process. It has zero mean and its sec-
ond moment is

�Wi�t��Wj�t�� = 2�ij

�2

�x
�t . �35�

The first immediate conclusion is that the integral �34� is

of order �t1/2, and then the algorithm �33� has to be
completed, to account for further contributions of order

�t coming from the noise term.
Actually, other contributions of the noise term depend

on the interpretation of the stochastic integral in Eq.
�32�, which can be defined using the Riemann formula,

�
t

t+�t

gij„���t���…�j�t��dt� = gij„��1 − ����t�

+ ���t + �t��…�Wj�t� , �36�

with 0���1 �Gardiner, 1989; van Kampen, 1992�. Since

the order in �t of this integral is � dependent, one needs

to make a choice of �, known as a stochastic interpreta-
tion.

Using Eq. �33�, we can estimate that to lowest order in

�t1/2,

�k�t + �t� = �k�t� + gkl�Wl�t� + ¯ , �37�

and from this result we find the two lowest contributions
to Eq. �36�,

�
t

t+�t

gij„���t���…�j�t��dt�

= gij„���t��…�Wj�t� + �
�gij

��k

gkl�Wl�t��Wj�t� + ¯ .

�38�

Substituting this expression into Eq. �32� leads to the

correct version of algorithm �33� up to first order in �t,

�i�t + �t� = �i�t� + fi„���t��…�t

+ gij„���t��…Xj�t� + �
�gij

��k

gklXl�t�Xj�t� ,

�39�

which does depend on � and is valid for any stochastic
interpretation. Higher-order algorithms for white noise
and structured noises are presented at the end of this
section.

The most common interpretations are �=0 �Itô inter-

pretation� and �=1/2 �Stratonovich interpretation�. The
first one is commonly used in the mathematical litera-
ture, and is simpler in the sense that the value of the
stochastic integral �36� depends only on the value of the
field at the lower limit of the integration interval. A rig-
orous set of results exist under this interpretation, but
the standard rules of calculus cannot be used in this case.
The Stratonovich interpretation, on the other hand, is
more common in the physical literature, because it has
the correct behavior in the limit of vanishing correlation

time �→0. This is usually the case of experimental
noises, which are naturally correlated in time but whose
correlation time might be very small. Furthermore, the
standard rules of calculus for derivatives and integrals
can be used within this interpretation.

2. The Fokker-Planck equation and statistical moments

We consider here a noise white in time but structured
�i.e., correlated� in space. In a discrete space, the noise
correlation �19� can be written as

�i�t��j�t��� = cij2��t − t�� . �40�

The Fokker-Planck equation obeyed by the probabil-

ity density P���� , t� can be obtained using the Kramers-
Moyal expansion of the Chapman-Kolmogorov equation
�Stratonovich, 1967; Risken, 1984; Gardiner, 1989;
García-Ojalvo and Sancho, 1999�,

�P����,t�

�t
= −

�

��i

Ki�����P +
1

2

�2

��i � �l

Kil�����P

+ ¯ , �41�

where Ki and Kij are the first two differential moments.
The first term on the right-hand side of Eq. �41� is called
the drift term, the second one is referred to as the diffu-
sion term, and the unwritten contributions correspond
to higher-order moments. We can take advantage of the
algorithm defined before, using Eqs. �33�, �39�, and �40�,
to evaluate the first two moments. Defining the incre-

ment ��i=�i�t+�t�−�i�t�, the first moment reads

Ki����� = lim
�t→0

� ��i�

�t
�
��t�→�

= fi����� + 2�
�gij

��l

cjkglk �42�

and the second moment is evaluated as

Kil = lim
�t→0

� ��i��l�

�t
�
��t�→�

= 2gijcjkglk. �43�

Since the process �Wi�t� is Gaussian, all moments be-

yond n�3 are zero, and then we get exactly a Fokker-

Planck equation for P���� , t�, which can be written for
an arbitrary interpretation as

�P

�t
= − �

i

�

��i
�fi + 2��

jkl

�gij

��l

cjkglk�P

+ �
ijkl

�

��i

�

��l

gijcjkglkP . �44�

The Fokker-Planck equation is very difficult to solve
even in simple models. Nevertheless, important and ex-
perimentally observable information can be obtained
from the statistical moments and correlations of the
field. Moreover, quite often, approximate analytical
techniques can be easily implemented for the moments.
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We now show how to derive the dynamical equation
for the first moment of the field. The time derivative of
this quantity can be written as

d

dt
�i�t�� =� �d�j��i

�P

�t
. �45�

Using the Fokker-Planck equation �44� and integrating
by parts,

d

dt
�i�t�� = fi������ + 2��

jkl
�� �gij

��l

	cjkglk� . �46�

This expression will be frequently used throughout this

review. The evolution of higher-order moments �i
n�t��,

or of the correlation function �i�t� �j�t��, can also be
derived following the technique above.

Unless otherwise indicated explicitly, in this review we

work in the Stratonovich interpretation ��=1/2�. More-
over, it is worth emphasizing here that when the noise is
affected by spatial derivative operators, the correct
prescription is to take symmetric expressions of those
derivatives, in order to have a well-defined continuous
limit �García-Ojalvo and Sancho, 1999�.

For time-correlated noise, the technique to obtain
an approximate Fokker-Planck equation relies on an ex-
pansion in the correlation time of the noise �García-
Ojalvo and Sancho, 1999; Santos and Sancho, 2001�.

B. Practical methodology

We now describe a series of practical methods to
evaluate relevant and experimentally accessible infor-
mation from spatially extended noisy systems. Explicit
examples of the application of these different methods
will be given in the rest of the review.

1. Mean-field approximation

What in this context is known as the mean-field ap-
proximation �MFA�, to be defined in what follows, con-
stitutes a standard and easy to implement technique that
provides reliable qualitative results for spatially ex-
tended systems. It is very useful to predict phase transi-
tions, both in equilibrium and out of equilibrium. It is
more powerful than simple stability analysis, and can be
employed for systems with constraints, such as con-
served order parameter models. Nevertheless, it does
not give accurate quantitative information; for example,
it does not predict correctly either the position of the
transition points or the true values of the critical expo-
nents.

The MFA can be applied to SPDEs or to Fokker-
Planck equations, both approaches leading to the same
results. Here we present the fundamental steps in the
use of this approximation as applies to a SPDE.

As a matter of choice, consider a generic reaction-
diffusion model with additive white noise,

��

�t
= f��� + D�2� + ��r,t� . �47�

Multiplicative noise can be considered as well and sev-
eral models will be given later. Equation �47� can be
written in a lattice if the Laplacian operator is dis-
cretized as

�2��x,t� = �
j

�ij
2�j�t� �

1

�x2 �
j�nn�i�

��j − �i� , �48�

where nn�i� denotes the set of 2d nearest neighbors of

cell i.
The MFA is implemented via the following assump-

tion:

�
j

�ij
2�j�t� =

2d

�x2 ��� − �i� . �49�

In that way, the MFA looks for uniform solutions of

the field, �= ��, by neglecting its local fluctuations,

�j�nn�i���j− ����0.

In a d-dimensional lattice of cell size �x, the model
given by Eq. �47� under assumption �49� reduces to

d�i�t�

dt
= f��i� +

2dD

�x2 ��� − �i� + �i�t� . �50�

The SPDE has been thus reduced to a set of uncoupled
SDEs.

The MF equation �50� becomes exact for situations in
which the field at each site interacts with all other sites

�i.e., global coupling� in the thermodynamic limit, N

→�. Therefore, the MFA applied to a system with N
variables and with nearest-neighbor coupling amounts
to studying an infinite system with global coupling.

The next step is evaluation of the quantity ��, which
is interpreted as the first statistical moment of the field,
and accordingly it is defined as

�� = F���� �� d��P��,��,t� , �51�

where P�� , �� , t� is the probability distribution, which
obeys the Fokker-Planck equation associated with Eq.
�50�,

�P

�t
=

�

��
�− f��� −

2dD

�x2 ��� − �� +
�2

�xd

�

��
�P . �52�

Assuming no probability flux at the boundaries, the
steady-state solution of this equation reads

Pst��,��� = N exp�� d��
f���� + �2dD/�x2���� − ���

�2/�xd � ,

�53�

where N is a normalization constant.
Equation �51� is a self-consistency equation, since the

probability distribution depends itself on the unknown

average ��. Hence, solving the MFA is reduced to find-
ing the set of solutions of this self-consistency equation.

For those systems with �� as its order parameter, the
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MFA can make predictions on the possible existence of

a phase transition. In fact, one can calculate �� as a
function of a control parameter. A phase transition oc-

curs, for instance, when the system leaves the state ��
=0, corresponding to a disordered phase, to reach a state

���0, representing an ordered phase.
Although Eq. �51� has to be integrated numerically,

some analytical results can be easily obtained. For ex-

ample, in systems with symmetry �→−�, the function

F���� satisfies F����=−F�−��� and thus ��=0 is al-
ways a solution of Eq. �51�. By studying the Taylor ex-

pansion of F���� at ��→0,

F���� = a1�� + a3��3 + O���5� , �54�

it is possible to know if the system presents a phase
transition and if this transition is continuous or discon-
tinuous. The following three cases are worthwhile to ex-
plore.

• If a1�1 and a3�0 in all parameter space, then

F����� �� and the only solution of the self-

consistency equation is ��=0. Thus the system does
not present a phase transition.

• If a1�1 but a3�0 in some range of parameter space,

F����= �� has two nonzero solutions �and their
symmetric values�. This behavior corresponds to a
discontinuous, or first-order, phase transition, for
which there are three possible states �and the sym-
metric ones�, but only two of them are stable.

• Finally, if a1�1 in some range of parameter space,

F����= �� has only one nonzero solution �and its
symmetric value�. In this case, the system presents a
continuous or second-order phase transition, for

which �� changes continuously with the control pa-
rameter from a null value to a finite nonzero value of
the field.

Figures 11�a� and 11�b� show how to find these solu-
tions graphically. Figure 11�a� corresponds to a continu-
ous phase transition, while Fig. 11�b� depicts a discon-
tinuous one, in which the empty square is the unstable
solution and the black squares are the stable states.

The extension of the MFA presented here to models
with multiplicative noise is straightforward �Van den
Broeck, Parrondo, Armero, and Hernández-Machado,
1994�, but recent improvements to cover more compli-
cated models and situations can be found in Muñoz et al.
�2005�.

The MFA is very useful for predicting the existence of
phase transitions �and usually their type�, but the loca-
tion of the transition points, as noted above, is notori-
ously inaccurate. Several attempts have been made to
improve the quantitative accuracy of the method. We
briefly mention one such attempt, which does not imply
any extra analytical effort and avoids spurious changes
in the transition type �continuous or discontinuous�.

Consider the neighborhood of a given cell i, as shown

in Fig. 12. The average of its 2d nearest neighbors is

assumed to take a value Ai,

1

2d
�

j�nn�i�
�j = Ai, �55�

which, instead of being equal to the mean field �� as
before, is taken to result from an interpolation between

that mean field and the value of the field �i itself
�Ibañes, 2001�,

Ai =
1
2 ��i + ��� . �56�

This assumption is another step further in evaluating the
influence of the neighboring cells. It can be written in a
more standard form �Van den Broeck, Parrondo, and
Toral, 1994�,

FIG. 11. Solutions �indicated by squares� of the self-

consistency equation �51�. The continuous and dot-dashed

lines correspond to the curve F�x�−x, where F�x�
=�d��Pst�� ,x�, for different values of a control parameter at

both sides of a phase-transition point. Solutions of the self-

consistency equation are found for F�x�−x=0. �a� Continuous

phase transition. For the dot-dashed curve, the unique solution

is x=0 �stable�, whereas the continuous curve intersects twice

the zero line at x=0 �unstable solution� and x�0 �stable solu-

tion�. �b� Discontinuous phase transition with an unstable so-

lution �empty square� and two stable ones �black squares�.
From Ibañes, 2001.
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Ai = �� + c��i − ��� , �57�

where the standard MFA is represented by c=0,

whereas c=1/2 corresponds to the interpolation �56�.
Using definition �55� together with assumption �57� in

expression �48� shows that the discrete version of Eq.
�47� can be written as in Eq. �50�, but with an effective
diffusion coefficient given by

Deff = D�1 − c� . �58�

In this way, the self-consistency relation �51� is still valid
in this generalized approach, provided the effective dif-

fusion coefficient is used. In the simple case c=1/2 the
intensity of the spatial coupling D is reduced by a factor

1/2, which indicates that the standard MFA overesti-
mates the effect of D.

More elaborate approaches could be equally de-
signed, taking into account, for instance, the dependence

of c on the noise intensities, and probably on the statis-

tical moments. Nevertheless, the simple assumption c

=1/2 gives a noticeable quantitative improvement. As
an example, consider the Ginzburg-Landau model with
additive noise, Eq. �3�. This system exhibits a phase tran-
sition �see Sec. I.B.2� that can be studied using the stan-
dard mean-field approximation, yielding the result plot-
ted as a dashed line in Fig. 13. According to the standard
MFA, as the noise intensity increases the system under-

goes a phase transition from order to disorder at �c
2

�0.76, which is twice the best known numerical value.
This result is improved if mean field is applied with

Deff=D /2 �solid line in Fig. 13�. The critical point pre-

dicted by this improved mean-field analysis is �c
2�0.41,

much closer to the real value than the estimation ob-
tained from the standard mean-field approximation. It
should be noted that the evaluation of critical exponents
cannot be improved with this approach, which still leads
to classical mean-field values of these quantities.

Other approaches aimed at improving the MFA have
been developed based on Eq. �57�. Van den Broeck, Par-
rondo, and Toral �1994�, for instance, introduced a cor-

relation function approach �CFA� in which c is related to

the spatial correlation of the field at site i with its nearest
neighbors, which has to be evaluated self-consistently as
well. The location of critical points is also slightly im-
proved, but at the cost of much more involved math-
ematical calculations 
see Van den Broeck et al. �1997�
for details�.

2. Linear and nonlinear short-time analysis

The location of transitions between a disordered


��x , t�=0� and an ordered 
��x , t��0� phase can be es-
tablished by analyzing the stability of the former. When
necessary, the spatial character of the perturbations can
be taken into account by working in Fourier space
�García-Ojalvo et al., 1993�.

Consider the following SPDE with both additive and
multiplicative noises:

��

�t
= f��� + g�����x,t� + D�2� + ��x,t� . �59�

The internal additive noise ��x , t� is Gaussian and white
in both space and time, with zero mean and correlations
given by Eq. �29�. The external multiplicative noise

��x , t� is Gaussian, with zero mean and correlation,

��x,t���x�,t��� = 2c��x − x�����t − t�� . �60�

We want to know the initial evolution of the mean

value ��t��, starting from a homogeneous initial state

��0��=0. Neglecting for the moment all spatial fluctua-
tions or inhomogeneities and taking statistical averages
over Eq. �59�, one finds

d��

dt
= f���� + c�0�g���g����� , �61�

where we used Eq. �46� or Novikov’s theorem �Novikov,
1965�.

FIG. 12. �Color online� Representation of a two-dimensional

square lattice, where each site �the black circle, for example�
interacts with its four nearest-neighbor sites �the black

squares�. The MFA can be improved by replacing the field at

the black squares by a new field Aj that interpolates between

�i and ��. From Ibañes, 2001.

FIG. 13. Order parameter behavior for fixed D=2 and increas-

ing �2, for the Ginzburg-Landau model with additive noise Eq.

�3� �d=2�. The continuous line corresponds to the improved

mean-field approach, and the dashed line to the standard one.

A star denotes the critical point obtained from numerical

simulations of Toral and Chakrabarti �1990�. Parameter values:

a=b=1/2. Adapted from Ibañes, 2001.
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In the very early stages of the initial evolution, one

can discard fluctuations around the mean value ��t��, so

that f����� f���� for any function f. Then Eq. �61� can
be approximated by

d��

dt
� f���� + c�0�g����g�����

� feff���� � − Ueff� ���� . �62�

Given this result, a simple analysis, either linear or

nonlinear, of the effective force feff or the effective po-

tential Ueff reveals the stability characteristics of the ini-

tial homogeneous state. In particular, feff�0�=0 and the

sign of Ueff� �0�, or of higher-order derivatives, determines
the kind of transition that takes place. Beyond the tran-
sition, once the system starts to evolve from the �un-
stable� disordered initial state, the diffusive coupling be-
tween neighbors is able to trap the system in a new
steady state, homogeneous or not �Van den Broeck, Par-
rondo, and Toral, 1994�. We come back to these argu-
ments in Sec. III.

3. Noise-effective models

In the previous paragraphs, we have seen that the
main effects of multiplicative noise can be incorporated
as a modification of the deterministic force. The ap-
proach was limited to studying the stability of an initial
homogeneous state during the very early stages of time
evolution. In what follows, we present an extension of
this idea, based on a nonstandard small noise expansion,
that is valid for the whole dynamics of the system.

Consider a nonlinear reaction-diffusion equation for

the field ��x , t�,

��

�t
= f��� + �1/2g�����x,t� + D

�2�

�x2
, �63�

where � is an explicit measure of the strength of the

noise ��x , t�, which is assumed Gaussian of zero mean
and correlation given by Eq. �60�. Our goal here is to
separate the two main effects of noise, namely, a system-
atic part and a diffusive wandering. The subtlety of the
problem lies in the fact that the noise modifies simulta-
neously two aspects of the system’s dynamics which are
different in nature �systematic bias and diffusive propa-
gation�, and which cannot be naively associated with the
usual separation between deterministic and stochastic
forces. The key idea of our approach is that the separa-
tion of these effects is related to an actual separation of
time scales within the system dynamics. On the one
hand, there are fast fluctuations that produce an average
motion at relatively small time scales; a temporal coarse
graining would thus eliminate these fast fluctuations,
leading to an averaged motion different from the deter-
ministic one, and therefore having a different dynamics.
On the other hand, residual slow fluctuations are re-
sponsible for a diffusive motion which will not be con-
sidered here 
see Rocco et al. �2002� for an analytical
study�.

To be more explicit we illustrate this approach in re-
lation with Eq. �63�. A crucial feature of multiplicative
noise in the Stratonovich interpretation is that the mean
value of the noise term in the Langevin equation is non-
zero, even though the noise itself has zero mean. This
produces the so-called spurious drift. As discussed in the
previous section, this mean value can be evaluated from
Eq. �46�, or using Novikov’s theorem for Gaussian noises
�Novikov, 1965�, and gives

�1/2g�����x,t�� = �c�0�g����g���� . �64�

According to this result, Eq. �63� can be rewritten in a
more useful form,

��

�t
= h��� + �1/2R��,x,t� + D

�2�

�x2
, �65�

in terms of a new reaction term,

h��� � f��� + �c�0�g����g��� , �66�

and a new stochastic force defined as

R��,x,t� � g�����x,t� − �1/2c�0�g����g��� , �67�

which has zero mean and correlation,

R��,x,t�R��,x�,t��� = ��x,t���x,t���x�,t����x�,t���

+ O��1/2� . �68�

With this rearrangement, we have separated the system-
atic contribution of the multiplicative noise from a re-
sidual stochastic one. This separation is useful because
of the white character of the noise, which gives a simple
form for the average of the multiplicative noise term
�64�, with no explicit time dependence. Since the new

noise term R has no systematic contribution left, we can
proceed further discarding it, and the problem reduces
to the deterministic effective model,

��

�t
= f��� + �c�0�g����g��� + D

�2�

�x2
. �69�

In some cases, the resulting equation has the same form
as the original deterministic one, but with different ef-
fective parameters in the reaction terms.

We will invoke this approach quite often in this review
and singularly in Sec. VI.

4. Central-moment approximation

The short-time analysis described above gives reliable
information about the position and type of a given tran-
sition point, but it fails to provide a global picture of the
phase diagram of the system, as the mean-field approxi-
mation does. In particular, this analysis is not able to
determine the existence of reentrant transitions. As
such, a combination of short-time analysis and mean-
field approximation can be developed to determine the

time evolution of the central moments �n= �n�, where

���− ��. This approach, which incorporates most of
the key points of the methods described previously, al-
lows a description of the phase-transition scenario in
terms of a dynamical-system picture �Kawai et al., 2004�.
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This method, although based in the mean-field approxi-
mation, does not require knowledge of the stationary

probability distribution Pst�� , ���, and can be extended
to time-dependent problems and pattern-forming sys-
tems �Dutta et al., 2005�.

For illustration purposes, consider again the reaction-
diffusion model with additive noise �47�. The starting
point of the central-moment analysis is Eq. �50�, corre-
sponding to the MFA of the model. From this self-
consistent Langevin equation one can derive the evolu-

tion of the first moment or order parameter ��,

�̇� = f���� . �70�

This equation does not incorporate explicitly the diffu-
sion parameter D. Thus we consider also the equation
satisfied by the second central moment,

�̇2 = 2
�f���� − ��f�����

+
4dD

�x2 ���2 − �2�� +
2�2

�xd
. �71�

A Taylor series expansion of the nonlinear function f���
appearing in Eqs. �70� and �71� introduces higher-order
moments, whose dynamical equations should in turn be
considered. This leads to an infinite set of equations to
which a closure should be applied to render the problem
tractable. In order to do that, the higher-order central
moments can be approximated assuming a Gaussian-like
stationary distribution. This implies that odd central mo-
ments are zero and the first even central moments are

�4 = 3�2
2, �6 = 15�2

3. �72�

Using this decoupling scheme, the two equations �70�
and �71� can be solved in the steady state, and the be-

havior of the order parameter ��st as a function of con-

trol parameters such as D or the noise intensity �2 can
be analyzed using standard techniques from dynamical-
system theory �Kawai et al., 2004�.

This method can be easily generalized to multiplica-
tive noise in an arbitrary stochastic interpretation, or to
the presence of two or more variables �Kawai et al.,
2004�.

5. Numerical algorithms for white and structured noises

Numerical integration of SPDEs is a necessary
complement to the approximate analytical techniques
described in the preceding subsections. In this respect,
and even though first-order, Euler-type algorithms could
be a reasonable choice in most cases, singularly with
white noise, the systematic errors introduced by the de-
terministic part make it advisable to consider higher-
order algorithms.

The simplest of these schemes, of second order in the
deterministic part but of first order in the stochastic one,
is the so-called Heun’s predictor-corrector algorithm
�Gard, 1987; Toral, 1995; García-Ojalvo and Sancho,
1999�. It was originally derived for the Stratonovich in-
terpretation, but we prefer to present here an extension

valid for any stochastic interpretation. The predictor

step is simply the first-order algorithm �39� for �=0,

�̃i�t + �t� = �i�t� + fi„���t��…�t + gij„���t��…Xj�t� , �73�

and the corrector step incorporates the stochastic inter-
pretation,

�i�t + �t� = �i�t� +
fi„���t��… + fi„��̃�t��…

2
�t

+ gij
�1 − �����t�� + ���̃�t���Xj�t� . �74�

In both Eqs. �73� and �74�, the stochastic process Xj�t�

see Eq. �34�� is discretized as

Xi�t� =�2�2�t

�xd
�i, �75�

where �i represent Gaussianly distributed, independent
random numbers of zero mean and unit standard devia-
tion. Higher-order algorithms can also be developed fol-
lowing classical approaches �Rao et al., 1974� or more
recent ones �Mannella, 2004�.

Finally, it is worth remarking that the algorithm given
above is also valid for white noises in time and arbitrary
correlation in space, provided the latter is implemented

in the numerical generation of the process Xj�t� �see be-
low�.

Colored �nonwhite� noises in time need a more care-
ful analysis, and incorporate a different type of numeri-
cal difficulties. The advantage in this case, however, is
that stochastic interpretation problems do not arise, and
generic Runge-Kutta algorithms can in principle be
used. For example, a simple predictor-corrector algo-
rithm for noise colored in time uses the predictor step
discussed above 
see Eq. �73�� but with a different cor-
rector,

�i�t + �t� = �i�t� +
fi„���t��… + fi„��̃�t��…

2
�t

+
gij„���t��… + gij„��̃�t��…

2
Xj�t� , �76�

where now Xj�t� stands for a colored stochastic process
which has to be generated according to the prescribed
properties of the noise. This is the point that we discuss
in what follows.

Assume that the Gaussian noise we want to generate
has zero mean and a correlation given by

��x,t���x�,t��� = c��x − x������t − t��� , �77�

where the spatial correlation function c�r� will be as-
sumed to be, for instance,

c�r� =
�0

2

��2��d	d
e−r2/2	2

. �78�

Other possible spatial correlation functions can be easily
implemented. For the temporal part one can take the
well-known Ornstein-Uhlenbeck form,
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��s� =
1

�
e−s/�. �79�

This type of noise, easily implemented and incorpo-
rating relevant ingredients for practical purposes, has

three independent parameters: the intensity �0
2, the cor-

relation length 	, and the correlation time �, and two

correlation functionals c�r� and ��t�. More complicated
prescriptions can be proposed to describe highly struc-
tured spatiotemporal noises, as, for instance, to emulate
turbulent flows �Martí et al., 1997� within the approach
known as synthetic turbulence.

The method is particularly well adapted to noises with
simple spatial correlation in Fourier space. For the cor-
relation function �78� one obtains

c�k� = �
R

dxdc�r�eikr = �0
2e−	2k2/2 �80�

so that the complete noise correlation �77� in Fourier
space is

��k,t���k�,t��� = �0
2e−	2k2/2�d�k + k��

e−�t−t��/�

�
. �81�

This noise obeys the dynamical equation

�
d�

dt
= − � + ��k,t� , �82�

where ��k , t� is a Gaussian noise white in time, and
whose spatial properties have to be chosen adequately
according to Eq. �80�.

Equation �82� is a linear equation, and an exact solu-

tion can be obtained for any integration step �t �García-
Ojalvo and Sancho, 1999�,

��k,t + �t� = ��k,t�e−�t/� +�1 − e−2�t/�

�
��k,t� , �83�

where the random process ��k , t� is constructed as

��k,t� = c�k�1/2��k,t� , �84�

where ��k , t� is a Gaussian white noise in Fourier space
with correlation,

��k,t���k�,t��� = 2��t − t���d�k + k�� . �85�

This anticorrelated process can be generated using stan-
dard procedures �García-Ojalvo et al., 1992�.

If we choose the initial values of ��k ,0� to be Gauss-
ian distributed with correlation,

��k,0���k�,0�� =
�0

2

�
e−	2k2/2�d�k + k�� , �86�

then the noise ��k , t� is stationary, isotropic, and Gauss-
ian with correlation �81�.

The numerical algorithm is then implemented as fol-

lows. At each integration time step the noise ��k , t� is

generated and Fourier antitransformed, to get ��x , t� or

�i�t� in the lattice. Then the quantity Xi�t�, needed in
algorithm �76�, is obtained through

Xi�t� = �
t

t+�t

dt��i�t�� = �i�t��t . �87�

Other types of noise can be generated following these
lines, or by more specific methods �Makse et al., 1996;
García-Ojalvo and Sancho, 1999; Romero and Sancho,
1999; Santos and Sancho, 2001�.

III. NONEQUILIBRIUM PHASE TRANSITIONS

As commented on in the Introduction, see Sec. I.B.2,
phase transitions are one of the most important ex-
amples of cooperative behavior in macroscopic systems.
Equilibrium phase transitions are well described with
the methodologies of thermodynamics and statistical
mechanics. From these disciplines, it is known that an
increase in temperature �or internal fluctuations� pro-
duces, in the majority of cases, a disordering effect that
manifests itself in the form of a phase transition, con-
tinuous or discontinuous, from an ordered macroscopic
phase to a less ordered one. This section focuses in the
opposite situation, when an increase in the intensity of
an external noise, mainly multiplicative, can produce
nonequilibrium phase transitions, of both first and sec-
ond order, from a macroscopic disordered phase to a
more ordered one.

We also discuss in what follows the dynamics associ-
ated with this type of transition. Specifically, we examine
two different situations that appear when the system
evolves from an initial unstable phase toward a final,
more stable phase. The first scenario consists in the de-
velopment of fronts of the stable phase as it invades the
unstable one. In the second case, we study the interme-
diate time regime with two equally stable phases com-
peting with each other. This phenomenon presents uni-
versal scaling characteristics. Finally, we discuss the role
of spatiotemporally structured noise versus white noise.

A. Continuous phase transitions

There are many examples in the literature showing
that noise can induce nonequilibrium second-order, or
continuous, phase transitions. Two different physical
mechanisms can be responsible for these transitions: �i� a
short-time instability �linear or nonlinear� produced by a
multiplicative noise, which leads to a phase that is stabi-
lized by the spatial coupling �Becker and Kramer, 1994;
Van den Broeck, Parrondo, and Toral, 1994�; and �ii� an
entropic mechanism appearing at long times, which is
reflected in the occurrence of qualitative changes in the
steady-state probability distribution of the system
�Ibañes et al., 2001�.

In the first mechanism, spatial coupling plays an es-
sential role �i.e., the phase transition would not exist
without it�; the second mechanism is an extension to
macroscopic phases of noise-induced transitions known
to exist in nonspatial dynamical systems �Horsthemke
and Lefever, 1984�. We also review here other situations,
such as those where the additive noise is the driving
force beneath the ordering phase transition �provided a
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multiplicative noise is present� �Landa et al., 1998�, and
the case in which a purely multiplicative noise produces
an absorbing transition with a specific nonequilibrium
universality class �Grinstein et al., 1996�.

Noise-induced phase transitions can be characterized
analogously to the equilibrium case. Given a field vari-

able ��x , t�, one can define a macroscopic order param-
eter as

M�t� = �
V

��x,t�dV . �88�

An intensive version of this order parameter and a gen-
eralized susceptibility are defined accordingly,

m =
M

V
, � =

M2� − M�2

N
, �89�

where the brackets denote temporal averages computed

in the stationary state. V is the d-volume of the system
and N is a parameter representing the intensity of the

external noise �as kBT does in equilibrium�, whose exact
value depends on the model under study. The singular

behavior of m and � as a function of a given control
parameter indicates the occurrence of a phase transition,
which can be characterized, analogously to equilibrium,

by nonequilibrium critical exponents � and �,

m � �� − �c�
�, �� �� − �c�

−�, �90�

where � is the control parameter of the transition and �c

is its critical value.

1. Short-time instabilities

We consider the Ginzburg-Landau model �3� with

b=1 and an extra multiplicative noise term,

��

�t
= 
− a + ��x,t��� − �3 + D�2� + ��x,t� . �91�

The additive noise ��x , t� is assumed to be white in space
and time, whereas the multiplicative external noise is
assumed to be only white in time. Respective correla-

tions are given by the d-dimensional versions of Eqs.
�29� and �60�. This model presents a homogeneous

steady state ��st=0, which is stable in the absence of

multiplicative noise, provided a�0.

The short-time analysis Eqs. �61� and �62� applied to
Eq. �91� gives

d��

dt
� 
− a + c�0���� − ��3. �92�

This equation shows that the homogeneous state ��st

=0 becomes linearly unstable when the noise intensity

increases beyond c�0�=a. We note that in the absence of
spatial coupling �and ignoring the additive noise for the
moment�, the stationary probability distribution, as ob-
tained from the corresponding version of the Fokker-
Planck equation �23�, reads

Pst��� = �−1−a/c�0�exp�−
�2

2c�0�
	 . �93�

This probability distribution has its maximum at �max

=0 and is monotonically decreasing for any noise inten-

sity c�0�. Therefore, in the absence of spatial coupling,
the noise-induced short-time instability established by
Eq. �92� is not maintained for long times. The situation
changes in the presence of spatial coupling, since inter-
action between neighbors is able to keep the system for
long times in the noise-induced “minimum” of the short-
time potential 
see Eq. �62�� corresponding to Eq. �92�,
giving rise to a phase transition �Van den Broeck, Par-
rondo, and Toral, 1994�. This ordering transition is
shown in Fig. 14 �top plot�, where it can be identified by
the small left peak in the susceptibility, which corre-
sponds to a divergence in the thermodynamic limit.

As shown in the bottom plot of Fig. 14, mean-field
calculations indicate that there is also a second transi-
tion from order back to disorder for higher noise inten-
sities �García-Ojalvo et al., 1996�. Such reentrant transi-

tion is also found numerically in d=2, as shown in the
top plot of Fig. 14. A finite-size scaling analysis of both
phase transitions shows that the critical exponents are
those of the equilibrium Ising universality class �García-
Ojalvo and Sancho, 1999�.

In summary, we have seen so far that noise-induced
phase transitions arise when external noise produces a
short-time instability, taking the system to a noise-
induced short-lived state that is then stabilized by the
spatial coupling. Thus the diffusion parameter D is to-
tally necessary. This mechanism was first reported in a
different model, where the reaction term and multiplica-
tive function �59� are given by

f��� = − ��1 + �2�2, g��� = 1 + �2, � = 0. �94�

This system also exhibits an ordering and a reentrant
transition �Van den Broeck, Parrondo, and Toral, 1994�
and the same equilibrium universality class �Van den
Broeck et al., 1997�.

In the previous two models �91� and �94�, the short-
time instability leading to the phase transition was
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linear. But there are also phase transitions associated
with a nonlinear instability. Consider, for instance, the
following model �Carrillo et al., 2002�:

��

�t
= − �1 + �2��3 + �2��x,t� + D�2� + ��x,t� . �95�

The short-time analysis leads to an effective force, as

defined in Eq. �62�, given by feff= 
2c�0�−1��3−�5, which

exhibits a transition point at a critical value c�0�=0.5,
corresponding to a nonlinear instability of the homoge-
neous zero state. Again for larger noise intensities, a

second or reentrant transition arises. Mean-field calcula-
tions and numerical simulations confirm this scenario,
which is very similar to that of the former Ginzburg-
Landau model.

2. Entropic mechanism and long-time analysis

Continuous phase transitions can be induced by a dif-
ferent mechanism, which relies on the long-term behav-
ior of the local dynamics. This mechanism can be ex-
plained from the �homogeneous� stationary probability
distribution of the system, and does not involve any
short-time instability �Ibañes et al., 2001�. The resulting
so-called entropy-driven phase transition �EDPT� is the
natural extension of the well-known noise-induced tran-
sitions in nonspatial dynamical systems �Horsthemke
and Lefever, 1984�. EDPTs share some characteristics
with the so-called lower critical solution temperature
�LCST� transitions, which arise in certain polymer
blends, and whose phenomenology goes in the counter-
intuitive direction followed in this review: by increasing
the temperature the polymer system evolves from a dis-
ordered toward an ordered state �Snyder et al., 1983�.

A simple explanation of the EDPT mechanism is that
noise is much more intense in the homogeneous or dis-

ordered phase �=0 than in an ordered region with �
�0. Then the noise drives the system far from �=0 and

the spatial coupling fixes it at ��0. This fact can be
controlled by the noise coupling function, as shown in
what follows. A generic model exhibiting an EDPT has
the following structure:

��

�t
= − ����

�F

��
+ ����1/2��x,t� , �96�

which describes a relaxational dynamics in a free-energy

functional F����� with a field-dependent kinetic coeffi-

cient ����. A comprehensive study of the different pos-
sibilities and phenomenologies of this generic model has
been presented by Buceta and Lindenberg �2004�. These
types of kinetic coefficients appear in coarse-grained
field equations �Langer, 1971; Ramírez-Piscina et al.,
1993� and, in general, they are large in the disordered
phase and small in the ordered one �Kitahara and
Imada, 1978; Martin, 1990�. Accordingly, we consider a
kinetic coefficient of the form

���� =
1

1 + c�2 . �97�

We assume a free energy of the form

F =� ddx�V��� +
D

4d
����2� , �98�

where V��� is a local potential chosen to be monostable:

V���=a�2 /2. Under these conditions, in the absence of

noise the system relaxes to the homogeneous state �
=0. Assuming that ��x , t� is a white noise in space and

time of intensity �̃2��2 /�xd, the Fokker-Planck equa-
tion exhibits an exact steady probability distribution

with a Boltzmann-like form P�����st�e−Feff/�
2
, where Feff

FIG. 14. Noise-induced second-order phase transition. Top:

Order parameter m and susceptibility � versus multiplicative

noise intensity 
denoted here as �m
2 , corresponding to c�0� in

the text� in model �91�, for different lattice sizes �d=2�. Starred

symbols in the upper figure are an extrapolation to infinite

size, and vertical lines are estimates of the two critical points.

Bottom: Mean-field calculation showing the existence of two

consecutive phase transitions for increasing noise intensity �an

example is given by the horizontal dashed line�. The solid line

denotes the transition boundary, as obtained from the self-

consistency equation �51�, between regions with m=0 �disor-

der� and m�0 �order�. Parameter values: a= –0.75 and �2

=1.0 for both plots and D=3.0 for the top plot. Note how the

mean-field analysis in the bottom plot overestimates the size of

the ordered region, as obtained from numerical results of the

full model, shown in the top plot. Adapted from García-Ojalvo

et al., 1996.
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is an effective free energy with a new local interaction
term given by

Veff =
a

2
�2 + �1 − ���̃2ln ����1/2. �99�

This result is valid for any stochastic interpretation, de-

fined by the parameter �, as described in Eq. �36�.
A short-time stability analysis of this model gives

���

�t
= − �a + 2��̃2��� +

D

2d
�2�� , �100�

which does not present an instability for any value of �.
On the other hand, an analysis of the maxima of the
local potential �99� predicts a continuous ordering phase

transition arising near �̃2�a /2�1−��c, with no corre-
sponding reentrant transition. This is confirmed by nu-

merical simulations and mean-field calculations in d=2,
as shown in Fig. 15. Note that the phase transition oc-
curs not only in the Stratonovich interpretation but also
in the Itô interpretation �Carrillo et al., 2003�. This con-
trasts with noise-induced phase transitions due to short-
time instabilities, which typically arise only in the Stra-
tonovich interpretation. Furthermore, a theoretical
analysis and exhaustive numerical simulations indicate

that this model belongs to the d-dimensional Ising uni-
versality class �Ibañes, 2001�.

3. The role of additive noise

Usually, an increase of additive noise has a disorder-
ing effect. However, in the presence of an additional
source of multiplicative noise the opposite effect may be

observed. This situation has been studied by Landa et al.
�1998� with model �94�, with a coupling function of the

form g���=a2+�2. In that case a controls an ordering
phase transition, followed by a reentrant transition back
to disorder. This situation corresponds to a single noise
with both additive and multiplicative contributions.
However, this phenomenology is quite universal: one

can take a=0 and add an independent additive noise,
obtaining the same results. This means that a pure addi-
tive noise is able to induce both ordering and disorder-
ing phase transitions, provided a multiplicative noise of
adequate intensity is present, and the diffusion param-
eter D lies in an appropriate domain �Landa et al., 1998�.

4. Multiplicative-noise universality class

In spite of their counterintuitive nature, all noise-
induced phase transitions described so far belong to the
equilibrium Ising universality class. This can be traced
back to the existence of an inhomogeneous term in the
corresponding SPDE, namely, the additive noise term.
Models with only multiplicative noise, on the other
hand, exhibit purely nonequilibrium universality classes

see Muñoz �2004� for a recent review�. Consider, for
instance, the generic model

��

�t
= − a� − �p + D�2� + �q��x,t� , �101�

where all parameters are positive, and the noise is inter-

preted in the Stratonovich sense. The exponents p�2 �2
or 3� and q�0 �1/2 or 1� define the most common situ-
ations. This model exhibits a nonequilibrium phase tran-

sition as a function of the control parameter a �Grinstein

et al., 1996�. For a�ac, the steady state is �=0, called an

absorbing phase. For a�ac, on the other hand, the

steady state is ���0, and is called an active phase.
The generic equation �101� encompasses the following

two important models, exhibiting two different univer-
sality classes:

• The case p=2 and q=1/2 corresponds to the
Reggeon field theory �RFT� model of directed perco-
lation �Cardy and Sugar, 1980; Dickman, 1994; Marro
and Dickman, 1998�.

• The particular case p=3 and q=1 defines what it is
known as the multiplicative noise universality class
�Grinstein et al., 1996�. By means of the Hopf-Cole

transformation 
�=exp�−h��, the new field h�x , t� fol-
lows a Kardar-Parisi-Zhang equation �Kardar et al.,
1986�. This model leads to an ordering transition by
increasing the intensity of the white noise �Genovese
et al., 1998�.

These types of phase transitions can be characterized
by critical exponents, both static and dynamic, which de-
pend on the dimensionality of the space and on the rel-

evant parameters p and q. The different universality
classes have been detailed by Muñoz �2004�.

FIG. 15. Order parameter versus multiplicative �white� noise

intensity for model �96�. Mean-field �lines� and numerical

simulation �symbols� results for the Itô �continuous line� and

Stratonovich �dashed line� interpretations. Lattice sizes �d=2�:
L=16 �circles�, L=24 �squares�, and L=32 �triangles� for Itô.

L=64 �triangles�, L=48 �diamonds�, L=32 �squares�, and L

=16 �circles� for Stratonovich. Parameter values: a=1, c=05,

and D=4. From Carrillo et al., 2003.
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B. First-order phase transitions

Noise can also induce first-order, or discontinuous,
phase transitions. A model exhibiting this behavior was
first introduced by Müller et al. �1997� in the form

��

�t
= − a� + �3 − �5 + �1 + �2���x,t� + D�2� , �102�

where ��x , t� was assumed to be white in time with cor-
relation �60�. Applying the short-time analysis, Eq. �62�,
to this model leads to the effective force feff=−
a
−2c�0���+ 
1+2c�0���3−�5, which exhibits a subcritical
pitchfork bifurcation with increasing noise intensity. This
corresponds to a discontinuous phase transition, as
shown in Fig. 16. This figure plots the mean-field and
numerical simulation results of Müller et al. �1997�,
which display a region of coexistence between the or-
dered and disordered phases and hysteretic behavior,
both of them characteristics of first-order phase transi-
tions.

The same kind of transition can be obtained through
a nonlinear instability, as in the following model �Car-
rillo et al., 2002�:

��

�t
= − �1 + �4�� + �2��x,t� + D�2� + ��x,t� . �103�

Its corresponding effective force is feff=−�+2c�0��3

−�5, which again undergoes a subcritical bifurcation as a
function of the noise intensity, with a regime of two co-
existing phases. For large noise, both cases described
above exhibit a reentrant continuous transition that re-
stores the homogeneous disordered phase.

First-order nonequilibrium phase transitions induced
by additive noise have been reported by Zaikin et al.
�1999�. In that case, the model studied was the one given

by Eq. �94�, with g���=a2+�2. There, the coexistence
region �and thus the discontinuity in the phase transi-
tion� exists for large enough intensity of multiplicative
noise, evidencing again the need of multiplicative noise
in order to have an ordering effect of additive random
fluctuations.

C. Dynamics of nonequilibrium phase transitions

The dynamical aspects of phase transitions constitute
an important part of our knowledge of these cooperative
phenomena. It is thus equally important in the context
of noise-induced nonequilibrium phase transitions to es-
tablish the relevance of noise, both in the front evolu-
tion of a more stable phase invading a less stable one
�Santos and Sancho, 1999� and in the dynamical scaling
regime of domain growth associated with coarsening in
phase separation �Gunton et al., 1983�.

These dynamical behaviors can be studied in any of
the models introduced in this section, either Ginzburg-
Landau models as in Eq. �91� or the EDPT model de-
fined by Eqs. �96� and �97�.

1. Noise-induced fronts

The influence of multiplicative fluctuations on front
dynamics has mostly been studied in models for deter-
ministic front solutions. As representative references we
refer to the articles by Frankowicz et al. �1991�;
Schimansky-Geier and Zulicke �1991�; de Pasquale et al.
�1992�; Armero et al. �1996, 1998�; Sancho and Sánchez
�2000�; Tripathy et al. �2001�; and the review by Panja
�2004�. Additive noise has also been shown to unveil
hidden nonlinearities via a ratchetlike effect �Clerc et al.,
2005�. Following the spirit of this review, we focus here,
complementarily, on fronts that are indeed induced by
multiplicative noise.

We start with a model such as that in Eq. �91�. For a

�0, the only homogeneous steady solution is ��x��=0
and any initial condition will evolve to this steady state.

If a�0, the model may develop a front solution of the

stable phase �= ±�−a as it invades the unstable phase

�=0. We restrict ourselves to the case a�0. The ap-
proach of Sec. II.B.3 allows us to describe the effect of
the multiplicative noise by means of the effective equa-
tion �Santos and Sancho, 1999�

��

�t
= �„c�0� − a − �2… + D

�2�

�x2
. �104�

The analysis of this equation shows that for noise inten-

sities c�0��a the former homogeneous solution �=0 is
not stable anymore, and any initial perturbation will
grow away from it until nonlinear terms saturate the
field. This type of instability produces a front of the

more stable phase �st��c�0�−a invading the unstable
one, as shown in Fig. 17.

One can evaluate the front velocity by defining the

position of the leading part of the front as the value of z

for which ��z , t� is a small fraction of �st. Applying a
linear marginal stability analysis �van Saarloos, 1989� to
Eq. �104� leads to the following expression for the front
velocity:

v = 2�c�0� − a . �105�

This result compares satisfactorily with numerical simu-
lations, as shown in Fig. 18.

FIG. 16. Order parameter �denoted here as x�� versus multi-

plicative noise intensity 
denoted here as �2, corresponding to

2c�0� in the text� for model �102�. Symbols are numerical simu-

lation data and lines are the mean-field prediction. Simulations

were made on a square two-dimensional lattice of 100�100

cells. From Müller et al., 1997.
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2. Scaling regime

We have seen that the EDPT model can reach, in the
presence of sufficiently large external fluctuations, a sta-
tionary ordered state described by a nonzero order pa-

rameter ��, for both the Itô and Stratonovich interpre-
tations. This means that, if the system is initially in a

disordered steady state ��=0 at a small noise intensity,
as the intensity of external fluctuations is increased
above its critical value the system develops domains of
the two new �symmetric� stationary ordered phases,
which grow with time as depicted in Fig. 19. This figure
shows that the system behaves differently in the two sto-

chastic interpretations for the same noise intensity, the
domains being much more contrasted in the Itô case due
to the fact that the order parameter is larger than in the
Stratonovich case, which is thus very noisy.

In the next paragraphs, we are concerned with the
growth of these noise-induced domains. Irrespective of
the originating mechanism, we can expect that once the
domains have appeared their dynamics has the same
characteristics as that following the quench of a system
below its order-disorder transition temperature, as hap-
pens in the Ginzburg-Landau �GL� model �Gunton
et al., 1983�. In the form used here, referred to in the
literature as the nonconserved order parameter model,
and corresponding, for instance, to phase separation in
ferromagnetic systems, one of the domains grows until it
fills the whole system. The mechanism underlying do-
main growth corresponds to the interface motion be-
tween domains caused by the interface structure. The
translational velocity of the domain boundary has been
found to be proportional to its mean curvature, and in-
dependent of the free energy of the interface. This can
be quantified by the equation of motion obeyed by the
characteristic length �i.e., the average radius� of the do-

mains of equilibrium phases R�t� �Gunton et al., 1983�,

dR

dt
= A

�

R
, �106�

where A is a model-dependent constant and � is the
kinetic coefficient multiplying the diffusion term. Equa-
tion �106� leads in a straightforward way to the Allen-

Cahn law of domain growth R�t� �2A�t1/2. In the time

regime where this law is verified, R�t� is the only char-
acteristic length of the system, and scaling behavior for
its spatial structure at different times is found. The top

plot of Fig. 20 shows the temporal evolution of R�t� for
the two stochastic interpretations of the EDPT model, at
equal values of the noise intensity. The results show that
the Allen-Cahn law is satisfied for both interpretations,
and that there is a time regime in which the system is
self-similar. One interesting fact is that domain evolu-
tion in Itô is slower than in Stratonovich, and in both
cases much slower than the Ginzburg-Landau model.
This feature can be explained looking at the constant

prefactor �2A� of the Allen-Cahn law. In the Ginzburg-

Landau model �=1, but in the EDPT model this quan-
tity is field dependent according to Eq. �97�, and can be
approximated by

��
1

1 + c�2�
�

1

1 + c��2 . �107�

According to Eq. �107�, and since for fixed �2 we have

that ��I� ��S, we should expect the slowest growth for
the Itô EDPT case, and the fastest one for the Ginzburg-
Landau model, in agreement with the top plot of Fig. 20.

In order to characterize the dynamical scaling of the
system, one can let the system evolve from an initial
disordered state, and compute the isotropic correlation

function G�r , t� at different times. The domain size R�t�
is given by the distance at which G�r , t� is half its maxi-

FIG. 17. Four snapshots of an evolving front induced by mul-

tiplicative noise in model �91�. Times taken at t=50, 100, 240,

and 450 from a very small initial perturbation. The continuous

line shows the predicted value �st. Parameter values: a=0.1

and c�0�=0.15. From Santos and Sancho, 1999.

FIG. 18. Mean velocity of the front of Fig. 17 versus noise

intensity 
denoted here as ��0� corresponding to c�0� in the

text� for two values of the control parameter, a=0.1 �triangles�
and a=0.3 �squares�. Symbols are simulation results and con-

tinuous lines are the theoretical predictions given by Eq. �105�.
Full symbols correspond to simulation parameters �x=0.5 and

�t=0.01, and open symbols for �x=0.1 and �t=0.001. Circles

correspond to the simulation of the effective deterministic

model �104�. From Santos and Sancho, 1999.
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mum value. Defining g�r , t��G�r , t� /G�0, t�, one can ap-

ply the scaling hypothesis for a d-dimensional system

g�r , t�=g„r /R�t�… with no other explicit time dependence.
When this relation holds, the spatial structure of the sys-
tem at different times is statistically equivalent, except
for a scale factor. This relation is verified for both inter-
pretations in Fig. 20. Moreover, the scaling function is
also the same for both interpretations �bottom plot of

Fig. 20�, although the evolution of R�t� �top plot� is not.
Noise-induced phase transitions and growth phenom-

ena can also be studied for conserved order parameter
models, employed, for instance, in phase separation of
binary mixtures, provided the analytical approaches and
numerical algorithms are modified adequately. An ex-
ample has been given by Ibañes et al. �2000�.

D. Spatiotemporally structured noises

The phase-transition phenomena reviewed so far in
this section have mostly involved spatiotemporal white
noises. However, there are many experimental situations
in which the correlation time and length of the fluctua-
tions are comparable to, or even greater than, the corre-
sponding characteristic time and length scales of the de-
terministic system. Several studies have addressed the
influence of the spatiotemporal correlation of the noise
on nonequilibrium phase transitions. In particular, the
noise correlation time and length can be used as control
parameters of the phase transition, usually with a disor-
dering role. For example, the correlation time and
length of an additive spatiotemporal noise control a

phase transition toward disorder in the Ginzburg-
Landau model �3�, without changing the universality
class from that of equilibrium �García-Ojalvo and San-
cho, 1994�. The role of a spatially correlated multiplica-
tive noise was studied in model �91� by Ibañes et al.
�1999�.

The theoretical approach to non-Markovian effects
resulting from a temporal correlation of the noise terms
is quite complicated �García-Ojalvo and Sancho, 1999�;
Santos and Sancho, 2001�. Mangioni et al. �1997, 2000�
developed an effective Markovian approximation to
study the model �94� with a noise white in space and
colored in time. Their results showed that this type of
noise has a disordering effect of the noise-induced phase
transition scenario. Interestingly, they showed also that
in the presence of temporal correlation disorder is fa-
vored for large enough spatial coupling, another coun-
terintuitive effect. Kim et al. �1998�, on the other hand,
showed that a dichotomous multiplicative noise, acting
also on model �94�, rendered the disordering reentrant
transition discontinuous, giving rise to bistability at large
noise levels between the ordered and disordered phases.

IV. STATIONARY PATTERNS

As reviewed in the Introduction �see Sec. I.B.3�, many
macroscopic systems undergo transitions toward station-
ary inhomogeneous patterns provided the system is ex-
ternally maintained far from equilibrium �Manneville,
1990; Cross and Hohenberg, 1993; Walgraef, 1997�. Para-

FIG. 19. Snapshots of evolving noise-induced

domains for the EDPT model at t=750 �left

figures� and t=1750 �right figures� in the Itô

�top� and Stratonovich �bottom� interpreta-

tions. Parameter values: a=1, c=3, �2=3.5,

and L=256. From Carrillo et al., 2003.
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digmatic examples already mentioned are convective

structures arising in Rayleigh-Bénard cells �Chan-

drasekhar, 1981� and Turing patterns displayed by cer-

tain chemical reactions �Castets et al., 1990�. We review

in this section the influence of spatiotemporal noise on

these pattern-forming instabilities. In particular, we de-

scribe two different mechanisms through which noise in-

duces patterns in these types of models. We also review

an experimental observation of Turing patterns induced

by spatial noise. These results may be relevant to realis-

tic situations in which noise is found to induce spatial

steady patterns in natural systems such as ecosystems

�Satake et al., 1998; Spagnolo et al., 2003�.

A. Noisy precursors near pattern-forming bifurcations

Stationary patterns usually arise via the instability of a
homogeneous state versus perturbations with zero fre-
quency and nonzero spatial wave number. The canonical
model of such a pattern-forming bifurcation is the Swift-
Hohenberg equation �4�. As explained in Sec. I.B.3, this
equation exhibits a stationary bifurcation of the trivial

homogeneous solution �=0 at a critical nonzero wave
number. This pattern-forming bifurcation can be consid-
ered the spatial analog of the Hopf bifurcation, in which
a steady state becomes unstable versus perturbations
with zero spatial wave number and nonzero frequency. It
is well known, see Sec. I.D.3, that close to �but below� a
Hopf bifurcation noise is able to advance the temporal
periodicity that arises beyond threshold �Wiesenfeld,
1985�. Corresponding “spatial” noisy precursors also ex-
ist for stationary pattern-forming bifurcations. This can
be readily seen by studying the behavior of the statistical

moments of the field ��x , t� in the presence of the addi-

tive noise term ��x , t�. Below threshold �a�0�, and as-
suming a small noise intensity, the nonlinear term in Eq.
�4� can be neglected. In Fourier space, and for noise with
zero mean, the equation for the first moment reads

��̂�

�t
= a�̂� − �k2 − k0

2�2�̂� , �108�

where �̂�k , t� is the Fourier transform of ��x , t�. The sta-

tionary solution of this equation is �̂st�k , t�=0. On the
other hand, the evolution equation for the structure

function S�k , t�= �̂�k , t��̂�−k , t�� can be obtained by
writing the linear version of Eq. �4� in the lattice, deriv-
ing from it the equation for the discrete version of

S�k , t�, and transforming the resulting equation back to
continuum Fourier space. The final result is �García-
Ojalvo and Sancho, 1999�

�S�k,t�

�t
= 2
a − �k2 − k0

2�2�S�k,t� + 2�2. �109�

The steady state of this equation is easily evaluated,

Sst�k� =
�2

�k2 − k0
2�2 − a

, �110�

which has a maximum at the critical wave number k0.

This quantity is plotted as a function of wave number k
in Fig. 21. This result shows that, even below threshold,
random fluctuations extract the intrinsic spatial scale
that arises at the pattern-forming bifurcation, analo-
gously to the noisy precursors found near Hopf bifurca-
tions.

Such spatial noisy precursors have been observed ex-
perimentally in liquid crystals �Rehberg et al., 1991; Qiu
and Ahlers, 2005�, nonlinear optical media �Agez et al.,
2002�, Rayleigh-Bénard convection �Wu et al., 1995�, and
vibrated granular media �Goldman et al., 2004�. Figure
22 shows the structure function of the spatial distribu-
tion of density fluctuations in a vertically vibrated granu-
lar layer, as reported by Goldman et al. �2004�, both be-

FIG. 20. Scaling of noise-induced domain growth. Top: Allen-

Cahn law for the GL and EDPT models for equal noise inten-

sities �and different mean fields�. The latter is computed in

both the Itô and Stratonovich interpretations. Bottom: Scaled

pair correlation function for the EDPT model in the Stra-

tonovich interpretation for t=1300 �circles� and t=2000

�squares�, and in the Itô interpretation for t=1200 �triangles�
and t=1800 �diamonds�. Parameter values: a=1, c=3, D=4,

and �2=3.5. From Carrillo et al., 2003.
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low and above the pattern-forming transition. It can be
seen that below the corresponding pattern-forming
threshold a circular-ring-shaped structure function indi-
cates that fluctuations are exciting patterns with a well-
defined wavelength but with no well-defined direction.
Above the bifurcation, the structure function ring col-
lapses into a finite number of peaks, chosen by the sys-
tem via some kind of pattern-selection mechanism �Cil-
iberto et al., 1988; Ramazza et al., 1996�. In Sec. V.B.3,
we will make use of this result to discuss the phenom-
enon of spatial stochastic coherence.

B. Noise-induced patterns via a short-time instability

Analogously to noise-induced phase transitions �see
Sec. III�, multiplicative noise is able to induce stationary
patterns in extended systems as well. Also here, the first
mechanism that was shown to lead to noise-induced pat-
terns was the instability of a homogeneous state, as de-
scribed in what follows.

Consider the Swift-Hohenberg model �4� in which the

control parameter a fluctuates in space and time, i.e., a

→a+��x , t�, where ��x , t� is a Gaussian noise with zero

mean and correlation given by the d-dimensional ver-
sion of Eq. �60�. The influence of the multiplicative noise
on the pattern-forming bifurcation can be determined by
a linear stability analysis of the homogeneous solution

�=0 �Becker and Kramer, 1994�. This analysis can be
performed, for instance, on the linearized equation of
the structure function, which in the presence of multipli-
cative noise and, following the procedure described in
the context of Eq. �109� above �García-Ojalvo and San-
cho, 1999�, takes the form

�

�t
S�k,t� = 2
a + c�0� − �k2 − k0

2�2�S�k,t� + 2�2

+ 2
1

�2��2 � ĉ�q�S�k − q,t�dq . �111�

The last term in this equation can be ignored close
enough to the bifurcation point, since it is of higher or-
der on noise intensity. As a consequence, the stability of
the homogeneous solution, which in the absence of ad-

ditive noise is given by S�k , t�=0, is now controlled by
the first term on the right-hand side �r.h.s.� of Eq. �111�.
Clearly, the existence of a multiplicative noise of inten-

sity given by c�0� produces a shift in the critical point, in
such a way that now its value in a first-order approxima-

tion is ac=−c�0�. In other words, patterns can exist for a

FIG. 21. Stationary structure function of the Swift-Hohenberg

equation �4� with additive noise �d=2�. Symbols represent nu-

merical simulations of the equation below threshold including

the nonlinear term, the solid line is the linear solution �110�,
and the dashed line corresponds to the numerical integration

of the discrete evolution equation. Parameter values: a=−0.2,

�2=0.001, and k0=0.63. From García-Ojalvo and Sancho, 1996.

FIG. 22. Spatial noisy precursor in an oscillated granular layer.

Experimentally determined structure function �top� below and

�bottom� above the onset of standing waves. In each plot, the

top left inset gives the numerical value of the peak acceleration

of the plate relative to gravity, and the bottom right inset de-

picts the circularly averaged structure function that can be

compared with that in Fig. 21. From Goldman et al., 2004.
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deterministically subthreshold value of the control pa-

rameter a. An example from the first theoretical predic-
tion of this phenomenon �García-Ojalvo et al., 1993� is
shown in Fig. 23.

One way to characterize this transition is by defining

the convective flux J as

J�t� �
1

V
� �2�r,t�dr , �112�

which will act as the order parameter in this pattern-
forming scenario. Below the threshold, we expect that in

the conducting state Jst�0 but Jst�0 in the convective
or patterned state. This behavior can be seen in Fig. 24,
where the transition between these two states is con-
trolled by the intensity of the multiplicative noise.

Following this result, the same approach was used by
Parrondo et al. �1996� to study patterns for a noise-
induced phase transition 
see Eq. �94��. These authors

introduced a Swift-Hohenberg-like spatial coupling, in-
stead of the standard diffusion operator, to induce a
well-defined spatial periodicity in the ordered phase. A
convenient generalization of the mean-field approach
described in Sec. II.B.1 was able to predict qualitatively
the appearance of these noise-induced patterns. More
details of this adapted MFA will be given in the next
section.

Additionally, Zaikin and Schimansky-Geier �1998�
showed that patterns can also be induced by additive
noise, provided multiplicative noise is also present in the
system. A theoretical approach based on the study of
higher-order moments �see Sec. II.B.4�, introduced by
Dutta et al. �2005�, can be used to describe analytically
the effect of additive noise on these noise-induced phe-
nomena.

From an applied perspective, noise-induced patterns
have been studied in theoretical models of electrohydro-
dynamic convection in liquid crystals �Behn et al., 1998�,
semiconductor nanostructures �Stegemann et al., 2005�,
and adsorption in surfaces �Mangioni and Wio, 2005�.

C. Entropy-driven patterns

Even in the absence of short-time instabilities, noise
can induce patterns in nonlinear media. This is again
analogous to the case of phase transitions, where noise
may induce changes in the steady-state local probability
distribution. In the presence of an adequate spatial op-
erator, a noise-induced pattern arises �Buceta et al.,
2003�. The role of noise here is not to produce an insta-
bility, but to excite the system away from the homoge-
neous state, a tendency that is balanced by the relaxing
character of the deterministic force. This mechanism is
reviewed in detail in the following paragraphs.

Consider the model described in Eq. �96�, but with
spatial coupling of the Swift-Hohenberg type,

��

�t
= ����
− a� − D��2 + k0

2�2�� + ����1/2��x,t� ,

�113�

where the kinetic coefficient ���� is given by Eq. �97�
and the multiplicative noise is white in space and time

FIG. 23. Patterns exhibited by the Swift-Hohenberg equation

�4� for a deterministically subthreshold value of a in the �top�
absence and �bottom� presence of a multiplicative noise of suf-

ficient intensity. The bottom plot �no multiplicative noise� dis-

plays the characteristic spatial noisy precursors described in

Sec. IV.A. Multiplicative noise �top plot�, on the other hand,

destabilizes the previous state and leads to wave vectors with

locally well-defined directions, corresponding to a roll pattern.

Parameter values: a=−0.05, �2=0 �top�, and �2=0.1 �bottom�.
The intensity of internal additive noise is 10−3 in both cases.

From García-Ojalvo et al., 1993.

FIG. 24. Convective steady flux Jst versus multiplicative noise

intensity c�0�. Parameter values: a=−0.2 and k0=0.63. Adapted

from García-Ojalvo and Sancho, 1994.
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with correlation given by the d-dimensional version of
Eq. �29�. In the absence of noise, this system has a fixed

point �=0, whose stability in the presence of noise can
be established by a linear stability analysis of Eq. �113�.
First, we write the field in terms of its spatial Fourier
modes,

��x,t� = �
k

�̂k�t�eik·x. �114�

Linearizing Eq. �113� around �=0, using Eq. �114�, and
integrating leads to

��x,t� = �
k

�̂kexp
�k�t�exp�ik · x�

= �
k

�̂kexp�
− a − �2c − D�k0
2 − k2�2�t + ik · x� .

�115�

Since a, c, and D are positive, this result clearly shows

that the disordered phase �=0 is not affected by a linear
instability at short times. Although all wave vectors re-

lax to zero, a particular one with k* is such that �k*�
=0, which is close to k0 �and equal to it in the continuum
limit�.

Interestingly enough, however, this model exhibits
noise-induced patterns via an entropic mechanism. To
prove that, we use a generalized version of the mean-
field approximation, valid for the case in which the or-
dered phase exhibits a pattern. As discussed in Sec.
II.B.1, we expect that the spatial coupling term in Eq.
�113� will lead to an interaction between the local field
and neighboring values that we assume to lead to the
effective SDE,

d�

dt
= �����− a� − D1�� − ���� + ����1/2��t� . �116�

This can be achieved with the ansatz

�x�
= ��cos
k* · �x − x��� . �117�

Actually, under this assumption we transform Eq.
�113� into Eq. �116�, in terms of an effective diffusion
parameter,

D1 = D�� 2d

��x�2 − k0
2	2

+
2d

��x�4� . �118�

The Fokker-Planck equation associated with Eq. �116�
can be solved in the steady state in a straightforward
way. The resulting stationary probability distribution
reads

P�� ;��� = N�1 + c�2�1/2

� exp�−
1

�2�a + D1

2
�2 − D1����� ,

�119�

where N is a normalization constant. The usual self-
consistent condition must hold,

�� = �
−�

�

�P�� ;���d� . �120�

This equation has always the solution ��=0, since in
that case the probability distribution �119� is symmetric.

A nonzero solution is also possible if we increase �2. In
Fig. 25, the domains of homogeneous and spatially pat-
terned solutions are plotted, and it shows that model
�113� may exhibit stationary patterns for large enough

coupling parameter D and noise intensity �2. Examples
of the resulting patterns are shown in Fig. 26. This figure
presents snapshots of the spatiotemporal behavior of
model �113� for increasing noise �from A to C�.

D. Turing patterns

As mentioned in Sec. I.B.3, Turing patterns appear as
a consequence of stationary pattern-forming bifurca-
tions in two-component systems with activator-inhibitor
dynamics, provided the relaxation length of the inhibitor
is sufficiently larger than that of the activator. The first
experimental evidence of Turing instabilities was re-
ported for the chlorite–iodide–malonic acid �CIMA� re-

FIG. 25. Phase diagram showing the boundary line delimiting

the region of existence of a patterned state �defined by ��
�0� produced by an entropic mechanism. The boundary line

was estimated with a generalized mean-field approach �see

text�. The vertical dashed line indicates the location of the

noise-induced transition of the local potential, see Eq. �99�.
Parameter values: k0=1, a=1, and c=3. Adapted from Buceta

et al., 2003.

FIG. 26. Patterns induced by noise via an entropic mechanism

associated to the Swift-Hohenberg spatial operator 
see Eq.

�113��. Parameter values are those of Fig. 25, plus D=5 and �a�
�2=0.1, �b� 2, and �c� 5. Adapted from Buceta et al., 2003.
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action �Castets et al., 1990�. Later on, an extension of the
reaction was proposed, the so-called CDIMA reaction,
which has the important feature of being photosensitive
�Muñuzuri et al., 1999� �see Sec. I.B.3�. This has made it
possible to analyze the influence of external noise in
Turing pattern bifurcations. To study that influence,
Sanz-Anchelergues et al. �2001� used a static illumina-
tion profile, consisting of a random pattern of two dif-
ferent illumination levels, acting upon a CDIMA reac-
tor. Experimental snapshots of the system behavior
under these conditions are shown in Fig. 27.

Figure 27 shows optical images of the chemical reac-
tor �top row� for two different illumination conditions
�bottom row�. The case shown in the left column corre-
sponds to a long-wavelength illumination profile 
plot
�c��, where it can be assumed that the black and white
regions are independent of each other. The resulting be-
havior 
plot �a�� clearly shows that Turing spots appear
in the regions of low illumination, whereas the system is
homogeneous for high illumination. For a random illu-
mination profile with shorter wavelength 
plot �d��, on
the other hand, the spatial scale of the noise interacts
with the internal spatial scale of the system, whose spa-
tial behavior no longer mimics the illumination profile.
Instead, a well-defined Turing pattern appears through-
out the system 
plot �b��, even though the average illu-
mination is such that a homogeneous illumination at the
same level would produce no pattern.

Sanz-Anchelergues et al. �2001� reproduced the ex-
perimental behavior with the Epstein-Lengyel activator-

inhibitor model adapted to the photosensitive version of
the CDIMA reaction 
Eq. �5��. According to the experi-
ment, the spatially patterned illumination consists in a

symmetric dichotomous spatial noise of amplitude 2��,

around a mean value �0. The numerically computed be-
havior of the system for various levels of noise and mean
illumination is shown in Fig. 28. It is evident that as the
amplitude of the illumination noise increases, the region
where Turing patterns exist increases correspondingly.
This is therefore clear evidence that spatial noise in-
duces order in the system. An extension to time-varying
noise would be of interest.

V. SPATIOTEMPORAL DYNAMICS: NOISE-UNVEILED

COHERENCES

A large number of cases in which random fluctuations
exert a constructive influence involve situations in which
order is already present, albeit hidden, in the system. In
those instances, noise is able to unveil this implicit order.
This is the case, for example, of bistable systems with
external harmonic forcing. These systems have the po-
tential to display coherent �periodic� output under deter-
ministic conditions, provided the forcing amplitude is
large enough. In the case of weak forcing, on the other
hand, the periodic response is absent without fluctua-
tions, but the noise is able to excite it and amplify. A
similar phenomenon arises in systems with well-defined
internal time scales �such as excitable media�, where no
external driving is needed, but noise is still able to unveil
a hidden periodicity in the system. In what follows, we
review these and other examples of noise-unveiled co-
herences in extended media, placing the emphasis on the
influence of spatial coupling in this type of behavior.

FIG. 27. Turing pattern induced by spatial noise in the

CDIMA reaction. �a�,�b� Experimental snapshots under the il-

lumination profiles shown in �c� and �d�, respectively. Black

and white in �c� and �d� denote two different illumination lev-

els, low and high, respectively. From Sanz-Anchelergues et al.,

2001.

FIG. 28. Numerical phase diagram of the Turing instability of

the CDIMA reaction for varying levels of average illumination

and noise. Parameter values: a=16, c=0.6, �=301, and d

=1.07. From Sanz-Anchelergues et al., 2001.
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A. Forced systems

Among the many constructive roles of noise, one of

the clearest �and definitely the best known� examples is

stochastic resonance �Wiesenfeld and Moss, 1995�. In its

simplest form, stochastic resonance �SR� consists in an

amplification of the response of a nonlinear system to a

weak temporal forcing for an optimal amount of noise.

SR has been observed experimentally in a wide variety

of situations 
see, e.g., Gammaitoni et al. �1998�; Anish-

chenko et al. �1999� for comprehensive reviews�. As we

show in the next subsection, stochastic resonance in ex-

tended media exhibits distinctive properties. To clarify

the notation, we define two additional scenarios that will

also be reviewed in the final subsection. What could be

considered in a sense the spatial counterpart of stochas-

tic resonance, i.e., the ordering effect of noise in ex-

tended systems forced with a spatially periodic signal, is

referred to here under the term spatial stochastic reso-

nance. Finally, another option is still possible. We denote

it as spatiotemporal stochastic resonance, and describe

under this concept resonant effects mediated by noise in

extended media forced with spatiotemporal signals,

rather than with pure temporal inputs.

1. Stochastic resonance in extended media

a. Discrete arrays

The effect of coupling on the response of stochastic

systems to weak signals has been analyzed in studies of
globally coupling arrays of bistable elements �Jung et al.,
1992; Bulsara and Schmera, 1993� 
see also Morillo et al.

�1995��. Those early investigations showed that coupling
noticeably enhances the stochastic resonance effect. Nu-
merous studies were also devoted to the detection of
weak signals using ensembles of uncoupled summing el-
ements, mostly in a neurophysiological context �Pei
et al., 1996; Lindner and Schimansky-Geier, 2001�. In
particular, it was shown that the traditional SR require-
ment of operating close to threshold under periodic
forcing could be lifted �Collins et al., 1995; Stocks, 2000�,
which makes the phenomenon more relevant for bio-
logical signal transduction �Bezrukov and Vodyanoy,
1995�. In the intermediate case between global and no
coupling, a number of studies have been devoted to the
case of local coupling. The simplest situation was ad-
dressed by Neiman and Schimansky-Geier �1995� with a
complete theoretical analysis of the two-element case.
Experimental related evidence has more recently been
provided in a system of only two bidirectionally coupled
semiconductor lasers, showing a dramatic improvement
in the collective response of the system to external peri-
odic force with respect to the uncoupled case �Buldú
et al., 2002, 2005�. Referring to extended arrays, Lindner
et al. �1995� first analyzed numerically the case of a one-
dimensional chain of locally coupled bistable over-
damped devices with global harmonic driving,

d�i

dt
= a�i − �i

3 + � �
j�nn�i�

��j − �i� + A cos t + �i�t� ,

�121�

where the sum runs over nearest neighbors of element i

and the noise �i�t� is assumed white in space and time

with correlation given by Eq. �31�. In the case �=0, each
one of the elements in the chain is a stochastic resonator
in which the periodic input is amplified by an optimal
amount of noise. The system’s response to the driving
can be characterized by the signal-to-noise ratio �SNR�,
defined as the ratio of the output spectral power at fre-

quency  to the noise spectral power. The hallmark of
stochastic resonance is a maximum of the SNR for a
nonzero noise intensity.

In the presence of coupling, ��0, Lindner et al. �1995�
observed that the SNR was higher than in the uncoupled
case. Figure 29 shows spatiotemporal plots of the system
for increasing noise levels and two different values of

the coupling strength �. The corresponding SNR curves
are also shown. The figure reveals the typical signature
of stochastic resonance, with the SNR first increasing
and later decreasing with noise. The maximum SNR is
higher for the largest coupling strength, and occurs at a
larger noise level. The spatiotemporal plots show a good
global coherence, with basically all elements switching
states simultaneously in a periodic way, at the optimal
noise level. This phenomenon has been called array-
enhanced stochastic resonance �AESR�.

We have seen so far that the maximum SNR increases
with coupling strength. However, this increase cannot be
monotonous, since in the limit of very high coupling the
system should behave as a single oscillator, and there-
fore its response to the external driving should again be
worse than for intermediate coupling values. This is in-

FIG. 29. Array-enhanced stochastic resonance in a one-

dimensional chain of 101 bistable elements. Spatiotemporal

plots, with the oscillator index in the horizontal axis and time

advancing upwards, are shown for increasing noise levels �left

to right�, and two different coupling strengths, with the largest

one at the bottom. The corresponding SNR curves are also

shown in the middle plot. From Lindner et al., 1995.
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deed what happens. Figure 30 shows the dependence of
the maximum SNR on the coupling strength for differ-
ent system sizes, as measured experimentally by Löcher
et al. �1996� in a linear array of bistable diode resonators.
The figure also shows that this enhancement effect in-
creases for larger system sizes, highlighting even further
the constructive influence of the spatial degrees of free-
dom in this phenomenon. A similar behavior had been
previously reported numerically �Lindner et al., 1995,
1996�. The phenomenon was also studied experimentally
by Rowe and Etchegoin �2001� in an array of bistable
electronic triggers.

Subsequent, mostly numerical simulation studies have
provided further evidence of the constructive role of
coupling in the phenomenon of stochastic resonance.
These include the treatment of excitable systems �Chi-
alvo et al., 1997; Tanabe et al., 1999; Zhou, Kurths, and
Hu, 2003�, coupled map lattices �Gade et al., 1997�, Ising
systems �Neda et al., 1999�, small-world networks of
bistable units �Gao et al., 2002�, and arrays of
monostable elements �Lindner et al., 2001�; see also Sec.
VI.B.2. Further analysis has been performed by Gang
et al. �1996� in arrays of bistable elements composed of
both coupling activators and suppressors, Kim et al.
�1999� in delayed �globally� coupled arrays of oscillators,
and Kanamaru et al. �2001�, who applied a mean-field
approach to an array of FitzHugh-Nagumo elements.
Lai et al. �2004� proposed the use of AESR to enhance
signal detectability and suppress jamming noise in oscil-
lator arrays. The relation between aperiodic stochastic
resonance and phase synchronization was examined by
Park et al. �2004� in an array of excitable units. Volkov,
Ullner, et al. �2003� studied the effect of coupled inhibi-
tion in arrays of excitable elements, finding a nontrivial

dependence of the system’s response on the driving fre-
quency, due to the appearance of multiple characteristic
frequencies of the coupled system. A recent theoretical
treatment of AESR can be found in Lindner et al.
�2006�.

Noise correlation parameters have been much less
analyzed in relation to AESR. Simultaneous to the early
published papers on the subject, Inchiosa and Bulsara
�1995� considered global noise in globally coupled arrays
of bistable dynamic elements. More recently, correlation
length effects on the transmission of �site-to-site differ-
ent� aperiodic subthreshold signals on a Morris-Lecar
neural network were studied by Montejo et al. �2005�.

The influence of spatial coupling in the SR scenario is
further revealed in the effect of the system size. Con-

sider again Eq. �121� with a=1. Replacing the spatial
coupling term by a mean-field approximation, we obtain

d�i

dt
= �i − �i

3 +
�

N
�
j=1

N

��j − �i� + A cos t + �i�t� .

�122�

In the Gaussian approximation, we can assume that �i

=!+�i, where ! is the mean field and �i are indepen-

dent Gaussian random variables with variance M. It can
be shown �Pikovsky et al., 2002� that these quantities
satisfy

!̇ =! −!3 − 3M! + A cos t +�2�2

N
��t� , �123�

1
2Ṁ = M − 3!2M − 3M2 − �M + �2, �124�

where ��t� is a white noise of unit variance. This system
of equations undergoes a pitchfork bifurcation of the

!=0, M�0 solution at �c=3�2. This bifurcation is su-

percritical for �2�2/3, above which the system is
bistable. Slightly above the bifurcation we can adiabati-

cally eliminate M from Eq. �124� to get

!̇ = b! − c!3 + A cos t +�2�2

N
��t� , �125�

where b and c are constants that depend on � and �.
Equation �125� corresponds to a noise-driven bistable
system, for which stochastic resonance is well known to
occur. However, in this case the effective noise level is

not only controlled by �2, but also by N. Hence, the

resonant behavior is also associated with N: the response
of the system will be optimal for an intermediate system
size. Such a system size resonance is shown in Fig. 31.
These results were obtained in a globally coupled sys-
tem, but the same effect was also reported by Pikovsky
et al. �2002� in a locally coupled system, specifically in
the Ising model. Similar behavior has been reported in
ion channel models �Jung and Shuai, 2001; Schmid et al.,
2001� and in ensembles of Hodgkin-Huxley neurons
�Wang et al., 2005�.

FIG. 30. Experimental results showing the dependence of the

maximum SNR on the coupling strength. Measures were made

on a linear array of bistable diode resonators, coupled bidirec-

tionally by means of resistors. From Löcher et al., 1996.
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b. Continuous media

The concept of stochastic resonance was generalized
to continuous extended media soon after Benzi et al.
�1981� first reported its existence in stochastic ODEs.
Only four years later those same authors studied the
influence of a spatiotemporal white noise in the one-
dimensional Ginzburg-Landau model with global peri-
odic forcing �Benzi et al., 1985�,

��

�t
= a� − �3 + D

�2�

�x2
+ F�t� + ��x,t� , �126�

where a�0 and ��x , t� represents a white noise in both

space and time, with correlation �29�. F�t� stands for a
uniform dichotomous time-periodic function4 that jumps

between the values +B and −B with frequency . In the
absence of forcing, Eq. �126� has two stable uniform

steady states �±= ±�a and an unstable one at �0=0.

Assuming Neumann boundary conditions �x��0, t�
=�x��L , t�=0, where L is the system size, a set of space-

dependent unstable steady states ��k��x� exist, defined by

the number k of crossings of the �=0 axis.
In the presence of forcing, each of the two subcycles

of Eq. �126�, for F�t�= +B and F�t�=−B, will have uni-

form steady states that can be denoted �±� and �±�, re-

spectively. Assuming B
1, the escape times from the
basins of attraction of these states can be determined
approximately �Benzi et al., 1985�,

�+� � C exp�2
�F��+� − BLa1/2�/�2� , �127�

�+� � C exp�2
�F��+� + BLa1/2�/�2� , �128�

and similarly for �−� and �−�. Here C is a constant inde-

pendent of �2 and �F��+�=F���1��−F��+� measures the

minimum barrier height out of the basin of attraction of

�+ in the landscape of the unforced free-energy func-
tional,

F =� dx�1

4
�4 −

1

2
a�2 +

D

2
����2� . �129�

It has been demonstrated �Benzi et al., 1985� that

��1��x� is the unstable steady state with the smallest free
energy, and therefore this state is the one involved in the

calculation of �F��+�.
Stochastic resonance will arise in this system if the

escape times of a given steady state in each one of the
driving periods are widely separated, with the smallest
one being very small �so that the system jumps as soon
as the external force changes its value�, and the largest
one being larger than the driving period �so that once
the system jumps the first time, it remains in that well
until the force changes value again�. This is translated as

�+�
� / and �+��� /. Using Eqs. �127� and �128�, those
conditions translate in turn into limiting values for the
noise intensity,

�low
2 = 2
�F��+� − BLa1/2�/ln��/C� , �130�

�high
2 = 2
�F��+� + BLa1/2�/ln��/C� . �131�

According to these results if �low
2 
�2��high

2 , the system
will be able to follow the external driving even if its
amplitude is too low to elicit jumps in the deterministic
case. The fact that the response of this spatially ex-
tended system to a periodic driving is enhanced at an
intermediate range of noise levels is, once more, the
hallmark of stochastic resonance.

Model �126� was also studied by Marchesoni et al.
�1996� to provide an analytical framework for the phe-
nomenon of array-enhanced stochastic resonance, which
had been reported earlier �see the discussion above�. On
the basis of their analysis, the authors concluded that
spatial coupling enhances the stochastic resonance phe-
nomenon because the required activation energies are
smaller in the spatial than in the homogeneous case. In-
deed, in the presence of spatial degrees of freedom the
system can jump between uniform stable steady states

through nonuniform unstable �saddle� states ��k��x�,
whose free energy is smaller than that of the unstable

trivial solution �0=0 �see above�, this last one being the
path necessarily taken by the corresponding zero-
dimensional system.

So far we have seen that spatial coupling enhances
stochastic resonance in extended systems. But this is not
always the case. Wio �1996� studied, for instance, a
bistable reaction-diffusion system in the presence of an
additive noise and an external modulated field applied
only at the boundaries of the system. Using the concept
of nonequilibrium potential, he concluded that in this
case the signal-to-noise ratio does not depend noticeably
on the coupling �diffusion� constant. When the method
is applied to the case of a global �space-independent�
harmonic forcing, on the other hand, the constructive
influence of coupling �not only local but also nonlocal� is

4A more general spatiotemporal-dependent forcing function
was originally proposed. Here, for simplicity, we only keep the
time dependence.

FIG. 31. Time evolution of the mean field of model �122� for

three system sizes: �a� N=80, �b� N=35, and �c� N=15. The

driving force is superimposed in �b�. Parameters values: �2

=0.5, �=2, A=0.02, and =� /300. From Pikovsky et al., 2002.
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recovered �Castelpoggi and Wio, 1998�. The nonequilib-
rium potential method has also been applied when the
coupling coefficient depends on the state of the system,
revealing a further enhancement of the SR effect with
respect to a constant coupling �von Haeften et al., 2000�.

Spatially extended stochastic resonance has also been
studied in relation to other spatiotemporal phenomena,
such as soliton motion �Gonzalez et al., 1998�, front
propagation �Dikshtein et al., 1998�, decay of a meta-
stable state �Nicolis et al., 1998�, and pattern formation
�Vilar and Rubí, 1997�. In the latter, Vilar and Rubí
�1997� applied an external harmonic driving to the Swift-
Hohenberg model, observing that noise helps the system
amplify the temporal modulation and exhibit a periodic
succession of homogeneous and patterned states. In a
different development, Rabbiosi et al. �2003� showed
theoretically that localized structures hinder the occur-
rence of stochastic resonance in spatially extended opti-
cal parametric oscillators. Hutt et al. �2002� developed a
method to detect the signature of stochastic resonance
in spatiotemporal systems.

2. Noise-enhanced signal propagation

Parallel to the study of stochastic resonance in ex-
tended media, there is also the question of the influence
of noise on signal propagation. We start by considering
the simplest situation, i.e., a bistable medium. Assume
that the forcing term in Eq. �121� acts only upon a single
oscillator in the chain. If the forcing amplitude is su-
prathreshold, the oscillator being directly modulated fol-
lows closely the input signal, but the propagation of such
modulated signal down the chain should show interest-
ing properties under noisy conditions. Numerical results
by Lindner et al. �1998� are shown in Fig. 32. The results
indicate that propagation of the periodic signal is opti-
mal for an intermediate amount of noise: If noise is too
small, only the first elements in the chain will oscillate
with the forcing, the rest remaining quiescent because
they are not being directly modulated. On the other
hand, if noise is too large, all elements oscillate errati-
cally. For an optimal amount of noise, the harmonic sig-

nal reaches the farthest down the chain. The right panel
in Fig. 32 shows the dependence of the SNR on the
noise intensity for different elements of the chain. It is
clear that for the oscillator that is directly modulated

�n=1�, and those close to it, noise monotonously de-
creases the response at the input frequency. Oscillators

farther downstream �such as n=11�, on the other hand,
exhibit the typical hallmark of stochastic resonance �a
maximum in the SNR for a nonzero noise level�, even
though they are not being directly modulated. Hence,
one can conclude that noise enhances the propagation of
the harmonic signal through the system. Similar results
were obtained numerically by Zhang et al. �1998� and
Hauptmann et al. �1999� in arrays of one-way coupled
bistable systems. An experimental realization in a line of
electronic threshold elements, and the corresponding
theoretical analysis �which is feasible in this case�, were
reported by Chapeau-Blondeau �1999� 
see also
Fuchikami and Sakaguchi �2003��.

The tolerance of this mechanism to “defects,” i.e.,
sites in which noise is absent, was examined by Perazzo
et al. �2000�. Carusela et al. �2001�, on the other hand,
studied a possible use of a ring of unidirectionally
coupled bistable elements as a short-term memory, by
using noise-enhanced propagation of a sinusoidal signal
as a mechanism to store digital information in the ring.
Sendiña-Nadal and Pérez-Muñuzuri �2001� analyzed nu-
merically the enhanced propagation of a periodic signal
through a nonexcitable chemical medium described by
the Oregonator model. Noise-enhanced propagation of
two-frequency signals was studied by Zaikin, Topaj,
et al. �2002�, who reported nontrivial interactions be-
tween the two frequencies being propagated by noise.
Ullner, Zaikin, García-Ojalvo, Báscones, and Kurths
�2003� showed, both numerically and experimentally in
an array of electronic circuits, that the role of noise
could be played by a high-frequency forcing, in an ex-
ample of noise-enhanced propagation via vibrational
resonance. In a different context, Jiang and Xin �2000�
showed that coupling enhances propagation of limit
cycles induced by noise �via the mechanism of stochastic
coherence� along a chain of unidirectionally coupled
nonlinear oscillators 
see also Postnov et al. �1999��.

Pulse propagation can also be mimicked in single-
component reaction-diffusion systems displaying bista-
bility, in the form of kink-antikink pairs that propagate
due to a convective term. Such signals travel with a fixed
velocity but decay in the absence of noise 
since the
kink-antikink pair is structurally unstable �Habib and
Lythe, 2000�. However, this process can be controlled
including multiplicative noise, in such a way that the sig-
nal is able to propagate without distortion for optimal
noise levels �García-Ojalvo et al., 2000�. More compli-
cated noise-sustained propagation phenomena arising in
excitable media are described later.

The effect of thermal fluctuations on pulse propaga-
tion through a chain of masses coupled locally via anhar-
monic potentials was studied by Sarmiento et al. �1999�.
The speed of the pulses was seen to either increase or

FIG. 32. Noise-enhanced propagation. Left: Spatiotemporal

plots showing the response of a chain of 32 bistable oscillators

to harmonic forcing of oscillator n=1 �n increases from top to

bottom in each plot�, and for increasing noise. The value of �i

is represented in gray scale. Right: SNR versus noise intensity

for different elements of the chain. Adapted from Lindner et

al., 1998.
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decrease with thermal noise, depending on the type of
nonlinearity.

3. Spatiotemporal stochastic resonance

Following the notation introduced in the beginning of
this section, spatial stochastic resonance under a purely
spatially periodic signal was studied by Vilar and Rubí
�2000� in a Ginzburg-Landau-like model, to assure bista-
bility, supplemented with convection. In what remains of
this section, we refer to spatiotemporal stochastic reso-
nance as describing resonant effects mediated by noise
in extended media forced with spatiotemporal signals
rather than with pure temporal or spatial inputs.

A pioneering study in this respect was that by Jung
and Mayer-Kress �1995b�, who considered a two-
dimensional array of pulse coupled identical spiking
threshold units with ad hoc refractory periods. A spa-
tiotemporal white noise of zero mean was introduced to
reproduce the effects of a thermal environment. The au-
thors showed that an external wavelike perturbation
elicited a resonant response in the form of a spatiotem-
poral propagating pattern with a sharp peak at a finite
well-defined noise level, independent of the system size.
More recently, this situation was revisited by Krawiecki
et al. �2000� 
see also Gabbay et al. �2004��, observing
again a beneficial effect of coupling, which was never-
theless diminished due to the phase differences of the
driving signal between neighboring elements. A subse-
quent study in two coupled discrete threshold elements
�Krawiecki and Stemler, 2003� showed that this detri-
mental effect can in principle be compensated with de-
lay in the coupling.

An experimental realization of the theoretical predic-
tions of Jung and Mayer-Kress �1995b� was reported in
the photosensitive version of the BZ reaction by Kádár
et al. �1998�. Their main experimental result is repro-
duced in Fig. 33. The figure shows, in the bottom row, a
snapshot of the illumination profile, consisting of a
�Gaussian� random square-patterned field, refreshed at
regular time intervals and with average intensity chosen
slightly below the threshold for sustained wave propaga-
tion. Forcing waves were successively originated in an
adjacent region �at the left of the plots� with a lower
level of illumination �and thus higher excitability� and
directed into the observation area. As shown in Fig.
33�c�, intermediate noise levels support the propagation
of traveling waves. Not surprisingly, the effect turned
out to depend on the cell size and, more importantly, on
the noise refreshing time. In particular, wave propaga-
tion failed at both high and low refreshing frequencies, a
signature of the delicate coupling between the noise and
reaction-diffusion time scales.

B. Autonomous systems

Resonant behavior at intermediate noise intensities
can also be observed in the absence of an external time
scale. This effect popularly known as coherence reso-

nance, and that we have preferred to refer to as stochas-
tic coherence �see Sec. I.D.3�, will be reviewed here in
spatially extended systems.

1. Stochastic coherence in extended media

Analogously to the developments described above in
the field of spatially extended stochastic resonance, stud-
ies of stochastic coherence in extended systems were
first restricted to globally coupled systems �Kurrer and
Schulten, 1995; Rappel and Karma, 1996�. Those studies,
like most that followed, were often aimed at investigat-
ing the effect of internal noise on neuronal networks.
Single-variable models �for a set of active rotators or
referring to integrate-and-fire units, respectively, in the
references cited above� were employed with the aim to
extract as many analytical results as possible. Models of
stochastic firing by randomly connected elements �Pham

FIG. 33. Noise-supported waves in a subexcitable photosensi-

tive BZ medium. �a�–�d� For increasing levels of noise, super-

imposed snapshots �taken at equal time intervals� of a single

wavefront propagating from left to right. �e� A snapshot of the

random illumination profile that provided the noisy driving.

From Kádár et al., 1998.
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et al., 1998� or Hodgkin-Huxley globally coupled neu-

rons �Wang et al., 2000� were considered subsequently. A

more recent reference is that of Zaks et al. �2005�. Inter-

est focused on the possibility to observe noise-induced

synchronized regimes as a signature of coherent neural

activity.

We postpone the issue of synchronization to Sec. VII,

while we concentrate here on analyzing conditions of

enhanced stochastic coherence. To this end we refer to

the most generic, two-variable, activator-inhibitor repre-

sentations of excitable systems. Unless explicitly stated,
in what follows in this section we consider local diffu-
sivelike coupling.

Neiman et al. �1999� considered both one- and two-
dimensional arrays of nonidentical excitable units of
FitzHugh-Nagumo type, driven by additive local noise
of zero mean. Depending on the noise intensity and for
a sufficiently large value of the coupling strength, three
different dynamical regimes are found, as shown in Fig.
34. For small noise �left column�, waves are randomly
nucleated by noise and correlation between firing units
only exists locally, and is limited to the mean time of
wave propagation. Under intense noisy forcing �right
column�, cells fire everywhere uncorrelated and without
any chance to construct any sort of spatiotemporally co-
herent structure. For an optimal noise level �middle col-
umn�, the medium shows phase coherence in an oscilla-
tory state that encompasses the most distant cells in the
array. Different measures of stochastic synchronization,
referred to both the phase and frequency variables, con-

firm quantitatively this scenario of maximum coherence
at intermediate noise intensity.

Nearly simultaneously, the occurrence of array-
enhanced stochastic coherence was reported by Hu and
Zhou �2000�. The model was identical to that of Neiman
et al. �1999�. Similarly to what occurred with AESR, the
maximum of the coherence factor displays nonmonoto-
nous behavior with respect to the coupling constant, the
most pronounced enhancement occurring at intermedi-
ate values, whereas neutral improvement with respect to
a single element is observed for large values of the cou-
pling constant. Subsequently, Zhou et al. �2001� ex-
tended the model to introduce a certain degree of noise
correlation among the different cells. Two interesting
conclusions can be extracted from that numerical study:
�i� noise correlation degrades coherence, and �ii� con-
trarily, inhomogeneities in the array parameters may en-
hance coherence �for intermediate coupling strength�.
Stochastic coherence was also reported in a lattice gas
model of an oscillating reaction �Kortluke et al., 2002�
and in small-world networks of excitable elements
�Kwon and Moon, 2002; Kwon et al., 2005�.

Finally, continuing the parallelism with stochastic
resonance, system-size stochastic coherence was ob-
served in globally coupled FitzHugh-Nagumo neural
models �Toral et al., 2003�. As in the case of SR �see
above�, the result admits a simple interpretation based
on an effective renormalization of the noise intensity in
terms of the square root of the number of elements in
the array.

In a different development, Tsimring and Pikovsky
�2001� had shown that excitablelike dynamics may arise
in a discrete lattice as a combined effect of bistability
and time delay. Subsequently, analytical and numerical
studies soon reported the behavior of an ensemble of
identical, noisy bistable units coupled through the time-
delayed mean field �Huber and Tsimring, 2003, 2005�.
For positive feedback and above a noise-dependent �but
delay-independent� threshold, the system undergoes an
ordering second-order phase transition. For even larger,
and also for negative enough, feedback strengths, the
system displays multistability of oscillatory states whose
regularity is maximal for a certain noise intensity, the
signature of stochastic coherence. On the other hand,
systems with time delay are somehow related to those
with inhibitory coupling. This is precisely the idea put
forward by Volkov, Stolyarov, et al. �2003�. They ana-
lyzed the firing activity of a small number of FitzHugh-
Nagumo excitable units �two and three� that were
coupled via diffusion of the inhibitor variable. In con-
trast to the standard form, the signature here of stochas-
tic coherence is a noise-induced antiphase synchroniza-
tion of excitable elements �Pikovsky et al., 2003�.

Experimental confirmations of the above scenarios
are practically nonexistent. The most closely related are
those by Han et al. �1999�, using monovibrator electronic
circuits, who reported a small- �spatial� scale realization
of stochastic coherence with a pair of identical “stochas-
tic” oscillators. With similar equipment, the same au-
thors detected more recently noise-induced multimode

FIG. 34. Coherence resonance in an extended system. The

dynamics of a two-dimensional array of FitzHugh-Nagumo

elements is plotted at different time instants �from top to

bottom� and for three noise levels: low �left column�, interme-

diate �middle column� and high �right column�. The quiescent

state is represented in black, the excited state in white. From

Neiman et al., 1999.
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oscillatory behavior �Postnov et al., 2002�. Propagation
effects �noise only acting on the first unit of an array�
were explored in a full-scale experiment by the same
group �Postnov et al., 1999�. Limited again to a pair of
coherence-resonance oscillators, but this time in a BZ
context, is the work by Ohtaki et al. �2004�.

We close this subsection with a reference to frozen
randomness, i.e., disorder. Disorder as a source of oscil-
lations has been also considered �Cartwright, 2000; Bos-
chi et al., 2001; Sosnovtseva et al., 2001�. Diversity is
claimed to provoke emergence of global oscillations
from individual quiescent elements in heterogeneous ex-
citable media.

2. Noise-triggered waves and noise-mediated front propagation

The perturbations required to activate an excitable
system can originate from external signals, coupling
from neighboring elements, or noise. In the absence of
external driving, and in an original medium at rest, ex-
citation waves can be nucleated only from noise. Recent
analytical studies have addressed the conditions re-
quired for wave nucleation mediated by additive noise
�Shardlow, 2004�, and the corresponding nucleation rates
�Henry and Levine, 2003�, both studies conducted on
FitzHugh-Nagumo-type models.

A more detailed although purely numerical study is
that by Perc �2005�, who used the Barkley model again
to demonstrate spatial coherence �periodicity� on wave
propagation triggered by additive noise. For a small in-
tensity of the white noise, wave nucleation occurs
scarcely. For very intense fluctuations, on the other
hand, excitations arise very frequently and randomly.
For an intermediate noise level, finally, nucleation times
match on average the refractory time and the medium
develops waves with a well-defined wavelength. Accord-
ingly, an analysis of the structure function for increasing
noise intensities shows an optimization of the spatial co-
herence of the system for intermediate noise levels. The
wavelength unveiled by the noise depends on the diffu-

sion coefficient D, since �D controls the rate of diffusive
spread. As this coefficient increases, the excitation trav-
els farther during the excursion time, and correspond-
ingly the optimal wavelength increases. The maximum

wave number is seen to scale as 1/�D �Perc, 2005�.
The effects of noise correlation parameters have been

also considered: Busch and Kaiser �2003� studied nu-
merically the case of an additive spatiotemporally corre-
lated noise in the Barkley model and Beato et al. �2005�
demonstrated in the photosensitive BZ reaction the ex-
istence of an optimal correlation time of the fluctuations
that maximizes the nucleation coherence.

Beyond the phenomena of wave nucleation or propa-
gation by noise, a number of numerical studies have
shown that increasing amplitudes of random fluctuations
are able to sustain different kinds of propagating struc-
tures, including spiral waves �Jung and Mayer-Kress,
1995a�, spots and global oscillations �Hempel et al.,
1999�, or even well-organized targetlike patterns
�Alonso et al., 2002�. These studies, together with their

experimental verification in the photosensitive BZ reac-
tion �Wang et al., 1999; Alonso et al., 2001�, are, however,
representative of the effects of multiplicative noise, and
we claim that their implications go beyond the additive
noise-unveiled coherences discussed in this section. Thus
we postpone their detailed consideration to Sec. VI.A,
devoted to investigating genuine effects of parametric
noise in establishing effective excitability conditions of
spatially extended systems.

To finish this section, we refer briefly to noise-
mediated front propagation, an issue to be distinguished
from the concept of noise-supported signal transmission
discussed in Sec. V.A.2. In this respect the systems con-
sidered here are not supposed to be capable of repeated
signal transmission in response to a continuously applied
external input, as we assumed there. Rather, we consider
noise-mediated, single �i.e., nonrepetitive� propagation
of instantaneous disturbances, created either externally
or by the noise itself. This idea was first developed ex-
perimentally by Löcher et al. �1998�, who studied a one-
dimensional chain of symmetrically and locally coupled
diode resonators operating in a biased bistable regime.
Diffusive coupling and bias were chosen such that no
propagation was possible in the absence of fluctuations,
and amplified shot noise was independently applied at
each element. The signal, triggered as an induced phase
change at one end of the chain and measured at the
other, was observed to propagate faster and more reli-
ably for increasing values of the noise intensity, before
being corrupted under intense noisy conditions. Later
�Löcher et al., 2000� the situations of global versus local
noise were compared, in both experiments and numeri-
cally. The averaged velocities of kink propagation turn
out to be quite similar, as long as noise correlation is
larger than the width front. To stress the differences be-
tween this scenario of facilitated transmission and that
of array-enhanced stochastic resonance via synchroniza-
tion, it is worth emphasizing the conclusion raised by the
authors themselves when referring to the scaling of
these behaviors with the number of elements in the ar-
ray: contrary to improved signal-to-noise ratios for
larger arrays, signal propagation here largely deterio-
rates when increasing the number of connected ele-
ments.

3. Spatial stochastic coherence

We have commented previously in Sec. IV.A that a
phenomenon totally equivalent to stochastic coherence
can also happen in space, with spatial frequencies, in the

form of a pattern characterized by a wave vector k, be-
ing revealed by noise. We now analyze this phenom-
enon, termed spatial stochastic coherence, as a function
of the intensity of the �additive� noise.

Consider the Swift-Hohenberg equation �4�, in the

presence of an additive Gaussian noise ��x , t�, white in
space and time. As described in Sec. IV.A, in the ab-

sence of noise and for a�0 �below threshold�, the sys-

tem has a homogeneous stable steady state at �=0, rep-
resenting conduction in the Rayleigh-Bénard cell.
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Above threshold �a�0�, the system develops a roll-like

pattern of nonzero wave number k=k0, which represents

convection. Below threshold �a�0�, and in the presence
of a small amount of noise, the structure function can be
calculated in steady state by linearizing Eq. �4� around

�=0, and transforming the result to Fourier space, as
described in Sec. IV.A. The result, given in Eq. �110�,
exhibits a well-defined spatial periodicity at k=k0, as
shown in Fig. 35�a�. Moreover, the structure function
�which is a spatial power spectral density� increases
monotonically with the noise intensity. Of course, this
calculation is no longer valid for large noise levels, be-

cause in that case the linearization around �=0 is not
justified. In order to incorporate the nonlinear contribu-
tions of the noise, one can apply the Gaussian approxi-

mation �Langer, 1971� to the nonlinear term ��x , t�3

�3��x , t��2�st. Repeating the process outlined above,
the resulting structure function is in this case

Sst�k� =
�2

�k2 − k0
2�2 − a�

, �132�

with a rescaled linear parameter a��a−3�2�st. The av-

erage �2�st can be evaluated consistently, resulting in

�2����2�2/3. Numerical evaluation of the effective pa-

rameter a� indicates that the dependence of � is well
described by the Gaussian approximation �Carrillo et al.,
2004�.

As a measure of spatial coherence, we now define

�S � S�kmax� − S�0� �133�


in numerical simulations a circular average of S�k� is
required�. Using Eq. �132� and the self-consistent aver-
age given above, we get

�S��2� = −
k0

4�2

a��k0
4 − a��

. �134�

This quantity does exhibit a maximum for a particular
value of the noise intensity, as shown in Fig. 35�b�. Such
behavior is a clear indication that an intermediate noise

level exists that enhances the spatial coherence in the
system, analogously to what happens in temporal coher-
ence resonance. The phenomenon occurs universally in
pattern-forming systems; it has also been reported nu-
merically in the chloride–iodine–malonic acid �CDIMA�
reaction by Carrillo et al. �2004�.

VI. SPATIOTEMPORAL DYNAMICS: NOISE-EFFECTIVE

REGIMES

Beyond the noise-unveiled resonances just discussed,
fluctuations in spatially extended systems may have
other striking dynamical effects. In this section, we con-
centrate on situations in which the interplay between
nonlinearities and noise, mostly of a multiplicative ori-
gin, gives rise to well-defined transitions between differ-
ent modes of self-organized behavior. Generically, we
interpret these noise effects in terms of effective deter-
ministiclike models of the kind referred to previously in
Sec. II.B.3. In the first part of this section, we focus on
excitable systems. Before presenting the essentials of
this theoretical approach, we review the abundant ex-
perimental, analytical, and numerical literature accumu-
lated during these last years on the subject. In the sec-
ond part, doubly resonant effects will be discussed
briefly as the paradigm of the combined effects of the
noise-effective regimes discussed in this section and the
noise-driven resonances analyzed in Sec. V.

A. Multiplicative noise effects in excitable systems

1. Excitability transitions: Experimental and numerical

realizations

In this section, we review experimental and numerical
results reported during the past decade on the effects of
state-dependent noise in excitable systems. To get a bet-
ter perspective of the successive developments of this
topic, we have adopted a sort of historical order.

Although presented to the scientific community under
the heading of spatiotemporal stochastic resonance, the
first numerical evidence that wave propagation may be
enhanced by noise was reported by Jung and Mayer-
Kress �1995b�. As mentioned in Sec. V.A, those authors
studied a two-dimensional pulse-coupled array of iden-
tical spiking threshold elements with spatiotemporal
white noise. We stress here that the coupling strength
was adjusted to be within the subexcitable regime, for
which, in the absence of noise, excitable waves shrink as
they propagate, and eventually die. Noise, within a cer-
tain range of intensities, was seen, however, to sustain
coherent propagation. Although the noise appears in the
model as pure additive �thermal-like�, the way the spik-
ing threshold is activated through pulse coupling renders
the effect of noise effectively parametric. The model was
exploited later on in relation to growth of spiral waves
�Jung and Mayer-Kress, 1995a�. These “thermal waves”
�Jung, 1997� were statistically characterized in a follow-
ing analysis using the concept of coherent space-time
clusters of continued excitation. Their size distribution
happened to satisfy a power law, which constitutes the

FIG. 35. Spatial stochastic coherence. �a� Structure function

exhibited by the Swift-Hohenberg model �4� for a=−0.005, k0

=0.6, and four different noise intensities listed in the legend.

�b� �S vs noise intensity for two different values of the control

parameter a. Squares correspond to a=−0.005 and circles to

a=−0.05. In the two plots, lines correspond to functions �132�
and �134�, respectively, in terms of the renormalized parameter

a�. Simulations were performed in a square lattice of 64�64

cells with spacing �x=0.5. From Carrillo et al., 2004.
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signature of a self-organized critical state. Later the
same model was used to show that noise can induce
complex scroll patterns in 3D media �Zhou and Jung,
2000�.

Analogously, the experiment by Kádár et al. �1998�,
aimed also at verifying experimentally the phenomenon
of spatiotemporal stochastic resonance as discussed in
Sec. V.A, constitutes in fact the first demonstration of
noise-enhanced excitability. Soon afterwards, the same
group �Wang et al., 1999� used their experimental setup
�a BZ photosensitive medium with Gaussian, zero-mean
fluctuations in the forcing illumination� to look for the
above-mentioned evidence of self-organized criticality.
In those experiments, noise was indeed found to initiate
and sustain wave behavior under subexcitable condi-
tions, as shown in Fig. 36. A statistical analysis of the
corresponding coherent space-time clusters led to a
power-law distribution, and hence to the lack of any in-
trinsic length or time scale in the system, in consonance
with the numerical prediction of Jung �1997�, and featur-
ing a typical avalanchelike behavior. In a different con-
text, neurophysiological instead of chemical, but with
similar aims, intercellular calcium signals were identified
as noise-nucleated waves in cultured networks of rat
hippocampal astrocytes by Jung et al. �1998�.

Back to numerical simulations, the effects of fluctua-
tions in the excitability threshold were studied by
Hempel et al. �1999� using a detailed cellular automaton
model with activator-inhibitor dynamics. Different re-
gimes were found in terms of the noise intensity. In par-
ticular, nucleation of pulsating spots at intermediate
noise levels turns into a synchronized state of global os-
cillations as the fluctuation intensity increased.

Noise-driven nucleation of waves has also been in-
voked as a mechanism of noise-induced memory in neu-
ronal dendritic regions by Chialvo et al. �2000�. The basis
of such a mechanism is the interplay between stochastic
activation, deterministic refractoriness, and finite speed

of wave propagation in excitable media. This combina-

tion causes an increased probability of activation in sites

where the previous nucleation took place, which Chialvo

et al. �2000� interpreted as a form of memory in a neural

context. A similar mechanism lies behind the stochastic

pacemakers studied by Jung and Gailey �2000�.
Extending the observation of noise-enhanced wave

propagation by Kádár et al. �1998�, the experimental

work by Alonso et al. �2001� demonstrated that not only

waves can be sustained by noise in subexcitable condi-

tions, but that regular pacemakers �a signature of sus-

tained oscillatory activity� can also be created out of

noise under conditions that are on average purely excit-

able. A distinctive plot of these experiments, conducted

once more in the photosensitive BZ reaction, is shown

in Fig. 37. Noise was introduced via a random illumina-

tion profile of squares uncorrelated in space and white in

time, as set by the computer update operational time

�100 ms�. Both the experimental results for noise-

supported waves in subexcitable conditions and noise-

created target patterns in nonoscillatory regimes were

reproduced by numerical simulations of the generalized

Oregonator model as it applies to the photosensitive BZ

reaction �6� under multiplicative zero-mean Gaussian

noise �Alonso et al., 2001�.
More or less simultaneously, the limiting case of infi-

nite spatial correlation �purely temporal noise� was stud-

ied experimentally by Zhou, Jia, et al. �2002� 
see also Jia

et al. �2004�� in the traditional �nonphotosensitive� BZ

reaction, introducing this time the noise via a random

electric field. In this case, synchronous nucleation of

waves throughout the system was observed for an opti-

mal noise level.

Finally, Zhou, Kurths, Neufeld, and Kiss �2003� exam-

ined numerically the interplay among additive noise, dif-

fusion, and chaotic mixing in an excitable two-

dimensional FitzHugh-Nagumo model 
see Eq. �26��.
This study revealed a regime of global oscillations at an

intermediate noise level that depends on the flow rate.

FIG. 36. Noise initiates and sustains waves in the subexcitable

photosensitive BZ reaction. �a� The situation without noise,

and �b�,�c� and �d�,�e� show two pairs of successive frames, at

early and late stages of a wave initiation process under spa-

tiotemporal noise, a snapshot of which is shown in �f�. From

Wang et al., 1999.

FIG. 37. A target pattern out of noise 
�a�–�d�, for increasing

times� in an excitable �on average� light-sensitive BZ medium.

For comparison, �a��– �d�� correspond to the noise-free case

with a constant and uniform illumination fixed to the averaged

intensity. From Alonso et al., 2001.
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Actually, the behavior shown in Fig. 37 constitutes a
particular example of a whole range of noise-induced
transitions linking different excitability regimes, includ-

ing subexcitable→excitable �the case of Fig. 33�,
excitable→oscillatory �the case of Fig. 37�, bistable

→excitable �García-Ojalvo et al., 2001; Báscones et al.,

2002�, and even a reverse transition oscillatory

→excitable �Ullner, Zaikin, García-Ojalvo, and Kurths,
2003�. These noise-induced transitions can be under-
stood theoretically in terms of effective models, as de-
scribed in the next subsection.

2. Excitability transitions: Nullcline-based scenarios

As an application of the general formalism presented
in Sec. II.B.3, consider again the Barkley model

�u

�t
=

1

�
u�1 − u��u −

v + b + ��r,t�

a
	 + Du�2u ,

�v

�t
= �u − v� , �135�

under the action of a multiplicative spatiotemporal
white noise in space and time with correlation given by

the �two-dimensional� version of Eq. �31� and c�0�
=�2 / ��x�2. The effective reaction-diffusion model is in
this case particularly simple, since it amounts to a pure
renormalization of the original Barkley model, with ef-
fective parameters �Alonso et al., 2002�

a� = a�1 −
2c�0�

�a2 	 ,

b� = b −
c�0�

�a
, �136�

�� =
�

�1 − 2c�0�/�a2�
.

The validity of this approach is qualitatively supported
by Fig. 38, which compares a noise-induced spiral �cen-
ter plot� with that generated by a deterministic effective
model �right plot� with the parameters redefined accord-
ing to Eq. �136�. In this case noise is essential for the
appearance of the spiral, since the medium is in a sub-
excitable regime and in the absence of noise any excita-

tion wave with free ends shrinks as it propagates, and
eventually disappears.

The noise-induced spirals rapidly adopt a characteris-
tic pitch and rotation period that depends on the noise
intensity and is completely in agreement with the deter-
ministic counterpart coming from the effective model, as
shown in the top panel of Fig. 39. This is a distinctive
signature of a multiplicative-noise effect, different from
pseudo-oscillations arising in stochastic coherence,
whose frequency is independent of the intensity of the
additive noise that produces the phenomenon. The two
plots in Fig. 39 also show, as vertical lines, the locations
of the deterministic bifurcations that can be crossed by
increasing the intensity of the parametric fluctuations
�Alonso et al., 2002�.

This theoretical methodology can also help in the un-
derstanding of noise-induced target patterns. A com-
parison between direct numerical simulations and effec-
tive model predictions, this time corresponding to the
oscillation period of the target pattern, is shown in the
bottom panel of Fig. 39. This theoretical analysis can be
extended to encompass correlated fluctuations in both

FIG. 38. A numerically obtained spiral sustained by noise

�center�, compared with the behavior of the corresponding de-

terministic effective model �right�. In the absence of noise, the

spiral dies away �left�. Adapted from Alonso et al., 2002.

FIG. 39. Mean rotation period of a noise-sustained spiral �top�
and mean oscillation period of a noise-sustained target �bot-

tom� versus noise intensity. Continuous lines correspond in

both cases to the results of the effective reaction-diffusion

Barkley model. Vertical dashed lines represent the transitions

between different dynamical regimes. From Alonso et al., 2002.
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space and time, as shown by Alonso et al. �2002�. Hou
and Xin �2002� compared spatial, temporal, or spa-
tiotemporal �white in space and time� parametric fluc-
tuations in Barkley’s model in relation to spiral wave
formation.

3. Other noise effects in active media

Noise also has other nontrivial effects in active media.
An example was provided by Hemming and Kapral
�2000�, who considered resonantly forced oscillatory sys-
tems, where the resonant forcing is applied to the system
in a spatially inhomogeneous �random� way. The phe-
nomena observed are diverse, ranging from roughening
of the usual fronts separating phase-locked domains to
unusual spiral wave dynamics. In a second example,
noise-controlled self-replicated patterns have been re-
ported numerically by Lesmes et al. �2003� in a simple
autocatalytic reaction-diffusion system. Under interme-
diate intensities of additive white noise in both the acti-
vator and inhibitor variables, a noise-controlled transi-
tion from stripe growth to spot replication was reported,
a behavior claimed to be reminiscent of cell colony for-
mation in random environments.

B. Doubly resonant effects

The noise-induced phenomena discussed so far rely
on a particular deterministic behavior of the underlying
nonlinear system. When this required behavior is in-
duced itself by a second source of noise, a doubly sto-
chastic effect arises. Here the constructive role of fluc-
tuations is twofold. For example, first a multiplicative
noise can induce bistable behavior in a deterministically
monostable medium, using the standard mechanisms of
noise-induced phase transitions �see Sec. III�; then a sec-
ond, additive noise may enhance certain resonances in
the response of this noise-induced bistable medium. The
result is a doubly stochastic resonance. The same effect
leads to signal propagation in monostable media and to
a novel mechanism of stochastic coherence.

1. Doubly stochastic resonance

Consider a d-dimensional array of dynamical ele-
ments described by

d�i

dt
= f��i� + g��i��i�t�

+
D

2d
�

j�nn�i�
��j − �i� + A cos t + �i�t� , �137�

where the nonlinear functions f��� and g��� are given by
Eq. �94�. As shown in Sec. III.A.1, this system exhibits,
in the absence of additive noise, an ordering phase tran-
sition induced by the multiplicative noise term. This

transition consists in the loss of stability of the state �
=0, and the appearance of two new �symmetrical� stable
steady states that coexist. It is natural to expect that in
this �noise-induced� bistable situation, a second source

of noise will be able to produce a stochastic resonance
effect. This doubly stochastic resonance was proposed
and demonstrated by Zaikin et al. �2000� in the model
system �137�. Figure 40 shows the dependence of the
SNR on the intensity of the additive noise, for a nonzero
intensity of the multiplicative noise. The figure com-
pares numerical simulation results with an analytical ap-
proach resulting from applying the standard linear-
response theory �Anishchenko et al., 2003� to the
effective stochastic potential corresponding to the noise-
induced system �see Sec. II.B.2�. It is worth emphasizing
that the SNR is maximized in this case by tuning the
values of the intensities of both noise terms.

The same mechanism has also been invoked by Pik-
ovsky et al. �2002� to explain the existence of system size
resonance in the noise-induced bistable medium de-
scribed by Eq. �137�, and by von Haeften et al. �2004� to
show the appearance of stochastic resonance between
noise-induced patterns �see Sec. IV�.

2. Signal propagation through monostable media

We showed in Sec. V.A.2 that the same mechanism
leading to array-enhanced stochastic resonance was able
to sustain propagation of a periodic signal through an
array of bistable elements. In the same way, and follow-
ing the reasoning laid out above, a deterministically
monostable medium, driven bistable by the action of a
multiplicative noise, will support signal propagation en-
hanced by a second, additive source of noise. This was
proven by Zaikin, García-Ojalvo, et al. �2002� in model
�137�, for a harmonic driving that affects only a small
number of sites in an array of dynamical elements. As in
the standard singly stochastic case �Sec. V.A.2�, under
suprathreshold harmonic modulation sites receiving the
input will display a monotonic decrease in the SNR,
while oscillators further down the chain exhibit the char-
acteristic bell shape of the SNR in stochastic resonance.

FIG. 40. SNR versus the intensity of the additive noise, for a

nonzero value of the multiplicative noise. Symbols denote nu-

merical simulation results of the field �filled circles� and its

two-state approximation �empty circles�, and the solid line the

result of applying the linear-response theory to the corre-

sponding stochastic potential of the system. From Zaikin et al.,

2000.
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If, on the other hand, the input sites were subject to
subthreshold periodic driving, all elements in the system
exhibit a maximum in the SNR at an optimal noise level.
In the absence of multiplicative noise, on the other
hand, SNR decreases monotonically with noise in all
situations, as corresponds to a monostable system.
Again, the two noise sources need to be tuned simulta-
neously in this case in order to optimize propagation.

3. Stochastic coherence via symmetry restoring

So far we have described situations in which one of
two noise sources induced bistability in a medium, and
the second one produced a constructive effect under
those conditions. But other types of doubly stochastic
effects exist. For instance, another example is provided
by activator-inhibitor media operating in a bistable re-
gime. These media are able to exhibit stochastic coher-
ence even in bistable conditions, because noise can in-
duce jumps between both stable states in an equally
effective basis, provided the basins of attraction of the
two stable states are symmetric. In the general asymmet-
ric situation, Zaikin et al. �2003� showed that an appro-
priately tuned multiplicative noise can restore the sym-
metry of the dynamics, and a second source of noise can
then produce a coherence resonance effect. Two noise
sources must be simultaneously tuned, but unlike the
previous situations spatial coupling is not a requisite
here, because symmetry restoring occurs independently
of the system dimensionality.

VII. SYNCHRONIZATION AND CONTROL

The concept of synchronization is often invoked when
referring to noise effects in spatially extended systems.
In fact, we have already referred to it when dealing with
array-enhanced resonant phenomena in several parts of
Sec. V. In this last section, we will first briefly discuss
different aspects of synchronization from a twofold per-
spective: �i� in relation to a particular class of phase os-
cillator models, i.e., the so-called active rotators, that
have characteristics of both excitable and oscillatory be-
havior; and �ii� by reviewing the abundant literature on
synchronization of chaotic oscillators by means of noise.
The last subsection is devoted to a somewhat related
concept, that of the control of chaotic regimes by fluc-
tuations. In our opinion that extremely counterintuitive
scenario is the most appropriate one to finish this review
devoted to highlighting the constructive effects of noise
in self-organizing extended systems.

A. Stochastic synchronization of active rotators

In its origin, synchronization is a concept associated
with periodic dynamical systems, and in its more stan-
dard formulation it refers to nonlinear oscillators. A par-
ticular benefit is gained when parametrizing the oscilla-
tory dynamics in terms of a phase variable. This
reduction is singularly rewarding when dealing with
coupled ensembles �Kuramoto, 1981�. A prototypic

model for a system of globally coupled active rotators
under additive fluctuations is �Kurrer and Schulten,
1995; Zaks et al., 2003�

d�i�t�

dt
=  − sin �i +

C

N
�

j

sin��j − �i� + �i. �138�

In this model, �1 ��1� corresponds to an excitable

�oscillatory� regime of the ith elementary rotator. Re-
cently, Tessone et al. �2007� extended the model to en-
compass an eventual diversity in the individual frequen-
cies of the elementary units. For identical units, Zaks
et al. �2003� proposed the use of a Gaussian approxima-
tion for the mean field to solve the hierarchical dynamics
of the collective modes in the ensemble, in that way ex-
tending to large noise intensities the earlier results ob-
tained by Kurrer and Schulten �1995�. By varying the
magnitude of the stochastic forcing, three dynamical re-
gimes were identified: stationary, rotatory, and remark-
ably a locally oscillatory state, called breathing. Tessone
et al. �2007� focused on the purely excitable regime and
developed a theory for the emergence of global firing
conditions. A particular view of this phenomenon in
terms of an appropriate order parameter measuring dy-
namic synchronization is plotted versus the intensity of
noise and the diversity in Fig. 41. Numerical and mean-
field theoretical results show that for intermediate val-
ues of these two parameters the ensemble exhibits syn-
chronized firing. At the left of this region the oscillators
are quiescent, and at the right firings are desynchro-
nized.

B. Stochastic synchronization of chaotic oscillators

The first idea of synchronizing chaotic systems sub-
jected to a common noisy input appeared formulated in
the mid-1990s, and has been addressed since then in dif-

FIG. 41. Theoretical �solid lines� and numerical results for the

degree of dynamic synchronization in terms of the noise inten-

sity �top� and degree of diversity �bottom�. Results are given in

terms of the Shinomoto-Kuramoto order parameter ", which is

equal to 1 in the case of perfect dynamical �nonquiescent� syn-

chronization. Adapted from Tessone et al., 2007.
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ferent contexts, although using different names: it was
called “reliability” in neurophysiology, to refer to the
identical response of a neuron to a repeated noisy forc-
ing �Mainen and Sejnowski, 1995�, while the term “con-
sistency” has been proposed recently in experiments

with noise-driven ND:YAG lasers �Uchida et al., 2004�.
The phenomenon was primitively invoked for a single
pair of identical units �Maritan and Banavar, 1994�

somewhat surprisingly, the apparently simpler idea of
synchronizing nonchaotic oscillators was addressed quite
later �Jensen, 1998�� and was immediately controversial.
First the phenomenon was considered an artifact arising
from a finite precision in numerical simulations �Pik-
ovsky, 1994�. Later it was attributed to a nonzero mean
value of the noisy signal �Herzel and Freund, 1995;
Malescio, 1996; Sánchez et al., 1997�. More recently it
has been demonstrated for zero-mean, additive Gauss-
ian white noises of large enough intensity in certain cha-
otic maps �Lai and Zou, 1998; Toral et al., 2001� 
the case
with parametric noise was considered by Minai and
Anand �1998��. The generalization to the weaker level of
phase synchronization was considered in the case of two
nonidentical chaotic systems under common noise by
Zhou and Kurths �2002a�, and experimentally observed
in noisy-neuronal oscillators by Neiman and Russell
�2002�.

Considering arrays of diffusively coupled identical, or
nearly identical, chaotic units, a completely different
concept was put forward by Lai and Liu �2001� 
see also
Zhou and Kurths �2002b��. The authors proved that the
temporal regularity of the system in terms of some mea-
sure of the synchronization between units is highly sen-
sitive to noise resembling the phenomenon of stochastic
coherence 
in fact, the idea was formulated earlier for a
single pair of Lorenz �Liu and Lai, 2001� and of Rössler
�Zhou, Kurths, et al., 2002� oscillators�. Experimental
verification, in the globally coupled case, was reported
soon afterwards using an array of chaotic electrochemi-
cal oscillators �Kiss et al., 2003�. Different possibilities to
force an array of diffusively coupled chaotic units with
parametric and/or additive noise forces, either white or
time-correlated, were considered by Lorenzo and Pérez-
Muñuzuri �2001�, and implications in weather forecast
methodologies have been recently discussed �Lorenzo
et al., 2003�.

C. Control of chaos by noise

Finally, we move from synchronization to control of
chaotic systems, by considering first a scenario of spa-
tiotemporal chaos and later a situation of three-
dimensional wave turbulence in weakly excitable sys-
tems.

1. Taming spatiotemporal chaos

Oscillator networks admit a representation in terms of
complex Ginzburg-Landau dynamical units, and its glo-
bally coupled version was examined by Hakim and Rap-
pel �1994� to look for effects of additive white noise. A

particular regime was chosen in which individual units
follow erratic motions but all together combine in a co-
herent way to result in a nonvanishing average when
increasing the number of oscillators. For weak noise, the
mean-field amplitude remains nonzero and even an in-
crease in the periodicity of the dynamics is found. For
stronger intensities, a phase transition to a zero mean
field is observed.

A slightly different idea, this time using frozen noise,
i.e., disorder, was put forward by Braiman et al. �1995� as
a strategy toward control of spatiotemporal chaos in
�diffusively� coupled arrays of forced and damped non-
linear oscillators. In their numerical study, one- and two-
dimensional ensembles of chaotic units �forced nonlin-
ear pendula in the simplest case considered, with a
uniform distribution of their lengths� assemble into an
ordered motion displaying complex but regular spa-
tiotemporal patterns by frequency locking the motion to
harmonics and subharmonics of the forcing. As quoted
by these authors, the phenomenon appears in multiple
systems and turns out to be robust with respect to both
the parameter range and the size and realization of the
disorder. Figure 42 shows the spatiotemporal evolution
of an array of coupled pendula for different levels of

FIG. 42. �Color online� Spatiotemporal patterns of an array of

128 pendula for increasing levels of disorder. Color coding rep-

resents the angular velocity of the pendula, which are repre-

sented in the vertical direction, while time runs horizontally.

�b�,�c� Two different realizations of the same amount of frozen

disorder. Horizontal black bars indicate the �b� length or �c�,�d�
half-length of periodic spatiotemporal patterns. From Braiman

et al., 1995.
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disorder. Note that in the case of zero disorder a state of
fully developed spatiotemporal chaos appears, while an
optimal amount of disorder renders the dynamics regu-
lar. This behavior was reproduced experimentally by
Shew et al. �1999�.

2. Controlling scroll-wave chaos

In three dimensions, excitable media typically self-
organize into wave structures known as “scroll waves”
�Winfree, 1973�. This phenomenology has not been as
intensely scrutinized as spiral waves, due to both experi-
mental difficulties �mainly at the control and monitoring
level� and high computational demands. Scroll waves ro-
tate around a one-dimensional singularity line known as
a filament, which may be open �straight or curved�,
closed into a ring �“scroll rings”�, or forming knots �Win-
free and Strogatz, 1984�. In particular, scroll rings are,
unlike spirals, faintly robust structures and mostly col-
lapse, although they may also expand under weakly ex-
citable conditions �Panfilov and Rudenko, 1987�. More-
over, expanding scroll rings are intrinsically unstable
�Alonso, Kahler, et al., 2004� and eventually lead to wave
chaos, sometimes invoked in relation to episodes of ven-
tricular fibrillation in heart tissue �Fenton et al., 2002�.
For that reason, finding mechanisms that control the dy-
namical instabilities of 3D excitable waves is of strong
interest. A promising strategy involves control via a spa-
tially uniform and time-periodic �deterministic� forcing
�Alonso et al., 2003�.

Alternatively, numerical work has recently demon-
strated rather counterintuitive taming effects, prevent-
ing scroll-wave turbulence, when applying a spatially
distributed random external forcing to chaotic 3D wave
propagation �Alonso, Sancho, et al., 2004�. We review
those results in what follows.

The numerical simulation of three-dimensional active
media is an extremely demanding computational task.
Therefore, in this particular context reaction-diffusion
models must be chosen to be as simple as possible. As
such, we study the effects of external fluctuations in the
Barkley model �135�, where multiplicative noise arises

due to fluctuations in parameter b.
The typical scenario of scroll-wave control by noise is

reproduced in Fig. 43. The figure shows how, under
weakly excitable conditions, a 3D scroll wave develops
an instability, through which its organizing �untwisted�
filament starts to snake and bend around, giving rise to
an entangled coil. The filament remains intact, though,
until it reaches the boundary, at which point it breaks
�Alonso, Kahler, et al., 2004�. This regime is shown in the
first four plots of Fig. 43. After introducing noisy forc-
ing, the instability is eliminated and eventually the fila-
ment stretches out with superposed weak random dis-
placements. As expected, this effect is possible only for a
limited range of noise intensities, since under very in-
tense noisy forcing waves would be randomly generated
to compose a completely disorganized pattern of wave
activity.

The key to understanding this behavior is rooted di-
rectly in the concept of negative filament tension, which
underlies the mechanism of the scroll-wave instability
under weak excitable conditions �Biktashev et al., 1994�.
In fact, as discussed in Sec. VI.A.2, the rationale to in-
terpret the effect of multiplicative fluctuations relies on
an effective modification of the medium excitability due
to noise, which in turn leads to a renormalization of the
tension of the scroll-wave filament. By choosing the
model parameters appropriately, a condition of negative
filament tension can be transformed into a positive one,
thus taming scroll-wave turbulence. The opposite situa-
tion, when time-correlated noise stabilizes contracting
scroll rings, was considered by Pérez-Muñuzuri et al.
�2000�.

VIII. DISCUSSION

Nature is noisy, and yet examples of self-organization
abound. How can order arise out of such pervasive ran-
domness? The simplest solution out of this seeming
paradox is the possibility that self-organizing systems
contain built-in mechanisms of robustness to noise �Bar-
kai and Leibler, 2000�. But a different, more appealing
perspective is that in fact self-organizing mechanisms are
built so as to employ unavoidable random fluctuations
to their benefit. A large effort is being devoted by the
scientific community to investigate the latter option. We
have reviewed in this article examples of physical situa-
tions in which noise can be exploited to enhance, sus-

FIG. 43. Evolution of an initially unstable straight filament of

a numerically simulated scroll wave. At time t=40 T, where T

is the wave rotation period, a random white noise forcing is

added to the medium. From Alonso, Sancho, et al., 2004.
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tain, and induce spatially ordered behavior.
Historically, the first situations in which a constructive

role of random fluctuations was identified in systems
with spatial degrees of freedom corresponded to non-
equilibrium phase transitions. That context allowed
well-controlled and -defined predictions of the processes
leading to spatiotemporal order out of noise. Unfortu-
nately, no experiments have been performed to date that
test these predictions. A different fate awaited the pre-
dictions of noise-ordering effects in pattern-forming and
excitable media. In those systems, techniques such as the
light-based control of certain nonlinear chemical reac-
tions have allowed quantitative studies showing the un-
deniable constructive role of noise in extended media; a
large part of this review has been devoted to those stud-
ies. Other experimental setups that have led to similar
conclusions are coupled electronic arrays and optical
systems.

The coming years should witness a wealth of theoret-
ical and experimental results translating the knowledge
outlined in this review to systems in the nanoscale, es-
pecially within the field of biology. Living systems are
indeed outstanding in their ability to function in a reli-
able way in spite of being subject to a myriad of noise
sources of non-negligible importance. Examples of these
are the background synaptic noise acting upon brain
neurons, caused by thousands of other neurons that are
directly connected to them �Calvin and Stevens, 1967�,
and the biochemical noise arising in gene regulatory
processes due to the finite �small� number of molecules
involved in the corresponding biochemical reactions
�Rosenfeld et al., 2005�. In the latter context, for in-
stance, predictions have been made, on the basis of the-
oretical models, that noise might play a constructive role
in the accurate location of cell division in bacteria
�Howard and Rutenberg, 2003�. On the other hand, re-
cent observations of the response of bacteria to stress
have shown that excitable dynamics also arises at the
level of gene regulation �Süel et al., 2006�. This and other
recent results open the way for a detailed investigation
of the constructive influence of noise in spatially ex-
tended living systems.

Other small-scale systems where fluctuations are
bound to play an essential role are offered by the recent
surge of interest in nanotechnology. Coupled nano-
oscillators have already been observed to exhibit excit-
ing instances of self-organization �Kaka et al., 2005�. It is
only a matter of time before the effects of random fluc-
tuations, unavoidable in those types of systems, begin to
be studied. Preliminary theoretical investigations �Stege-
mann et al., 2005� already exist.

Biology and nanotechnology provide beautiful ex-
amples of nonequilibrium �and nonlinear� dynamics
where noise can be expected to have important effects.
The techniques developed over the years to deal with
those effects in physical systems, reviewed here, will
help us to continue increasing our understanding of the
mechanisms through which nonlinearities and noise
symbiotically conspire to create order in nature.
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