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Abstract—Recently, the recognition task of spontaneous facial
micro-expressions has attracted much attention with its various
real-world applications. Plenty of handcrafted or learned features
have been employed for a variety of classifiers and achieved
promising performances for recognizing micro-expressions. How-
ever, the micro-expression recognition is still challenging due
to the subtle spatiotemporal changes of micro-expressions. To
exploit the merits of deep learning, we propose a novel deep
recurrent convolutional networks based micro-expression recog-
nition approach, capturing the spatiotemporal deformations of
micro-expression sequence. Specifically, the proposed deep model
is constituted of several recurrent convolutional layers for ex-
tracting visual features and a classificatory layer for recognition.
It is optimized by an end-to-end manner and obviates manual
feature design. To handle sequential data, we exploit two ways
to extend the connectivity of convolutional networks across
temporal domain, in which the spatiotemporal deformations are
modeled in views of facial appearance and geometry separately.
Besides, to overcome the shortcomings of limited and imbalanced
training samples, two temporal data augmentation strategies as
well as a balanced loss are jointly used for our deep network.
By performing the experiments on three spontaneous micro-
expression datasets, we verify the effectiveness of our proposed
micro-expression recognition approach compared to the state-of-
the-art methods.

Index Terms—Micro-Expression Recognition, Spatiotemporal
Modeling, Temporal Connectivity, Recurrent Convolutional Net-
works, Data Augmentation, Balanced Loss

I. INTRODUCTION

M ICRO-EXPRESSIONS are very brief and involuntary

facial expressions which are shown on the facial

regions of humans. Compared to long-duration and obvi-

ous changes of normal facial expressions (namely macro-

expressions), micro-expressions usually have short duration,

i.e., less than 0.2 second, and subtle intensity changes as

facial muscle movements caused by micro-expressions only

emerge in small and few regions [1], [2]. The spontaneous

micro-expressions can reveal the genuine emotions of humans

and help understand humans’ deceitful behaviors. Thus, it

is potential to apply the micro-expressions in diverse fields

[3], such as lie detection, police case diagnosis, business

negotiation, and psychoanalysis. Whereas, short duration and
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subtle changes of micro-expressions make it difficult for un-

trained people to detect and analyze micro-expressions. Even

trained by professional micro-expression training tools [4],

humans still manually detect and recognize micro-expressions

from videos with low accuracy. Consequently, the automatic

micro-expression recognition (MER) will be very valuable to

promote the performance of analyzing large amounts of video

sequences.

To tackle the MER task, several approaches have been

presented to model subtle changes of micro-expressions in spa-

tiotemporal domain [5]. Most of these approaches are roughly

divided into two main parts. The first part is to extract visual

features from facial video clips towards the task of MER. The

second part is to choose a classifier for extracted features.

Since MER is a typical pattern recognition task, some con-

ventional classifiers, e.g., support vector machine (SVM) [6],

[7], [8], [9], [10] and random forest [6], [11], [12], [5], have

been used while the feature designing becomes more pivotal

for solving MER problem in recent researches. Consequently,

plenty of handcrafted features for macro-expressions or new-

designed features have been explored in the past decade. For

instance, the local binary patterns on three orthogonal planes

(LBP-TOP) widely used to describe dynamic textures are

firstly applied to recognize micro-expressions [6]. Although

LBP-TOP has shown the capacity of discriminability and

efficiency, it still suffers the sensitivity problem of global

changes. So the second-order Gaussian jet on LBP-TOP [13],

LBP six intersection points (LBP-SIP) [14], local spatiotem-

poral directional features (LSDF) [15], spatiotemporal LBP

(STLBP) [8], spatiotemporal completed local quantization pat-

terns (STCLQP) [9], directional mean optical-flow (MDMO)

[16], discriminative spatiotemporal LBP (DSLBP) [17] and bi-

weighted oriented optical flow (Bi-WOOF) [10] are proposed

to improve the robustness of visual descriptors. These hand-

crafted features are designed to capture temporal differences of

micro-expression sequences and achieve an accuracy of more

than 50% [5].

However, it is still challenging to extract useful information

from subtle changes and achieve high-quality descriptions as

handcrafted features cannot well capture the subtle defor-

mations of micro-expressions. Recently, deep convolutional

neural networks (CNNs) have shown the great power in

various fields and outperformed the handcrafted features as

well as shallow classifiers [18], [19], [20], [21], [22]. Deep

learning approaches can obviate manual feature design and

allow to automatically connect a specific task to the features

themselves. Nevertheless, few deep models have been devoted



to the MER problem due to limited video-based (sequence)

training samples. Spontaneous micro-expression datasets usu-

ally contain insufficient samples, for instance, merely 256

micro-expression sequences for all categories in the largest

CASME II dataset [23]. And they also have unbalanced

classes, e.g., 26 sequences for category “Happiness” and 99

sequences for category “Other” in CASME II dataset. The

limited and imbalanced samples will restrain deep CNNs as

the deep network usually needs to learn numerous parameters.

For alleviating this problem, the pre-trained CNN [24] has

been fine-tuned to recognize image based micro-expressions,

in which each image (video frame) is assigned with a micro-

expression category. The image based approach can obtain

sufficient training samples by using video frames individually

(rather than the entire video sequence) while the temporal

changes are not considered. In order to leverage limited video-

based samples for CNN based deep models, the temporal

connectivity of CNNs which consider spatial and temporal

changes jointly becomes vitally important for MER problem.

In this paper, we propose spatiotemporal recurrent convo-

lutional networks (STRCN) to automatically recognize micro-

expressions by conquering the “limited and imbalanced train-

ing samples” problem. To model the spatiotemporal motion

deformations, we propose to employ CNNs with recurrent

connections (i.e., recurrent convolutional networks) to learn

the representation of subtle changes. The convolutional layers

with recurrent connections are utilized to learn visual features

automatically and a classificatory layer is used to recognize

micro-expressions. Towards the micro-expression video frames

(clips), we exploit two types of connectivities of STRCN

across temporal domain for the network input. Moreover, to fa-

cilitate the learning procedure of deep model, we propose two

temporal augmentation strategies to greatly enrich the training

samples for learning deep model and employ a balanced loss

for counterweighing imbalanced classes.

Our main contributions are summarized as follows:

• We propose an STRCN model to explore the powerful

representation ability of deep convolutional networks for

MER problem by considering the spatiotemporal defor-

mations. To the best of our knowledge, it is the first

time that the deep model can be trained from scratch

and outperform existing algorithms in MER.

• We propose two ways to extend the connectivity of

STRCN across temporal domain for video based micro-

expressions, in which not only spatial information but

also temporal changes are jointly considered.

• We design two temporal augmentation strategies to great-

ly enrich the limited training samples for deep framework

and employ a balanced loss for facilitating the imbalanced

training.

The rest of this paper is organized as follows. Section

II reviews the related work briefly and our proposed deep

framework for MER is presented in Section III. Then we

discuss the experimental results for algorithm evaluation in

Section IV. Finally, Section V concludes this work.

II. RELATED WORK

In this section, the researches on micro-expression analysis

and deep learning for modeling spatiotemporal information

are briefly summarized. The techniques for micro-expression

analysis are described to indicate the shifted focus of research

community while the deep learning studies are presented

briefly to demonstrate the related techniques which can be

used for MER problem.

A. Micro-Expression Analysis

To date, some micro-expression datasets (Polikovsky’s

dataset [25], USF-HD [26], SMIC [27], CASME [28],

CASME II [23], CASME2 [29] and SAMM [30]) have been

published in the literatures. Among them, the Polikovskys

dataset [25] and USF-HD dataset [26] were constructed by

collecting acted micro-expressions of subjects with high-speed

cameras and are not available publicly. The remaining databas-

es (SMIC, CASME, CASME II, CASME2 and SAMM) are

spontaneous and obtained by collecting the induced micro-

expressions of subjects watching specific videos. The CASME

II is the extended version of CASME while CASME2 focuses

on both micro-expressions and macro-expressions in long

videos. Thus, in this paper, we study spontaneous MER prob-

lem using these three representative micro-expression datasets

(i.e., SMIC [27], CASME II [23], and SAMM [30]).

The task of spontaneous micro-expression analysis con-

tains two subtasks: detection and recognition. The detec-

tion task is fundamental to subsequent recognition based on

well-segmented video sequences containing micro-expressions

while the recognition task aims to distinguish small differences

between various kinds of micro-expressions. For the detection

task, the geometric features [31], [32], [33] and local textures

[34], [35] have been proposed to capture micro-expression

frames from videos. For the recognition task, several approach-

es [3] have been presented by using various features and

classifiers, which are discussed in the following.

Some primary studies have been devoted to micro-

expression recognition [5]. In the earlier stage, scholars at-

tempted to recognize acted micro-expressions. Polikovsky et

al. [25] proposed a recognition method with descriptors of

gradient orientation histogram on Polikovsky’s dataset. In [26],

authors presented the strain patterns for detecting macro-

expressions and micro-expressions through the acted USF-

HD dataset. However, the acted micro-expressions are greatly

different from the spontaneous facial expressions [36]. There-

fore, recent works have further been done on the spontaneous

facial micro-expressions, which can be roughly categorized as

appearance based and geometric based methods.

1) Appearance Based Methods: In recent studies, some

appearance based features have been utilized to recognize

micro-expressions. Pfister et al. presented a recognition al-

gorithm combing LBP-TOP features with SVMs, multiple

kernel classifiers or random forests to recognize negative or

positive micro-expressions [6], in which the LBP-TOP features

calculate the LBP features from three orthogonal planes and

concatenate their histograms. Wang et al. extended the LBP-

TOP features into the tensor independent color space and



then recognized micro-expressions in this subspace [37], [7].

However, the local textures described by LBP-TOP have the

problems of robustness and sparse sampling [14], [9]. Thus,

some extended methods [14], [15], [8], [9], [17] have further

been proposed to improve the recognition performance. LBP-

SIP provided a lightweight representation based on three

intersecting lines crossing over the center point of LBP-TOP

[14] and trained an SVM classifier. In [8], [9], the STCLBP

and STCLQP features extended LBP-TOP features by contain-

ing more information (i.e., magnitude and orientation). Their

hierarchical versions were reported in [38] and achieved better

performance by considering multiple blocks of LBP. In LSDF

[15], regions of interest (ROIs) were used to extract LBP-TOP

features and further calculate local directional features, which

encode the sign feature with magnitude information as weight-

s. Furthermore, DSLBP [17] extracted 1D LBP and LBP-TOP

combining with an integral projection and incorporated shape

attributes into spatiotemporal texture features.

2) Geometric Based Methods: Geometric based methods

extract deformation information from local landmarks or op-

tical flow fields of facial regions without considering facial

textures. In [39], facial feature points have been tracked and

used to recognize specific micro-expressions (i.e., happiness

and disgust). Furthermore, the Delaunay triangulation based

on extracted landmarks was used to reveal subtle muscle

movements [40] and encoded temporally for dynamical micro-

expressions. Besides, based on optical flow estimation, some

approaches leverage the magnitude, orientation and other high-

order statistics to model the dynamics of micro-expressions.

The MDMO [16] features generated histograms from ROIs

by counting the oriented optical flow vectors and then those

histograms were used to recognize micro-expressions. Facial

dynamics map (FDM) features calculated the optical flow

direction based on the spatiotemporal cuboids and then were

used to characterize a micro-expression sequence [41]. In

Bi-WOOF [10], the orientation histogram in each block of

facial regions was generated by considering the magnitude and

optical strain values as the weights. The weighted histograms

were further used for recognizing micro-expressions.

In the earlier conference version of this work [42], the

recurrent convolutional networks have been used to recog-

nize micro-expressions. Compared to the handcrafted features,

the proposed deep neural network model [42] can capture

the subtle temporal changes automatically and obtain good

recognition results by simultaneously learning a classifier.

Compared to the conference version, this work promotes in

three aspects: 1) the appearance based connectivity called

STRCN-A in conference version is promoted by a new dimen-

sion reduction method with generating masks and selecting

the micro-expression-aware areas; 2) this work proposes a

new geometric based connectivity method called STRCN-

G for modeling the spatiotemporal deformation of micro-

expressions; 3) two effective data augmentation strategies and

one sample-weighted loss function are presented to benefit

the learning of deep models for the challenge of limited and

unbalanced samples.

B. Spatiotemporal Deep Learning

In recent years, CNNs have achieved great successes in

many computer vision tasks and advanced the state-of-the-art

accuracy of image/object recognition [43], [44]. The archi-

tecture of CNNs is a type of artificial neural networks and

has a purely feed-forward architecture characterized by local

connections and weight sharing. Amounts of deep learning

approaches based on CNNs have been developed to pursue

more excellent performances by using millions of training

samples. However, the conventional CNNs only capture the

spatial variations without considering temporal information.

To model spatiotemporal variations, several deep approach-

es have exploited various architectures to be adaptive for

video/sequence based data in many fields [45], such as video

classification [46], [47], [48] and action recognition [49], [50],

[51], to cite only few. In [49], the 3D convolutional filters were

used to extract temporal information in every seven frames

for action recognition. Similar to [49], the size of filters on

the first convolutional layer in the early fusion of [46] was

modified to some temporal extent, for example, 11×11×3×10,

which can deal with 10 frames for one time. Similar idea has

also been presented in [47], which can deal with full video

frames at one time. In the late fusion of [46], two frames

separately went through the same networks and merged in

the first fully connected layer. These two ways can extract

spatiotemporal information progressively in a dense sampling

way. Different from the dense sampling strategy [49], [46],

[47], a sparse temporal sampling strategy in temporal segment

network (TSN) [50] was used to segment long-range video for

enabling effective learning using the whole video. And more

variants of TSN have been proposed to fuse mid/high-level

features [51]. Besides, the recurrent neural network (RNN)

based encoder-decoder models [52], [48], [53] combined with

CNNs were introduced to learn compact representation for

videos. However, the CNN, e.g., VGG16, as an encoder and

RNN, e.g., long short-term memory (LSTM) and gated recur-

rent unit (GRU), as an decoder were usually trained separately

and cannot obtain good representations jointly for a specific

task. More deep models based on aforementioned architectures

have been proposed for modeling spatiotemporal information.

These approaches have been proven to be effective for long-

range videos and can well capture the significant changes.

Whereas, it might not be effective and needs to explore more

specific models for the task containing subtle changes, such

as micro-expression recognition.

More specifically, the feed-forward architectures can only

capture the context in higher layers of CNNs where the

units have larger receptive fields and fail to modulate the

activities of units in lower layers. It means that only one-

scale temporal variation can be captured by CNN based ap-

proaches. Inspired by neuroscience, the recurrent connections

are adopted to obtain larger receptive fields and reduce the

number of learnable parameters. The larger receptive fields

are helpful to utilize the context information in lower layers

of CNNs, and less parameters are more suitable for tasks

without large amounts of samples [54]. In [55] and [54],

two different types of convolutional layers with recurrent
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Fig. 1: The framework of our proposed approach for micro-expression recognition.

connections were proposed to label scenes. These recurrent

convolutional networks were then applied to model significant

changes for pain intensity regression based on static images

[56]. In this paper, we propose new spatiotemporal recurrent

convolutional networks (STRCN) to model subtle changes for

limited-range videos/sequences. The sampling strategies for

long-range videos are not suitable for limited-range videos. To

address this problem, we propose two types of connectivities

of STRCN across temporal domain for jointly modeling the

spatial and temporal deformations.

III. PROPOSED METHOD

In this section, we will present our proposed deep mod-

el (i.e., spatiotemporal recurrent convolutional networks) for

recognizing micro-expressions. To explain the details of our

proposed STRCN method, total five parts will be successively

introduced, including the framework, spatial and temporal

processing, temporal connectivity, spatiotemporal modeling

and parameter learning. Specifically, our contributions are

mainly threefold. Firstly, we apply the RCN in the frame-

work by slightly changing its architecture and learn the deep

model without any pre-trained models. Secondly, two ways of

temporal connectivies, i.e., appearance based and geometric

based connectivity, are proposed to address the problem of

sequential network input. In this part, the selection method of

micro-expression-aware areas and detection method of apex

frames are proposed to generate the network input, respec-

tively. Thirdly, to address the problem of using deep learning

techniques for small-size sample problem, we propose a data

augmentation method for greatly enriching the limited samples

for RCNs in the part of parameter learning.

A. The Framework

The framework of our proposed method is shown in Fig. 1.

Our proposed approach contains three key procedures, i.e.,

spatial and temporal processing, temporal connectivity and

spatiotemporal modeling, for recognizing micro-expressions.

For training deep models with limited and unbalanced sam-

ples, the parameter learning in training procedure is a key

component of our proposed approach.

Firstly, we process video sequences of micro-expressions s-

patially and temporally. In spatial processing, the facial regions

are cropped and aligned for each video (image sequence),

resulting in the removal of non-facial regions. Then, in tempo-

ral processing, the motion deformations of facial regions are

augmented to enhance subtle changes of micro-expressions.

This will be introduced in Section III-B and a processing

example is shown in Section IV-F. Secondly, two types of

temporal connectivities are proposed to feed the sequential

input into the subsequent deep model. The first type (denoted

as STRCN-A) is an appearance based way while the second

one (denoted as STRCN-G) is a geometric based way. This

will be introduced in Section III-C. At last, the spatiotemporal

modeling with deep recurrent convolutional networks is used

to recognize micro-expressions. The architectures and detailed

setup will be introduced in Section III-D and the parameter

learning of deep models will be introduced in Section III-E.

B. Spatial and Temporal Processing

1) Spatial Processing: To avoid the pollution of regions

without containing micro-expressions, facial regions need to

be cropped and aligned from image sequences. In this context,

the facial landmark points are detected firstly and then used

to crop and align facial regions.

We employ an eye detector [57] and active shape model

(ASM) algorithm [32] to detect landmark points. The eye

detector [57] can accurately locate two centering points of

eye regions and determine the starting positions for face

shapes described by ASM. And then the accurate locations of

face shapes are iteratively fitted by the ASM algorithm [32].

Following [6], we use 68 landmark points to crop the facial

regions. Given the centering points of eyes in frame i, i.e.,

(xl
i, y

l
i) for left eye and (xr

i , y
r
i ) for right eye, the cropping

coordinates of facial regions are calculated as

topleft = ((xl
i, y

l
i)) + δ1(0, y

l
i − yri )− δ2(x

r
i − xl

i, 0)

height = δ3

√

(xl
i − xr

i )
2 + (yli − yri )

2

width = δ4

√

(xl
i − xr

i )
2 + (yli − yri )

2

(1)

Based on the 68 landmark points, a local weighted mean

(LWM) transformation [6] of any frame for sequence i is used

for aligning cropped facial regions. The transformed value of

an arbitrary point is set to

f(x, y) =

∑N
i=1 W (

√

(x− xi)2 + (y − yi)2/Dn)Si(x, y)
∑N

i=1 W (
√

(x− xi)2 + (y − yi)2/Dn)
(2)

where W is the weight, Dn is the distance of control point

(xi, yi) from its (n−1)th nearest control point, and Si(x, y) is

the polynomial with n parameters passing through a measure

for (xi, yi) and n− 1 other measurements nearest to it. Using

LWM transformation, all images in one sequence can be

aligned frame by frame.

2) Temporal Processing: The temporal changes of aligned

facial regions are very small and (almost) impossible to see

with naked eyes of humans. Moreover, it is difficult to auto-

matically learn representations of these subtle changes from



(a) Type 1: STRCN-A

(b) Type 2: STRCN-G

Fig. 2: The schematic diagram of temporal connectivity. (a)

Type 1: Appearance based connectivity (STRCN-A); (b) Type

2: Geometric based connectivity (STRCN-G).

noisy content by machine learning techniques. In this context,

we utilize the motion magnification technique to amplify the

hidden motion information of adjacent frames.

In this context, we choose the Eulerian Video Magnification

(EVM) method [58] to amplify the temporal motion. The

magnified temporal motion can be calculated by

Ĩ(x, y, t) = f(x, y) +
∑

k

(1 + αk)δk(t)(
∂f(x, y)

∂x
,
∂f(x, y)

∂y
)

(3)

where f(x, y) = I(x, y, 0) and I(x, y, t) denotes the image

intensity at position (x, y) and time t. δk(t) is a displacement

function and can be obtained by the temporal bandpass filter

with respect to the kth frequency. αk is a frequency-dependent

motion magnification factor. Ĩ(x, y, t) is the image intensity

of tth frame after magnified.

In order to amplify the subtle changes of facial sequences,

an infinite impulse response (IIR) filter is chosen as our tem-

poral filter. In other words, we only use one temporal filter δ(t)
(k = 1) as the bandpass filter. After the temporal filtering, all

images of each band are amplified with a fixed magnification

factor αk. Finally, all bands of Laplacian pyramid are used to

reconstruct the motion-magnified facial sequences.

C. Temporal Connectivity

We investigate two types of temporal connectivities for fus-

ing information across temporal domain. Type 1 concatenates

all images in one sequence by vectorizing one channel of an

image into a column of matrix. The spatiotemporal variations

are reserved in a composite matrix and then appearance

features can be learned by STRCN. So we call it as appearance

based connectivity (abbreviated as STRCN-A). In type 2, the

geometric motion is described by optical flow fields and then

used to learn spatiotemporal features by STRCN. So we call

it as geometric based connectivity (abbreviated as STRCN-

G). The schematic diagram of these two types of temporal

connectivities is shown in Fig. 2.

1) Type 1: Appearance based Connectivity: To obtain the

appropriate input for STRCN, all pixels of an entire image

can be directly vectorized into a column of one matrix,

however, this way may induce the lengthy size of matrix

column. In STRCN-A, we propose a better way to reserve

spatiotemporal information in one matrix. Usually, not all

pixels in facial regions are helpful for learning representations

of micro-expressions. Observed from the magnified video

sequences, micro-expressions are usually the fragments of

normal expressions and only occur in particular areas of

face, such as eyes, brows and mouth, which are called as

micro-expression-aware areas in this paper. Other facial areas,

e.g., chin and hairs, do not reveal micro-expressions, which

are micro-expression-unaware areas. In addition, the short-

duration micro-expressions do not involve wide-range facial

changes. So, in the context, we choose to eliminate the effects

of micro-expression-unaware facial areas and select out the

micro-expression-aware ones. In other words, some partial

regions sensitive to micro-expressions, rather than an entire

image, are selected out to be concatenated into a matrix.

In order to obtain micro-expression-aware areas, we propose

a mask generation method and choose those areas with the

generated mask, which has an example in Fig. 8(a). The mask

is generated by thresholding a difference heat map, which

is calculated by accumulating temporal differences of video

frames on entire datasets. In the following paragraph, we will

introduce how to calculate the heat map and threshold it.

The difference heat map E(x, y) of magnified video frames

is calculated as follows:

E(x, y) =
∑

i

∑

t

di(x, y, t)

di(x, y, t) = |Ĩi(x, y, t)− Ĩi(x, y, 0)|

(4)

where Ĩi(x, y, t) denotes the magnified image intensity at

spatial position x, y and time t for ith facial sequence.

di(x, y, t) represents the difference of two frames with tem-

poral interval t and is accumulated to generate the heat

map E(x, y). Through accumulating temporal differences, the

micro-expression-aware facial areas become active in the dif-

ference heat map. We further design an efficient thresholding

strategy to generate the mask. Firstly, we sort all values of

difference heat map in a descending order. Then the top

p% percentiles of sorted values are chosen and others are

abandoned. The binary mask is finally generated by setting

the chosen values to 1 and others to 0, which has an example

in Fig. 8(a).

With the binary mask, the micro-expression-aware areas

can be selected out and continue to be flattened to a ten-

sor. Supposed that the magnified data Ĩ(x, y, t) ∈ Rd1×T

(d1 = W × H), the data after selection is denoted as

Î(x, y, t) ∈ Rd2×T (d2 equals to the number of pixels in

selected areas). Usually, the dimensionality d2 after selection

is greatly smaller than the original dimensionality d1, i.e.,

d2 ≪ d1. So, the entire video in STRCN-A can be denoted

as a tensor V1 ∈ R
d2×T×C , where C represents the image

channels.

2) Type 2: Geometric based Connectivity: In this type

(STRCN-G), we investigate the motion information extracted

from the entire video sequence by optical flow method. The

dense sampling method used in [49], [46], [47] can model the

motion variations of micro-expressions, however, it computes

inefficiently and still need to further fuse the dense sampling.

As the micro-expression clips are different from common

video clips having multiple scenes and usually have one scene,
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we choose to use the sparse sampling to compute the optical

flows. Inspired by [59], [10], only the apex and onset frames

are used to compute the optical flow images. Then the optical

flow images are fed into STRCN for modeling geometric

deformations.

The onset frame is defined as the first frame of video

sequence containing micro-expressions while the apex frame is

the frame containing the strongest-intensity expressions, which

have the greatest changes from the first frame. To capture the

greatest changes, we propose to use the difference deviation

for roughly locating the apex frame. The index ta of apex

frame can be calculated as

ta = argmax
t

σi(t)

σi(t) = std
(

Ĩi(x, y, t)− Ĩi(x, y, 0)
)

(5)

where std(·) computes the standard deviation of input matrix.

With the sparse sampling frames (i.e., onset and apex

frames), we employ the accurate optical flow method [60] for

optical flow approximation. To compute more efficiently, the

Lorentzian penalty function with improved model is chosen

as the estimation method. The estimated displacement vector

at position (x, y) for sequence i is denoted as (ux,y,vx,y).
So the entire video in STRCN-G can be denoted as a tensor

V2 ∈ R
W×H×2.

D. Spatiotemporal Modeling

Compared to the handcrafted features, CNNs have more

powerful ability to describe subtle changes of micro-

expressions. In this paper, we add recurrent connections (i.e.,

RCNs [54]) within the feed-forward convolutional layers by

using multiple-scale receptive fields. Based on two types

of temporal connectivities, the spatiotemporal information of

sequences can be further extracted by RCNs.

The architecture of our deep RCNs is shown in Fig. 3. It

contains one feed-forward convolutional layer (CL) and sev-

eral recurrent convolutional layers (RCLs). The layer 1 (CL1)

is the only feed-forward convolutional layer without recurrent

connections and used to compute efficiently. Following the

standard convolutional layer 1, several RCLs (RCL2 ∼ R) are

employed to extract visual features for recognition task. Be-

tween each convolutional layers (feed-forward and recurrent),

max pooling operations are adopted to reduce dimensionality

and save computation. Following the RCLs, a global average

pooling layer is adopted to concatenate all feature maps into a

vector. In the last layer, the classificatory layer with Softmax

function is employed to calculate the recognition probabilities

with concatenated feature vector.

With the tensor V of network input, the convolutional layer

CL1 with a pooling layer outputs the feature maps denoted

by V c. In each RCL layer, several hidden layers are used to

expand the size of receptive fields and one RCL layer can

be unfolded into several convolutional layers. The layer latter

in the subnetwork has larger receptive field in the same RCL

layer. r represents the index of RCL layers (r = 2, · · · , R)

and n denotes the depth index of rth RCL layer, i.e., the

index of hidden convolutional layers. For every convolutional

layer, fixed-size feature maps are used to obtain the consistent

connections. The input of an unit located at (i, j) on the kth

feature map in rth RCL layer can be computed as

zrijk(n) = wfTur
ij(n) +wr

k
T
vr
ij(n− 1) + bk (6)

where ur
ij(n) and vr

ij(n − 1) represent the feed-forward and

recurrent input, respectively. In the equation, w
f
k and wr

k

denote the feed-forward and recurrent weight vectors for kth

feature map. bk is the bias of kth feature map. The output of

an unit located at (i, j) on the kth feature map is given by

vrijk(n) = f(zrijk(n)) (7)

where n = 0, 1, · · · , N and the initial state vrijk(0) =

vr−1
ijk (N). f(·) represents the normalized activation function.

In a summary, the rth RCL layer can transform a tensor Ur ∈
R

W ′
×H′

×K′

of layer input into a tensor V r ∈ R
W ′′

×H′′
×K′′

.

K(K ′,K ′′) represents the number of feature maps in rth

RCL layer. After R RCL layers, the output V c of CL1 is

transformed to a tensor V R.

Finally, the output of deep network uses the Softmax

function to classify the C-categories micro-expressions based



on the feature vector from the global pooling layer. The

probability of micro-expressions can be calculated as

pc =
exp(WTv)

∑C
c=1 exp(W

Tv)
(8)

where pc is the predicted probability vector of all categories,

v denotes the output feature vector of global pooling layer,

which computes from V R, and W denotes the weight matrix

between last global pooling layer and classification layer.

E. Parameter Learning

The parameter learning can be performed by minimizing

the cross entropy loss function using the back propagation

through time (BPTT) algorithm [54]. However, it is noted

that two challenging issues for deep learning methods exist

in current micro-expression datasets, which will make the

parameter learning ineffective. The first one is having slightly

imbalanced classes while the second one is having limited

samples. Take CASME II [23] for example. The category of

“Other” have almost 4 times more samples than “happiness”.

Besides, no more than 250 original samples in CASME II [23]

can be used to train deep RCNs. This will cause the problem of

over-fitting and limit the recognition performance. To address

these two problems, we employ two operations, namely, multi-

class balanced loss and multi-scale data augmentation to train

the deep RCNs.

We extend the binary balanced loss [61] into MER problem

with multiple categories. We define a quantity pt as

pt = py

c (1− pc)
1−y (9)

where y is the label vector and its arbitrary element yi ∈
{0, 1}. Then the multi-class balanced loss is computed as

follows

L =
∑

i

(

− βilog(p
i
t)
)

(10)

where βi is the weighting factor of class for sample i and

inversely proportional to the sample’s class ratio in batch data.

With the balanced loss function, the imbalance classes are

balanced by βi.

On the other side, we propose two multi-scale data augmen-

tation strategies to enrich training samples and further restrain

the problem of small-size samples. Firstly, we use multiple-

scale amplification factors αk for training samples. All cat-

egories use multi-scale amplification factors αk = [5, 14].
With different factors, the size of samples are augmented by

10 times. Secondly, some frames are randomly selected out

from one sequence with a percentage. Totally, five levels of

percentages are adopted for random selection, i.e., 100%, 90%,

80%, 70%, and 60%. So, with five random selections, the data

can be augmented by 5 times and these data contain different-

sized sequences. Performing these two strategies jointly, the

original data can be augmented by 50 times. These augmented

data can make it more sufficient for training deep architecture.

TABLE I: The detailed configuration of our deep STRCNs.

Layers
Configurations

STRCN-A STRCN-G

Input Tensor:d1 × T × 3 Tensor: W ×H × 2
Conv1 k : 5× 5, p : 0, s : 1× 1
Pool1 MAX, k : 4× 1, s : 4× 1 MAX, k : 4× 4, s : 4× 4

RCL2
1 feed-forward: k : 1× 1, p : 0, s : 1× 1
3 recurrents: k : 3× 3, p : 1× 1, s : 1× 1

Pool2 MAX, k : 4× 1, s : 4× 1 MAX, k : 4× 4, s : 4× 4

RCL3
1 feed-forward: k : 1× 1, p : 0, s : 1× 1
3 recurrents: k : 3× 3, p : 1× 1, s : 1× 1

Pool3 MAX, k : 4× 4, s : 4× 4 MAX, k : 4× 4, s : 4× 4

RCL4
1 feed-forward: k : 1× 1, p : 0, s : 1× 1
3 recurrents: k : 3× 3, p : 1× 1, s : 1× 1

Pool4 MAX, k : 2× 2, s : 2× 2 MAX, k : 2× 2, s : 2× 2

RCL5
1 feed-forward: k : 1× 1, p : 0, s : 1× 1
3 recurrents: k : 3× 3, p : 1× 1, s : 1× 1

Pool5 Global AVG with alterable size

Output C categories

All the convolutional layers contain M feature maps.
k - filter or pooling size, p - padding size, s - stride size.

IV. EXPERIMENTS

In this section, we present the experimental details, in-

cluding the implementation details, the datasets we used, the

protocols, the approaches for comparison and experimental

results.

A. Implementation Details

In the spatial processing procedure, the constants

δ1, δ2, δ3, δ4 for cropping facial regions are set to

{0.4, 0.6, 2.2, 1.8}, following [6]. For the temporal processing,

the cut-off frequencies (filter interval) of IIR filter are chosen

as [0.05, 0.4]Hz. And the magnification factor in testing

procedure is fixed to α = 8. According to [58], the bound

for factor α in any frame is adopted as αc = λ
8δ(t) − 1. λ

denotes the spatial wavelength and is set to λ = 16 in this

context. Therefore, the magnification factor can be finally

used as α = min(8, αc).
In temporal connectivity procedure, the facial images are

resized to fixed sizes for subsequent procedures. The fixed

sizes are set to 64× 48 for STRCN-A (type 1) and 300× 245
for STRCN-G (type 2). For the mask generation in STRCN-A,

considering the trade-off between the dimensionality reduction

and information preserving, we choose the percentile value

p = 30% as the threshold, which is further investigated in

Section IV-E. The corresponding value of 70% percentile of

maximum is denoted as Ep so that the positions with values

E(x) > Ep are selected as active elements. In the next

step of STRCN-A, the temporal normalization operations are

performed to obtain fixed-size input tensor for RCNs. Here,

we choose 30 frames to feed the deep model. For STRCN-G,

the fixed-size (300× 245) frames are used to generate optical

flow map and then fed to RCNs.

The detailed configurations of RCNs are shown in Ta-

ble I. Two types of temporal connectivities share the same

architecture of RCNs but have different parameter setups.

For each convolutional layer (feed-forward and recurrent),

the batch normalization is used for scaling the activation

and then a rectified linear unit is followed as the activation



function. Since many parameters in our deep architecture may

affect the performance of micro-expression recognition, we

fix some parameters (e.g., filter sizes and stride size) with

prior values in [54], [56]. For other some important parameters

(e.g., filter interval of IIR filter, number of feature maps and

recurrent layers), we explore their values by grid searching

and investigate their impact in Section IV-E.

For learning parameters, the momentum is set to 0.9 and

weight decay 0.0005 in stochastic gradient decent (SGD)

procedure of BPTT. The stopping criterion for SGD is set

to 10−3 for iterations. The learning rate is set to 10−3 in

the beginning and will be multiplied with damping factor 0.8
when all mini-batches are traversed and re-allocated randomly.

To accelerate the parameter learning, we employ the library

MatConvNet [62] to accomplish our proposed model. The

mini-batch size for training model is set to 20 as it is limited

by the memory of GPUs (One Geforce TiTan X).

B. Micro-expression Datasets and Setups

Three representative micro-expression datasets are used to

evaluate the performance of our proposed approach in the

experiments: SMIC dataset [27], CASME II dataset [23] and

SAMM [30]. All of them are specially designed to detect

and recognize spontaneous micro-expressions, which are con-

structed by inducing subjects’ micro-expressions. These three

corpora have following characteristics:

• The SMIC dataset contains 164 spontaneous micro-

expressions from 16 subjects. It is recorded by 100

fps high-speed cameras. These participants undergo high

emotional arousal and suppress their facial expressions

in an interrogation room setting with a punishment threat

and highly emotional clips.

• The CASME II dataset has 256 micro-expressions from

26 subjects. It has higher video quality and larger image

size compared with SMIC. The recording rate of cameras

in CASME II is 200 fps. Thus the video sequences of

micro-expressions in CASME II have more frames than

SMIC.

• The SAMM dataset contains 159 micro-expressions from

29 subjects at 200 fps. It uses similar procedures like

CASME II but has a higher image resolution and employs

an array of LEDs to avoid flickering. Because of the

creators with professional rating skills, these expressions

are obtained from stricter lab situations and labeled more

accurately. And it has a wide ethnicity compared to other

datasets.

To keep three datasets consistent with each other, we

merge seven more categories in CASME II and SAMM into

four classes. Following [37], [16], [38], the happy micro-

expressions in CASME II and SAMM are classified into

“Positive” class as they indicate good emotions of subjects. In

contrast, the disgust, sadness, fear, contempt and anger micro-

expressions are classified into “Negative” class as they are

usually considered as bad emotions. Surprise usually occurs

when there is a difference between expectations and reality

and can be neutral/moderate, pleasant, unpleasant, positive, or

negative. Tense and repression are classified into the “Other”

class as they indicate the ambiguous feelings of subjects

and require further inference. In SMIC dataset, only the first

three classes (i.e., positive, negative and surprise) are used to

annotate the micro-expressions.

For all experiments on three datasets, both leave-one-

subject-out (LOSO) and leave-one-video-out (LOVO) proto-

cols are used to evaluate our proposed methods. To save

the training time of deep models, we leave 5% videos for

testing, which will reduce the testing time. Based on two

protocols, we use both accuracy and F1-score to evaluate

the performance of our proposed STRCNs (STRCN-A and

STRCN-G), avoiding the impact of imbalanced class problem

for three datasets. Assume that TP , FP and FN are the true

positive, false positive and false negative, respectively. The

accuracy is calculated as Acc = TP
N

where N is the number

of testing samples. The F1-score is computed as F = 2×P×R
P+R

,

where P =
∑

C

i=1
TPi∑

C

i=1
(TPi+FPi)

and R =
∑

C

i=1
TPi∑

C

i=1
(TPi+FNi)

.

C. Method Comparison in LOSO Protocol

Since the subject-independent evaluation protocol, i.e.,

LOSO, is becoming the main-stream for evaluating MER

problem, we report the comparison results of our two deep

models (STRCN-A and STRCN-G) in LOSO protocol with

all state-of-the-art approaches, including the conventional ap-

pearance based methods [6], [14], [7], [8], [38], geometric

based methods [16], [41], [10] and deep methods [24], [] in

Table II.

1) Comparison Results to Appearance Based Methods:

The appearance based methods are based on LBP and have

LBP-TOP [6], LBP-SIP [14], LBP-TICS [7], STLBP-IP [8]

and Hierarchical STLBP-IP [38]. The LBP parameters of

these methods are set as R = 3 and P = 8, which

achieve the best performance in all configurations [14], [8],

[38]. Except Hierarchical STLBP-IP, all LBP-based methods

employ SVMs as classifiers, in which the polynomial kernel

k(xi, xj) = (γ1x
T
i xj + γ2)

γ3 is used and the optimal values

are set to γ1 = 0.22, γ2 = 0, γ3 = 2. All these methods

are implemented according to their descriptions and retrained

over three datasets. In contrast, the results with the optimal

parameter set of kernelized group sparse learning are obtained

from [38] for hierarchical STLBP-IP and only reported on two

datasets, i.e., SMIC and CASME II.

Compared with the results of appearance based methods in

Table II, our proposed methods (STRCN-A and STRCN-G)

achieve better results than them in most configurations and

datasets. Especial for STRCN-G, its results are better than

all the other appearance based methods (including STRCN-

A) under the LOSO protocol while STRCN-A achieves better

performance only in LOVO protocol. In LOSO protocol,

both our proposed appearance based method (STRCN-A) and

image-based CNN cannot achieve better performance than

hierarchical STLBP-IP. That might be because the appearance

based deep models would be affected by the intra-class vari-

ations of each subject (person) as these deep models would

learn certain appearance from each subject’s samples.

2) Comparison Results to Geometric Based Methods: The

geometric based methods mainly utilize the optical flow fields



TABLE II: The recognition accuracy and F1-score of different methods under the LOSO protocol on three datasets.

Approaches
SMIC CASME II SAMM

Accuracy F1-score Accuracy F1-score Accuracy F1-score

LBP-TOP [6] 0.457 0.461 0.409 0.369 0.415 0.406

LBP-SIP [14] 0.421 0.422 0.457 0.425 0.417 0.402

LBP-TICS [7] 0.439 0.384 0.405 0.378 0.395 0.374

STLBP-IP [8] 0.543 0.547 0.551 0.497 0.568 0.527

Hierarchical STLBP-IP [38] 0.601 0.613 0.638 0.611 N\A N\A

MDMO [16] 0.615 0.406 0.510 0.418 N\A N\A
FDM [41] 0.714 0.540 0.417 0.297 N\A N\A

Bi-WOOF[10] 0.593 0.620 0.589 0.610 0.598 0.591

Image-based CNN [24] 0.312 0.305 0.444 0.428 0.436 0.429

CNN-LSTM [48] 0.376 0.357 0.482 0.455 0.448 0.437

CNN-GRU [52] 0.385 0.368 0.493 0.467 0.452 0.441

STRCN-A(Ours) 0.531 0.514 0.560 0.542 0.545 0.492

STRCN-G(Ours) 0.723 0.695 0.803 0.747 0.786 0.741

*N\A - no results reported.

to obtain the geometric information of facial movements and

have MDMO [16], FDM [41] and Bi-WOOF [10]. The LOSO

results originally from MDMO [16] and FDM [41] are used

directly while the Bi-WOOF is implemented mainly according

to [10]. In Bi-WOOF, the block size for local weight and

optical strain is set to 8 × 8. Then SVM classifiers are

retrained on three datasets with the same parameters of LBP-

based methods. Different from [10], the optical flow estimation

method [60] used in STRCN-G is also used to implement Bi-

WOOF.

Compared with the results of geometric based methods in

Table II, our proposed geometric based method (STRCN-G)

achieves better results than them in all configurations and

datasets. Merely in SMIC dataset, FDM reports the accuracy

near to our STRCN-G while FDM achieves very poor perfor-

mance in CASME II dataset. For other approaches, STRCN-

G achieves very promising performance improvement on all

datasets. On the other side, in LOSO protocol, our proposed

appearance based method (STRCN-A) only achieves better

performance in some configurations and datasets. For instance,

in SMIC dataset, all geometric based approaches achieve better

accuracy and F1-score than the proposed STRCN-A under the

LOSO protocol. Furthermore, the geometric based methods

achieve better performance than almost all appearance based

methods, not just our proposed STRCN-A. Compared to

appearance based methods, geometric based methods may

eliminate the intra-class information of each subject as only

geometric information of subjects are reserved.

3) Comparison Results to Deep Methods: The image-based

CNN [24] recognizes the category of each frame in a micro-

expression sequence. To compare with our proposed deep

models fairly, we recognize one sequence as the category

ci when half frames in the sequence are recognized as the

category ci. Strictly following the image-based CNN, the

VGGFace architecture is utilized to pre-train the CNN model1

[62] and then fine-tuned in MER datasets. In [24], the temporal

changes are not utilized for recognizing micro-expressions.

Besides, the LSTM [48] and GRU [52] combined with CNN

(denoted as CNN-LSTM and CNN-GRU) are also used as

baseline methods. Both CNN-LSTM and CNN-GRU use the

1 http://www.vlfeat.org/matconvnet/pretrained/

VGGFace model 2 to extract the visual features and then train

RNNs (LSTM and GRU) for extracting temporal information.

The CNN cannot be trained with LSTM and GRU jointly

in CNN-LSTM and CNN-GRU for the task of MER as the

network input of RNN uses sequential data while the CNN

input needs one individual image. In contrast, the temporal

changes are modeled by two types of connectivities in our

proposed methods and can be trained from scratch for MER.

Observed from Table II, our proposed methods outperform

the image-based CNN, CNN-LSTM and CNN-GRU obviously

under the LOSO protocol. Even for the handcrafted features,

the image based CNN cannot outperform them as those

manually-designed features consider the temporal information

of sequences. And merely using the pre-trained model for

CNN-LSTM and CNN-GRU limits the representation ability

of CNNs for MER. So it is indicated that the joint spatiotem-

poral modeling of deep models and its fine-tuning are pre-

requisite for MER problem.

D. Method Comparison in LOVO Protocol

To complement the LOSO protocol, we also report the

comparison results under the LOVO protocol. We compare

our proposed methods with several conventional and deep

methods on three datasets, including LBP-TOP [6], LBP-SIP

[14], LBP-TICS [7], STLBP-IP [7] Bi-WOOF [10], image-

based CNN [63], CNN-LSTM [48] and CNN-GRU [52]. All

these comparison methods are compared on three datasets and

the performances are reported in Table III. Among these state-

of-the-art approaches, the variants of LBP method are based

on appearance features while Bi-WOOF is a geometric based

method. To compare deep models in LOVO protocol, we also

compare our proposed method with deep models (image based

CNN [24], CNN-LSTM [48] and CNN-GRU [52]). Since we

use 5% of all samples, rather than only one sample, as the

testing sample for each evaluation, all methods in Table III

are reevaluated over three datasets with implementing their

algorithms, rather than citing their reported results directly.

The parameters of all methods are same to the configurations

in LOSO protocol.

2 https://github.com/dangz90/Deep-Learning-for-Expression-Recognition-i
n-Image-Sequences

http://www.vlfeat.org/matconvnet/pretrained/
https://github.com/dangz90/Deep-Learning-for-Expression-Recognition-in-Image-Sequences
https://github.com/dangz90/Deep-Learning-for-Expression-Recognition-in-Image-Sequences


TABLE III: The recognition accuracy and F1-score of different methods under the LOVO protocol on three datasets.

Approaches
SMIC CASME II SAMM

Accuracy F1-score Accuracy F1-score Accuracy F1-score

LBP-TOP [6] 0.618 0.577 0.591 0.537 0.593 0.542

LBP-SIP [14] 0.645 0.598 0.657 0.622 0.645 0.592

LBP-TICS [7] 0.637 0.586 0.643 0.607 0.647 0.604

STLBP-IP [8] 0.701 0.669 0.723 0.677 0.712 0.663

Bi-WOOF [10] 0.745 0.706 0.725 0.689 0.718 0.672

Image-based CNN [24] 0.531 0.476 0.564 0.507 0.572 0.518

CNN-LSTM [48] 0.559 0.478 0.581 0.534 0.569 0.521

CNN-GRU [52] 0.562 0.509 0.599 0.541 0.583 0.536

STRCN-A(Ours) 0.758 0.714 0.841 0.784 0.836 0.792

STRCN-G(Ours) 0.749 0.710 0.833 0.807 0.827 0.781

Observed from Table III, our proposed methods (STRCN-A

and STRCN-G) achieve the best performance in all configura-

tions under the LOVO protocol. Compared to the handcrafted

features, the deep features from automatic learning in our

proposed method are competitive to other methods under

the LOVO protocol. We can see that LBP-based features

cannot outperform other methods as they are more suitable

for the description of obvious changes of macro-expressions

and the subtle changes can still not be well captured. Based

on optical flow maps, the Bi-WOOF feature [10] extracts

subtle changes of micro-expressions but has limited ability

of describing micro-expressions. Our proposed methods can

obtain the descriptions of subtle changes and outperform these

state-of-the-art methods.

Moreover, the evaluation under the LOVO protocol is easier

than LOSO protocol as all subjects can occur in training

samples. Compared results in Table II and III, our proposed

methods, i.e., STRCN-A and STRCN-G, achieve different

performances in both protocols. Especially, STRCN-A achieve

better performance than STRCN-G in most configurations

under the LOVO protocol. As STRCN-A is an appearance

based method, which learns certain information of subjects, it

can outperform STRCN-G in LOVO protocol while achieving

poor performance in LOSO protocol.

E. Parameter Analysis

In this section, we analyze the parameters of the pro-

posed methods and evaluate the impact of these parameters

individually. Totally, the accuracy performances of the data

augmentation, the balanced loss, the percentage threshold p,

the size of feature maps, the number of recurrent layers, the

interval of IIR filter and the training size are reported and

discussed in this context.

1) The Impact of Data Augmentation and Balanced Loss:

To observe the impact of temporal data augmentation and

balanced loss, we replace the proposed methods with removing

data augmentation (DA) procedure and balanced loss (BL).

For removing the procedure of temporal data augmentation

(DA), only the original samples are used by keeping model

parameters consistent to proposed models. To fairly compare

with final deep models (STRCN-A and STRCN-G), the same

iterations are used in all deep models. For using imbalanced

loss, we set all weights of samples to β = 1 for removing the

balancing weights. These methods are denoted as STRCN-A

TABLE IV: The recognition accuracy of different methods

without using data augmentation and balanced loss under the

LOVO and LOSO protocol on three datasets.

LOVO

Approaches SMIC CASME II SAMM

STRCN-A without DA 0.583 0.593 0.617

STRCN-G without DA 0.605 0.605 0.641

STRCN-A without BL 0.737 0.829 0.831

STRCN-G without BL 0.741 0.818 0.822

STRCN-A (Ours) 0.758 0.841 0.836

STRCN-G (Ours) 0.749 0.833 0.827

LOSO

Approaches SMIC CASME II SAMM

STRCN-A without DA 0.481 0.471 0.488

STRCN-G without DA 0.576 0.621 0.642

STRCN-A without BL 0.541 0.557 0.538

STRCN-G without BL 0.718 0.802 0.775

STRCN-A (Ours) 0.531 0.560 0.545

STRCN-G (Ours) 0.723 0.803 0.786
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Fig. 4: The accuracy performance of various percentiles p by

STRCN-A on three datasets.

without DA, STRCN-G without DA, STRCN-A without BL

and STRCN-G without BL in Table IV.

The accuracy of proposed methods without DA and BL are

reported in Table IV. From the results, we can see that the tem-

poral data augmentation can improve the performance of both

two proposed deep models in both protocols. Obviously, the

recognition ability of deep STRCN can be enhanced by lever-

aging more training samples. On the other side, the balanced

loss can improve the performance slightly with considering the

imbalanced classes. Overall, more sufficient training samples

can promote the performances of deep models.

2) The Impact of Percentiles: The values of p in STRCN-A

are evaluated by the accuracy of all datasets in both LOVO
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Fig. 5: The accuracy performance with different feature maps

by Type-1 and Type-2 connections on three datasets.

and LOSO protocols, which are shown in Fig. 4. According

to the results, the performance will be degraded when too

many pixels are abandoned by using lower values of p. In

contrast, extra pixels may not be helpful for recognizing

micro-expressions as some regions may contain noises. So the

micro-expression-aware areas can be optimally determined by

choosing appropriate values of p.

3) The Impact of Feature Maps: Figure 5 shows the results

of LOVO and LOSO evaluation for different feature maps on

the SMIC, CASME II and SAMM datasets. It is noted that

the performance can be steadily improved with more features

maps on all datasets. More feature maps in each recurrent layer

have more representation ability for extracting spatiotemporal

information. However, the improvement will become less with

the increase of feature maps. Besides, more feature maps

occupy more memory and need more time to learn.

4) The Impact of Recurrent Layers: Different recurrent

layers are evaluated on the SMIC, CASME II and SAMM

datasets in Fig. 6. According to Table I, the RCL2 ∼ 5
can be removed in sequence to obtain less recurrent layers

(i.e., 1 ∼ 4 layers) while all recurrent layers can be replaced

by convolutional layers to obtain zero recurrent layer (i.e.,

0 layer). The experimental results show that more recurrent

layers can improve the recognition performance. It is worth

noticing that the performance may decrease in some cases

when there are too many recurrent layers, e.g., more than four

layers in SMIC dataset. This might because the insufficient

samples limit the performance as more recurrent layers need

more training samples.

5) The Impact of IIR Filter Interval: Table V shows the

recognition accuracy of our proposed methods with different-

interval IIR filters and a learned filter under the LOSO

protocol on the SMIC, CASME II and SAMM datasets.

Firstly. we observe the effect of motion magnification by
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Fig. 6: The accuracy performance with different recurrent

layers by STRCN-A and STRCN-G on three datasets.

removing the temporal filter. Without the magnification, the

data augmentation cannot further be performed. So only the

original samples are used to train the deep RCNs. From the

results, we can see that the performances of RCNs decrease

greatly without using motion magnification (including the data

augmentation). Furthermore, it is noted that the performance

of recognizing micro-expressions can be affected by choosing

different filter intervals. Specifically, the choice of filter in-

terval would further affect the recognition performance. High

intervals for filtering more obvious deformations cannot be

used to describe the micro-expression deformations as the

micro-expressions contain short-duration and subtle changes.

Besides, the learning based method [64] is also used to verify

the filter interval. The learned temporal filter can improve the

recognition performance of MER but fail to outperform the

EVM method. The reason is that the learned filter needs to be

trained on synthetic images while ME images are limited and

cannot be used to fine-tune the learned filter for MER.

6) The Impact of Larger Training Size: To observe the

impact of larger training size, i.e., using a larger dataset,

we construct a larger dataset having 55 subjects and 415

samples, rather than using the individual dataset, to evaluate

our proposed methods. The composite dataset contains two

individual datasets, i.e., CASME II and SAMM, as these

two datasets have four same recognition tasks, i.e., positive,

negative, surprise and other (the SMIC dataset only has three

tasks). The experimental results are shown in Table VI. Our

proposed methods still achieve very competitive performance

compared to other approaches when using a larger dataset to

train the deep model. It is worth noting that the performance

degradation of all methods is mainly induced by the domain

shift of combining two datasets. For instance, the “negative”

task in CASME II contains “disgust”, “sadness” and “fear”

subtasks (three fine-grained micro-expression classes) while



TABLE V: The recognition accuracy of our proposed methods

with different-interval IIR filters and learned filter under the

LOSO protocol.

STRCN-A

Filter Interval SMIC CASME II SAMM

removed 0.432 0.419 0.435

[0.0, 0.05] 0.517 0.552 0.531

[0.05, 0.4] 0.531 0.560 0.545

[0.4, 1.0] 0.509 0.522 0.513

[1.0, 5.0] 0.414 0.451 0.429

learned [64] 0.471 0.518 0.496

STRCN-G

Filter Interval SMIC CASME II SAMM

removed 0.492 0.504 0.527

[0.0, 0.05] 0.698 0.785 0.753

[0.05, 0.4] 0.723 0.803 0.786

[0.4, 1.0] 0.675 0.759 0.742

[1.0, 5.0] 0.596 0.678 0.648

learned [64] 0.647 0.716 0.701

TABLE VI: The recognition accuracy of different methods

under the LOSO and LOVO protocols over the composite

dataset.

Composite Dataset (CASME II + SAMM)

Method LOSO LOVO

LBP-TOP [6] 0.384 0.426

Bi-WOOF [10] 0.453 0.591

Image-based CNN [24] 0.365 0.495

CNN-LSTM [48] 0.413 0.503

CNN-GRU [52] 0.417 0.508

STRCN-A(Ours) 0.495 0.698

STRCN-G(Ours) 0.629 0.693

the “negative” task in SAMM has “disgust”, “sadness”, “fear”,

“contempt” and “anger” subtasks (five classes). That would

greatly decrease the performance of all approaches when

compositing two datasets.

F. Visual Investigation

An example of spatial and temporal processing is shown

in Fig. 7, in which the magnification factor α is set to 8. It

is shown that the aligned facial regions can be obtained with

spatial processing and the temporal changes are amplified by

temporal processing. It is worth noticing that the temporal

changes of micro-expressions cannot be observed easily by

naked eyes without temporal processing (i.e., motion mag-

nification), which also increases the difficulty of automatic

learning. The temporal processing amplifies the temporal

changes and helps to learn deep models.

The generated mask in STRCN-A is shown in Fig. 8

(a). From the figure, it can be seen that some areas are

not active in the difference heat map and might not reveal

micro-expressions. Oppositely, the areas around eyes, nose

and mouth are mostly active for micro-expressions and can

be chosen by the binary mask. With the selected areas, the

dimension of learning space for deep model can be drastically

reduced and thus be helpful for the learning of deep models.

The quantificational validation for selecting areas is investi-

gated in Section IV-E2. The calculated optical flow fields are

shown in Fig. 8 (b), in which the fields are normalized for

visualization.

frame 1

frame 20

frame 50

Original
After spatial 

processing

After temporal 

processing

Fig. 7: An example of using spatial and temporal processing

(indexed “sub02\EP01 11f” in CASME II).

Original Frame Mask Micro-expression-aware Area  Input Tensor

(a) STRCN-A

Onset Frame Apex Frame Horizontal Flow Vertical Flow

(b) STRCN-G

Fig. 8: The network input in STRCN-A and STRCN-G. (a)

The original frame, generated binary mask, micro-expression-

aware area (p = 0.3) and input tensor in STRCN-A on entire

datasets; (b) The onset image, apex image, and optical flow

fields (normalized for illustration).

Finally, three (two successful and one failed) recognition

examples from different datasets are shown in Fig. 9 in

which “GT” represents the ground-truth label. From the first

example (first row), it is observed that the augmented changes

indicate a negative expression compared the apex frame with

onset frame. The second example (second row) shows that

the smile faces of subject in the entire sequence exhibit the

positive emotion when the subtle changes around the mouth

are obviously augmented. In the third example (third row), the

person has not shown any facial deformations, which cannot

be observed by naked eyes, even the motion augmentation has

been applied. The exemplar subject shows low-level emotions

by facial expressions. It further demonstrates that the person-

ality of humans will make the micro-expression recognition

being challenging.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel micro-expression recog-

nition approach based on spatiotemporal recurrent convolu-

tional networks (STRCNs). The proposed STRCNs modeled

the spatiotemporal deformations of micro-expression sequence



Processed Sequence STRCN-A GTSTRCN-G
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PP P

Onset Apex Offset

SN O

Prediction

Fig. 9: Recognition examples from three datasets by our

proposed STRCN methods (“P” - Positive, “N” - Negative,

“S” - Surprise, “O” - Other).

by two types of connectivities (STRCN-A and STRCN-G), in

which the connectivity of RCNs was extended across temporal

domain for sequential data. The STRCN-A was an appearance

based method, which transformed one sequence into a matrix

by concatenating frames to reserve the appearance of facial

regions. In contrast, the STRCN-G was a geometric based

method, which transformed one sequence into a matrix by

computing the optical flow fields of onset and apex frames,

to obtain the geometric information of facial movements.

Furthermore, to overcome the shortcomings of limited and

imbalanced training samples, two temporal data augmentation

strategies were designed for network input and a balanced loss

was integrated to this recognition task. Through performing the

experiments in LOVO and LOSO protocols on three sponta-

neous micro-expression datasets, i.e., SMIC, CASME II and

SAMM, we verified the effectiveness of our proposed micro-

expression recognition approach compared to the state-of-the-

art methods. The STRCN-A achieved the best performance

under the LOVO protocol while STRCN-G achieved the best

performance under the LOSO protocol.

In the future work, we would further explore a more effec-

tive processing framework in an end-to-end way. The learnable

deep models will be employed for searching the optimal

processing, such as face cropping and motion magnification,

reducing the setup of hyper-parameters. Besides, another type

of connectivity will be further exploited to model the spa-

tiotemporal deformation for micro-expression recognition in

larger datasets.
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