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Introduction

The novel coronavirus disease first appeared in 
Wuhan, China. As a result of the examination of a 
group of patients, the virus was diagnosed on Janu-
ary 13, 2020. While the fight against the first pan-
demic of the century continues, public health and 
national economies continue to suffer serious dam-
age (Arauzo-Carod, 2021). Different measures have 
been implemented by most countries to fight against 
the coronavirus. People have been locked down in cit-
ies, production has stopped, schools have been closed, 
and restrictions have been imposed on people’s 
movements. While the pandemic has been threaten-
ing people’s health and causing loss of lives, an eco-
nomic downturn began to emerge on the other hand. 
In fact, as highlighted by the United Nations, the 
Covid-19 pandemic means much more than a medical 
crisis; it is an economic, a social and a human crisis 
(UN, 2020). During this pandemic, the main concern 
for each nation is to keep their populations healthy. 
However, the disease also had an impact on national 
economies. Hence, during this unusual and chal-
lenging time of Covid-19, every country has to deal 
with two major issues: Healthcare and economics 
(Sharma et al., 2021). Undetected spread of the virus 
shocked governments, scientists and international 
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organizations. In addition to its impact on public 
health, it caused major economic distress. Therefore, 
these changes will cause a long-run international eco-
nomic downturn. As we mention in this paper, health 
systems of most countries haven’t been able to con-
tain the evolution and the persistence of the virus 
(Kalla et al., 2021).

The whole world is fighting this pandemic, which 
shows the highest number of daily cases around the 
globe and losses of the last century, while the num-
bers affected by the pandemic differ by countries. For 
example, as a country with high population density, 
Turkey has experienced high percentages of inci-
dence and fatality. Additionally, new cases and deaths 
related to Covid-19 increase Daily. The first news of 
death from Turkey came on March 17, 2020 (T.C.S.B, 
2021). More than forty-nine thousand citizens of the 
Republic of Turkey died since the day Turkey met 
with the first Covid-19 case. In the face of the daily 
increase in registered cases in Turkey, the govern-
ment and the public authorities took a wide range of 
measures that included the entire country at the end 
of April, and a complete lockdown was implemented 
in Turkey from April 29, 2021 until May 17, 2021. In 
this research, we aim to investigate the spatial distri-
bution of the virus and the effect of complete lock-
down measures on the spatial structure of the clusters.

Review of the literature

After the break of coronavirus, studies have used 
statistical methods to determine the nexus between 
cases, the factors of transmission and the determina-
tion of clusters (Appiah-Otoo & Kursah, 2021). As 
the characteristics of Covid-19 are original and wild, 
it spread very quickly. Therefore, The World Health 
Organizaton has consistently used spatial data analy-
sis to control infectious diseases (Esri, 2020; Nasiri 
et  al., 2021). Within the scope of the research of 
measures that can be taken to prevent the pandemic, 
many researchers in different countries have revealed 
the effects of spatial factors on the fast spread of 
coronavirus (Adegboye et  al., 2021; Casado-Aranda 
et al., 2021; Castro et al., 2021; Gupta et al., 2021; Li 
et al., 2021; Liu et al., 2021; Maiti et al., 2021; Man-
sour et  al., 2021; Nasiri et  al., 2021; Rubino et  al., 
2020; Sarkar et al., 2021; Shariati et al., 2020; Tang 
et al., 2020; Tao et al., 2020; Vaz, 2021; Xiong et al., 

2020). Ramírez-Aldana et al. (2020) determined that 
the number of Covid-19 cases in Iranian provinces 
is spatially related. Similarly Arauzo-Carod (2021) 
showed that in Catalonia (Spain), positive case num-
bers were associated with nearby settlements, through 
spatial autocorrelation. Eryando et  al. (2020) stated 
that Covid-19 was not observed randomly in Indone-
sia, but that the neighboring provinces that were con-
nected and five other cities with the highest number of 
cases were adjacent to each other. Ghosh and Cartone 
(2020) determined the spatial impact of the virus that 
emerged in different regions of Italy. Again, research-
ers similarly highlighted the importance of spatial 
relation in the spread and prevention of the epidemic 
in Oman (Al-Kindi et  al., 2020), Kuwait (Alkhamis 
et al., 2020), South Korea (Kim & Castro, 2020), Iran 
(Pourghasemi et al., 2020), China (Kang et al., 2020), 
Lebanon (El Deeb, 2021), and Rio de Janeiro (Fer-
reira et al., 2020). In these studies, which take place 
in literature, the importance of spatial heterogeneity 
has been underlined and it has been determined that 
local characteristics affect the spread of coronavirus. 
The efficiency of health policies has been associated 
with coordination at both local and national levels. 
Geographical information about the pandemic helps 
to ensure coordination at national and local levels. 
It has been stated that maintaining health standards, 
preventing social tension and achieving fewer work 
interruptions can be accomplished this way (Ghosh & 
Cartone, 2020).

In the light of this information, the goal of this 
research is to survey the clusters of the pandemic 
among the provinces of Turkey and to examine 
whether the clustering structure has changed after 
the country’s lockdown strategy. The course of the 
change in Covid-19 cases in Turkey during the period 
of study by provinces can also be examined in the 
timeline. Selected accordingly, the period of study 
offers the scope to examine the spatial distribution of 
Covid-19 in Turkey’s provinces in a comparative way 
including the complete lockdown period and the pre-
vious period.

Methodology

Data showing the number of coronavirus cases by 
province, corresponding to a weekly population of 
100,000 began to be published as of February 15, 
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2021 in Turkey. The study uses the number of cases 
by province corresponding to a population of 100,000 
for 20 weeks (8 February–28 June). The summary of 
the characteristics of the research variables are pre-
sented in Table 1. The number of coronavirus cases, 
which increased within weeks during the period of 
this study, reached its peak in the 11th week and then 
started to decline.

If the empirical study is developed on spatial 
data, or if the relations studied are “spatial” in 
nature, it becomes essential to use spatial analy-
sis that can “appropriately” incorporate location 
and spatial arrangement into the study (Anselin, 
1999). In this context, spatial autocorrelation was 
employed to examine whether Covid-19 has note-
worthy global or local spatial autocorrelation fea-
tures (Xiong et  al., 2020). Global or local meas-
ures of spatial autocorrelation have been used to 
investigate the spatial patterns and define hot spots 
and cold spots of the epidemic in many researches 
(Alves et  al., 2021; Castro et  al., 2021; Das et  al., 
2021; Ghosh & Cartone, 2020; Islam et  al., 2021; 
Kuznetsov & Sadovskaya, 2021; Maithani et  al., 
2020; Maroko et  al., 2020). Spatial statistical 

methods have also been employed in previous years 
to comprehend spatial patterns of epidemic risks 
(Bailey, 2001; Bailey et al., 2011; Cao et al., 2010; 
Cromley, 2003; Ge et al., 2016; Hu et al., 2013; Tsai 
et al., 2009; Wang et al., 2008; Wen et al., 2006).

Spatial autocorrelation, a concept that is of use in 
defining the field of spatial analysis, is at the center 
of studies using spatial statistics (Getis, 2008; Ord 
& Getis, 2001). Spatial autocorrelation measure-
ments and tests are divided into local and global 
scales depending on the scale and scope of the anal-
ysis (Anselin, 1995).

The Moran’s I statistic was employed to deter-
mine the global spatial autocorrelation character-
istics of Covid-19 (Anselin, 1988; Moran, 1948, 
1950):

Similar to the correlation coefficient, Moran’s 
I score varies in the range of [− 1 + 1]. (Anselin, 
1996; Griffith, 2003).

I =
n

∑n

i=1

∑n

j≠1
wij

∑n

i=1

∑n

j=1
wij(xi − x)(xj − x)

∑n

i=1
(xi − xj)

2

Table 1   Descriptive 
statistics of data

Source: Author

Variables DDate Moran’s I Mean Min Max SD

Week 1 8th to 14th February 0.488044 59.4881 7.82 228.02 45.44546
Week 2 15th to 21st February 0.414519 84.4057 3.21 228.40 50.11229
Week 3 20th to 26th February 0.434957 69.7683 2.29 301.76 61.72887
Week 4 27th February to 5th March 0.427239 85.1765 5.35 348.36 74.27887
Week 5 6th to 12th March 0.405174 99.7656 2.11 458.53 83.95166
Week 6 13th to 19th March 0.419647 121.4172 8.18 508.97 90.96018
Week 7 20th to 27th March 0.496801 171.0694 13.57 586.94 113.65164
Week 8 27th March to 2nd April 0.555422 243.2402 23.43 678.72 146.62483
Week 9 3rd to 9th April 0.623690 335.3253 32.17 882.13 184.64584
Week 10 10th to 16th April 0.638943 395.8872 47.60 962.98 196.72092
Week 11 17th to 23rd April 0.667480 397.3954 55.04 854.75 174.88728
Week 12 24th to 30th April 0.674243 260.6160 46.12 532.02 108.19413
Week 13 1st to 7th May 0.586110 188.7370 36.08 359.99 74.79200
Week 14 8th to 14th May 0.485420 106.2531 26.96 192.28 40.53047
Week 15 15th to 21st May 0.358145 82.3342 15.68 163.72 32.80929
Week 16 22nd to 28th May 0.296495 67.1184 12.47 162.31 29.07410
Week 17 29th May to 4th June 0.257387 57.8652 7.95 110.55 24.90257
Week 18 5th to 11th June 0.271462 52.5607 7.66 129.51 25.45958
Week 19 12th to 18th June 0.312857 49.9973 5.97 116.18 25.12250
Week 20 19th to 25th June 0.326617 47.3296 4.92 136.52 25.89888
Entire period 8th February to 25th June 0.648244 147.6085 23.51 292.38 63.64626
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Local spatial autocorrelation was used to deter-
mine local spatial autocorrelation features of the 
coronavirus.

The Local Moran’s I statistic is calculated as fol-
lows (Anselin, 1995):

Similar to Moran’s I, the G test is another sign 
of local spatial autocorrelation. In this test proposed 
by Getis and Ord (1992) and then further detailed 
in Ord and Getis (1995), values near − 1 indicate 
clustering of similar values. Values near 1 indicate 
divergence (i.e., random models), which means that 
this test is inversely linked with Moran’s I test. G is 
calculated as follows (Getis & Aldstadt, 2004; Getis 
& Ord, 2010):

With the G test, four values are obtained. First, 
the p-value is examined. If the obtained p-value 
is found to be statistically small and significant, it 
indicates that the observation values are clustered 
spatially, otherwise, the observation values are ran-
domly distributed. If the p-value suggests a clus-
ter, look at the z-score. If the z-score is positive, it 
indicates that high values of the observation values 
tend to cluster in the analyzed area. Otherwise, if 
the z-score is found to be negative, it indicates that 
low observation values tend to cluster (Getis & Ord, 
2010).

The Getis-Ord Gi * is another primarily used 
test to measure local spatial autocorrelation. The 
Gi * statistic has been calculated to define hot spots 
and cold spots of coronavirus. Gi * is calculated as 
follows:

Here;
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Gi * , similar to the G test, yields two measures, 
the z-score and the p-value. The resulting z-score 
reports where locations with high or low observa-
tions show a tendency to cluster in space. Unlike 
Local Moran’s and Local Geary statistics, the 
Getis-Ord method does not consider spatial outli-
ers (Anselin, 1995, 2019; Getis & Ord, 1992, 1996; 
Ord & Getis, 1995).

Results and discussion

In the study, Moran’s I coefficients were calculated 
first in order to analyze the relationship between 
Covid-19 cases in any province and Covid-19 cases 
in neighboring provinces. Spatial autocorrelation 
indicates whether Covid-19 numbers are associated 
with close locations. Accordingly, it is observed that 
the spatial autocorrelation of Covid-19 cases is posi-
tive across the country. Moran’s I values for Covid-
19 were recorded in the range of 0.257387–0.674243, 
confirming the presence of spatial structure. While 
Moran’s I statistics tended to increase in the period 
under consideration, it reached its highest value in the 
12th week. As of the 13th week (during the complete 
lockdown period), it started to trend downwards, but 
the spatial correlation was still in clustering charac-
teristic. At the 17th week, Moran’s I values started to 
rise again (Table 1).

Figure  1 shows the results of cluster analysis of 
provinces in Turkey, which is created to examine 
whether the observation values show regionally sig-
nificant spatial clustering or scattering. According to 
LISA, LL clusters are observed in eastern and south-
eastern provinces in all periods. In these regions, 
the patterns of LL clusters tend to have a continu-
ous distribution. While the main clusters of HH were 
frequently seen in the northern regions in the first 
4 weeks, they started to appear in the west from the 
5th week and intensified over time. While the cluster-
ing trend was similar in the 7th, 8th and 9th weeks, 
the northern clustering disappeared at the 10th week. 
As of the complete lockdown (13th week), the pat-
tern of the distribution started to differ. The num-
ber of significant clusters observed in the 16th week 

S =

�

∑n

j=1
x2
j

n
− (x)2
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decreased considerably and started to rise again 
from the 17th week. While the clusters of cases seen 
by weeks tend to rise and rapidly spread over other 
regions, they tend to decrease during the complete 
lockdown period. Within this framework, it is possi-
ble to see that the effect of the measures taken during 
this period is positive.

The Gi* statistic has been calculated to identify 
the clusters of Covid-19 (hot and cold spots). The Gi* 
utilizes the data of each province infected by Covid-
19 and analyzes the local situation, comparing it with 
the global situation in the neighboring provinces 
(Bhunia et al., 2021). Figure 2 shows the prevalence 
of Covid-19 coded by Gi* statistics based on selected 
weekly data from March 8 to June 28, 2021. Accord-
ingly, it is possible to detect the hot and cold spot 
regions of Covid-19. In this context, clusters of cold 
spots and hot spots were detected over the weeks in 
Turkey with a confidence level of 95%.

According to the results of the hot spot analysis, 
8 cities turn up hot spots in the first week. While the 
distribution of hot spots in this region was similar for 
4  weeks, Çanakkale province, located in the Mar-
mara region, was included in the hot spots in the 5th 
week. It spread to Tekirdağ and Kırklareli in the 6th 
week, and was observed in Edirne, Yalova, Istanbul, 
Bursa and Kocaeli in the 7th week. Hot spots rap-
idly covered most of the cities, and these provinces 
have become important hot spots. From the 11th 
week, it has spread to neighboring provinces. In the 
16th week, the number of hot spots decreased, and it 
started to rise again from the 17th week.

Again, in this context, the positive effect of com-
plete lockdown is seen. Researchers in different 
countries have revealed the effects of lockdowns in 
reducing the spread of Covid-19 (Acter et al., 2020; 
Alcântara et  al., 2020; Bourdin et  al., 2021; Cheng 
et al., 2020; Kraemer et al., 2020; Saha et al., 2021). 
Therefore, the importance of spatial measures in pre-
venting the spread of the pandemic emerges. Thanks 
to these measures, both the cost of lockdown will 
decrease, and the spread of Covid-19 can also be pre-
vented more quickly. Thus, the public reaction against 
lockdowns will also ease, relieving public administra-
tors as well.

Conclusion and policy recommendations

In Turkey, the first case of coronavirus was diag-
nosed on March 11, 2020, and during the past year, 
the number of cases has exceeded five million, 
while the number of deaths has exceeded forty-nine 
thousand. On the other hand, different numbers of 
cases at the provincial level brought up the exami-
nation of the geographical distribution of Covid-19. 
In this context, the necessity of using spatial statis-
tics has emerged. Thus, the efficiency of local deci-
sions will increase and it will be possible to fight 
against the pandemic more strongly. In this direc-
tion, with the help of spatial statistics, this study 
aims to examine the spatial distribution of the virus 
and to investigate the effect of complete lockdown 
measures on the spatial model of the clusters. As 
a result of the analyses made in this framework, a 
positive spatial autocorrelation has been determined 
in Turkey. The relationship between provinces was 
measured and the spatial clustering of Covid-19 
was determined. These findings revealed the signifi-
cant effects of the infection spreading among prov-
inces. This reveals the importance of geographical 
location in the fight against the pandemic. Identi-
fying hot spot Covid-19 areas may be beneficial in 
supervising regional Covid-19 prevention programs 
(Bhunia et  al., 2021). In the light of the results 
obtained, it is important for policy makers to take 
measures to prevent the spread of the pandemic for 
provinces with hot spots because these cities are 
the riskiest in terms of the virus spreading, while 
these provinces also have more spatial interactions 
with their neighbors. Therefore, measures should be 
highlighted and control should be strengthened in 
cities with hot spots and their neighbors (Zeren & 
Yilanci, 2020).

However, with the complete lockdown period, it 
was determined that the spatial clusters of Covid-19 
decreased and the spatial relations between the prov-
inces weakened. The spatial relations observed at the 
local level will enable decision makers to produce 
more successful solutions in reply to the pandemic. 
The spread of the pandemic can be prevented by tak-
ing measures for the provinces where the said rela-
tions are observed. Therefore, measures taken specifi-
cally in provinces with high risk will both prevent the 
spread of the virus and will have a lower economic 
cost compared to a nationwide lockdown.
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Fig. 1   Regional level spatial clustering of Covid-19 for 20 weeks and entire period in Turkey. Source: Author
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This research, which tries to reveal the spatial rela-
tionships of Covid-19, has some limitations. One of 
the limitations in question is that the data set does 
not include the number of cases and deaths. For this 
reason, the spatiotemporal spread pattern of Covid-19 

could not be examined by using the number of deaths. 
Also, since the data began to be published as of Feb-
ruary 2021, the spatiotemporal characteristics of the 
epidemic could not be examined for the whole pro-
cess. In addition, since the data obtained are related 

Fig. 1   (continued)
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Fig. 2   Clustering of Covid-19 for 20 weeks and entire period in Turkey. Source: Author
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Fig. 2   (continued)
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to the provinces, analyzes at lower levels could not be 
performed. In future studies, when the data is avail-
able, more detailed results can be obtained by using 
the number of deaths, analyzing at the district level 
or by separating rural and urban areas. It is thought 
that these analyzes will be beneficial in preventing the 
spread of the epidemic.
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