
1

Spatiotemporal Sensitivity and Visual Attention for Efficient Rendering of Dynamic 

Environments
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Program of Computer Graphics, Cornell University

We present a method to accelerate global illumination computation in pre-rendered animations by taking advantage of limitations of the

human visual system. A spatiotemporal error tolerance map, constructed from psychophysical data based on velocity dependent contrast sen-
sitivity, is used to accelerate rendering. The error map is augmented by a model of visual attention in order to account for the tracking behav-

ior of the eye. Perceptual acceleration combined with good sampling protocols provide a global illumination solution feasible for use in

animation. Results indicate an order of magnitude improvement in computational speed.
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1  INTRODUCTION

Global illumination is the physically accurate calculation of lighting in an environment. It is computationally expensive for static environ-

ments and even more so for dynamic environments. Not only are many images required for an animation, but the calculation involved

increases with the presence of moving objects. In static environments, global illumination algorithms can precompute a lighting solution and

reuse it whenever the viewpoint changes, but in dynamic environments, any moving object or light potentially affects the illumination of

every other object in a scene. To guarantee accuracy, the algorithm has to recompute the entire lighting solution for each frame. This paper

describes a perceptually-based technique that can dramatically reduce this computational load. The technique may also be used in image

based rendering, geometry level of detail selection, realistic image synthesis, video telephony and video compression.

Perceptually-based rendering operates by applying models of the human visual system to images in order to determine the stopping condi-

tion for rendering. In doing so, perceptually assisted renderers attempt to expend the least amount of work to obtain an image that is percep-

tually indistinguishable from a fully converged solution. The technique described in this paper assists rendering algorithms by producing a

spatiotemporal error tolerance map (Aleph Map) that can be used as a guide to optimize rendering. Figure 1 shows a scene containing mov-

ing objects (a) and its Aleph Map (b). The brighter areas in the map show regions where sensitivity to errors is low, permitting shortcuts in

computation in those areas.

Figure 1: Global Illumination of a Dynamic Environment (see color plate). Global illumination correctly simulates effects such as color bleeding (the

green of the leaves on to the petals), motion blur (the pink flamingo), caustics (the reflection of the light by the golden ash tray on the wall), soft shadows,
anti-aliasing, and area light sources (a). This expensive operation benefits greatly from our perceptual technique, which can be applied to animation as

well as motion-blurred still images such as shown above. The spatiotemporal error tolerance map (which we call the Aleph Map) is shown on the right
(b). Bright areas on the map indicate areas where less effort should be spent in computing the lighting solution. The map takes a few seconds to compute

but will save many hours of calculation.

Reference Image (a) Spatiotemporal error tolerance map (Aleph Map) (b)
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Two psychophysical concepts are harnessed in this paper: spatiotemporal sensitivity and visual attention. The former tells us how much error

we can tolerate and the latter expresses where we look. Knowledge of error sensitivity is important because it allows us to save on computa-

tion in areas where the eye is less sensitive and visual attention is important because it allows us to use sensitivity information wisely. Areas

where attention is focused must be rendered more accurately than less important regions.

Spatiotemporal sensitivity considers the reduced sensitivity of the human visual system to moving spatial patterns. This limitation of the

human visual system makes us less sensitive to errors in regions where there are high spatial frequency patterns and movement. Movement

is caused by the observer in motion or objects in motion. We exploit this reduced sensitivity to speed up the computation of global illumina-

tion in dynamic environments. This principle of reduced sensitivity cannot be applied naively, however, since the eye has an excellent ability

to track objects in motion. The eye reduces the velocity of the objects/areas of interest with respect to the retina, nullifying the loss of sensi-

tivity due to motion. By using a robust model of visual attention, we predict where viewers direct their attention, allowing us to accurately

derive the viewer’s spatiotemporal sensitivity to the scene.

The Aleph Map represents spatiotemporal error tolerance. Figure 2 shows an outline of our technique. To obtain the Aleph Map, we require

knowledge about the motion and spatial frequencies present in the scene. We also need to factor in visual attention, which tells us areas of

importance in the scene. Image regions that receive visual attention are estimated by a saliency map. The saliency map is used to account for

the tracking behavior of the eye in order to correctly compensate for eye motion before spatiotemporal sensitivity is calculated. It is built up

from conspicuity associated with intensity, color, orientation changes and motion. One may think of conspicuity as the visual attractor due to

a single channel such as motion and saliency as the visual attractor due to all the stimuli combined. The saliency map tells us where the eye

is paying attention and the Aleph Map uses that information to tell us how much error we can tolerate in that region. The saliency map allows

us to compensate for eye movements without the use of eye tracking devices. Although eye tracking hardware exists, such hardware is spe-

cialized and would be impractical for multiple viewers. Our technique yields significant gains in efficiency without incurring the costs and

disadvantages of such hardware. Figure 3 shows speedup achieved by using our technique in global illumination computation.

In Section 2, we will discuss the previous work on which our algorithm is based. Section 3 discusses the advantages of our technique. In Sec-

tion 4, we review current ideas about spatial sensitivity, spatiotemporal sensitivity, eye tracking, eye movements and visual attention. Section

5 covers the implementation details. We demonstrate the usefulness of our algorithms with a practical augmentation of the popular lighting

simulator RADIANCE in Section 6 and present our conclusions in Section 7.

2  PREVIOUS WORK

Gibson and Hubbold [10] applied perceptual techniques to compute view independent global illumination by using a tone reproduction oper-

ator to guide the progress of a radiosity algorithm. Their approach differs from ours as we will be focusing on view dependent algorithms.

Most view dependent perceptual techniques that are used to speed up rendering involve the use of a perceptual metric to inform the renderer

Figure 2: Flowchart outlining the computation of spatiotemporal error tolerance. The Aleph Map is a perceptual oracle derived from the spatial

frequency, motion and visually important information in a scene. The saliency map is a measure of visual attention and is used to compensate for eye
tracking movements in order to fully take advantage of perceptual sensitivity in dynamic scenes.
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to stop calculating well before the physical convergence is achieved; that is, whenever the rendered image is perceptually indistinguishable

from a fully converged solution.

Bolin and Meyer [3], Meyer and Liu [22], and Myszkowski [23] relied on the use of sophisticated perceptual metrics to estimate perceptual

differences between two images to determine the perceived quality at an intermediate stage of a lighting computation. Based on perceptual

quality, they determined the perceptual convergence of the solution and used it as a stopping condition in their global illumination algorithm.

These metrics perform signal processing on the two images to be compared, mimicking the response of the human visual system to spatial

frequency patterns and calculating a perceptual distance between the two images. Myskowski uses the Daly Visible Differences Predictor [6]

to determine the stopping condition of rendering by comparing two images at different stages of the lighting solution. Bolin and Meyer used

a computationally efficient and simplified variant of the Sarnoff Visual Discrimination Model [20] on an upper bound and a lower bound pair

of images, resulting in a bounded-error, perceptually-guided algorithm. Both algorithms required repeated applications of the perceptual

error metric at intermediate stages of a lighting solution, adding substantial overhead to the rendering algorithm.

Ramasubramanian, et al., [26] reduced the cost of such metrics by decoupling the expensive spatial frequency component evaluation from

the perceptual metric computation. They reasoned that the spatial frequency content of the scene does not change significantly during the

global illumination computation step, and precomputed this information from a cheaper estimate of the scene image. They reused the spatial

frequency information during the evaluation of the perceptual metric without having to recalculate it at every iteration of the global illumina-

tion computation. They carried out this precomputation from the direct illumination solution of the scene. Their technique does not take into

account any sensitivity loss due to motion and is not well suited for use in dynamic environments. Furthermore, direct illumination evalua-

tion is often expensive, especially when area light sources are present in a scene, and hence is not always suitable for precomputation.

Myskowski, et al., [24] addressed the perceptual issues relevant to rendering dynamic environments. They incorporated spatiotemporal sen-

sitivity of the human visual system into the Daly VDP [6] to create a perceptually-based Animation Quality Metric (AQM) and used it in

conjunction with image-based rendering techniques [21] to accelerate the rendering of a key-frame based animation sequence. Myskowski’s

framework assumed that the eye tracks all objects in a scene. The tracking ability of the eye is very important in the consideration of spa-

tiotemporal sensitivity [7]. Perceptually-based rendering algorithms which ignore this ability of the eye can introduce perceptible error in

visually salient areas of the scene. On the other hand, the most conservative approach of indiscriminate tracking of all the objects of a scene,

as taken by Myskowski’s algorithm, effectively reduces a dynamic scene to a static scene, thus reducing the benefits of spatiotemporally-

based perceptual acceleration. The use of AQM during global illumination computation will also add substantial overhead to the rendering

process.

3  OUR APPROACH

Our technique improves on existing algorithms by including not only spatial information but temporal as well. The scene’s spatiotemporal

error tolerances, held in an Aleph Map, are quickly precomputed from frame estimates of the animation that capture spatial frequency and

Figure 3: Timing comparison between a reference lighting solution of a complex environment generated using the irradiance caching technique and our

Aleph Map enhanced irradiance cache. Interestingly, the time taken for the perceptual solution remains relatively flat, perhaps because as scene

complexity increases, the tolerance for error also increases. The time for the perceptual solution includes the time for computing the Aleph Map, which

is small. The irradiance cache is used in the lighting simulator RADIANCE. Calculations were done on a quad processor 500 Mhz Intel Pentium III

machine.
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motion correctly. We make use of fast graphics hardware to obtain the Aleph Map quickly and efficiently. The map is better because it incor-

porates a model of visual attention in order to include effects due to ability of the visual system to locate regions of interest.

The Aleph Map can be adapted for use as a perceptually-based physical error metric, or as in our application, as an oracle that guides percep-

tual rendering without the use of an expensive comparison operator. By using a perceptual oracle instead of a metric, we incur negligible

overhead while rendering. The next section introduces the background information required to understand the construction of the Aleph

Map.

4  BACKGROUND

This section covers the background relevant to this paper. The first part reviews the spatiotemporal sensitivity of the human visual system

and the second part addresses the attention mechanism of the visual system. For an in-depth discussion of perception in general, we refer

readers to “Foundations of Vision” by Wandell [30].

4.1  Spatiotemporal Contrast Sensitivity

4.1.1  Contrast Sensitivity

The sensitivity of the human visual system changes with the spatial frequency content of the viewing scene. This sensitivity is psychophysi-

cally derived by measuring the threshold contrast for viewing sine wave gratings at various frequencies [5]. A sine wave grating is shown to

viewers who are then asked if they can distinguish the grating from a background. The minimum contrast at which they can distinguish the

grating from the background is the threshold contrast. The Contrast Sensitivity Function (CSF) is the inverse of this measured threshold con-

trast, and is a measure of the sensitivity of the human visual system towards static spatial frequency patterns. This CSF function peaks

between 4-5 cycles per degree (cpd) and falls rapidly at higher frequencies. The reduced sensitivity of the human visual system to high fre-

quency patterns allows the visual system to tolerate greater error in high frequency areas of rendered scenes and has been exploited exten-

sively [2][3][23][24][26] in the rendering of scenes containing areas of high frequency texture patterns and geometric complexity.

4.1.2  Temporal Effects

The human visual system varies in sensitivity not only with spatial frequency but also with motion. Kelly [17] has studied this effect by mea-

suring threshold contrast for viewing travelling sine waves. Kelly’s experiment used a special technique to stabilize the retinal image during

measurements and therefore his models use the retinal velocity, the velocity of the target stimulus with respect to the retina. Figure 4 summa-

rizes these measurements.

From Figure 4, we can see that the contrast sensitivity changes significantly with the retinal velocity. Above the retinal velocity of 0.15 deg/

sec, the peak sensitivity drops and the entire curve shifts to the left. This shift implies that waveforms of higher frequency become increas-

ingly difficult to discern as the velocity increases. At retinal velocities below 0.15 deg/sec the whole sensitivity curve drops significantly.

Figure 4: Velocity dependent CSF, plotted from an equation empirically derived from Kelly’s sensitivity measurements [7]. The velocities v are

measured in degrees/second.
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Speeds below 0.15 deg/sec are artificial as the eye naturally moves about slightly even when it is in a steady fixed stare. The measurements

also showed that the sensitivity function obtained at the retinal velocity of 0.15 deg/sec matched with the static CSF function described ear-

lier. This agrees with the fact that the drift velocity of a fixated eye is about 0.15 deg/sec, and must be taken into account when using Kelly’s

measurement results in real world applications.

4.1.3  Eye Movements

The loss of sensitivity to high frequency spatial patterns in motion gives an opportunity to extend existing perceptually-based rendering tech-

niques from static environments to dynamic environments. The eye, however, is able to track objects in motion to keep objects of interest in

the foveal region where spatial sensitivity is at its highest. This tracking capability of the eye, also known as smooth pursuit, reduces the ret-

inal velocity of the tracked objects and thus compensates for the loss of sensitivity due to motion.

Measurements by Daly [7] have shown that the eye can track targets cleanly at speeds up to 80 deg/sec. Beyond this speed, the eye is no

longer able to track perfectly. The results of such measurements are shown in Figure 5. The open circles in Figure 5 show the velocity of the

eye of an observer in a target tracking experiment. The measured tracking velocity is on the vertical axis while the actual target velocity is on

the horizontal axis. The solid line in Figure 5 represents a model of the eye’s smooth pursuit motion. 

Evidently, it is crucial that we compensate for smooth pursuit movements of the eye when calculating spatiotemporal sensitivity. The follow-

ing equation describes a motion compensation heuristic proposed by Daly [7]:

(1)

where vR is the compensated retinal velocity, vI is the physical velocity, vMin is 0.15 deg/sec (the drift velocity of the eye), vMax is 80 deg/sec

(which is the maximum velocity that the eye can track efficiently). The value 0.82 accounts for Daly’s data fitting that indicates the eye

tracks all objects in the visual field with an efficiency of 82%. The solid line in Figure 5 was constructed using this fit. Use of this heuristic

would imply only a marginal improvement of efficiency in extending perceptual rendering algorithms for dynamic environments, but our

method offers an order of magnitude improvement.

4.2  Visual Attention and Saliency

Though the eye’s smooth pursuit behavior can compensate for the motion of the moving objects in its focus of attention, not every moving

object in the world is the object of one’s attention. The pioneering work of Yarbus [36] shows that even under static viewing conditions not

every object in the viewing field captures visual attention. If we can predict the focus of attention, then other less important areas may have

much larger error tolerances, allowing us to save calculation time on those areas. To accomplish this, we need a model of visual attention

which will correctly identify the possible areas of visual interest.

Visual attention is the process of selecting a portion of the available visual information for localization, identification and understanding of

objects in an environment. It allows the visual system to process visual input preferentially by shifting attention about an image, giving more

Figure 5: Smooth pursuit behavior of the eye. The eye can track targets reliably up to a speed of 80.0 deg/sec beyond which tracking is erratic.

Reproduced from Daly [7].
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attention to salient locations and less attention to unimportant regions. The scan path of the eye is thus strongly affected by visual attention.

In recent years, considerable efforts have been devoted to understanding the mechanism driving visual attention. Contributors to the field

include Yarbus [36], Yantis [35], Tsotsos, et al. [28], Koch and Ullman [18], Niebur & Koch [25], Horvitz & Lengyel [12].

Two general processes significantly influence visual attention, called bottom-up and top-down processes. The bottom-up process is purely

stimulus driven. A few examples of such stimuli are: a candle burning in a dark room; a red ball among a large number of blue balls; or sud-

den motions. In all these cases, the conspicuous visual stimulus captures attention automatically without volitional control. The top-down

process, on the other hand, is a directed volitional process of focusing attention on one or more objects which are relevant to the observer’s

goal. Such goals may include looking for street signs or searching for a target in a computer game. Though the attention drawn due to conspi-

cuity may be deliberately ignored because of irrelevance to the goal at hand, in most cases, the bottom-up process is thought to provide the

context over which the top-down process operates. Thus, the bottom-up process is fundamental to the visual attention. 

We disregard the top-down component in favor of a more general and automated bottom-up approach. In doing so, we would be ignoring

non-stimulus cues such as a “look over there” command given by the narrator of a scene or shifts of attention due to familiarity. Moreover, a

task driven top-down regime can always be added later, if needed, with the use of supervised learning [14].

Itti, Koch and Niebur [13][14][15][16] have provided a computational model to this bottom up approach to visual attention. We chose this

model because the integration of this model into our computational framework required minimal changes.The model is built on a biologi-

cally plausible architecture proposed by Koch and Ullman [18] and by Niebur and Koch [25]. Figure 6 graphically illustrates the model of

visual attention.

The computational architecture of this model is largely a set of center-surround linear operations that mimic the biological functions of the

retina, lateral geniculate nucleus and primary visual cortex [19]. These biological systems tend to have a receptive field that triggers in

response to changes between the center of the field and its surroundings. The center-surround effect makes the visual system highly sensitive

to features such as edges, abrupt changes in color and sudden movements. This model generates feature maps using center surround mecha-

nisms for visually important channels such as intensity, color and orientation. A feature map can be considered to represent the conspicuity

at different spatial scales. Each of these features for each of these channels is computed at multiple scales and then processed with an opera-

tor, N(.), that mimics the lateral inhibition effect. That is, features that are similar and near each other cancel each other out. Feature maps

that have outstanding features are emphasized while feature maps which have competing features or no outstanding features are suppressed.

For example, a single white square in a dark background would be emphasized, but a checkerboard pattern would be suppressed. The sum of

the feature maps for each channel after they have been processed for lateral inhibition results in a conspicuity map. The conspicuity maps are

processed themselves for lateral inhibition and then summed together to obtain a single saliency map that quantifies visual attention. The

model of Itti, et al., has been tested with real world scenes and has been found to be effective [13].

The model of Itti, Koch and Niebur does not include motion as a conspicuity channel. We include motion as an additional conspicuity chan-

nel in our implementation. We added in the motion with minimal changes to the attention model. The next section describes the process of

obtaining the spatiotemporal error tolerance map by building on the knowledge presented here. The two components necessary for spa-

tiotemporal sensitivity calculation, motion and spatial frequency are computed, as is the saliency map necessary for quantifying visual atten-

tion.

5  IMPLEMENTATION

Our process begins with a rapid image estimate of the scene. This image estimate serves both to identify areas where spatiotemporal sensitiv-

ity is low and also to locate areas where an observer will be most likely to look. Such an image may be quickly generated using an OpenGL

rendering, or a ray traced rendering of the scene with only direct lighting. We have typically used OpenGL to render estimates for our work

and use the estimate only for the computation of the Aleph Map and the saliency map. Before they are used, the image estimates are con-

verted from RGB into AC1C2 opponent color space, using the transformation matrices given in [2]. 

Our computation proceeds in four major steps: 1) motion estimation, 2) spatial frequency estimation, 3) saliency estimation and 4) comput-

ing the Aleph Map. We will discuss each of these steps in detail in the following section. We use the following notation in our description. A

capital letter such as ‘A’ or ‘C1’ or ‘C2’ denotes a channel and a number in parenthesis denotes the level of scale. Thus, ‘A(0)’ would corre-

spond to the finest scale of a multiscale decomposition of the achromatic channel of the AC1C2 color space. For conciseness, a per-pixel

operation, e.g. A(x,y) is implied. Appendix A graphically depicts an overview of the process.

5.1  Motion Estimation

Velocity is one of the two components needed to estimate the spatiotemporal sensitivity of the human visual system. We implemented two

different techniques to estimate image plane velocity. One makes use of the image estimate alone and the other makes use of additional

information such as geometry and knowledge of the transformations used for movement. The latter model is appropriate for model-based

image synthesis applications while the former can be used even when only the image is available, as in image-based rendering. In both of

these techniques, the goal is first to estimate displacements of pixels ∆P(x,y) from one frame to another, and then to compute the image

velocity from this pixel displacement, using frame rate and pixel density information.
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Figure 6: An outline of the computational model of visual attention. An abridged version of the process is shown for the achromatic intensity channel.

The conspicuity maps of intensity, color, orientation and motion are combined to obtain the saliency map. Bright regions on the map denote areas of
interest to the visual system.
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5.1.1  Image Based Motion Estimation

Image-based motion estimation is useful only when consecutive images are available. In this technique, the achromatic ‘A’ channels of two

consecutive image frames are decomposed into multiscale Gaussian pyramids using the filtering method proposed by Burt and Adelson [4].

The Gaussian pyramid created in this section may be reused later to estimate both saliency and spatial frequency. 

We now briefly describe the census transform [37], a local transform that is used to improve the robustness of motion estimation. The census

transform generates a bitstring for each pixel that is a summary of the local spatial structure around the pixel. The bits in the bitstring corre-

spond to the neighboring pixels of the pixel under consideration. The bit is set to 0 if the neighboring pixel is of lower intensity than the pixel

under consideration. Otherwise, it is set to 1. For example, in the 1D case, suppose we have a pixel ‘5’ surrounded by other pixels

{1,6,5,1,7}. The census transform for the pixel ‘5’ would then be “0101.” Performing the census transform allows us to find correspondences

in the two images by capturing both intensity and local spatial structure. It also makes motion estimation effective against exposure varia-

tions between frames (if a real world photograph was used). Comparisons can then be made between regions of census transformed images

by calculating the minimum Hamming distance between two bit strings being compared. The Hamming distance of two bit strings is defined

as the number of bits that are different between the two strings and can be implemented efficiently with a simple XOR and bit counting.

The A(0,1,2) levels of the pyramid are passed through the census transform. The three levels were picked as a trade off between computa-

tional efficiency and accuracy. An exhaustive search would be most accurate but slow, and a hierarchical search would be fast but inaccu-

rate. We perform an exhaustive search on the census transformed A(2), which is cheap due to its reduced size, to figure out how far pixels

have moved between frames. Subsequently, the displacement information is propagated to level 1 and a three-step search heuristic (see page

104 of Tekalp [27]) is used to refine displacement positions iteratively. The three-step heuristic is a search pattern that begins with a large

search radius that reduces up to three times until a likely match is found. The results of level 1 is propagated to level 0 and a three-step search

again conducted to get our final pixel displacement value. Our implementation estimated motion for two consecutive 512x512 frames in the

order of 10 seconds per frame on a 500 Mhz Pentium III machine.

5.1.2  Model Based Motion Estimation

Model-based motion estimation (Agrawala, et. al.[1]) is useful when geometry and transformations of each object in the scene are available.

In this technique, we first obtain an object identifier and point of intersection on the object for every pixel in frame N, using either ray casting

or using OpenGL hardware projection (Wallach et. al. [29]). We advance the frame to N+1, apply the dynamic transformation to the moving

objects in the scene, and project each image point onto the viewing plane corresponding to the (N+1)th frame. The distance of pixel move-

ment is the displacement needed for calculating the image velocity. Due to the discretization of the color buffer (256 values per color chan-

nel), the OpenGL based motion estimation had discretization artifacts. For simplicity’s sake, we used the ray casting motion estimation data

for motion estimation. Our implementation of the ray casting scheme ran in 6 seconds on a Pentium III 500 Mhz machine for a 512x512

image of a 70,000 polygon scene.

Figure 7 compares the two motion estimation techniques. One drawback of using an image-based technique is that the algorithms cannot cal-

culate pixel disparities across regions of uniform color. The model-based motion estimation technique is unaffected by the lack of textures

and is less noisy than image based techniques.

We convert the pixel displacements ∆P(x,y) computed by either of the two techniques into image plane velocities vI using the following

equation.

(2)

In our setup, our values were 30 frames per second on a display with a pixel density of 31 pixels per degree.

5.2  Spatial Frequency Estimation

The remaining component needed to calculate spatiotemporal error sensitivity is the spatial frequency content of the scene. We applied the

Difference-of-Gaussians (Laplacian) Pyramid approach of Burt and Adelson [4] to estimate spatial frequency content. One may reuse the

Gaussian pyramid of the achromatic channel if it was computed in the motion estimation step. Each level of the Gaussian pyramid is upsam-

pled to the size of the original image and then the absolute difference of the levels is computed to obtain the seven level bandpass Laplacian

pyramid, L(0..6).

(3)

The Laplacian pyramid has peak spatial frequency responses at 16, 8, 4, 2, 1, 0.5 and 0.25 cpd (assuming a pixel density of around 31 pixels

per degree). Using a method similar to that followed by Ramasubramanian, et al., [26], each level of the Laplacian pyramid is then normal-

ized by summing all the levels and dividing each level by the sum to obtain the estimation of the spatial frequency content in each frequency

band:

v
I

x y,( )
P x y,( )∆

Pixels Per Degree
------------------------------------------- Frames per Second⋅=

L i( ) A i( ) A i 1+( )–=
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(4)

5.3  Saliency Estimation

The saliency estimation is carried out using an extension of the computational model developed by Itti, et al., [13][16]. Our extension incor-

porates motion as an additional feature channel. The saliency map tells us where attention is directed to and is computed via the combination

of four conspicuity maps of intensity, color, orientation and motion. The conspicuity maps are in turn computed using feature maps at vary-

ing spatial scales. One may think of features as stimuli at varying scales, conspicuity as a summary of a specific stimulus at all the scale lev-

els combined and saliency as a summary of all the conspicuity of all the stimuli combined together. Figure 6 illustrates the process visually.

Feature maps for the achromatic (A) and chromatic (C1,C2) channels are computed by constructing image pyramids similar to the Laplacian

pyramid described in the previous section. A Gaussian pyramid is constructed for each channel and following Itti, et al., we obtain the fea-

ture maps in the following manner:

(5)

where X stands for A,C1,C2 and (center,surround) ∈ {(2,5), (2,6), (3,6), (3,7), (4,7), (4,8)}. The numbers correspond to the levels in the

Laplacian pyramid.

Motion feature maps are created by applying a similar decomposition to the velocity map generated in the motion estimation section. We

perform the computation this manner in order to minimize the changes to the computational model of Itti, et al.

Orientation feature maps are obtained by creating four pyramids using Greenspan’s [11] filter on the achromatic channel. Greenspan’s filter

was tuned to orientations of (0, 45, 90 and 135 degrees) and indicates what components of the image lie along those orientations. We gener-

ate a total of 48 feature maps, 6 for intensity at different spatial scales, 12 for color, 6 for motion, and 24 for orientation for determining the

saliency map.

Figure 7: Comparison of Image-Based and Model-Based Motion Estimation. Two consecutive frames (a) and (b) are shown with the boomerang moving

to the right from (a) to (b). Motion-blurred image in (c) shows the direction of motion. The results obtained using image-based motion estimation are
shown in (d) and using model-based motion estimation is shown in (e). Model-based motion estimation (e) is less noisy and more accurate than image-

based motion estimation (d), which explains why (e) has a smooth motion estimation and (d) has a splotchy motion estimation.

Ri

L i( )

L j( )

all levels j

∑
------------------------------=

X center
·

surround,( ) X center( ) X surround( )–=
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Next, we combine these feature maps to get the conspicuity maps and then combine the conspicuity maps to obtain a single saliency map for

each image frame. We use a global non-linear normalization operator, N(.), described in [16] to simulate lateral inhibition and them sum the

maps together to perform this combination. This operator carries out the following operations:

1. Normalize each map to the same dynamic range

2. Find the global maximum M and the average m of all other local maxima

3. Scale the entire map by (M-m)2

The purpose of the N(.) operator is to promote maps with significantly conspicuous features while suppressing those that are non-conspicu-

ous. Figure 8 illustrates the action of the N(.) operator on three generic maps.

We apply the N(.) operator to each feature map and combine the resulting maps of each channel’s pyramid into a conspicuity map. We now

get the four conspicuity maps of intensity, color, orientation and motion. We then compute the saliency map by applying N(.) to each of the

four conspicuity maps and then sum them together. We will call the saliency map S(x,y) with the per pixel saliency normalized to a range of

(0.0... 1.0) where 1.0 represents the most salient region and 0 represents the least salient region in the image. In our implementation, the

saliency computation for a 512x512 image frame is completed in 4 seconds on a 500 Mhz Pentium III machine. Figure 9 shows the saliency

map computed for one of the animation image frames 

Figure 8: Action of the N(.) lateral inhibition operator on three generic maps A, B and C. The left half (a) shows the maps after step 1. The right half (b)
shows the maps after steps 2 and 3. Map A and C have competing signals and are suppressed. Map B has a clear spike and is therefore promoted. In this

way, the N(.) operator roughly simulates the lateral inhibition behavior of the visual system. When N(.) is applied to feature maps, A,B,C represent the
levels of the corresponding Laplacian pyramid of the feature. When applied to conspicuity maps, A,B and C represent channels such as intensity or color. 

Figure 9: Saliency map visualization (see color plate). In image (a) the yellow and blue top on the left is spinning rapidly. The entire image in motion due

to changes in camera position. The computed saliency map is shown in (b) and (c) graphically depicts the modulation of the saliency map with the image.
Brighter areas denote areas of greater saliency. Attention is drawn strongly to the spinning top, the paintings, the ceiling sculpture, the area light and the

couch. These areas undergo strict motion compensation. The floor and ceiling are not as salient and undergo less compensation.

A B C N(A ) N(B) N(C)

Before N(.) Operator (a) After N(.) Operator (b)

Image (a) Saliency Map (b) Superimposed (c)



11

5.4  Aleph Map Computation

At this stage, we will have the weights for spatial frequency from the bandpass responses Ri(x,y) (equation 4) with peak frequencies ρi =

{16,8,4,2,1,0.5,0.25} cycles per degree, the image plane pixel velocities vI(x,y) (equation 2), and the saliency map S(x,y). We now have all

the necessary ingredients to estimate the spatiotemporal sensitivity of the human visual system. The first step is to obtain the potential opti-

mal retinal velocity vR from the image plane velocity vI with the use of the saliency map S(x,y):

(6)

where vMin is the drift velocity of the eye (0.15 deg/sec [17]) and vMax is the maximum velocity beyond which the eye cannot track moving

objects efficiently (80 deg/sec [7]). It is a slight modification of equation (1), where we replace the 82% tracking efficiency with the saliency

map. We assume here that the visual system’s tracking efficiency is linearly proportional to the saliency. We use this velocity to compute the

spatiotemporal sensitivities at each of the spatial frequency bands ρi. For this computation, we use Kelly’s experimentally derived contrast

sensitivity function (CSF):

(7)

(8)

(9)

Following the suggestions of Daly [7], we set c0=1.14, c1=0.67 and c2=1.7. These parameters are tuned to CRT display luminance of 100 cd/

m2.

The inverse of the CSF intuitively gives us an elevation factor that increases our tolerance of error beyond the minimum discernible lumi-

nance threshold in optimal viewing conditions. We calculate this elevation factor for each of the peak spatial frequencies of our Laplacian

pyramid ρi ∈ {16,8,4,2,1,0.5,0.25}cpd:

(10)

(11)

where vR is the retinal velocity, CSF is the spatiotemporal sensitivity function, CSFMax(vR) is the maximum value of the CSF at velocity vR,

and ρmax is the spatial frequency at which this maximum occurs.

Finally we compute the Aleph Map, the spatiotemporal error tolerance map, as a weighted sum of the elevation factors fi, and the frequency

responses Ri at each location (x,y):

(12)

The computation of equations (10) - (12) are similar to the computation of the threshold elevation map described in [26] with the difference

that the CSF function used here is the spatiotemporal CSF instead of the spatial only CSF. Figure 10 shows the error tolerance map ℵ(x,y)

for an image frame of a dynamic scene. This map captures the sensitivity of the human visual system to the spatiotemporal contents of a

scene. ℵ(x,y) has values ranging from 1.0 (lowest tolerance to error) to at most 250.0 (most tolerance to error). The total time taken to com-

pute the Aleph Map, including motion estimation, saliency estimation and error tolerance computation is approximately 15 seconds for a

512x512 image on a Pentium III 550 Mhz machine.

In the next section, we show the application of the Aleph Map to efficiently compute global illumination in a dynamic environment.

6  APPLICATION AND RESULTS

The Aleph Map developed in the previous sections is general. It operates on image estimates of any animation sequence to predict the rela-

tive error tolerance at every location of the image frame and can be used to efficiently render dynamic environments. Similar to earlier, per-

ceptually-based acceleration techniques [2][3][23][26], we can use this map to adaptively stop computation in a progressive global

vR x y,( ) vI x y,( ) min S x y,( ) vI x y,( )⋅ vMin+ vMax,( )–=

CSF ρ vR,( ) k c0 c2 vR 2πρc1( )
2

e
4πc1ρ( ) ρm ax⁄–

⋅ ⋅ ⋅ ⋅ ⋅=

k 6.1 7.3 c2 vR⋅( ) 3⁄( )log
3

+=

ρmax 45.9( ) c2 vR⋅ 2+( )⁄=

fi ρi vR,( )

CSFMax vR( )

CSF ρi vR,( )
------------------------------- if ρ

i
ρ

max
>( )

1.0 otherwise

=

CSFMax vR( )
ρMax

2πc1

------------=

ℵ x y,( ) Ri fi×

i

∑=
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illumination algorithm. To demonstrate the wider usefulness of this map, we have applied the map to improve the computational efficiency

of RADIANCE.

The irradiance caching algorithm is the core technique used by RADIANCE to accelerate global illumination and is well documented by

Ward [31][33][34]. As suggested by its name, the irradiance caching technique works by caching the diffuse indirect illumination component

of global illumination [34]. A global illumination lighting solution can be calculated as the sum of a direct illumination term and an indirect

illumination term. Indirect illumination is by far the most computationally expensive portion of the calculation. Irradiance caching addresses

this problem by reusing irradiance values from nearby locations in object space and interpolating them, provided the error that results from

doing so is bounded by the evaluation of an ambient accuracy term. The ambient accuracy term αAcc varies from 0.0 (no interpolation,

purely Monte Carlo simulation) to 1.0 (maximum ambient error allowed). Hence, by reusing information, the irradiance caching algorithm is

faster than the standard Monte Carlo simulation of the global illumination problem by several orders of magnitude, while at the same time

providing a solution that has bounded error.

The ambient accuracy term is user supplied and gives a measure of the tolerated error. RADIANCE uses this term uniformly over the entire

image, and thus does not take advantage of the variation of sensitivity of the human visual system over different parts of the image. Our

application of the Aleph Map to the irradiance caching algorithm works by modulating the ambient accuracy term on a per pixel basis.

Hence, if the Aleph Map allows for greater error for that pixel, a larger neighborhood is considered for interpolation and hence the irradiance

cache is used more efficiently. In order to use the Aleph Map with the irradiance cache, we need to use a compression function to map the

values of ℵ(x,y) onto (αAcc.. 1.0) for use as a perceptual ambient accuracy term. The following equation accomplishes this compression:

(13)

where ℵα is the adapted map used in lieu of the original ambient accuracy term αAcc. The ℵ−1 term merely accounts for the fact that ℵ

starts from 1.0 and increases from there. The equation ensures that ℵα is bounded between αAcc and 1.0. Hence, in regions where attention is

focused and where there are no high frequencies to mask errors, ℵα=αAcc and in areas where the errors will be masked, ℵα asymptotically

approaches 1.0. Computation of ℵα is carried out only once, at the beginning of the global illumination computation of every frame. How-

ever, should a stricter bound be desired, one may opt to recompute ℵ(x,y) and hence recompute ℵα at intermediate stages of computation.

We demonstrate the performance of our model using a test scene of a synthetic art gallery. The scene contains approximately 70,000 primi-

tives and 8 area light sources. It contains many moving objects, including bouncing balls, a spinning top and a kinetic sculpture that demon-

Figure 10: Spatiotemporal sensitivity visualization (see color plate). Image (a) and its corresponding error tolerance map, the Aleph Map (b). Note that

the spinning top in the bottom right has reduced tolerance to error although it has textures and is moving. This is due to the information introduced by the

saliency map, telling the algorithm to be stricter on the top because the viewer will more likely focus attention there. The red beams are treated strictly
because there are no high frequency details.

Image (a) Aleph Map (b)

ℵα
ℵ

ℵ 1–
1

αAcc

-----------+

--------------------------------=
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strates color bleeding on a moving object. Figure 11 compares two still frames from the reference solution and the perceptually accelerated

solution. 

Figure 12 shows the root mean square error between two equal time solutions and the reference solution in Figure 11 (a). In Figure 12, the

left image relaxes the ambient accuracy to 1.0 throughout the image uniformly and the right has a base ambient accuracy of 0.6 tolerable

error modulated by the Aleph map. The Aleph Map guided solution has a lower base error tolerance, meaning that where it is important, the

algorithm spends more time on calculating the solution.

Figure 13 shows the performance improvement resulting from the use of the Aleph Map. In most of the frames, we achieve a 6x to 8x

speedup over standard irradiance caching. Using spatial factors only we achieve a 2x speedup. A marginal improvement over spatial sensi-

tivity is obtained if the Daly motion compensation heuristic is used in conjunction with spatiotemporal sensitivity. Note that all these

improvements are compared to the speed of the unaugmented irradiance caching technique, which is an order of magnitude more efficient

than simple path tracing techniques. In addition, the speedup was found to be largely independent of the number of samples shot. Another

video sequence, the pool sequence, was found to exhibit a similar speedup of 3x to 9x speedup depending on the amount of moving objects

and textures in parts of the sequence. The images for the pool sequence are found in Figure 14.

In this demonstration, we maintained good sampling protocols. The sampling density for each irradiance value is left unchanged, but the irra-

diance cache usage is perceptually optimized. Figure 15 shows the locations in the image at which irradiance values were actually computed.

Bright spots indicate that an irradiance value was calculated while dark regions are places where the cache was used to obtain an interpolated

irradiance value. This also explains why the speedup is independent of the number of samples shot, because the spacing of the irradiance

cache is optimized, not the number of samples per irradiance value.

In static scenes where only the camera moves, the irradiance cache can be maintained over consecutive frames. Our technique was found to

perform well even when such interframe coherence is used. Our results from a proof of concept test (Figure 16) show that even under this sit-

uation the use of ℵα improves the computation speed.

In viewing the Art Gallery sequence, it was discovered that repeated viewings can cause the viewer to pay more attention to unimportant

regions. In doing so, the viewer deliberately chose to ignore attention cues and focus on unimportant areas such as the ceiling. This intro-

duces a top-down behavioral component to visual attention that is not accounted for in our model. The pool sequence had unambiguous

salient features (the pool balls) and was not as susceptible to the replay effect.

Visual sensitivity falls rapidly as a function of foveal eccentricity [8]. An experiment incorporating foveal eccentricity into the model was

performed, and significant speedup was achieved. However, the animations generated with the use of foveal eccentricity tended to be useful

Figure 11: Image comparison from frame 0 of the Art Gallery sequence (see color plate). The image on the left is the reference image and the image on

the right is the image generated with the perceptually enhanced irradiance cache technique. 

Reference Solution (a) Perceptual Solution (b)
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only in the first few runs of the animation, as viewers tended to look away from foveal regions once they had seen the animation a number of

times.

An important point to note is that the Aleph Map is general and adaptable. For example, it can be converted to a physically based error metric

[26] via a multiplication with the luminance threshold sensitivity function.

(14)

where ∆L is the luminance threshold, L is the adaptation luminance calculated as the average luminance in a 1 degree diameter solid angle

centered around the fixating pixel and ∆LTVI is the threshold vs. intensity function defined in Ward-Larson, et al. [32]. In video compression

and telephony, it can be used to optimize compression simply by compressing more rigorously when ℵ(x,y) is high and less when it is low.

In geometric level of detail selection, one may opt to use coarser models when spatiotemporal error tolerance is high and a detailed model

where tolerance is low.

In this paper, a two part vision model is presented to the graphics community, the first part quantifying visual attention and the second part

quantifying spatiotemporal error tolerance. Both parts were validated extensively by their authors as described in their respective papers

[7][13]. In order to examine the effectiveness of our hybrid model, the Aleph map was tested by calculating the luminance threshold using

equation (14) for each pixel in the reference image and multiplying the threshold with a unit random number. The resulting noise map was

added to each frame of the reference solution to obtain the sub-threshold noisy image sequence which was viewed by a panel of observers for

discrepancy. The noise was found to be visible when still frames are viewed but not when the images are in motion during a video sequence.

Figure 17 outlines the process used to test the Aleph Map. The Aleph map assisted irradiance caching was also tested on other scenes with

comparable results and speedups.

Our implementation does not include color and orientation in the sensitivity computation, although those factors are considered in the com-

putational model of visual attention. We also do not implement contrast masking (Fewerda, et. al. [9]) as it is not well understood how

motion affects it. Omitting it simplifies our model and makes it more conservative, but it is better to err on the safe side. We also have chosen

to treat each component of the visual system as multiplicative with each other and the results have shown that it works, but the human visual

system is nonlinear and has vagaries that would be hard to model.

7  CONCLUSIONS

A model of visual attention and spatiotemporal sensitivity was presented that exploited the limitations of the human visual system in perceiv-

ing moving spatial patterns. When applied to animation sequences, results indicated an order of magnitude improvement in computation

speed. The technique has many applications and can be used in image based rendering, global illumination, video compression and video

Figure 12: Equal time error comparison. The image (a) on the left shows the root mean square error between the reference solution and an image with
uniform ambient accuracy of 1.0. The image (b) on the right shows the root mean square error between the reference solution and an Aleph map guided

solution with a base ambient accuracy of 0.6. Both solutions took approximately the same amount of time to render. White indicates a larger error and
black indicates less error from the reference solution.

Uniform error tolerance (a) Aleph Map guided error tolerance (b)

L∆ ℵ x y,( ) LTVI L( )∆×=
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telephony. This work will be useful and beneficial in all areas of graphics research where spatiotemporal sensitivity and visual attention are

used.
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Figure 13: Speedup over Irradiance Cache for the Art Gallery sequence. The total number of ray triangle intersections per pixel are compared. The Aleph

Map enhanced irradiance cache performs significantly better (6-8x) than the unaugmented irradiance cache. Spatial factors contribute to an average of 2x
speedup while Daly (full) motion compensation gives marginally better results. The spatial only solution corresponds to applying the technique of

Ramasubramanian et. al. [26] (less the masking term) to irradiance caching. These speedup factors are multiplied to that provided by irradiance caching,
a technique far faster than straight Monte Carlo pathtracing. Image frames were computed using an ambient accuracy setting of 15% and an ambient

sampling density of 2048 samples per irradiance value at a resolution of 512x512. Note that with these settings the reference solution is almost but not

completely converged. For comparison purposes, a reference solution and a perceptually accelerated solution are rendered at a higher resolution
(640x480) and a sampling density of 8192 samples per irradiance value (Aleph Map Hi Res). As seen on the graph (Aleph Map vs. Aleph Map Hi Res),

the acceleration is largely independent of the number of samples shot, because the perceptual solution changes only the spacing of the samples but not the
sampling density.
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Figure 14: Pool Sequence Visual Comparison. The top row shows images from the pool sequence computed using plain vanilla irradiance caching. The
middle row was rendered with Aleph Map enhanced irradiance caching, except that the retinal velocity computed using equation (1). The bottom row

shows the images rendered using the Aleph Map as described in this paper, with the retinal velocity derived using the saliency map. The full
compensation offers an average of a 3x speedup over the reference solution. The saliency compensation offers an average of 6x speedup over the

reference solution.

Reference

Full
Compensation

Saliency
Compensation
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Figure 15: Sampling patterns for frame 0 of the Art Gallery sequence. The bright spots indicate where the irradiance value for the irradiance cache is
generated and the dark spots indicate where an interpolated irradiance value is used.

Figure 16: Timing comparison with interframe coherence. Coherence is achieved by flushing the irradiance cache when the age reaches 10 frames. The
spikes denote when a cache filling operation is performed. The ℵ Map enhanced irradiance cache (even when no coherence is available, e.g. frame 0)

performs better than the irradiance cache with interframe coherence.
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Figure 17: The Aleph Map was tested by using the reference solution (a) to construct a sub-threshold noise map (b) and adding the two to obtain a ‘noisy
reference solution’ (c) (see color plate). The process is repeated for all frames of the reference solution. The noise can be seen in (d) when the image is

still but is difficult to discern during a video sequence of the noisy reference solution.

+ =

Reference Solution (a) Sub-threshold noise Map (b) Noisy Reference Solution (c)

Enlarged version of Noisy Reference Solution (d)
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Appendix A - Flowchart of Aleph Map Computation
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