
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Spatiotemporal patterns of population in mainland China, 1990 to 2010

Gaughan, Andrea E.; Stevens, Forrest R.; Huang, Zhuojie; Nieves, Jeremiah J.; Sorichetta,
Alessandro; Lai, Shengjie; Ye, Xinyue; Linard, Catherine; Hornby, Graeme M.; Hay, Simon I.;
Yu, Hongjie; Tatem, Andrew J.
Published in:
Scientific Data

DOI:
10.1038/sdata.2016.5
10.1038/sdata.2016.5

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link to publication

Citation for pulished version (HARVARD):
Gaughan, AE, Stevens, FR, Huang, Z, Nieves, JJ, Sorichetta, A, Lai, S, Ye, X, Linard, C, Hornby, GM, Hay, SI,
Yu, H & Tatem, AJ 2016, 'Spatiotemporal patterns of population in mainland China, 1990 to 2010', Scientific
Data, vol. 3, 160005. https://doi.org/10.1038/sdata.2016.5, https://doi.org/10.1038/sdata.2016.5

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 25. Aug. 2022

https://doi.org/10.1038/sdata.2016.5
https://doi.org/10.1038/sdata.2016.5
https://researchportal.unamur.be/en/publications/751d9588-4f9d-4c25-98a1-02ecd8cd8684
https://doi.org/10.1038/sdata.2016.5
https://doi.org/10.1038/sdata.2016.5


Spatiotemporal patterns of

population in mainland China,

1990 to 2010

Andrea E. Gaughan1, Forrest R. Stevens1, Zhuojie Huang2, Jeremiah J. Nieves1,

Alessandro Sorichetta3,4, Shengjie Lai2,3,5, Xinyue Ye6, Catherine Linard7,8,

Graeme M. Hornby3, Simon I. Hay9,10,11, Hongjie Yu2 & Andrew J. Tatem3,5,10

According to UN forecasts, global population will increase to over 8 billion by 2025, with much of this

anticipated population growth expected in urban areas. In China, the scale of urbanization has, and

continues to be, unprecedented in terms of magnitude and rate of change. Since the late 1970s, the

percentage of Chinese living in urban areas increased from ~18% to over 50%. To quantify these patterns

spatially we use time-invariant or temporally-explicit data, including census data for 1990, 2000, and 2010

in an ensemble prediction model. Resulting multi-temporal, gridded population datasets are unique in

terms of granularity and extent, providing fine-scale (~100m) patterns of population distribution for

mainland China. For consistency purposes, the Tibet Autonomous Region, Taiwan, and the islands in the

South China Sea were excluded. The statistical model and considerations for temporally comparable maps

are described, along with the resulting datasets. Final, mainland China population maps for 1990, 2000, and

2010 are freely available as products from the WorldPop Project website and the WorldPop Dataverse

Repository.

Design Type(s)
database creation objective • data integration objective • time series design
• population modeling objective

Measurement Type(s) population

Technology Type(s) census
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Sample Characteristic(s) Homo sapiens • China • anthropogenic habitat
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Background & Summary
An increasing global population, becoming more concentrated in urbanized regions, is estimated to
contribute another 2.5 billion people to the current total by 2050 1. A large part of this urban population
growth is in Asia, where it is increasing by 1.5% per year, with the only other region showing >1% per
year urban growth being Africa1. One of the most significant components of these Asian population
trends is China, with an urban population of 54% in 2014 projected to be ~70% by 2030 (ref. 2).
Considering the implications of how continued population growth in the coming decades influences the
sustainability of urban regions and general human welfare3, a better understanding of the spatial patterns
of growth is needed. One way to accurately depict spatially-explicit changes in population distribution
patterns is through the use of gridded population datasets.

A dasymetric approach is typically used to disaggregate areal census data to smaller spatial units4.
Over the past couple of decades, a proliferation of more sophisticated techniques highlights the increasing
statistical applications and inclusion of G.I.S. and remote sensing data to inform gridded population
datasets5,6. While such approaches may be applied at a variety of spatial scales7,8, the most commonly
used global and regional datasets include the WorldPop Project5, the Gridded Population of the World
(GPW)9,10, the Global Rural-Urban Mapping Project (GRUMP)11, LandScan12, and the United Nation
Environment Programme East Asia Population Database13. All of these datasets rely on different
approaches, assumptions and input data to generate gridded population outputs at varying spatial
resolutions (~3 to 150 arcseconds).

The WorldPop project (www.worldpop.org) provides datasets at the finer end of the spatial spectrum,
at 3 arc seconds (~100 m spatial resolution at the equator), for Africa, Asia and Latin America. These are
constructed for the year of the input population data and also for 2010, 2015, and 2020, unadjusted and
adjusted using urban and rural growth rates taken from the United Nations World Urbanization
Prospects Database, 2014, to match UN Population Division national total estimates1. The traditional
framework of the WorldPop project has enabled the development of a machine-learning based
approaches for mapping populations at fine spatial resolutions (i.e., at 3 arc seconds and 100 m) that have
been shown to improve on accuracies of previous approaches5. The modeling framework is a two-step
process that applies a Random Forest-based model to generate a prediction weighting layer subsequently
used to inform a gridded dasymetric re-distribution of original census counts5.

In this paper, we describe how the WorldPop Random Forest-based model can be used for analyzing
population change. Figure 1 depicts the two-part modeling approach outlined in Stevens et al.5, and used
by Sorichetta et al.,14 for modeling population distribution in 26 countries located in Latin American and
the Caribbean. Steps outlined in yellow represent parts of the process that demand additional adjustment
or attention when constructing the model for temporally-comparable datasets. These considerations are
explained in more detail below.

The specific datasets presented are for mainland China. In the past three decades, the scale of
urbanization and migration to cities in China has been substantial, with the total urban share of
population increasing from 17.9 to 53.7%. Prompted by government policies and economic development,
from 1978–2013 the number of cities increased from 193 to 658, and towns from 2173 to 20,113
(refs 2,15). By 2030, China’s urban population is predicted to grow by an additional 310 million people
and the fine-scale granularity (i.e., 3 arc seconds and 100 m) of the described population datasets provide
a historic baseline of gridded population values for mainland China that will facilitate a better
understanding of the growth, shape, and change in population distribution since 1990.

The following sections outline the open-access archive of temporally-comparable, high-resolution
datasets of gridded population distribution for mainland China for 1990, 2000, and 2010. To ensure that
maps are comparable between years, we incorporate Landsat-derived urban extents for each year, with
other time-invariant and temporally-explicit datasets and county-level census data for 1990, 2000, and
2010. The resulting population datasets are the first to show fine-scale, spatially-explicit depictions of
mainland Chinese population distribution patterns that have been associated with national policy
reforms, which have shifted the economic base, and thus population, to urban areas across China16.

Methods
Review of the WorldPop Project
The WorldPop project (www.worldpop.org) developed by the authors, creates and maintains a database
of contemporary, high resolution global demographic data. It is currently the only provider of open, high
resolution (100× 100 m) spatial demographic data on population distribution and composition across
national and regional scales, built using peer-reviewed methods5,14,17,18. With 82% of the World’s
population mapped across 166 countries, WorldPop data are widely used by governments, researchers
and organizations across the globe. These data are a key component in hundreds of studies where
geography is important, particularly those focused on population health, food security, climate change,
conflicts and natural disasters19–25 – knowing where populations are and their demographic features forms
the basis for accurate assessments of impact.

Model construction
Data Processing. Prior to model implementation, necessary datasets must be acquired and pre-
processed for the country of interest. Chinese population data were obtained from the National Bureau of
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Statistics of China via the Chinese Center for Disease Control and Prevention at the Quxian level (county
level) and joined to their corresponding GIS-census administrative boundaries for 1990 (refs 26,27),
2000 (refs 28–30), and 2010 (refs 31,32). For boundary and data consistency across years, the Tibet
Autonomous Region, Taiwan, and the islands in the South China Sea (except for the Hainan Island) were
excluded. The total population for each year and the corresponding number of census units are given in
Table 1.

To facilitate comparison of final population datasets, the original census datasets were aggregated to
the uniform Global Administrative Unit Layer (GAUL), administrative level three (2,922 units), which
are based on the Food and Agricultural Organization framework34. Identical census units were desirable
to ensure a consistent estimation process across all three years, i.e., reduce over- and under-fitting due to
large variations in census unit size and therefore average population densities. Census administrative
units falling within a single GAUL unit were assigned completely to that unit, while those falling in more
than one had their population count weighted by the area falling inside the respective GAUL units.
The standardized boundaries were used for both the Random Forest estimation5 and the dasymetric
redistribution portions of the mapping (Figure 2).

To produce temporally-comparable datasets this model uses only default covariates that are either
time-invariant or temporally explicit (Figure 2). Landsat-derived built land cover extents were acquired
for each model year to provide an account of urban development dynamics19. A comprehensive overview
of that data process is found in Wang et al.35 To best use the urban extent information we created a
distance-to-built-edge covariate, where distances inside the built land cover class boundary were negative
and distances outside the edge were positive. We also used data from the DMSP-OLS (v.4) lights at night
time series, obtained from NOAA’s National Geophysical Data Center36. Since the time series extends
back to 1992 we used that year for the 1990 model. Two satellite datasets were available for 2000 and so
we took the average (F14 and F15) for input into the 2000 model. We used the single lights dataset
available coincident with 2010. Lastly, we included elevation and its derived slope (source:
HydroSHEDS37) and distance-to rivers (source: OpenStreetMap38) assuming that these variables have
not changed dramatically over the past twenty years.

Furthermore, for producing temporally explicit WorldPop models, an additional covariate representing
the preceding years’ ‘distance-to-built’ layer(s) was used. The rationale behind including each year as an
individual covariate was to ensure the Random Forest algorithm could incorporate changes in settlement/
urban extents between years thereby allocating population according to built-area history in addition to

Extract population counts 
from the most recent 

official population census, 
estimate, or projection

Match the extracted 
population counts to their 

corresponding 
administrative units

Calculate population 
density at the 

administrative unit level

Process a number of 
global default datasets 
highly correlated with 

population density into a 
set of default raster 

covariates

Supplement and/or replace 
default covariates with 
additional and/or better 

country-specific covariates 

Calculate covariate values 
at the administrative unit 

level

Fit a Random Forests 
model using population 
density and covariates 
both calculated at the 

administrative unit level

Predict population density 
at the grid cell level using 
the fitted Random Forests 

model and the raster 
covariates

Use the predicted 
population density to 

dasymetrically
disaggregate population 

counts from administrative 
units into grid cells

Preprocessing Data

Random Forest Prediction Dasymetric Mapping

Figure 1. Flow diagram of the WorldPop approach to mapping population. Conceptual overview of the

Random Forest-based dasymetric mapping approach used to produce the ‘WorldPop’ datasets including the

key steps that involve adjustments to make final population datasets comparable over time (modified from

Stevens et al.5). Three primary processing stages are highlighted in the blue, green and purple areas of the

figure. Steps outlined in yellow are those that are needed for producing temporally-comparable datasets.
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the contemporaneous built extent. This approach is intended to provide more nuanced information
about development history for these areas specifically with respect to a potential decrease in population
density for urban core areas39 which contrasts to that where built-area expansion took place.

Step 1

1a. Prediction Density Estimation. A Random Forest regression40 was used to predict population
density at the census unit level23. The non-parametric approach is characterized by a flexible and
robust framework that allows varying data types to interact with each other in the model. An ensemble
decision-tree classifier or predictor, the Random Forest algorithm allows for generation of unpruned
decisions trees, essentially growing a ‘forest’ of individual trees which are then aggregated to produce a
final predicted estimate40.

The predictive capability of the Random Forest model is strengthened by the random selection of
predictors at each node in each tree40,41, making the final performance comparable to other types of
regression trees but requiring fewer set parameters to fit the model42. The main parameters that need to
be given consideration include (i) the number of covariates needed to randomly select the best covariate
for each node during the forest growing process (ii) the total number of trees for each forest, and (iii) the
number of observations in the terminal nodes of each tree. In this case, each model used all covariates in
the selection process (Figure 2), and each forest had a total of 500 trees and a single observation for each
terminal node.

In addition, prediction error at the unit of observation level may be calculated using one-third of the
data held in reserve during the iterative ‘bagging’ process for each tree in each forest, which are then used
to estimate an ‘out-of-bag’ (OOB) error rate40.

Year Total Population No. of admin units Avg. Spatial Resolution Admin. Level Data Source

1990 1,130,822,989 2420 62 Quixan China CDC

2000 1,242,611,700 2873 57 Quixan China CDC

2010 1,339,604,009 2925 56 Quixan China CDC

Table 1. Summary information about the original census counts and administrative unit data used to

produce the temporally-comparable China population maps For each year, the Average Spatial Resolution

(ASR)33 was calculated as the square root of its surface area divided by the number of administrative units to

provide an average measure of the ‘cell’ size of administrative units if all units were squares of equal size).

2010

(GAUL 3 -matched census data)

2000

(GAUL 3 -matched census data)

1990

(GAUL 3 -matched census data)

China Population Estimation

Step 1a: Prediction Density Estimation (Random Forest model) 

Step 1b (Prediction Density Surface Creation)
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Census
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Step 2 (Dasymetric Population Re-Distribution)
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Figure 2. Specific steps for temporally-explicit WorldPop modeling approach. Overview of the modeling

process. Temporally-explicit data include census data, DMSP lights at night data, and urban extents by year.
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1b. Prediction Density Surface Creation. Once the parameters of the prediction density estimation
process have been set, a country-wide, 100 m pixel-level map of predicted population density is produced.
Considering the immense amount of change across China since 1990, both with respect to population
growth and urbanization, each year is estimated independently of the others (Figure 2). We illustrate this
need in Figure 3 by depicting the underlying RF relationship for prediction density (Pd) and distance to
built-area edge (d). Illustrated in panel a is an underlying assumption that the relationship between Pd
and d does not change over time. If that assumption holds it would be valid to use a RF model
parameterized on finer-scale census data from a specific year for others. In contrast, the assumption
illustrated in panel b shows the more realistic case where the relationship between Pd and d changes over
time. In this case where the structural relationship of population distribution with built-area changes, like
we know it does in area where rapid urban development may outpace population growth or migration, it
would be inappropriate to apply a model that does not incorporate temporality. The simplest way to
address the temporality consideration is to fit separate models for each year.

After fitting, each individual model covariate is permuted and OOB estimates are produced using that
permuted data. The decrease in prediction accuracy is a robust measure of the ‘importance’ of the
permuted covariate to the fit of the final model. The variable importance for each modelled year is
highlighted in Figure 4, with higher values of percent increased mean squared error indicating which
variables were most important in the OOB cross-validation process.

By examining Figure 4, the importance of the covariate ‘Lights’ is substantial for all three years
although it becomes increasingly important in 2000 and even more so in 2010. This may relate to the
increasingly urbanized, and subsequently, ‘lit’ regions around the country. In contrast, the ‘Distance to
water’ covariate is also an important variable in the model and increases in importance due to

0 +

d

Pd

Xy2

Xy1

0 +- -

d

Pd

Xy1

No Structural Change Structural Change

Figure 3. Hypothetical illustrations of the underlying relationship for prediction density (Pd) and distance to

built-area-edge (d) when there is an assumption that the relationship does not change over time (a) and when

the relationship does change over time (b).
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Percent Increased Mean Squared Error
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Figure 4. Percent increased mean square error which indicates the variable importance for each year’s

Random Forest regression. Variable importance for each year’s Random Forest regression, presented as

the percent increased mean squared error when the variable is used but randomly resampled for producing

out-of-bag (internally cross-validated) predictions. Each model with representative variables shown by the

color bars above were used to produce the density weighting layer for the dasymetrically distributed population

map, respectively.
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increasingly urbanized parts of mainland China along the eastern seaboard, but is the most significant
covariate only in 1990. The ‘Distance to Built Edge’ covariates highlight the contribution of existing and
increasing urban areas to the redistribution of population across all three years. ‘Elevation’ and ‘Slope’ are
important due to the high concentration of the Chinese population in more low-lying regions of the
country.

Step 2

Dasymetric Population Mapping. The prediction density layer produced by the Random Forest is
then used as a weighting layer in a standard dasymetric redistribution approach. The population counts
from the boundary-matched GAUL 3 administrative units are disaggregated to 100 m grid cells,
producing three gridded population datasets that represent the predicted number of people per hectare
for each modeled year. Recall that GAUL 3 units were used since their boundaries are time invariant, and
those boundaries are used for all zonal statistical calculations within the dasymetric redistribution process
to compare across years. After projecting back to geographic coordinates (datum:WGS84) final end-user
products include raster (i.e. gridded) maps of population distributions with a pixel size of 3 arc seconds x
3 arc seconds (~100 m×~ 100m at the equator) along with people per hectare datasets across all of
mainland China, for 1990, 2000 and 2010 (Figure 5).

Code availability
The Python (version 2.7.5; https://www.python.org/download/releases/2.7.5/) and R (version 2.15.3)
programming language scripts used to produce the ‘WorldPop China Mainland’ datasets described in this
article are publicly available and can be freely downloaded from figshare [Data Citation 1].

Data Records
The high-resolution, temporally-comparable ‘WorldPop China Mainland’ datasets [Data Citation 2] are
stored in the WorldPop Dataverse Repository, and may also be freely accessed from the WorldPop
Project website (www.worldpop.org/data/). From the project website the files may be downloaded as a
7-zip file archive (7-Zip.org) or as individual GeoTIFF datasets. Each 7-zip file contains the mainland
Chinese population datasets for the respective year, including the estimated people per grid cell as people
per hectare and people per pixel (Table 2).

China Population

1,100

Kilometers

Chengdu

High : 50

Low : 0

Guangzhou

Shanghai

Beijing
1990

2000

2010

1990

2000

2010

2010

1990

2000

2010

1990

2000

Figure 5. Predicted people per grid cell across mainland China with subsets highlighting the specific years

1990, 2000, and 2010. Estimated people per grid cell across mainland China for 1990, 2000, and 2010 (grid cell

resolution is 3 arc seconds, or ~100 meters at the equator). The Tibet Autonomous Region, Taiwan, and the

islands in the South China Sea (except for the Hainan Island) were excluded. Projection is in Asia Lambert

Conformal and grid cell value represent people per hectare (pph).
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For each year, the predictive covariates used are described in the HTML metadata report that
accompanies the corresponding gridded population datasets. The metadata report also illustrates the
population density estimates that were used to dasymetrically disaggregate the population from
administrative unit to grid cell level, and basic information about the Random Forest model. The
prediction error, relative importance of each covariate, and the prediction intervals using the out-of-bag
(e.g. mean squared error) data are included in the report.

Technical Validation
Accuracy assessment of gridded population products was done using a summed gridded population
count value, by respective year, compared to a finer-level Jiedao/Xiangzhen (i.e. township) level count for
the urban centers of Shanghai, Beijing, Guangdong and Chongqing. The Jiedao/Xiangzhen population
data were obtained from the China Data Center at the University of Michigan (http://chinadatacenter.
org/). Acquisition of the entire mainland China township-level data was not feasible, and thus, these four
central regions were determined to provide the most comprehensive and geographically relevant regions
of China for evaluating the results of the population modeling process. While an ideal assessment of the
gridded population datasets accuracy would involve a cell-by-cell count comparison the cost and time
associated with that type of data collection is difficult. The finer-scale census counts provided by the
Jiedao/Xiangzhen level data provide a means to evaluate how well the estimated population from the
gridded output compares to population counts summed at the Jiedao/Xiangzhen level.

Two primary statistics are used to describe model performance, root mean square error (RMSE) and
mean absolute error (MAE). Each statistical measure provides insight into the accuracy of the final
population outputs. We also report RMSE per unit area (RMSE standardized by area) and the percent
RMSE (RMSE expressed as a percentage of the total population at the Jiedao/Xiangzhen level). The MAE
is less sensitive to outliers in the prediction output than RMSE, with a larger difference between MAE and
RMSE indicating greater variance in individual errors. We also calculate the median absolute deviation
(MAD) which is another measure robust against outliers and informative when examining population
counts or densities whose distributions are highly skewed and where relatively few but very large errors
can affect MAE and RMSE disproportionate to their frequency in the data.

Assessment of gridded population datasets
Figure 6 shows the model fit between predicted population unit counts summed up by total number of
people inside each Jiedao/Xiangzhen unit compared to the original census counts at the Jiedao/Xiangzhen
level for 1990, 2000, and 2010. The number of administrative units contained in the 1990 and 2000
validation data set totaled 4,274 while the 2010 validation data set had a total of 3,265. The distribution
census counts for each model suggests a very good fit at low to medium population densities, but with
increasing errors at extremely high population densities (Figure 7). At very high population counts, there
is greater underestimation of the observed data. This type of error shows that the modeling process does
not concentrate people heavily enough in highly urban areas and instead spreads estimations out to less
densely populated areas. This is inherent to the dasymmetric approach used in the population
redistribution process of the model, but affects relatively few total census units as observed by the
marginal frequency histograms in each panel of Figure 6.

The statistical outputs are also summarized in Table 3 along with the same validation calculations
using observed and estimated population densities for each Jiedao/Xiangzhen unit. The population
density values represent the sum of all people in a census unit divided by the number of pixels from the
population map falling within the unit. In effect, the population density comparison controls for the size
of the census units and indicate similar patterns in the validation results.

Name Description Format

CHN_ppp_v2c_1990.tif Projected estimated people per grid cell for 1990 (3 arc seconds) GeoTIFF

CHN_pph_v2c_1990.tif Projected estimated people per hectare for 1990 GeoTIFF

CHN_1990_metadata.html Metadata report for the Random Forests model HyperText Markup Language

CHN_ppp_v2c_2000.tif Projected estimated people per grid cell for 2000 (3 arc seconds) GeoTIFF

CHN_pph_v2c_2000.tif Projected estimated people per hectare for 2000 GeoTIFF

CHN_2000_metadata.html Metadata report for the Random Forests model HyperText Markup Language

CHN_ppp_v2c_2010.tif Projected estimated people per grid cell for 2010 (3 arc seconds) GeoTIFF

CHN_pph_v2c_2010.tif Projected estimated people per hectare for 2010 GeoTIFF

CHN_2010_metadata.html Metadata report for the Random Forests model HyperText Markup Language

Table 2. Name (CHN and YEAR represent the China ISO country code and the population count year,

respectively), description, and format of all files contained in each 7-Zip file.

www.nature.com/sdata/
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Assessment of the Random Forest model
The Random Forest model produces the population density weighting layer that is then used in the
dasymetric process to redistribute the original census counts within each administrative unit. The
variance explained in predicting GAUL 3-based population density observations for each year was 85, 88,
and 86% for 1990, 2000, and 2010, respectively. It should be noted that the model fitting process occurs at
the administrative unit level and thus the out-of-bag (OOB) prediction error is most appropriately
interpreted at the administrative level rather than the grid cell level.
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produced using Quixan (Admin. Level 3) data. The Jiedao/Xiangzhen units represent the finest level census

data available for the urban centers of Shanghai, Beijing, Guangdong and Chongqing ((4,274 validation units

(1990), 4,274 validation units (2000), 3,265 validation units (2010)). This comparison is an estimate of overall

model fit at the Admin. Level 4 level. Contours are plotted at observation density thresholds above which the

specified percentage of observations are found. The smoothed fit line showing overall trend is estimated by

LOESS (Cleveland, et al. 1992) (ref. 42) (smoothing parameter alpha= 0.75).
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Figure 7. Errors shown in people per hectare based on the validation analysis for year. Errors produced from

the validation calculation for each population distribution year for Shanghai, Beijing, Gaungdong and

Chongqing. Population underestimates are highlighted in blue and overestimated values are shown in red.
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The OOB estimates provide a prediction of the overall model accuracy of the Random Forest
estimation process. The process is done by averaging all mean squared errors from 1/3rd of the
observations withheld from the iterative bagging process for each individual tree in the forest. The OOB
error in predicted GAUL 3-based log population density (mean of squared residuals) for each year is 0.37,
0.30, and 0.35 for 1990, 2000, and 2010 models.

Usage Notes
Monitoring and mapping population and urban growth is essential for effective planning and resource
allocation across the world. Existing datasets and methods traditionally produce single snapshots of
population distributions, within limited frameworks that are temporally incomparable. The datasets
described here provide timely measuring and mapping of residential mainland Chinese population
patterns for 1990, 2000 and 2010, generating comparable datasets suitable for analyzing population
change across time. To accomplish this task, the model used a limited set of covariates that were time-
invariant or temporally-explicit. This approach supports population density and urban definition change
analyses in the most robust and accurate manner available at this time. The datasets can be used in
support of identifying and modelling populations at risk in epidemiological, climate, and disaster
management applications, among others. In contrast to contemporary WorldPop datasets that use a large
ancillary set of data in the modeling process, the reduced level of covariates make these population maps
decrease the potential of endogeneity in subsequent analyses.

References
1. United Nations, D. o. E. a. S. A. Population Division. World Urbanization Prospects: The 2014 Revision, Highlights (United
Nations, New York, 2014).

2. United Nations Development Program. China Human Development Report 2013: Sustainable and Livable Cities: Toward
Ecological Urbanisation (China Translation and Publishing Corporation: Beijing, 2013).

3. Buhaug, H. & Urdal, H. An urbanization bomb? Population growth and social disorder in cities. Global Environ. Chang. 23,
1–10 (2013).

4. Mennis, J. Generating surface models of population using dasymetric mapping. Prof. Geogr. 55, 31–42 (2003).
5. Stevens, F. R., Gaughan, A. E., Linard, C. & Tatem, A. J. Disaggregating census data for population mapping using Random
Forests with remotely-sensed and ancillary data. PloS ONE 10, e0107042 (2015).

6. Azar, D., Engstrom, R., Graesser, J. & Comenetz, J. Generation of fine-scale population layers using multi-resolution satellite
imagery and geospatial data. Remote Sensing of Environment 130, 219–232 (2013).

7. Azar, D. et al. Spatial refinement of census population distribution using remotely sensed estimates of impervious surfaces
in Haiti. International Journal of Remote Sensing 31, 5635–5655 (2010).

8. Bagan, H. & Yamagata, Y. Analysis of urban growth and estimating population density using satellite images of nighttime lights
and land-use and population data. GIScience & Remote Sensing 52, 765–780 (2015).

9. Doxsey-Whitfield, E. et al. Taking Advantage of the Improved Availability of Census Data: A First Look at the Gridded
Population of the World, Version 4. Papers in Applied Geography 1, 1–9 (2015).

10. Balk, D. & Yetman, G. The Global Distribution of Population: Evaluating the gains in resolution refinement (Center for
International Earth Science Information Network (CIESIN): New York, 2004).

11. Balk, D., Pozzi, F., Yetman, G., Deichmann, U. & Nelson, A. in Proceedings of the Urban Remote Sensing Conference
14–16 (International Society for Photogrammetry and Remote Sensing, 2005).

12. Dobson, J. E., Bright, E. A., Coleman, P. R., Durfee, R. C. & Worley, B. A. LandScan: A global population database for estimating
populations at risk. Photogrammetric Engineering and Remote Sensing 66, 849–857 (2000).

13. Deichmann, U. Asia Population Database Documentation, http://na.unep.net/siouxfalls/globalpop/asia/index.php (1996).
14. Sorichetta, A. et al. High-Resolution Gridded Population Datasets for Latin America and the Caribbean in 2010, 2015, and 2020.

Scientific Data 2, 150045 (2015).
15. The Central Committee of the Communist Party of China and the State Council, P. National New-‐type Urbanization Plan

(2014-‐2020), http://www.gov.cn/zhengce/2014-03/16/content_2640075.htm (2014).

1990 2000 2010

Population Unit Counts

RMSE 24711.91 33051.72 50890.18

RMSE/Area 66.37 91.46 115.12

%RMSE 95.84 96.98 94.52

MAE 15441.75 18608.52 31045.17

MAD 9604.47 9597.7 17231.16

Population Densities

RMSE 66.37 91.46 115.12

%RMSE 258.14 249.53 219.97

MAE 17.29 24.08 34.17

MAD 1.64 1.64 2.32

Table 3. Population Unit Counts and Population Densities statistical metrics produced from the

validation calculations for each population distribution year.

www.nature.com/sdata/

SCIENTIFIC DATA | 3:160005 | DOI: 10.1038/sdata.2016.5 9

http://na.unep.net/siouxfalls/globalpop/asia/index.php
http://www.gov.cn/zhengce/2014-03/16/content_2640075.htm


16. Bai, X. M., Shi, P. J. & Liu, Y. S. Realizing China's urban dream. Nature 509, 158–160 (2014).
17. Linard, C., Gilbert, M., Snow, R. W., Noor, A. M. & Tatem, A. J. Population Distribution, Settlement Patterns and Accessibility

across Africa in 2010. PloS ONE 7, e31743 (2012).
18. Gaughan, A. E., Stevens, F. R., Linard, C., Jia, P. & Tatem, A. J. High Resolution Population Distribution Maps for Southeast Asia

in 2010 and 2015. PloS ONE 8, e55882 (2013).
19. Linard, C. & Tatem, A. J. Large-scale spatial population databases in infectious disease research. International Journal of Health

Geographics 11, 7 (2012).
20. Tatem, A. J. et al. Millennium development health metrics: where do Africa's children and women of childbearing age live?

Population Health Metrics 11, 11 (2013).
21. Lopez-Carr, D. et al. A spatial analysis of population dynamics and climate change in Africa: potential vulnerability hot spots

emerge where precipitation declines and demographic pressures coincide. Population and Environment 35, 323–339 (2014).
22. Patel, N. N. et al. Multitemporal settlement and population mapping from Landsat using Google Earth Engine. Int. J. Appl. Earth

Obs. 35, 199–208 (2015).
23. Schneider, A. et al. A new urban landscape in East-Southeast Asia, 2000-2010. Environ. Res. Lett. 10, 034002 (2015).
24. Mondal, P. & Tatem, A. J. Uncertainties in Measuring Populations Potentially Impacted by Sea Level Rise and Coastal Flooding.

PloS ONE 7 (2012).
25. Gilbert, M. et al. Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia. Nat. Commun. 5,

4116 (2014).
26. China, D. o. P. S. o. t. N. B. o. S. o. Tabulation on the 1990 Population Census of the People’s Republic of China (1993).
27. Fan, C. C. Interprovincial migration, population redistribution, and regional development in China: 1990 and 2000 census

comparisons. Prof. Geogr. 57, 295–311 (2005).
28. The Census Office of the State Council & Statistics, T. P. a. S. S. a. T. S. D. o. N. B. o.. Sub-county Tabulation on The 2000

Population Census (Division of National Bureau of Statistics, PRC, 2013).
29. Lavely, W. First Impressions from the 2000 Census of China. Population and Development Review. 27, 755–769 (2001).
30. Xiaogang, W. & He, G. The Evolution of Population Census Undertakings in China, 1953–2010. The China Review 15,

171–206 (2015).
31. Population Census Office under the State Council & Department of Population and Employment Statistics of National Bureau of

Statistics, P. Tabulation on the Population Census Of the People’S Republic of China by County, http://www.stats.gov.cn/tjsj/tjcbw/
201303/t20130318_451531.html (2012).

32. Cai, Y. China's New Demographic Reality: Learning from the 2010 Census. Population and Development Review 39,
371–396 (2013).

33. Deichmann, U., Yetman, G., Pozzi, F., Hay, S. I. & Nelson, A. Determining Global Population Distribution: Methods,
Applications and Data. Adv. Parasit 62, 119–156 (2006).

34. Grita, F. Global Administrative Unit Layers (GAUL), http://www.fao.org/geonetwork/srv/en/metadata.show?id=12691 (2015).
35. Wang, L. et al. China’s urban expansion from 1990 to 2010 determined with satellite remote sensing. Chinese Science Bulletin 57,

2802–2812 (2012).
36. Center, N. s. N. G. D. Version 4 DMSP-OLS Nighttime Lights Time Series, http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.

html (2015).
37. Lehner, B., Verdin, K., A., J. & Fund, W. W. HydroSHEDS Technical Documentation, 27 (World Wildlife Fund, 2006).
38. Haklay, M. & Weber, P. OpenStreetMap: User-Generated Street Maps. Ieee Pervas Comput 7, 12–18 (2008).
39. Murakami, A., Zain, A. M., Takeuchi, K., Tsunekawa, A. & Yokota, S. Trends in urbanization and patterns of land use in the

Asian mega cities Jakarta, Bangkok, and Metro Manila. Landscape Urban Plan 70, 251–259 (2005).
40. Breiman, L. Random forests. Machine Learning 45, 5–32 (2001).
41. Liaw, A. & Wiener, M. Classification and regression by random Forest. R News 2, 18–22 (2002).
42. Robnik-Sikonja, M. Improving random forests. Lect. Notes Comput. Sc. 3201, 359–370 (2004).

Data Citations
1. Stevens, F. R. et al. Figshare http://figshare.com/articles/WorldPop_RF/1491490 (2015).
2. Gaughan, A. E. et al. Harvard Dataverse http://dx.doi.org/10.7910/DVN/8HHUDG (2015).

Acknowledgements
A.E.G., F.R.S., and J.N. are supported by funding from Google (OICB150153). A.S. is supported by
funding from the Bill & Melinda Gates Foundation (OPP1106427, 1032350). C.L. is supported by funding
from the Belgian Science Policy (SR/00/304). A.J.T. is supported by funding from NIH/NIAID
(U19AI089674), the Bill & Melinda Gates Foundation (OPP1106427, 1032350), and the RAPIDD
program of the Science and Technology Directorate, Department of Homeland Security, and the Fogarty
International Center, National Institutes of Health. S.I.H. is funded by a Senior Research Fellowship from
the Wellcome Trust (#095066), and grants from the Bill & Melinda Gates Foundation (OPP1119467,
OPP1106023 and OPP1093011). S.I.H. would also like to acknowledge funding support from the
RAPIDD program of the Science & Technology Directorate, Department of Homeland Security, and the
Fogarty International Center, National Institutes of Health. H.Y. is supported by the National Science
Fund for Distinguished Young Scholars (No. 81525023), Ministry of Science and Technology of China
(2012 ZX10004-201, 2014BAI13B05), NIH (U19 AI51915) and the Harvard Center for Communicable
Disease Dynamics (U54 GM088558). X.Y. is supported by the Natural Science Foundation of China
(41430637; 41329001), and Chinese Ministry of Education (13JJD790008). This work forms part of the
WorldPop Project (www.worldpop.org). We thank Dr Yilan Liao from the Institute of Geographic
Sciences and Natural Resources Research of Chinese Academy of Sciences and Dr Xiaojuan Jiang from
the Gansu Center for Disease Control and Prevention in data collections. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author Contributions
A.E.G., H.Y., and A.J.T. conceived and supervised the study. A.E.G. and F.R.S. designed the approach and
A.E.G. drafted the manuscript. A.E.G., F.R.S., J.N., and S.L. undertook data collection, assembly, and
analyses, and produced the datasets. A.E.G., F.R.S. and Z.H. performed the technical validation of the

www.nature.com/sdata/

SCIENTIFIC DATA | 3:160005 | DOI: 10.1038/sdata.2016.5 10

http://www.stats.gov.cn/tjsj/tjcbw/201303/t20130318_451531.html
http://www.stats.gov.cn/tjsj/tjcbw/201303/t20130318_451531.html
http://www.fao.org/geonetwork/srv/en/metadata.show?id=12691
http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
http://figshare.com/articles/WorldPop_RF/1491490
http://dx.doi.org/10.7910/DVN/8HHUDG
www.worldpop.org


datasets. F.R.S. developed the Random Forests-based dasymetric mapping approach and the multi-stage
Random Forest estimation technique used for producing the datasets. F.R.S., J.N., A.J.T., A.S., G.H., Z.H.,
S.L., C.L. and S.I.H., X.Y. edited the manuscript. A.S., X.Y., H.Y., and A.J.T. aided with data collection. All
authors read and approved the final version of the manuscript.

Additional Information
Competing financial interests: The Authors declare that they have no competing financial interests that
might have influenced the presentation of the temporally-comparable WorldPop Chinese datasets for
1990, 2000 and 2010 nor with the method used to create and assess them.

How to cite this article: Gaughan, A. E. et al. Spatiotemporal patterns of population in mainland China,
1990 to 2010. Sci. Data 3:160005 doi: 10.1038/sdata.2016.5 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The
images or other third party material in this article are included in the article’s Creative

Commons license, unless indicated otherwise in the credit line; if the material is not included under the
Creative Commons license, users will need to obtain permission from the license holder to reproduce the
material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0

Metadata associated with this Data Descriptor is available at http://www.nature.com/sdata/ and is released
under the CC0 waiver to maximize reuse.

www.nature.com/sdata/

SCIENTIFIC DATA | 3:160005 | DOI: 10.1038/sdata.2016.5 11

http://creativecommons.org/licenses/by/4.0
http://www.nature.com/sdata/

	Spatiotemporal patterns of population in mainland China, 1990 to�2010
	Background & Summary
	Methods
	Review of the WorldPop Project
	Model construction
	Data Processing


	Figure 1 Flow diagram of the WorldPop approach to mapping population.Conceptual overview of the Random Forest-based dasymetric mapping approach used to produce the &#x02018;WorldPop&#x02019; datasets including the key steps that involve adjustments to mak
	Step 1
	1a. Prediction Density Estimation


	Table 1 
	Figure 2 Specific steps for temporally-explicit WorldPop modeling approach.Overview of the modeling process.
	Outline placeholder
	1b. Prediction Density Surface Creation


	Figure 3 Hypothetical illustrations of the underlying relationship for prediction density (Pd) and distance to built-area-edge (d) when there is an assumption that the relationship does not change over time (a) and when the relationship does change over t
	Figure 4 Percent increased mean square error which indicates the variable importance for each year&#x02019;s Random Forest regression.Variable importance for each year&#x02019;s Random Forest regression, presented as the percent increased mean squared err
	Step 2cc
	Dasymetric Population Mapping

	Code availability

	Data Records
	Figure 5 Predicted people per grid cell across mainland China with subsets highlighting the specific years 1990, 2000, and 2010.Estimated people per grid cell across mainland China for 1990, 2000, and 2010 (grid cell resolution is 3 arc seconds, or &#x000
	Technical Validation
	Assessment of gridded population datasets

	Table 2 
	Assessment of the Random Forest model

	Figure 6 Model fit between the predicted population unit counts at the Jiedao/Xiangzhen unit compared to the original census counts at the same unit level.Comparison of validation unit counts divided by unit area (population density) on a log10-log10 scal
	Figure 7 Errors shown in people per hectare based on the validation analysis for year.Errors produced from the validation calculation for each population distribution year for Shanghai, Beijing, Gaungdong and Chongqing.
	Usage Notes
	REFERENCES
	Table 3 
	REFERENCES
	A.E.G., F.R.S., and J.N. are supported by funding from Google (OICB150153). A.S. is supported by funding from the Bill & Melinda Gates Foundation (OPP1106427, 1032350). C.L. is supported by funding from the Belgian Science Policy (SR/00�/�304). A.J.T. is 
	ACKNOWLEDGEMENTS
	Design Type(s)database creation objective &#x02022; data integration objective &#x02022; time series design &#x02022; population modeling objectiveMeasurement Type(s)populationTechnology Type(s)censusFactor Type(s)PeriodSample Characteristic(s)Homo sapien
	Additional Information


