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Although there is broad agreement that top-down expectations can
facilitate lexical–semantic processing, the mechanisms driving
these effects are still unclear. In particular, while previous electroen-
cephalography (EEG) research has demonstrated a reduction in the
N400 response to words in a supportive context, it is often challen-
ging to dissociate facilitation due to bottom-up spreading activation
from facilitation due to top-down expectations. The goal of the
current study was to specifically determine the cortical areas asso-
ciated with facilitation due to top-down prediction, using magnetoen-
cephalography (MEG) recordings supplemented by EEG and functional
magnetic resonance imaging (fMRI) in a semantic priming paradigm. In
order to modulate expectation processes while holding context con-
stant, we manipulated the proportion of related pairs across 2 blocks
(10 and 50% related). Event-related potential results demonstrated a
larger N400 reduction when a related word was predicted, and MEG
source localization of activity in this time-window (350–450 ms) loca-
lized the differential responses to left anterior temporal cortex. fMRI
data from the same participants support the MEG localization, showing
contextual facilitation in left anterior superior temporal gyrus for the
high expectation block only. Together, these results provide strong evi-
dence that facilitatory effects of lexical–semantic prediction on the
electrophysiological response 350–450 ms postonset reflect modulation
of activity in left anterior temporal cortex.

Keywords: anterior temporal cortex, expectation, magnetoencephalography,
N400, semantic

Introduction

Successful language comprehension requires mapping visual
or auditory input to stored lexical and semantic memory repre-
sentations in order to activate the concepts that the speaker or
writer intended to communicate. During typical comprehen-
sion, there are several serious potential challenges to accom-
plishing this task, such as noise and variability in the input and
ambiguity in the word-to-concept mapping. A number of
authors have proposed that context-based prediction may be
part of the solution to these challenges (Wicha et al. 2004;
DeLong et al. 2005; Lau et al. 2006; Federmeier 2007; Dikker
et al. 2009; Van Petten and Luka 2012). By using context to
generate predictions about what input is likely to come next,
the processor can more easily overcome these problems and,
across time, can allocate resources more efficiently to deal with
rapid input.

In the current study, we sought to determine the neural gen-
erators underlying effects of lexical–semantic prediction by
using magnetoencephalography (MEG) and event-related poten-
tials (ERPs), supplemented by functional magnetic resonance

imaging (fMRI). In particular, our goal was to localize contextual
effects of prediction encouraged by the statistics of the input, as
opposed to effects of more passive spreading activation.

Previous work suggests that prediction in language compre-
hension occurs at multiple levels of representation—syntactic,
semantic, lexical, phonological—and often involves the activa-
tion of one or more of these representations ahead of the
bottom-up input (e.g., Federmeier and Kutas 1999; DeLong
et al. 2005; Dikker et al. 2009). Another mechanism that can
sometimes result in activation of representations ahead of
bottom-up input is automatic spreading activation, which has
been proposed to explain the facilitation observed in classic se-
mantic priming paradigms. The relationship between this kind
of “passive” priming and sentential prediction and the extent
to which they draw on common underlying mechanisms has
long been debated (e.g., Neely 1991; Van Petten 1993;
Camblin et al. 2007; Chow et al. 2014). What most would agree
on, however, is that predictive contexts lead to larger effects on
semantic facilitation than passive priming during sentence
comprehension (e.g., Van Petten 1993), and that this can offer
significant advantages during real-time comprehension: not
only does it allow preactivation of stored representations
ahead of the bottom-up input, it can also allow these stored re-
presentations to be added to the current representation of
context such that it is updated in advance of the actual input.
For example, prediction may allow the stored memory re-
presentation of “cat” to be added to the current message re-
presentation after reading the context “She saw a dog chasing
a….” This case can be contrasted with the state of the system
after reading the context “She saw a dog….” Because of the
long-term memory connections between “dog” and “cat,” it is
likely that “cat” will be passively activated by this context,
but it is unlikely that “cat” would be added to the representa-
tion of the speaker’s message (see Lau et al. 2013a, for further
discussion).

A large electrophysiological literature has demonstrated
that both semantic association and contextual predictability are
associated with a reduction in a negative deflection in the ERP
response to words between 300 and 500 ms, commonly
known as the “N400” effect (Kutas and Federmeier 2011).
However, when predictability is manipulated by varying the
content of the prior context, as in traditional N400 studies of
sentence comprehension, it is difficult to determine whether
either or both of these mechanisms are responsible for the fa-
cilitation observed in “predictive” contexts (Van Berkum,
2009). To avoid this problem in the present study, we exam-
ined the effects of prediction on neural activity using a classic
semanticpriming “relatednessproportion”manipulation,which
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allowed us to keep the local context identical across high
versus low prediction conditions.

In the relatedness proportion paradigm, predictive validity
is varied by manipulating the overall proportion of related
prime–target pairs across the course of the experiment (Neely
1976): as the proportion of related prime–target pairs increases,
so the size of behavioral priming effects also increases (reviewed
by Neely 1991). Since the related prime–target pairs afford the
same semantic memory relationships in low-proportion and
high-proportion environments, the difference in the size of the
priming effect can be attributed to an increase in the extent to
which participants use the prime to predict the target. Consist-
ent with this, relatedness proportion usually has little effect on
behavioral or neurophysiological priming when the amount of
time between prime and target is brief, such that there is insuffi-
cient time to generate a prediction (Neely 1976; de Groot 1984;
Silva-Pereyra et al. 1999; Grossi 2006; Hutchison 2007; although
cf. Bodner and Masson 2003).

It is important to recognize that the relatedness proportion
paradigm induces prediction artificially. Therefore, the prox-
imal mechanisms that give rise to the prediction are likely to be
quite different from those that support prediction in normal
sentence comprehension. However, the strength of this para-
digm is that it allows us to probe the “effects” of prediction on
lexical–semantic facilitation at 2 extremes—high predictive valid-
ity and low predictive validity—while keeping the local context
constant across these 2 conditions.

Previous ERP studies using the relatedness proportion para-
digm have reported clear evidence of predictive effects over
and above passive priming (Holcomb 1988; Brown et al. 2000;
Lau et al. 2013a; although cf. Küper and Heil 2010). These
studies have largely found that the reduction in the N400 com-
ponent due to semantic relatedness is significantly larger
under conditions of high predictive validity relative to low pre-
dictive validity. These results demonstrate that neural activity
reflected in the N400 component is modulated by lexical pre-
diction, even when the semantic content of the immediate
context is held constant. A similar method has recently been
successfully used to demonstrate the existence of a predictive
component in neural repetition suppression (Summerfield
et al. 2008; Grotheer and Kovács 2014).

Previous work examining the source of N400 effects, using
a variety of different paradigms, has mainly implicated 3 areas:
left posterior temporal cortex, left anterior temporal cortex,
and left inferior frontal cortex (see Van Petten and Luka 2006;
Lau et al. 2008, for reviews). fMRI studies using contextual ma-
nipulations most frequently show effects in posterior temporal
cortex and inferior frontal cortex; some have also reported
modulation more anteriorly in temporal cortex (e.g., Rossell
et al. 2003), although signal artifact in this region may reduce
sensitivity to such differences in fMRI. The limited temporal
resolution of fMRI also makes it difficult to unambiguously as-
sociate these regions with the ERP effect observed during the
N400 time-window. However, it has been argued that effects in
the temporal cortex more reliably track the manipulations
that elicit N400 effects, and that inferior frontal effects are
more likely to reflect postactivation semantic processes that
can be modulated by task (Van Petten and Luka 2006; Lau
et al. 2008, 2013b). MEG studies using single dipole fits for
source localization have usually localized contextual effects
in the N400 time-window to midposterior temporal cortex
(Helenius et al. 1998; Uusvuori et al. 2008), while MEG studies

using distributed source localization have additionally impli-
cated anterior temporal cortex (Halgren et al. 2002; Lau et al.
2013b) and inferior frontal cortex (Halgren et al. 2002) as gen-
erators. Finally, intracranial recordings from anterior inferior
medial temporal cortex consistently demonstrate N400-like re-
sponses (Nobre and McCarthy 1995; McCarthy et al. 1995),
strongly suggesting that this region contributes to the scalp-
recorded N400 effect.

The overall pattern of localization results has led several
authors to suggest that the N400 component reflects the summed
activity of multiple active regions, and that modulations of ampli-
tude can thus arise through multiple generators (Halgren et al.
2002; Pylkkänen and Marantz 2003; Van Petten and Luka 2006).
If this is the case, then any differential N400 priming effects ob-
served in high versus low expectation conditions could be due to
selective modulation of one of these generators.

To our knowledge, the only previous imaging study to specif-
ically examine the effects of lexical–semantic expectation while
holding the context-target relationship constant is a PET study
by Mummery et al. (1999), who also used a relatedness propor-
tion semantic priming paradigm. This study revealed effects of
relatedness proportion in the left anterior temporal cortex,
which, as discussed above, is one of the regions that has been
implicated as a source of the N400. However, the use of a block-
design analysis in that study made it difficult to distinguish
specific effects of predictive facilitation on the target from the
processes engaged in actually generating these predictions or at-
tentional reallocation and monitoring mechanisms, which may
have been reflected by additional activity observed in anterior
cingulate and right superior parietal cortices.

Determining the neural source of reduced activity specifically
associated with lexical–semantic prediction is an important first
step in better understanding the role of prediction in facilitating
neural activity during more natural language comprehension. In
the current study, we evaluate which cortical regions specifically
contribute to predictive lexical–semantic facilitation, within the
N400 time-window (between 350 and 450 ms), by using MEG
source localization of the relatedness proportion paradigm, sup-
plemented by data from ERPs and fMRI recorded in the same
participants. We recorded electroencephalography (EEG) data
simultaneously with MEG in order to better relate contextual
effects previously observed in ERPs to the cortical sources impli-
cated by the MEG results. We also recorded fMRI responses in
the same paradigm from the same participants with the goal of
confirming the results of the MEG source localization.

Materials and Methods

Materials
Each participant took part in 2 separate experimental sessions: one
for simultaneous MEG–EEG recordings and one for structural and
functional MRI recordings. Therefore, 2 separate sets of stimuli were
created. These stimuli have been previously described in Lau et al
(2013a) (The full materials set is available at http://www.nmr.mgh.
harvard.edu/kuperberglab/materials.htm). In the stimulus list for each
session, materials were divided into a low-proportion block in which
10% of word pairs (40/400) were related (low predictive validity), and
a high-proportion block in which 50% of word pairs (200/400) were
related (high predictive validity). As described below, a core set of con-
trolled test items were counterbalanced across conditions and lists
such that each participant saw 40 of these items in each of the 4 condi-
tions, and no participant saw the sameword twice. The proportion ma-
nipulation was achieved by intermixing these test items with different
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proportions of related and unrelated filler pairs and probe filler pairs
(see below). In order to prevent item-specific effects, 2 lists were
created for each block so that for any given target, half the participants
saw the target preceded by a related prime, and half saw the target pre-
ceded by an unrelated prime.

To create the related stimuli, 320 highly associated prime–target
pairs (e.g., “salt–pepper”) were selected from the University of South
Florida Association Norms (Nelson et al. 2004), which were normed by
at least 100 participants. All pairs had a forward association strength of
0.5 or higher (at least 50% of participants presented with the prime
word responded with the target), with a mean forward association
strength of 0.65. The mean log frequency of the primes was 2.55 and
the mean log frequency of the targets was 3.53, as computed in the
SUBTLEXus (Brysbaert and New 2009). Pairs in which there was clear
morphological overlap between prime and target were not included.
As the probe task required responding to animal words, no pairs in-
cluding animal words were included in the test items. These 320 pairs
were divided into 2 sets of 160 test items, corresponding to the 2 separ-
ate experimental sessions (each containing 40 test items from each of
the 4 conditions). Unrelated test items for each set were created by ran-
domly redistributing the primes across the target items, and checking
by hand to confirm that this did not accidentally result in any related
pairs (e.g., “fuel–pepper”). For each set, test items were then fully
rotated across related/unrelated and low-proportion/high-proportion
in a Latin Square design across 4 lists, such that no list contained the same
prime or target twice. The experimental targets in each list were thus fully
counterbalanced across participants (each word could appear in any of
the 4 conditions). Forward association strength between prime and
target, and log frequency for both prime and target, did not significantly
differ between blocks for test items. Each participant saw a completely
different set of items from session 1 to session 2, but the order of the sets
and the recording modality in which they appeared (EEG–MEG/fMRI)
was counterbalanced across participants.

Participants’ task was to respond to an animal word (each animal
word appeared exactly once in a session). Therefore, to each block, we
added 80 filler unrelated word pairs in which either the prime or target
was an animal word (e.g., “jeep–frog” or “hyena–fee”). This was a minor
difference from our previous ERP experiment (Lau et al. 2013a) in which
animal words always appeared at the target position. This was done
in order to ensure that participants paid equal attention to both words
of each pair. The primes in the probe trials were never related to the
targets.

We achieved the desired relatedness proportion in each block as
follows: to the low expectation block, 240 unrelated filler trials (e.g.,
“lip–museum”) were added to the 80 unrelated probe trials, 40 unre-
lated trials, and 40 related trials such that, in this block, only 10% of the
trials were related. To the high expectation block, 160 related filler
trials (e.g., “breakfast–lunch”) and 80 unrelated filler trials were added
to the 80 unrelated probe trials, 40 unrelated trials, and 40 related
trials, such that, in this block, 50% of the trials were related. The
related filler pairs were also selected from the South Florida Associ-
ation Norms. Because the number of related and unrelated fillers dif-
fered across blocks, these items could not be counterbalanced to guard
against item-specific effects and are not included in the main analyses
here. No word in any position was ever repeated in a given presenta-
tion list. The low expectation block was always presented first. Each
session was divided into 8 runs of 100 trials. The order of stimuli in
each list was randomized using the OptSeq algorithm to improve de-
convolution of the hemodynamic response in the parallel fMRI experi-
ment (Dale 1999; http://surfer.nmr.mgh.harvard.edu/optseq). The
characteristics of the stimuli are summarized in Table 1.

Stimuli were projected onto a screen in white 20-point uppercase
Arial font. Each trial began with a fixation cross, presented at the
center of the screen for 200 ms, followed by a 200-ms blank screen.
The prime word was then presented for 500 ms, followed by a 100-ms
blank screen, and then the target word was presented for 900 ms, fol-
lowed by a 100-ms blank screen. Participants were instructed to press a
button on a handheld response box with their left thumb as quickly as
possible when they saw a name of an animal. In the MEG session,
short intervals were inserted between trials to allow participants time
to blink. In the MRI session, additional fixation trials of varying length
summing to a total of 60 s per block were added to the intertrial inter-
val in order to optimize deconvolution of event-related activity.

Participants
Thirty young adults initially participated in the MEG–EEG experiment.
All participants were native speakers of American English without any
prior history of neuropsychiatric disorders, and were right-handed
as assessed by the Edinburgh Handedness Inventory (Oldfield 1971).
Six MEG–EEG datasets were subsequently excluded from the analysis;
5 due to excessive blinking or motion artifact, and 1 due to technical
problems with the recording. Analyses were conducted on the remain-
ing 24 datasets (15 men; mean 21 years, range 18–27 years). One of the
original 30 participants did not return for the second session of fMRI
because of immediately apparent artifact in the initial MEG session.
Two of the remaining fMRI datasets were excluded: one due to exces-
sive motion artifact, and one due to a technical error in the stimulus
presentation. fMRI analyses were conducted on the remaining 27 data-
sets (16 men; mean 21 years, range 18–27 years)(After these ex-
clusions, 23 participants had usable data from both recording sessions.
A supplementary set of analyses were conducted on this subset of com-
pletely overlapping participants. We observed no qualitative differences
in these results and the results from the full dataset reported here.). In
one of the MEG–EEG sessions and in one of the fMRI sessions, behavior-
al responses were not recorded due to an equipment error; the behavior-
al accuracy reported includes the remaining participants. The order of
the 2 recording sessions was counterbalanced across participants.

MEG–EEG Recording
The MEG–EEG data were acquired while participants were seated
inside a magnetically shielded room (IMEDCO AG, Switzerland). The
MEG data were acquired with a dc-SQUID Neuromag VectorView
system (Elekta-Neuromag Oy, Finland) with 306 sensors arranged in
102 triplets of 2 orthogonal planar gradiometers and 1 magnetometer.
The EEG data were acquired at the same time using a 70-channel
MEG-compatible scalp electrode system (BrainProducts, München,
Germany) and referenced to an electrode placed on the left mastoid; an
electrode was also placed on the right mastoid to confirm that the refer-
ence did not incorporate measurable lateralized brain activity. Horizon-
tal and vertical components of eye movements were recorded with 2
pairs of bipolar electrodes placed at the outer canthi and above and
below the left eye. Impedance was kept <10 kΩ for all scalp electrode
and electrooculogram sites, and <2.5 kΩ for mastoid sites. The EEG
and MEG data were acquired with a bandpass of 0.03–200 Hz and were
continuously sampled at 600 Hz. To record the head position relative
to the MEG sensor array and to co-register the MEG–EEG and MRI co-
ordinate frames, the locations of 3 fiduciary points (nasion and 2 aur-
icular), 4 head-position indicator coils, the locations of the EEG electrodes,
and at least 100 additional points from the head surface were digitized
using a 3 Space Fastrak Polhemus digitizer integrated with the Vectorview
system. During the MEG–EEG recording, the head-position coils were
used to measure the position and orientation of the head with respect to
the MEG sensor array at the beginning of each block of trials.

Structural/Functional MRI Recording
Structural and functional magnetic resonance images were acquired
using a 3-T Siemens Trio scanner and a 32-channel head coil. Two
T1-weighted high-resolution structural images (1-mm isotropic multie-
cho MPRAGE: TR = 2.53 s, flip angle = 7°, 4 echoes with TE = 1.64, 3.5,
5.36, 7.22 ms) were acquired at the beginning and end of the session.

Table 1
Distribution of experimental items across blocks

Low proportion High proportion

Related targets (salt–pepper) 40 trials 40 trials
Unrelated targets (fuel–pepper) 40 trials 40 trials
Unrelated animal probes ( jeep–frog or hyena–fee) 80 trials 80 trials
Unrelated fillers (lip–museum) 240 trials 80 trials
Related fillers (breakfast–lunch) 160 trials

Cerebral Cortex April 2016, V 26 N 4 1379

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/26/4/1377/2366293 by guest on 21 August 2022

http://surfer.nmr.mgh.harvard.edu/optseq
http://surfer.nmr.mgh.harvard.edu/optseq
http://surfer.nmr.mgh.harvard.edu/optseq
http://surfer.nmr.mgh.harvard.edu/optseq
http://surfer.nmr.mgh.harvard.edu/optseq
http://surfer.nmr.mgh.harvard.edu/optseq
http://surfer.nmr.mgh.harvard.edu/optseq


To construct the boundary-element model surface for MEG source esti-
mation, a single multiecho 5° flip angle fast low-angle shot (FLASH)
image (1 mm isotropic, TR = 20 ms, TE = 1.85 ms + 2n, n = 0–7), was
also acquired.

Eight runs of functional data were collected, each ∼5 min long. In
each run, 130 functional volumes [36 axial slices (anterior commissure–
posterior commissure aligned), 3 mm slice thickness, 0.3 mm skip, 200
mm field of view, in-plane resolution of 3.125 mm] were acquired with a
gradient-echo sequence (repetition time = 2 s, echo time = 25 ms, flip
angle = 90°, interleaved acquisition).

Preprocessing
Signal-space projection (SSP) correction was applied to MEG magnet-
ometer data to suppress environmental noise and biological artifacts
(Uusitalo and Ilmoniemi 1997). For 3 participants in which a strong
cardiac artifact was observable in the MEG recording, an additional
SSP was computed for gradiometers and magnetometers during heart-
beat events (detected using the bipolar ECG electrodes) and applied to
the MEG data. Averaged event-related signals time-locked to target
words were computed offline from trials free of ocular and muscular
artifacts after application of a 20-Hz offline low-pass filter. A 100-ms
prestimulus baseline was subtracted from all waveforms prior to statis-
tical analysis. Noisy MEG sensors (0.9% of MEG sensors in the dataset)
were marked and excluded prior to generation of grand-average
sensor waveforms and source estimates. Prior to EEG sensor analyses,
data from noisy or disconnected electrodes (3.4% of electrodes in the
dataset) were interpolated with signals from neighboring electrodes
using the Laplacian surface estimate.

ERPAnalysis
All MEG–EEG analyses reported here focused on the 350–450 ms time-
window in which N400 effects of context are at their peak (Kutas and
Federmeier 2011). In order to confirm that the relatedness by expectation
interaction that we observed in our previous study (Lau et al. 2013a) was
replicated in this dataset, we computed a repeated-measures analysis of
variance on mean ERP amplitudes between 350 and 450 ms poststimulus
onset. In order to assess gross differences in topographical distribution,
the analysis was conducted on a subset of 48 nonmidline electrodes
divided equally among the 4 quadrants of the scalp, resulting in a 2 × 2 ×
2 × 2 design (relatedness × expectation × hemisphere × anteriority). This
analysis motivated our planned comparisons in MEG and fMRI, in which
we examined the effects of relatedness at each level of expectation.

Individual Source Estimates
The minimum norms estimates (MNE) software package (Gramfort
et al. 2014) was used to derive source estimates on the cortical surface
for MEG event-related signals in each participant. The cortical surface
for each participant was reconstructed from the T1-weighted MPRAGE
structural MRI data using the FreeSurfer software package (http://
surfer.nmr.mgh.harvard.edu). This high-resolution surface was then de-
cimated into ∼10 000 vertices in each hemisphere. A three-compartment
boundary-element model with the linear collocation approach was
used in the forward calculation (Hämäläinen and Sarvas 1989; Mosher
et al. 1999). The scalp and skull surfaces were estimated on the basis of
a 5° FLASH structural MRI sequence for most participants; for one par-
ticipant in which a FLASH sequence was not collected, the MPRAGE
structural data were used instead. The amplitudes of the dipoles at each
cortical location were estimated for each time sample using the anatom-
ically constrained linear estimation approach (Dale et al. 2000). Noise co-
variance estimates were derived from data recorded in the 100 ms
baseline period prior to the presentation of the prime word for all trials.
The orientations of the dipoles were approximately constrained to the
cortical normal direction by reducing the variance of the source compo-
nents tangential to the cortical surface by a factor of 0.5 (Lin et al. 2006a).

Intersubject Registration
Prior to translating individual participant data into a common space, a
smoothing operation was applied to the individual data, using 7

iterative steps to spread estimated activity to neighboring vertices.
Then each participant’s cortical surface was morphed to a template
brain created by averaging the cortical surface of 40 individuals
scanned by the Buckner laboratory (fsaverage), using an algorithm de-
signed to align individual sulcal–gyral patterns while minimizing dis-
tortion (Fischl et al. 1999). The source localization estimates for each
participant were mapped, using this same translation, to the template
brain space. Quantification of results was then conducted in this tem-
plate space, and the data from individual participants were averaged in
this space for visualization of group-level estimates.

Group-level Analysis of MEG Source Estimates
As described above, dSPM source estimates of activity at the cortical
surface for the −100:700 ms surrounding target word presentation
were computed for each participant for the 4 conditions of interest
(low expectation related, low expectation unrelated, high expectation
related, and high expectation unrelated). Next, 2 dSPM contrast maps
were created for each participant by subtracting the unrelated–related
activity estimates across all vertices, resulting in a dSPM map represent-
ing the priming effect for each level of expectation. Then, the activity
estimates across the 350–450 ms time-window were averaged in each
of these maps to provide an estimate of the mean differential activity in
the N400 time-window associated with the priming effect (unrelated–
related) for each level of expectation.

Because the aim of this study was to determine which cortical
regions specifically contribute to predictive lexical and semantic facili-
tation, the cortical surface analysis focused on vertices on the cortical
surface within areas previously implicated in language processing: bi-
lateral temporal, inferior frontal, inferior parietal, and occipitotemporal
cortices (5095 vertices in total), using the Desikan–Killiany atlas
(Desikan et al. 2006) included in the FreeSurfer distribution to delin-
eate the regions. We used a nonparametric permutation test based on
spatial clustering to estimate which differences in the remaining verti-
ces were reliable across participants (Pantazis et al. 2005; Maris and
Oostenveld 2007). For each level of expectation, we first created a
t-map representing the t-statistic associated with the mean priming
effect (unrelated vs. related) across the 350–450 ms time-window at
each vertex. We established an initial threshold of t(1,23) = 2.07 (P <
0.05), and grouped the vertices that survived this initial threshold into
spatially contiguous clusters. The t-values in each cluster were
summed, resulting in a second-level cluster statistic. Then, in order to
determine whether any of these clusters were not due to chance, we
randomly permuted the sign of the priming effect in each subject and
ran the same massive univariate t-test 1000 times in order to derive a
cluster size confidence interval such that α = 0.05. Only significant clus-
ters are reported here.

fMRI Analysis
We used FreeSurfer Functional Analysis Stream (FS-FAST) software,
with a finite impulse response (FIR) model to analyze the functional
MRI data. The FIR model gave estimates of the hemodynamic response
on every TR (every 2 s), and thus allowed us to address our hypotheses
without assumptions about the shape of the hemodynamic response
(Burock et al. 1998; Dale 1999; Burock and Dale 2000). This also
allowed us to make a direct comparison with the results of our previ-
ous multimodal imaging study of automatic masked semantic priming,
which used the same FIR analysis in fMRI. After slice-time correction,
functional images were motion corrected to the middle time point of
each functional run using the AFNI (afni.nimh.nih.gov/afni) 3 dvolreg
program (Cox and Jesmanowicz 1999). Nonbrain voxels were masked
out of the analysis using the FSL (www.fmrib.ox.ac.uk/fsl) Brain
Extraction Tool (Smith 2002). Images were corrected for temporal
drift, normalized, and smoothed using a 3D spatial filter (full-
width-half-max: 10 mm). As reviewed above, the cortical surface of
each individual was morphed to an average spherical surface represen-
tation to align sulci and gyri across subjects (Fischl et al. 1999). This
transform was used to map general linear model (GLM) parameter esti-
mates and residual error variances of each participant’s functional data
to a common spherical coordinate system prior to smoothing. Func-
tional images were then analyzed with a weighted least-square GLM
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using the FIR model. Activity estimates between 2 and 12 s poststimu-
lus onset were computed for each condition and summed at each voxel
across this time-epoch (Ashby 2011). Estimates were computed only
for the 2 cortical surfaces, as MEG is relatively insensitive to subcortical
sources and the previous literature has largely implicated cortical areas
in semantic processing.

Planned comparisons (unrelated vs. related) were computed for
the low expectation and high expectation blocks separately, and as-
sessed using a threshold of P < 0.05, FDR corrected. We followed up
these comparisons with a more conservative nonparametric test de-
signed to mirror the MEG source analysis procedure. This analysis
focused on the same 5095 fronto-temporo-parietal vertices used in
the MEG analysis. Significance maps across these vertices were thre-
sholded at P < 0.05, uncorrected, and a Monte-Carlo procedure was
used to determine cluster-level significance. For each planned com-
parison, we then set a cluster-level threshold of P < 0.01, in order to
achieve an effective α of P < 0.05 (as both hemispheres and both posi-
tive and negative contrasts were tested separately for each planned
comparison).

Results

Overall accuracy in detecting the probes (animal primes and
targets) in the MEG–EEG session was 90% (SD 0.1%). A 2 × 2
(expectation × prime/target) ANOVA revealed a significant
main effect of position (F1,22 = 21.6, P < 0.01), reflecting that
animal words were detected more accurately in the target pos-
ition (94%) than in the prime position (85%). There was no
main effect or interaction with expectation (F’s < 0.5, P’s > 0.5),
demonstrating that accuracy did not reliably differ between
low and high expectation runs.

Consistent with previous work, visual inspection of the ERP
(Fig. 1A) suggests the presence of a reduction in N400 ampli-
tude for related relative to unrelated target conditions in both
low and high expectation runs, but the effect appears notably
greater in the high expectation block than in the low expect-
ation block. This impact of expectation on relatedness was
manifested by a significant 3-way interaction between related-
ness, expectation, and anteriority (F1,23 = 5.67, P < 0.05), and a
significant 4-way interaction between relatedness, expectation,
hemisphere, and anteriority (F1,23 = 4.35, P< 0.05). There was also
a simple main effect of relatedness (F1,23 = 4.7, P < 0.05) and 2-way
interactions between relatedness and hemisphere (F1,23 = 6.54,
P < 0.05) and relatedness and anteriority (F1,23 = 5.03, P < 0.05).

In order to further examine the source of the interaction
between relatedness and expectation, ANOVAs were conducted
within each level of expectation. In the low expectation condi-
tion, the numerical trend towards a relatedness effect did not
reach significance, and only a marginal 2-way interaction
between relatedness and hemisphere was observed (F1,23 = 2.64,
P = 0.12; all other P’s > 0.15). In the high expectation condition,
however, there was a significant main effect of relatedness
(F1,23 = 4.80, P < 0.05), significant 2-way interactions between re-
latedness and hemisphere (F1,23 = 5.13, P < 0.05) and relatedness
and anteriority (F1,23 = 9.10, P < 0.05) and a significant 3-way
interaction between relatedness, hemisphere, and anteriority
(F1,23 = 5.61, P < 0.05). The interactions with distributional fac-
tors in the high expectation conditions reflect the fact that the
difference between unrelated and related targets was largest
over posterior sites (left posterior: mean difference = 1.58 µV,
right posterior: mean difference = 1.83 µV) and was particularly
small over left anterior sites (left anterior: mean difference =
0.29 µV, right anterior: mean difference = 1.02 µV). The right
posterior maximum of the N400 effect is consistent with

previous studies using visual presentation (Lau et al. 2013a, see
Van Petten and Luka 2006 for review).

For comparison, Figure 1B illustrates the root mean square
of activity measured across left and right MEG gradiometers
over frontal, temporal, parietal, and occipital cortex. Differ-
ences between unrelated and related targets in the 350–450 ms
time-window are most apparent in frontal and temporal gradi-
ometers bilaterally, and this effect appears larger for high
expectation conditions in temporal sensors.

Cluster-Based Analysis of MEG Distributed Source
Estimates: 350–450 ms
We conducted nonparametric spatial cluster permutation tests
on the differential dSPM source estimates for unrelated versus
related targets between 350 and 450 ms in the low expectation
and high expectation blocks. In the low expectation condition,
this procedure revealed no regions that showed a reliable
effect of relatedness. For the high expectation condition, this
procedure revealed a single region that showed a reliable
effect of relatedness. This cluster was in left anterior temporal
cortex (Fig. 2), and showed less activity to related targets than
unrelated targets. Although differential activity was also visible
in corresponding regions of right anterior temporal cortex,
these effects did not reach significance.

These results suggest that activity in left anterior temporal
cortex contributes to the predictive effects of a semantically
related context on facilitating target processing as the likeli-
hood increases that a predictable word will occur. A remaining
question is whether left anterior temporal activity is modulated
by relatedness only when the target is strongly predicted, or
whether the effect of relatedness in this region is simply larger
when the target is predicted. The waveform plots in Figure 2
depict the mean source activity estimate from this cluster for all
4 conditions across time. The waveforms in the high expectation
condition necessarily diverge in this time-window because the
cluster was selected on the basis of this contrast. However, the
low expectation conditions demonstrate a similar divergence lo-
calized to the same time-window. Although no cluster in the an-
terior temporal region showed a reliable relatedness effect when
expectation was low, the numerical pattern is consistent with
the possibility that this region contributed to the small related-
ness difference observed in the low expectation condition in
ERP. For comparison, Figure 3 illustrates the pattern of mean
amplitudes across all 4 conditions in the right posterior quadrant
in ERP and the left anterior temporal cluster in MEG.

Region-of-Interest Analysis of MEG Distributed Source
Estimates: 350–450 ms
Effects of contextual facilitation and semantic priming have
also frequently been reported in left inferior frontal cortex and
left posterior temporal cortex (Van Petten and Luka 2006; Lau
et al. 2008). Therefore, although the nonparametric cluster
analysis described above did not reveal significant clusters in
these areas, we followed up with region-of-interest (ROI) ana-
lyses in order to assess the possibility that these regions were
also sensitive to expectation. We used the Desikan–Killiany
atlas (Desikan et al. 2006) included in the FreeSurfer dis-
tribution as a basis for defining the regions, and the posterior
temporal ROI was defined by selecting the posterior aspect of
the superior temporal sulcus (STS) and middle temporal gyrus
(MTG) regions from this parcellation. We conducted a simple
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plannedcomparisonof therelatednesseffect (unrelatedvs. related)
for low and high expectation conditions in each of the 2 ROIs
in the 350–450 ms time-window. We found that neither the left
posterior temporal ROI nor the left inferior frontal ROI showed
significant effects of relatedness in either condition, although
there was a numerical trend in the inferior frontal ROI toward
a relatedness effect (unrelated > related) in the high expect-
ation condition (F1,23 = 3.0, P = 0.099; all other P’s > 0.1).

FMRI Analysis
In fMRI, planned comparison of the related and unrelated
conditions in the high expectation block was consistent with
the MEG source localization results described above by re-
vealing a cluster within the left anterior temporal cortex at an
FDR-corrected threshold of P < 0.05 (Fig. 2, inset), although
this cluster was small and did not survive the more stringent
nonparametric Monte Carlo analysis. No such effect was ob-
served in the low expectation conditions at this threshold [The
focus of the fMRI FIR analysis in the current paper, which does
not assume a canonical hemodyamic response, was primarily
to confirm MEG source localization of the N400 predictive
facilitation effect (unrelated > related). In other work, we
have conducted more extensive fMRI analysis on this dataset,
which will be reported in a separate paper (Weber et al. in
preparation)].

Discussion

Numerous ERP studies have shown that the amplitude of the
N400 is reduced for targets preceded by related primes relative
to unrelated primes. More recently, we reported ERP work
showing that this N400 reduction is larger when a related
prime is more strongly “predicted” (Lau et al. 2013a). In the
current study, we not only replicate this finding in ERP, but
show with concurrent MEG and parallel fMRI recordings that
this predictive modulation is at least partially realized through
activity in the left anterior temporal cortex. MEG dSPM source
estimates demonstrated a difference between the response to
related and unrelated targets in this region during the N400
time-window, that was most prominent (and only reached sig-
nificance) in the high expectation condition, when the experi-
mental context encouraged participants to predict that the
prime and target would be related. FMRI results corroborated
this finding and localized the focus of the predictive facilitation
effect more precisely to left anterior superior temporal gyrus
(STG). Although previous neuroimaging studies have exam-
ined the influences of semantic context in comprehension, the
unique contribution of the current study is to have isolated the
predictive component of contextual facilitation with conver-
ging evidence across techniques, while keeping the local
context identical across conditions of high and low predictive
validity.

Figure 1. Group-averaged EEG and MEG sensor-level signals, time-locked to the target word, for low and high expectation unrelated minus related contrast. (A) Mean EEG-evoked
responses across the 4 quadrant regions in which EEG sensor analyses were conducted. (B) Root mean square MEG-evoked responses, calculated across planar gradiometers only,
in frontal, parietal, temporal, and occipital regions.
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The Role of Temporal Cortex in Predictive Semantic
Facilitation
The precise role of left anterior temporal cortex in language
comprehension continues to be debated. According to one
family of theories, anterior temporal cortex is involved in pro-
cessing conceptual information through representations that
link distributed semantic information from multiple areas

(visual, auditory, motor) to form a “semantic hub” (Mummery
et al. 2000; Patterson et al. 2007; Visser et al. 2010; Price 2012).
One major source of empirical support from this view comes
from cases of semantic dementia, in which damage to anterior
temporal cortex bilaterally is correlated with nonlinguistic se-
mantic deficits (Lambon Ralph and Patterson 2008). Our
finding that left anterior temporal activity is reduced for words
that are strongly predicted is easily accommodated by this
view. Many models of lexical-conceptual activation suggest
that multiple partially matching representations are initially ac-
tivated in parallel, and that a “winner” can emerge through
competitive interactions in which other representations are in-
hibited (e.g., McClelland and Elman 1986; Laszlo and Plaut
2012). Prediction of the upcoming word could naturally result
in preactivation of the associated conceptual representation,
such that when the predicted target is actually presented, the
corresponding lexical-conceptual representation more quickly
emerges as the winner. If anterior temporal cortex were the
locus of the conceptual hub, this network would then be less
broadly activated in the highly predicted case, as we observed
here.

According to another family of theories, anterior temporal
cortex is involved in a secondary, on-the-fly combination of
stored lexical or conceptual representations, as suggested by
the fact that activity in this region increases when words are
presented in phrases or sentences relative to unstructured lists
(e.g., Friederici et al. 2000; Vandenberghe et al. 2002; Humph-
ries et al. 2006; Rogalsky and Hickok 2009; Brennan and

Figure 2. MEG statistical map illustrating t-values for the unrelated-associated contrast of dSPM source estimates between 350 and 450 ms, thresholded at P< 0.05. Yellow
outline indicates the left anterior temporal cluster that demonstrated a significant reduction for the related condition relative to the unrelated condition in the high expectation block.
Lighter shading indicates the search region used in the cluster-level permutation test. Inset: cortical fMRI statistical map illustrating left anterior superior temporal region
demonstrating a significant reduction for the related condition relative to the unrelated condition in the high expectation block, FDR corrected at P<0.05. Waveform plots show the
mean MEG dSPM activity estimates for the left anterior temporal cluster plotted across the −100:600 ms time-window in each condition, for illustration only.

Figure 3. Mean EEG sensor and MEG source amplitudes, respectively, across
unrelated and related conditions at each level of expectation for the right posterior EEG
sensors at which the N400 effect was at its peak and for the left anterior temporal
region demonstrating a significant effect of relatedness in the high expectation block in
MEG.
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Pylkkänen 2012). Consistent with both of these views, much
research in speech perception has observed that activity in an-
terior temporal cortex is correlated with intelligibility (Scott
et al. 2000; Spitsyna et al. 2006; Jobard et al. 2007; Lindenberg
and Scheef 2007). This theory seems less likely as an explan-
ation for the current findings. This is because, in the present
study, with only a few exceptions (e.g., cheddar-CHEESE), most
of our associated word pairs could not easily be combined into a
well-structured phrase (e.g., salt-PEPPER, shove-PUSH, tardy-
LATE, yolk-EGG). Moreover, we saw no modulation of activity
in the posterior temporal cortex—an area thought to maintain
lexical representations that serve as pointers linking wordform,
meaning, and syntactic information (Hickok and Poeppel 2007;
Martin 2007)—within the N400 time-window in MEG. On the
other hand, it is possible that participants could have engaged
in active attempts to combine these items into a phrase (e.g.,
salt–PEPPER→ salt and pepper) or to construct a discourse
scenario containing both words of the pair. These kinds of op-
erations would also plausibly be facilitated by lexical–semantic
prediction. In other words, during typical sentence comprehen-
sion, predicting the next word may not only entail preactivating
its stored conceptual representation, but could also facilitate pro-
cesses of structured combination supported by anterior temporal
cortex.

More broadly, it is important to recognize that anterior tem-
poral cortex is a large, functionally heterogeneous region, in
which different subparts almost certainly contribute to a
variety of semantic processing mechanisms (Bonner and Price
2013). The anterior lateral superior temporal area in which we
observed facilitation in both MEG and fMRI is clearly distinct
from the medial anterior fusiform region in which intracranial
recordings have demonstrated N400-like responses (McCarthy
et al. 1995; Nobre and McCarthy 1995). Early PET studies of se-
mantic categorization observed differential activity in anterior
inferior temporal gyrus (ITG) (Devlin et al. 2000; 2002). Both
MEG and fMRI are subject to signal loss in anterior medial and
ventral temporal areas, however, and it may be that we were
unable to pick up existing signal in these neighboring areas.
The relatively small magnitude of the predictive facilitation
effect in fMRI also suggests that the large N400 amplitude dif-
ferences observed electrophysiologically may have only a mod-
erate impact on the BOLD signal. Finally, in the current study,
the exact location of differential anterior temporal activity de-
termined by fMRI and MEG source localization was not identi-
cal; in MEG, the cluster showing significant differences was
estimated to span anterior STS, MTG, and ITG, while the sig-
nificant fMRI cluster was located on the insular border of anter-
ior STG. This discrepancy is likely to be due to the limited
precision of MEG source localization techniques, as for example
inverse methods such as MNE can be biased toward sources that
are closer to the sensors (Lin et al. 2006b); but it is also in prin-
ciple possible that the 2 measures are sensitive to semantic fa-
cilitation in different parts of anterior temporal cortex. It will
therefore be important for future studies to determine the
precise neurocognitive operations subserved by different parts
of the anterior temporal lobe, how they interact with one
another, and which regions contribute to activity within the
N400 time-window.

It will also be important for future studies to dissociate the
role of the anterior temporal cortex from a more posterior part
of left temporal cortex in which effects of facilitated access
have been reported in previous semantic priming paradigms

(Gold et al. 2006; Uusvuori et al. 2008; see Lau et al. 2008 for
review), but which was not modulated by prediction in the
current study. Several factors may have contributed to the
absence of posterior temporal modulation during the N400
time-window. First, in the present paradigm, we used a seman-
tic probe task, which may have elicited greater baseline activity
in the conceptual network and thus larger processing benefits
due to conceptual prediction. In contrast, lexical decision tasks
and word repetition detection tasks such as those used in
many of the previous studies may encourage stronger predic-
tions at the lexical level. Second, with respect to previous MEG
studies of semantic priming in particular (Uusvuori et al. 2008;
Vartiainen et al. 2009), differences in analysis methods may
also be responsible for differences in the results observed. In
the current study, we estimated distributed solutions of the ac-
tivity in each condition separately and then focused on the
regions that showed significant differences in activity between
the 2 conditions. In these previous MEG studies, a single
left-hemisphere dipole was selected that best fit activity across
all conditions, and the estimated strength of this dipole was
shown to differ significantly across conditions. If much of the
left temporal cortex is active during lexical processing, but if it
is specifically the anterior temporal region that is modulated
by semantic prediction, then it could be that the ECD that best
explains all activity across conditions falls in the midtemporal
cortex, but that the differential activity driving the difference
between conditions is mainly due to a slightly more anterior
region of temporal cortex.

The Relationship Between Prediction and Passive
Priming
As noted in the Introduction, the relatedness proportion ma-
nipulation in the current study was designed to artificially
emphasize the differential contributions of 2 contextual facili-
tation processes proposed in the prior literature: passive
priming, under conditions of low predictive validity, and pre-
diction, under conditions of high predictive validity. Together
with previous work, the current results provide some tentative
evidence that the effects of prediction may be realized in the
same cortical regions as the effects of passive priming, but to a
greater degree.

First, although in the current study, the small N400 effect of
relatedness did not reach significance in the low expectation
conditions [One factor contributing to the decreased magni-
tude of the association effect here is likely to be the relatively
long stimulus-onset asynchrony (SOA), which is thought to
reduce the impact of automatic spreading activation (Neely
1991). However, given that we did observe a low expectation
relatedness effect in our previous ERP study using the same
materials set (Lau et al. 2013a), we believe the failure to reach
significance here can most likely be attributed to the fact that
we did not have sufficient power to detect this small effect
with the slightly smaller sample size used in the multimodal
study (n = 24 for EEG–MEG); in the previous study, the effect
was just significant (t = 2.05) with 32 participants.], the MEG
source localization data hint toward the idea that these effects
share the same locus as the high expectation effects, as we ob-
served a trend toward an N400 effect in the low prediction con-
ditions in the left anterior temporal cluster in MEG. Second,
results from a masked priming paradigm conducted in parallel
with the current study (Lau et al. 2013b) indicate that
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facilitation due to automatic spreading activation is realized in
the same anterior temporal region. In this previous paradigm,
∼33% of word pairs were directly related, 33% were indirectly
related, and 33% were unrelated. However, as the focus of that
study was automatic semantic facilitation, primes were forward
and backward masked and presented only 100 ms prior to
target onset, resulting in only partial awareness of the prime.
Despite the short amount of time available between prime and
target, we observed effects of contextual facilitation that were
qualitatively similar to the effects observed in the high predic-
tion condition in the current long-SOA paradigm: reductions in
left anterior temporal cortex activity observed in fMRI and
MEG during the N400 time-window. Furthermore, the location
of the peak differential activity in fMRI observed in the current
study and the masked priming study (conducted in an overlap-
ping set of participants) are quite similar ([−50, −14, −4] in the
current study; [−52, −9, −3] in the masked priming study).

Together, these findings suggest that if automatic spreading
activation and prediction are indeed qualitatively distinct me-
chanisms, they may have the same end result—facilitating con-
ceptual activation in anterior temporal cortex—and point to
several important new directions for future work. First, while
the current study used word pairs with very strong semantic as-
sociates under conditions of fairly high predictive validity (50%)
to strongly engage predictive processes, the predictability of
natural language contexts is generally less extreme; whereas in
the current study, semantically related contexts often predicted a
specific word/concept, in natural sentences, context-based pre-
dictions are better modeled as a change in the probability distri-
bution over a large set of words or concepts (e.g., Smith and
Levy 2013). Therefore, it will be important for future localization
work to determine whether such probabilistic predictions have
graded effects on temporal cortex activity. This would be in
keeping with theoretical (Friston 2005) and computational (Ra-
bovsky and McRae 2014) models in which the effects of passive
priming and active prediction are seen as being on a continuum.

Second, while the current study was designed to examine
the “effects” of context-based lexical–semantic prediction on
semantic facilitation, the process by which predictions are in-
itiated in the relatedness proportion manipulation is likely to
be quite different from the initiation of predictions in natural
language comprehension. In both cases, comprehenders use
the semantic properties of the local context to generate predic-
tions, but in the relatedness proportion paradigm, the global
context (the predictive validity of the prime within a block)
serves to “gate” these predictions, while natural language in-
volves more complex interactions between semantic associa-
tions and higher level syntactic and discourse structure. It will
thus be important for future studies to probe the mechanisms
by which predictions are generated in more naturalistic con-
texts; it is worth noting that recent work in sentence and dis-
course comprehension suggests that global factors such as
speaker voice and accent can “gate” predictions of the local
linguistic context in a similar fashion (van Berkum et al. 2008;
Hanulíková et al. 2012).

Finally, here we have argued that the contextual effects we
observe in the anterior temporal cortex reflect predictive facili-
tatory effects on semantic activation. However, an alternative
account of these results (and all other behavioral and electro-
physiological relatedness proportion effects) which does not
involve prediction, is that the presence of high relatedness pro-
portion in some way induces a global amplification in the state

of all connections in the lexical–semantic network, such that
spreading activation between all lexical–semantic nodes is in-
creased above normal levels during the high relatedness pro-
portion block (or conversely, that spreading activation is
reduced below normal levels during the low relatedness pro-
portion block). Although we do not think this can be ruled out
as an explanation for relatedness proportion effects, we are not
aware of existing semantic network models that have the prop-
erty that the strength of all connections can be globally altered
on the fly. It is also not clear how such a model could explain
other properties of relatedness proportion effects demon-
strated in previous work, for example, the reduced prevalence
of such effects when the lag between prime and target is brief
(Neely 1976). These and other findings have motivated the
widely held conception of spreading activation as an automatic
process that proceeds in the same way regardless of higher
level context.

Conclusion
In sum, in this study we isolated the contribution of predictive
processes to the facilitation effect associated with semantic
priming by manipulating the proportion of related word pairs
across the experiment. The MEG results show that experimen-
tal conditions of increased predictive validity lead to reduced
activity in left anterior temporal cortex in response to predicted
words. Coupled with simultaneously acquired ERP data showing
that prediction was associated with an increased N400 reduction,
these results support the hypothesis that facilitation due to pre-
diction is an important component of the N400 context effect.
They also converge with previous results in suggesting that this
effect is driven in part by modulation of activity in anterior
temporal cortex. Taken together with previous work implicat-
ing the left anterior temporal cortex in semantic processing,
our results suggest that activation of the semantic network can
be more narrowly constrained as the likelihood increases that
the word can be predicted by prior context, resulting in an
overall reduction of neural activity in this network 350–450 ms
after word onset. These results suggest that predictive para-
digms provide a promising research strategy for more precisely
pinpointing the functional role of anterior temporal cortex in
language comprehension.
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