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ABSTRACT In recent years, a surging development of vehicles and continuous enhancement of
transportation infrastructures have been witnessed worldwide, leading to a remarkable growing of traffic
flow data. The traffic data is highly valuable in today’s society, accurate modelling of traffic flow for the
concerned areas can significantly benefit the government agencies, related commercial departments and
individuals. Specifically, road users are allowed to make better traveling decisions, avoid traffic congestion,
reduce carbon emissions and improve traffic operation efficiency. In order to estimate the possible traffic
flow scenarios within a specific area for multiple horizons, we propose a scenario generation model based
on sequential generative adversarial networks (LSTM-GAN) where the long short term memory (LSTM)
network is incorporated to capture the temporal dynamics involved in traffic flows. Through game training,
the spatiotemporal scenarios of traffic flow in line with the characteristics of observed road network traffic
flow can be well generated. These traffic scenarios can be applied in the design and planning of road traffic
system, as well as in the virtual training cases of intelligent driving.

INDEX TERMS Traffic flow, Generative Adversarial Networks, Long Short term Memory Network,
Scenario generation

I. INTRODUCTION

A. MOTIVATION
With the fast development of Intelligent Transportation
System (ITS) technologies, people are allowed to acquire
and share information that can prevent potential crashes,
keep traffic moving, and decrease the negative
environmental impacts of the transportation sector on
society. Japan is the earliest country to carry out ITS
research and the highest degree of practicality. Nowadays,
it has established a relatively integrated system of traffic
control and information services. Besides, it has basically
realized the drawing of electronic maps and has basically
completed the drawing of electronic maps covering the
whole country. The research and development of ITS in the
United States started a little later than Japan, but due to
tremendous investment during last two decades, it has taken
the leading position around the world. The Intelligent
Transportation Society of America (ITS America) has spent

10 years reducing the travel time by more than 15%. in 75
metropolitan areas in the United States It has deployed
intelligent operating points on the highway network in 450
administrative regions in the United States and connected to
the systems of the major cities. The research of ITS in
China started relatively later. Since 1995, both the Highway
Research Institute of the Ministry of Communications and
the Traffic Management Research Institute of the Ministry
of Public Security have been engaged in ITS-related
research. Afterwards, Tsinghua University, ZTE
Corporation and Neusoft Group successively established
ITS research and development institutions. In addition,
China government has included ITS in the "Ninth Five-
Year" and "Tenth Five-Year" Science and Technology
Development Plan. Current ITS research mainly focuses on
traffic control and management, vehicle safety and control,
travel information services, human factors analysis in
traffic, traffic modeling and so on. As an important
studying aspect of ITS, traffic modeling aims to simulate
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the realistic scenarios of traffic behaviors or other related
parameters, which is fairly useful in densely urbanized
areas.

Lately, with the development of AI technology and its
extensive application in various domains, researchers began
to apply this powerful tool in ITS. These applications are
highly dependent on the collection of necessary dataset,
wherein, such as road network data, positioning data,
population, and traffic flow data. As a part of traffic flow
data analytics, traffic flow scenario generation aims to
provides a set of virtual data, conforming to the features of
real traffic flow in practice. The simulated traffic scenarios
can be used to guide and plan traffic [1]. For example, the
government can set up different traffic signs or lights
according to the traffic flow data of the corresponding
places. Besides, the it provides valuable guidance for the
road extension or infrastructure enhancement. Another
popular application is the virtual training environment for
intelligent driving, wherein a real virtual road environment
for intelligent vehicle platform learning is restored
according to the data [2]. Yet, collection of these traffic
flow data is rather difficult due to the scarcity of publicly
available data sources. On the other hand, the acquired data
is more or less contaminated with different incompletion
levels for specific locations or periods, making it
unacceptable for some data-driven decision-making cases
or model learning tasks. In light of this, generating a set of
realistic traffic scenarios has become a prevailing practice
in recent years.

B. LITERRATURE REVIEW
Early before the development of computer technology,
traffic researchers can only use empirical methods and
mathematical methods to conduct traffic modeling.
However, the traffic system is typically a complex system,
where the states and interaction laws of elements in the
system are affected by multi-dimensional random factors,
so it is difficult to accurately describe them with empirical
model or mathematical analysis model. Owing to the
development of computer engineering, a diverse number of
traffic model development techniques have been proposed
during the past few years. We classify them into three
categories: analog simulation, data-driven models, and
image-driven models.

Although analog simulation technology has been came
up with as early as 50 years ago, it receives great popularity
and application until recent 20 years. Throughout the whole
development process, it has experienced three obvious
stages. At the earliest stage, the road traffic flow simulation
software TRANSYT was developed by Robertson of the
Transport and Road Research Laboratory (TRRL) in 1967
to determine the optimal value of timing traffic signal
parameters [3]. The data and information required by the
TRANSYT system traffic model are: road network
geometric characteristic, traffic volume data, economic

indicators, etc. However, this simulation software is limited
by its high computational burden, which is more evident
when the urban network is large. To address this, an
adaptive control system called Split, Cycle, and Offset
Optimization (SCOOT) was developed on the basis of
TRANSYT [4]. The system was tested on site in Glasgow,
England in 1975, and achieved good results. SCOOT has
taken the advantages of TRANSYT for all aspects, it
employed real-time control, of which the performance was
significantly better than that of a static system. Similar to
the TRANSYT system, the SCOOT system is also
composed of two key parts: traffic prediction model and
timing parameter optimization. The difference is that the
former is offline and the latter is online. But it also has
shortcomings. The establishment of its traffic model
requires a large amount of road network geometric
characteristic and traffic flow data, which is time-
consuming and laborious. In the medium term, with the
rapid development of computer science, the accuracy of
computer simulation model has been improved, and the
functions became more diversified. The most typical is the
NETSIM model [5] developed by the Federal Highway
Administration of the United States, which is a microscopic
traffic simulation model that describes the movement of a
single vehicle based on scanning method. The model is
highlighted with its flexibility of describing road geometric
characteristic and is the most widely used simulation tool.
Yet, the deficiency of NETSIM is also manifest. It requires
a lot of traffic descriptions that are difficult to quantify and
acquire, such as lack of full route selection, rail vehicles,
etc. The latest advances (e.g., CORSIM, EACULA) have
improved the conventional simulation tools in a variety of
perspectives, such as universality, interactivity,
maintainability and expansibility. However, the biggest
issue of these simulation software is that they involve a
large number of non-numerical parameterization, which
requires great artificial efforts [6].

Data-driven methods aim to exploit and leverage the
knowledge from data. The uncovered knowledge normally
can’t be interpreted explicitly and needs specific model to
learn. The advantages of data-driven techniques lie in that it
can make full use of the computing power of the computer
and reduce labor costs. Christopher [7] provided a
computer-implemented method for displaying traffic flow
data on a graphical map of a road system. An animated
traffic flow map of the road system is created by combining
the graphical map and the status of each segment. The
animated traffic flow map is created by being continuously
rendered in real time. The traffic flow data is updated in
real-time, and the traffic flow map immediately reflects the
updated traffic data. Chao [8] proposed a novel data-driven
method to populate virtual road networks with realistic
traffic flows in 2018. Specifically, given a limited set of
vehicle trajectories as the input samples, the approach first
synthesizes a large set of vehicle trajectories. By taking the
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spatiotemporal information of traffic flows as a 2D texture,
the generation of new traffic flows can be formulated as a
texture synthesis process, which is solved by minimizing a
newly developed traffic texture energy. The synthesized
output captures the spatiotemporal dynamics of the input
traffic flows, and the vehicle interactions in it strictly
follow traffic rules. Daniel [9] presented a novel approach
for calculating realistic traffic flows for traffic simulators,
called Flow Generator Algorithm (FGA). It requires an
OpenStreetMap to cooperate with the traffic data of each
site. Each site can be regarded as a node, and a node-to-
node path is generated on the map. The traffic volume on
these paths is in compliance with the node constraint.
Varun [10] describe the process that was created to
synthetically generate traffic data using a minimal dataset
of GPS traces and a map of a city. A mobility model of the
city is needed for this purpose, using the raw GPS traces
hosted by OpenStreetMap to collected traffic demand
needed to create the model. Running this newly generated
traffic demand through SUMO (Simulator for Urban
Mobility) gives us highly detailed data on the microscopic
behavior of traffic. All the above methods require a large
amount of real data, which is sometimes limited and
unavailable in practice.

Traffic behavior understanding based on video image is
one of the most active research topics in the field of
intelligent transportation and computer vision. It intends to
use computer vision technology to detect, recognize and
understand traffic scenarios and traffic behaviors from
traffic image sequences. A method of obtaining parameters
from real traffic images through image processing
technology is proposed by Aoyama [11], which attempts to
forecast the traffic state that is analog to weather prediction.
To this end, the author constructed the dynamic image
database management system (DBMS). The system
comprises a collection of dynamic images with indices, i.e.
time, date, place, congestion parameters and so on. The
next frame of traffic scenario will be automatically
generated through index. Brickwedde et al [12] proposed a
novel monocular 3D scenario flow estimation method,
called Mono-SF. Mono-SF jointly estimates the 3D
structure and motion of the scene by combining multi-view
geometry and single-view depth information. Mono-SF
considers that the scene flow should be consistent in terms
of warping the reference image in the consecutive image
based on the principles of multi-view geometry. For
integrating single-view depth in a statistical manner, a
convolutional neural network, called ProbDepthNet, is
proposed. ProbDepthNet estimates pixel-wise depth
distributions from a single image rather than single depth
values. Additionally, as part of ProbDepthNet, a novel
recalibration technique for regression problems is proposed
to ensure well-calibrated distributions. The advantage of
image-driven method is that a variety of features can be
exploited from the same image for processing, which

greatly enriches the data source. But, such methods are
usually difficult to implement in practice, since they rely on
advanced computing equipment for efficient image
processing.

The method of generating traffic flow scenario by
LSTM-GAN is a completely data-driven model, which is
purely dependent on the historic samples. As a very popular
deep learning network model, generative adversarial
networks (GAN) has been recognized as a powerful data
generation tool and has been successfully applied in a
variety of real-life cases, such as image generation domain,
outlier detection and so on [13]. Alec Radford and Luke
Metz [14] proposed Deep Convolutional Generative
Adversarial Networks (DCGAN) for image generation in
2016, it is a special network structure model specially
proposed for image data processing. Dan Li et al used the
GAN to solve the problem of outlier detection [15].
However, applying GAN to generate spatiotemporal traffic
flow scenario has rarely been touched before. Specially, in
this study, in order to better capture the temporal
dependencies of traffic series [16], the LSTM network is
integrated with GAN to construct a sequential generative
network.

C. CONTRIBUTION
As far as the author knows, this is the first work that uses
LSTM-GAN to model the traffic flow dynamics
considering multiple horizons and locations. The merits of
the proposed model can be summarized as follows: i), Most
of conventional scenario generation models require
extensive work on parameter and condition setting, whereas
the whole training process of LSTM-GAN is completely
data-driven, only historic samples are needed; ii), The
generated scenarios in most of the existing works only
consider one time slot or location, instead, the scenario data
generated by the proposed LSTM-GAN can simultaneously
cover consecutive time slots and multiple locations; iii),
SGAN can not only learn the temporal dynamics, but also
takes into account the spatial characteristics; iv), LSTM-
GAN has strong generalization capability to deal with
different data. Once the model is well trained, it can be
applicable to any similar dataset through fine-tuning; v),
LSTM-GAN has strong robustness, it is viable when the
samples are permutated by a small amount of abnormalities
[17].

II. MODELS: LSTM-GAN AND MAPPING NETWORKS
The GAN was first proposed by Ian Goodfellow [18] in 2014,
which is composed of two deep neural networks. One is the
generator network called Generator, which constantly
generates new samples, and the other is the discriminator
network called Discriminator, which is used to determine
whether the input samples are the false samples generated by
the generator or the true samples from historical data. The
two networks play games back and forth during training, and
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finally the Discriminator is not able to determine whether the
input samples are from Generator or real samples.

FIGURE 1. Generative adversarial networks diagram
As seen from Fig 1, the real samples distribution of the

obtained data is defined as dataP and noise Z is assumed to
be with arbitrary distribution ZP (such as Gaussian
distribution). By feeding the noise Z into the Generator, the
Generator output is obtained as ( , ) GG Z . We label it as the
generated samples distribution GP , where  G is the weight
parameter to control Generator. Assuming the input of
Discriminator is x , which comes from either the real
samples distribution dataP or the generated samples
distribution GP . The output of the Discriminator is denoted
as ( , ) DD x , where  D is the weight parameter to control
Discriminator. Since x may come from two inputs, so the
output of the Discriminator is recorded as ( , ) DD data and

( ( , ), ) G DD G Z . For the Discriminator, the expected output
is between 0 and 1. When the Discriminator input is from
real samples data, we hope that the expected output is as
close to 1 as possible. When the discriminator input is from
Generator, we hope that the expected output is as close to 0
as possible. Then, the Discriminator can distinguish true and
false data well. So, the larger [ ( , )] DE D data and the
smaller [ ( ( , ), )]G DE D G Z   , it means that the discriminator
has a strong judgment between the real and generated
samples data. For the Generator, it is hoped that after training,
when the output data is fed to the discriminator, the expected
output of the discriminator is as close to 1 as possible, which
means that the data generated by the Generator is getting
closer and closer to the real samples data. So, the larger

[ ( ( , ), )]G DE D G Z   means that the generator has a strong
generating ability, and the generated samples data is closer to
the real data. Therefore, in the process of game training, the
ability of the Generator and the Discriminator will be
stronger and stronger, until a balance point is reached, the
balance point is that the discriminator can’t judge whether
the generated samples is true or false, because the probability
given by the discriminator is 1 2 , which means that the
input of the discriminator could come from the real samples
or the generated samples. According to this relationship, the
loss functions of Generator and Discriminator can be defined
as GL and DL respectively:

[ ( ( , ), )]   G D
GL E D G Z (1)

[ ( , )] [ ( ( , ), )]    D G D
DL E D data E D G Z (2)

According to the training rules of GAN, the game formula
can be obtained by fixing Generator and Discriminator
respectively:
min max ( , ) [ ( , )] [ ( ( , ), )]   D G D

G D
V G D E D data E D G Z (3)

In this paper, the original GAN network is augmented by
integrating LSTM network to enable spatiotemporal traffic
flow generation. Besides, a multi-layer perceptron (MLP)
based Inverse Mapping Network (IMN) is incorporated to
carry out more specific numerical analysis. The configuration
of the entire project is shown in Fig 2.

FIGURE 2. System block diagram
We divide the whole framework into two parts, one is the

training part of GAN, the other is the training part of Map
network which is the IMN mentioned before. In the part of
GAN Training, Generator accepts multiple noise sequences
as inputs, each sequence is randomly sampled from a
Gaussian distribution. Then, the output sequences will be
produced by Generator. Discriminator receives the input
from both Generator and real samples, after calculating the
loss function y, the corresponding outputs g_loss and
d_loss are given to the Generator and Discriminator
respectively for gradient updating. In the part of Map
Training, the Generator completely duplicates the well-
trained GAN model from the training part of GAN. Its
parameters are fixed here, and no more training is needed in
this part. The purpose of IMN is to enhance the training of
generator and discriminator by updating a mapping from the
real-time space to a certain latent space. The input of IMN
comes from the true samples, and the output is the map noise.
Then, the map noise will then be fed to the Generator, and
the output of Generator will calculate the loss function with
the real samples. The result will be returned to the IMN for
gradient update.

we modify the network layer of the original GAN network,
and use LSTM network to replace the original fully
connected neural network to deal with the sequential data.
LSTM is a variant of Recurrent Neural Network (RNN). It
resolves the gradient vanishing issue of the traditional RNN
by introducing a cell state c. The cell state acts as an
accumulator of the state information, in the process of
network forward propagation, the cell state is accessed,
written and cleared by three sigmoid function governed gates.
The configuration of LSTM network is shown in Fig 3. The
left is the schematic diagram of LSTM network,
concatenated by a set of LSTM units. The right figure block
depicts the internal configuration of a LSTM unit, where tc
is the state value at time t, which selectively retains the state
before time t, ensuring that the earliest information will not
be lost in the case of long time series input. th is the output
value of time t, which will be the input of time t+1. Because
the output of the previous time is the input of the next time,
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the LSTM network has a strong correlation in time, which is
the reason why it can deal with the time series problem well.

FIGURE 3. Schematic diagram of LSTM network
In the expanded view on the right, 1[ , ]t th x is the merged

input,  is sigmoid function, tf is the output of the
forgetting gate, which determines the amount of the state
value at the previous time is retained in the next state; ti is
the input gate output, which determines how much of the
current state is retained to the next state; '

tc is the current
input status value, which will be multiplied with ti to
determine the output value of the current state; to is the
output gate output, which determines the output, and they
have the following relationship:

1( [ , ] )   t f t t ff W h x b (4)
1( [ , ] )   t i t t ii W h x b (5)

'
1tanh( [ , ] )  t c t t cc W h x b (6)

1( [ , ] )   t o t t oo W h x b (7)
In the above formula, W is the weight matrix, b is the

offset,  denotes product operation and  denotes the
pointwise multiplication operation.

'
1  t t t tc c i c (8)

tanh( ) t t th c o (9)
Since the network layer of GAN is changed to LSTM

network which required sequential input, so different from
the original GAN network, the random noise inputs is
represented by iZ , ,T M

iZ R i = 0,1,..,K . Here K
represents the number of samples, T represents the
input/output sequence length, M represents the noise
dimensions. The discriminator input is represented by dis

iX ,
,dis T N

iX R i = 0,1,..,K , which either comes from the
Generator or real sample. Here N represents the number of
traffic detection sites. The IMN is fed with the real sample,
denoted as ,IMN T N

iX R i= 0,1,..,K . The output of IMN is
the input of the well-trained Generator, the loss of the IMN is
jointly determined by the Generator output and real samples.

Algorithm 1 LSTM-GAN for traffic flow scenario generate.
Here v represents Generator and Discriminator training
interval.
Loop
for number of training iterations do
for v steps do

Sample from noise distribution ZP

,T M
iZ R i = 0,1,..,K

Sample from real data distribution dataP

,IMN T N
iX R i= 0,1,..,K

Update the Discriminator by Adam optimizer:

1

1 log ( , ) log(1 ( ( , ), ))
K

IMN D G D
d ii

i=
D X D G Z

K
       

end for
Sample from noise distribution ZP

,T M
iZ R i = 0,1,..,K

Update the Generator by Adam optimizer:

1

1 log(1 ( ( , ), ))
K

G D
g i

i
D G Z

K
  



 
end for
end Loop

Algorithm 2 IMN for noise mapping
Loop
for number of training iterations do

Sample from real data distribution dataP

,IMN T N
iX R i = 0,1,..,K

IMN( )IMN
out iM X

)(_ outMGy 

( _, )IMN
iE mse y X

Update the mapping by minimize E
end for
end Loop

III. EXPERIMENTS

A. DATA DESCRIPTION
The experimental data were collected from Performance
Measurement System (PeMS) public database provided by
California department of transportation. It is an open public
transport data set, which contains traffic flow, road
occupancy, vehicle speed, congestion and other types of
traffic-related data. We use the traffic flow data recorded in
District 4, Alameda County, California across the year 2019
for numerical experiment in this study. The data of the
former nine months (Jan 2019 – Sep 2019) is used for
training, and the remaining (Oct 2019 – Dec 2019) is used
for verification. The typical daily data profile is shown in Fig
4. The sampling rate is 1 hour. The maximum and minimum
values in Fig 4 correspond to the maximum and minimum
traffic flow data recorded in multiple lanes, and the average
value is used in this paper.

36 neighbored detection stations of the District 4, Alameda
road network are considered in this study, as depicted in Fig
5(a). The red dots on the map represent the traffic data
detection points of the road network. The data for each
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moment can be expressed by a 2D frame, as the time goes
forwards, a traffic flow spatiotemporal sequence can be built,
which is shown in Fig 5(b). In this case, the frame organized
with the shape of 6*6. The target is to generate the
spatiotemporal scenarios every four hours (e.g., 12:00 a.m. to
15:00 p.m., 15:00pm- 18:00 pm, etc.). Thus a 3D tensor

K T NX R   with shape

FIGURE 4. Typical traffic flow data for one day in one site
(number of samples, sequence length, number of sites) is
formed as the real samples of the LSTM-GAN. All samples
are normalized between -1 and 1 to shorten the model
training time [19].

(a) Map of selected 36 stations.

(b) Tensor data schematic

FIGURE 5. Schematic diagram of data format conversion

B. MODEL SETUP
The comparative study is carried out against traditional GAN,
which is applied to generate spatial traffic flow scenarios
independently for each moment.

The collected samples are firstly preprocessed to satisfy
the output requirements for LSTM-GAN as described in last
section. Then we use Gaussian distribution to generate

random noise data with the shape (4, 100), which will be
used as the input of the Generator. The output of the
Generator is a fake data sample with the same format as the
real data sample. Because the data is characterized with
temporal correlation, we use LSTM network layer to build
Generator and Discriminator respectively. We use interval
training between the Generator and the Discriminator. The
network parameters of the Discriminator are fixed while
training the Generator, and the network parameters of the
Generator are fixed at the same time when training the
Discriminator. After the training of the generation adversarial
networks is completed, we will conduct a reflection mapping
on the output sample of the Generator to find the optimal
noise input using IMN. The IMN is composed of six layers
of fully connected network layer and a reshape layer. The
number of neurons from the first layer to the sixth layer of
the full connection layer is h1, h2, h3, h4, h5, h6 respectively,
corresponding to 2000, 1600, 1200, 800, 600, 400 in this
paper. The activation function is RELU by default.

For traditional GAN, the traditional full connection layer is
adopted respectively for the Generator and Discriminator. the
difference lies in the setting of some specific parameters.

The specific network setups for both networks are shown
in Table I and II. The value in each layer stands for the
number of neurons. BatchNorm represents Batch
Normalization. [-1, 1] is the normalized range. Dropout is
introduced to avoid overfitting.

TABLE I
THE LSTM-GAN MODEL SETUP

Generator Discriminator
Input

BatchNorm
(4, 100)
(-1, 1)

(4, 36)
(-1, 1)

Layer1
Dropout

Activation
Layer2
Dropout

LSTM,300
0.8

Tanh
LSTM,300

0.8

LSTM,300
0.8

Tanh
LSTM,300

0.8
Activation

Layer3
Layer4

Tanh
MLP,36

------

Tanh
MLP,100
MLP,1

TABLE II
THE TRADITIONAL GAN MODEL SETUP

Generator Discriminator
Input

BatchNorm
Layer1

100
(-1, 1)

MLP,256

36
------

MLP,512
Activation
BatchNorm

Layer2
Activation

LeakyReLU(0.2)
(-1, 1)

MLP,512
LeakyReLU(0.2)

LeakyReLU(0.2)
------.

MLP,256
LeakyReLU(0.2)

BatchNorm
Layer3

Activation
BatchNorm

Layer4
Activation

(-1, 1)
MLP,1024

LeakyReLU(0.2)
(-1, 1)

MLP,36
tanh

------
MLP,1

Sigmoid
------
------
------
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IV. RESULT
We show the heatmap of the generated and real
spatiotemporal traffic scenarios in Fig 6. Each color block
corresponds to a certain detection site. The pixel reflects the
traffic flow of the corresponding site. If the pixel values of
the two stations are similar, it means that the traffic volumes
of these two stations are close. At each moment, the
spatiotemporal sequences for the next four hours are
simultaneously generated, which are labelled by t0, t1, t2,
and t3. Fig 6(a) and Fig 6(b) show the one of generated
spatiotemporal scenarios from 12:00 to 15:00 using the
proposed conventional GAN and LSTM-GAN, respectively.
One of the actual traffic measurements for this period is
shown in Fig 6(c). We can see that, compared with the results
of the data generated individually and separately, the spatial
scenarios generated by LSTM-GAN are closer to the real
samples for all time steps.

t0 t1 t2 t3
(a) Conventional GAN result

t0 t1 t2 t3
(b) LSTM-GAN result

t0 t1 t2 t3
(c) Real samples

FIGURE 6. Comparison of generated scenarios for traditional GAN and
LSTM-GAN

The other comparative experiment was carried out in
regard of the spatial and temporal correlations exhibited by
the generated traffic scenarios. Specifically, Pearson
correlation coefficient is calculated for all sites and horizons.
As a result, the spatial and temporal correlation matrices are
formed as shown in Fig 7, where the degree of correlation is
indicated by a value between -1 and +1. A value of +1 means
total positive linear correlation, 0 is no linear correlation, and
−1 is total negative linear correlation

The spatial correlation matrix with shape 36*36 for the
traditional GAN, proposed LSTM-GAN and real samples are
shown in Fig 7(a), (c) and (e), respectively. We can see from
Fig 7(e) that the majority of the sites exhibits a positive
correlation, i.e., if a site is detected to have large traffic
volume within a time slot, the other neighbored sites are

more likely to have a large traffic flow at this moment. The
traditional GAN tends to overestimate this relationship
between each site, giving a higher correlation than that of
ground truth as seen in Fig. 7 (a). Instead, the scenarios from
LSTM-GAN can well learn this spatial correlation, giving a
closer correlation matrix, as shown in Fig. 7 (c). Fig 7(b), (d)
and (f) depict the respective temporal correlation matrix with
shape 4*4. Obviously, as the time moves forward, the
temporal autocorrelation becomes lower, which can be
observed in Fig 7(f). However, it still can be noticed that a
relatively higher correlation exist among these adjacent
moments, the lowest coefficient value can be as high as 0.79.
The traditional GAN fails to learn the inherent temporal
correlations, giving rather poor results, as shown in Fig 7(b).
On the contrary, the LSTM-GAN renders more skillful
results in terms of temporal dependencies, showing almost
the same correlation matrix as that of real samples.

(a) The spatial (b) The temporal
correlation matrix for correlation matrix for
conventional GAN conventional GAN

(a) LSTM-GAN

(c) The spatial (d) The temporal
correlation matrix for correlation matrix for
LSTM-GAN LSTM-GAN

(e) The spatial (f) The temporal
correlation matrix for correlation matrix for
real samples real samples

FIGURE 7. Spatiotemporal correlation matrices of comparison results

V. CONCLUSIONS
Traffic modeling is an important task in ITS research. A
novel data-driven model based on LSTM-GAN is proposed
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to produce the realistic traffic scenarios for multiple horizons
and locations, which are highly beneficial to traffic
infrastructure design and road planning. The LSTM-GAN
leverages the merits of both LSTM and invert mapping
networks. The former aims to capture the temporal dynamics
involved in the traffic flow sequence, while the latter aims to
output normal samples from a certain latent space. Case
study is carried out using real traffic flow data provided by
California department of transportation. Experimental results
show that the proposed LSTM-GAN can well learn both
temporal and spatial correlations. As compared with
conventional GAN, which ignores the temporal dependencies
of traffic flow, LSTM-GAN shows great superiority in model
performance.

REFERENCES
[1] Igone García Pérez, Soloaga I A. Definition of traffic
scennaries, application on a practise case of the criteria
followed by the guide of good practises for elaboration of
strategic traffic noise maps in urban routes[J]. Journal of the
Acoustical Society of America, 2008, 123(5):3031.
[2] Rasslkin A, Vaimann T, Kallaste A, et al. Digital twin for
propulsion drive of autonomous electric vehicle[C]// 2019
IEEE 60th International Scientific Conference on Power and
Electrical Engineering of Riga Technical University
(RTUCON). IEEE, 2020.
[3] Robertson D I. TRANSYT Method for area traffic
control[J]. Traffic Engineering & Control, 1969, 10(6):181–
182.
[4] Robertson D I, Bretherton R D. Optimizing networks of
traffic signals in real time-the SCOOT method[J]. Vehicular
Technology IEEE Transactions on, 1991, 40(1):11-15.
[5] Jat S, Tomar R S, Sharma M S P. Traffic Congestion and
Accident Prevention Analysis for Connectivity in Vehicular
Ad-hoc Network[C]// 2019 5th International Conference on
Signal Processing, Computing and Control (ISPCC). IEEE,
2020.
[6] Owen L E, Zhang Y L, Rao L, et al. Street and traffic
simulation: traffic flow simulation using CORSIM[C]//
Simulation Conference Proceedings, 2000. Winter. 2000.
[7] Cera, Christopher D.，Soulchin, Robert M. Smith, Brian
J, et al. Data-driven traffic views with continuous real-time
rendering of traffic flow map, 2014.
[8] Chao Q, Deng Z, Ren J, et al. Realistic Data-Driven
Traffic Flow Animation Using Texture Synthesis[J]. IEEE

Transactions on Visualization & Computer Graphics,
2018:1-1.
[9] Stolfi D H, Alba E. Generating realistic urban traffic
flows with evolutionary techniques[J]. Engineering
Applications of Artificial Intelligence, 2018, 75(OCT.):36-47.
[10] V. Sapre, S. Kalambur, D. Sitaram and R. Bastian,
"Synthetic Generation of Traffic Data for Urban Mobility,"
2018 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), Bangalore,
2018, pp. 2151-2157, doi: 10.1109/ICACCI.2018.8554633.
[11] Aoyama H, Kato S, Tsugawa S. Indexing of traffic
flow image sequences for traffic information services[C]//
Intelligent Transportation Systems. IEEE, 2003.
[12] Brickwedde F, Abraham S, Mester R. Mono-SF:
Multi-View Geometry Meets Single-View Depth for
Monocular Scene Flow Estimation of Dynamic Traffic
Scenes[J]. 2019.
[13] Peter König, Aigner S , Marco Körner. Enhancing
Traffic Scene Predictions with Generative Adversarial
Networks[J]. 2019.
[14] Radford A, Metz L, Chintala S. Unsupervised
Representation Learning with Deep Convolutional
Generative Adversarial Networks[J]. Computer ence, 2015.
[15] Dan Li, Dacheng Chen, Jonathan Goh, See-Kiong
Ng, Anomaly Detection with Generative Adversarial
Networks for Multivariate Time Series[J].
arXiv:1809.04758v3.
[16] Li H, Su L, Zhang S, et al. Spatial Temporal
Convolution and LSTM Network for Predicting Traffic
Flow[J]. ICCC, 2019.
[17] Chen Y , Wang Y , Kirschen D S , et al. Model-Free
Renewable Scenario Generation Using Generative
Adversarial Networks[J]. IEEE Transactions on Power
Systems, 2017, 33(99):3265-3275.
[18] Goodfellow I J, Pouget-Abadie J, Mirza M, et al.
“Generative Adversarial Networks” [J]. advances in neural
information processing systems, 2014, 3:2672-2680
[19] Ioffe S, Szegedy C. Batch Normalization:
Accelerating Deep Network Training by Reducing Internal
Covariate Shift[J]. 2015.


