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Summary

Background—The 2014 Ebola epidemic in West Africa defines an unprecedented health threat. 

We developed a model of Ebola transmission that integrates detailed geographical and 

demographic data from Liberia to overcome the limitations of non-spatial approaches in projecting 

the disease dynamics and assessing non-pharmaceutical control interventions.

Methods—We use a spatial agent-based model calibrated using a Markov chain Monte Carlo 

approach. The model is used to estimate Ebola transmission parameters and investigate the 

effectiveness of interventions such as availability of Ebola Treatment Units, safe burials 

procedures and household protection kits.

Findings—Through August 16, 2014, we estimate that 38·3% (95%CI 17·4-76·4) of infections 

were acquired in hospitals, 30·7% (95%CI 14·1-46·4) in households, and 8·9% (95%CI 3·3-11·8) 

while participating in funerals. The movement and mixing of Ebola and non-Ebola patients in 

hospitals at the early stage of the epidemic is found to be a sufficient driver of the observed pattern 

of spatial spread. The subsequent decrease of incidence at country and county level is ascribable to 

the increasing availability of Ebola treatment units – which in turn contributed to drastically 

decrease hospital transmission – safe burials, and distribution of household protection kits.

Interpretation—The model allows evaluating intervention options and disentangling their role in 

the decrease of incidence observed since September 7, 2014. High-quality data - e.g. to estimate 

household secondary attack rate, contact patterns within hospitals, and effects of ongoing 

interventions - are needed to reduce uncertainty in model estimates.

Introduction

The exponential increase of Ebola cases in Sierra Leone, Liberia and Guinea during the 

months of August and September 2014 defines an unprecedented health threat to the West 

African region. A massive international response requiring the large-scale deployment of 

human and capital resources is needed to stop the epidemic. Such efforts would benefit from 

quantitative predictions about the growth of the epidemic and the effectiveness of potential 

containment or mitigation strategies. According to World Health Organization (WHO) and 

Liberian Ministry of Health & Social Welfare reports1,2, 7069 cases and 2964 deaths were 

recorded in Liberia by November 17, 2014, with 341 cases and 170 deaths among health 

care workers (HCW). Since September 2014, the recorded number of cases has not followed 

the initial exponential growth trend observed in the early phase of the outbreak and the 

epidemic may be waning in parts of Liberia.2 In recent years, mathematical modelling at 

very detailed spatial resolutions, sometimes down to the level of single individuals, has been 

tailored to make projections for policy makers using population specific socio-demographic 

features of the population.3–8

Recently published works on EVD transmission9–13, have been key in motivating and 

informing the strong international response to the epidemic. Here we propose an approach 
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that can overcome some of the limitations of those early approaches, namely homogenous 

mixing assumption in all settings relevant to EVD transmission and lack of spatial structure, 

that might result in overestimating EVD incidence. We developed a spatial agent-based 

model that integrates socio-demographic data of Liberia to estimate the relative importance 

of the main settings for Ebola virus disease (EVD) transmission, which are within 

households, in the general community (mainly corresponding to close relatives, in the case 

of EVD), in hospitals, and at funerals during burial ceremonies. We simulated the EVD 

epidemic in a synthetic population in which every household in Liberia is explicitly 

represented. The model includes hospitals and clinics treating Ebola cases up to mid August 

and Ebola treatment units (ETUs) in the subsequent period and the risk of spread to HCW 

working at them. We used the model to project the spatio-temporal spreading of the disease 

and disentangle the impact of ETUs availability, safe burials procedures, and the distribution 

of household protection kits in averting EVD cases.

Methods

Model Structure

The EVD natural history model is adopted from Legrand and colleagues14: susceptible 

individuals can acquire infection after contact with an infectious individual and become 

exposed without symptoms; at the end of the latent period infectious and symptomatic 

individuals can transmit infection at home to both household members and close relatives. 

Infectious individuals at home then may either be hospitalized, die, or recover. Hospitalized 

individuals may also either die or recover. Deceased individuals may transmit infection 

during their funeral (to household members and relatives belonging to additional 

households) and are then removed from the model. To account for the spatial spread of the 

epidemic, we explicitly model the movements of individuals, including non-Ebola patients, 

seeking assistance in health care facilities, the movements of individuals taking care of 

Ebola patients not hospitalized, and the attendance of funerals. Individuals are grouped into 

randomly assigned households whose size is based on Demographic Health Survey data and 

are geographically placed to match population density estimates on a grid of 3,157 cells 

covering the country. A full description of the synthetic population and the transmission 

model is in the SI.

Disease Transmission

Most EVD transmission parameters used in the model were from a study of the current 

outbreak by the WHO-led team15 and are summarized in Table 1. The model accounts for 

three routes of transmission: transmission in households and in the general community 

(corresponding to additional households) when the infected individuals are at home; 

transmission in hospitals; and transmission during funerals (to household and additional 

household members). (See SI for details on the transmission model). In general hospitals 

both HCW and non-Ebola patients are exposed to the risk of contracting the disease. Starting 

from August 15, 2014, the model accounts for the increasing number of hospital beds 

specific for Ebola patients in ETUs. The number of available beds in ETUs increases over 

time according to data reported by the WHO (data reported in the SI). Importantly, after 

August 15, 2014 Ebola patients are no longer admitted to general hospitals but only to ETU 
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where they can transmit the infection only to HCW (with probability 0.05% with respect to 

general hospitals). Moreover we assume that safe burials increase linearly over time from 

0% on August 15 to 90% on October 15. In the model three key parameters have to be 

estimated for the current outbreak, namely βh (transmission rate in hospitals), βf 

(transmission rate between household members, including their contacts with the deceased 

during burial ceremonies), and σ (scaling factor for the transmission rate in the general 

community relative to βf).

Model Calibration

Simulations were calibrated to begin with 24 initial Ebola-related deaths by June 16, 2014, 

matching an early report from the WHO. To estimate the three key model parameters, we 

used a Markov chain Monte Carlo (MCMC) approach exploring the likelihood of the 

recorded number of deaths among HCW and in the general population based on official 

reports through August 16, 2014.1,2 In principle, it would be possible to use also more recent 

data for model calibration. The drawback of this approach lies in the fact that parameter 

estimate would depend on the simulated effects of all ongoing interventions, whose impact 

is still uncertain. In the baseline scenario, we set the reporting rates of deaths both among 

HCW and in the general population to be equal to 100%. In addition, to provide an upper 

bound to our predicted number of cases and deaths, we investigate a second scenario 

(underreporting scenario) where we still assume a 100% reporting in HCW but a 50% 

reporting in the general population -- accounting for the possibly elevated rate of 

underreporting of Ebola deaths. Random-walk Metropolis-Hastings sampling is used to 

explore the parameter space, checking convergence by using chains of 10,000 iterations 

(after a 2,000 burn in period) starting from several different initial values of the parameters 

set. The MCMC analysis, and the identifiability of parameters are described in detail in the 

SI.

Role of the funding source

The funders had no role in study design, data collection and analysis, interpretation, or 

preparation of the manuscript. The corresponding author had full access to all the data in the 

study and had final responsibilities for the decision to submit for publication.

Results

The early transmissibility of EVD in different social settings

The model calibration yields 830 cases (95%CI: 695–969) and 402 deaths (95%CI: 332–

478) in Liberia by August 16, 2014, assuming perfect reporting of EVD cases and deaths 

(the baseline scenario). If we assume 50% underreporting in the general population and no 

underreporting in HCW, the model estimates 1,571 cases (95%CI: 1,315–1,849) and 805 

deaths (95% CI: 672–947) by that date. The actual reporting rate in Liberia is unknown, so 

these two extreme scenarios are used to cover the uncertainty of the surveillance data. The 

estimated cases and deaths over time for both of these reporting scenarios are shown in Fig. 

1A. The estimated basic reproduction number is R0=1·84 (95%CI: 1·60-2·13) for the 

baseline scenario and R0=1·9 (95%CI: 1·62-2·14) for the underreporting scenario (see Table 

2 for estimates, and SI for the calculation procedure). Basic reproduction number estimates 
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are in agreement with recent estimates obtained with different mathematical modelling 

approaches.12,15–20 Under the baseline scenario we estimated a generation time of 18.1 days 

(SD: 12.3 days). The growth rate of the simulated epidemics is 0·038 days−1 (95%CI: 

0·028-0·048), corresponding to a doubling time of 18·6 days (95%CI: 14·3-24·3). In the 

underreporting scenario, the generation time is 17·2 days (SD: 12·4 days) and the growth 

rate is 0·043 days−1 (95%CI: 0·031-0·052), corresponding to a doubling time of 16·5 days 

(95%CI: 13·2-22·4). Such values are in agreement with those reported by the WHO-led 

team 15, namely an estimated generation time of 15·3 days (SD: 9·1 days) and doubling time 

of 15·8 days (95%CI: 14·4-17·4) in Liberia.

The model was used to estimate the fraction of EVD transmission attributable to different 

settings. As of August 16, 2014, under the baseline scenario, we estimate that 52·9% 

(95%CI: 20·3-71·3) of infections occurred in households or in the general community (of 

which 30·7%, 95%CI 14·1-46·4 were within households), 38·4% (95%CI: 17·4-76·4) in 

hospitals, and 8·6% (95%CI: 3·2-11·8) at funerals (Fig. 1B, 1C and Table 2). The estimated 

household secondary attack rate (SAR), or the probability that an infected person will infect 

a susceptible household member, is 19·4% (95%CI 7·2-34·8), in agreement with values 

reported in Dowell and colleagues21 for the 1995 outbreak in the Democratic Republic of 

the Congo (16%). For the underreporting scenario, 72% (95%CI: 60·2-79·8) of infections 

occurred in households or in the general community (of which 41·7%, 95%CI 32·9-57·4, 

were within households), 17·5% (95%CI: 9·3-29·8) in hospitals, and 10·4% (95%CI: 8·8-12) 

at funerals (Fig. 1B, 1C and Table 2). The household SAR was estimated to be 36·1% 

(95%CI 21·8-55·9). The higher estimated household SAR in the underreporting scenario 

stems from the fact that unreported cases can be accounted for only by enhancing 

transmission in households and the general community, because the finite hospital capacity 

limits the number of transmissions occurring in that specific setting. EVD transmission 

attributable to funerals has been estimated by others using case report data to be 9%15, in 

good agreement with our transmission model-based estimates. The lower uncertainty in the 

estimated values for the underreporting scenario can be explained by considering that the 

number of cases in the general population is higher than in the scenario assuming 100% 

reporting, while the number of cases among HCW remains the same (see Fig. 1C). This 

poses an upper constraint on the transmissibility in hospitals.

The spatio-temporal spread of EVD

The calibrated model was used to investigate the features and drivers of the spatial spread of 

EVD in Liberia. Figure 1D and 1E show the geographic diffusion of the EVD outbreak up to 

August 16, 2014 in the model (see SI for a full spatio-temporal analysis). Although the 

model was initialized with a few localized cases, EVD is widespread across most of the 

country by early August. The spatial drivers of EVD spread in our model are contacts across 

households and infected individuals travelling to hospitals and clinics. We tested different 

maximum distances between households with frequent contacts from 2.5 to 20 km, but they 

had little impact on the model results (see SI). While this result does not rule out the 

possible effects from other long-range mobility process, it indicates that up to the initiation 

of intervention a sufficient driver for the geographic spread of EVD is hospitals, where 

Ebola and non-Ebola patients from a large catchment area can interact. In the SI we show 
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that the model consistently predicts the week of the first Ebola case and number of cases 

over time by county.

The impact of non-pharmaceutical interventions

The model can be used to provide projections of the future burden of the outbreak, at least in 

the near future, and to analyse the potential effectiveness of non-pharmaceuticals 

interventions. Figure 2A shows projections for January 1, 2015 (18 weeks after the last data 

used for model calibration), assuming that after early August the available beds in ETUs 

increases over time according to data reported by the WHO and safe burials are 

progressively implemented as described in the Methods section. In the model calibrated to 

the baseline scenario, there are 11,806 cases (95%CI: 2,387-60,856) and 4,032 deaths 

(95%CI: 1,085-11,446) in the general population and 230 deaths (95%CI: 153-324) among 

HCW by January 1, 2015. More cases are projected by the model calibrated assuming 50% 

underreporting, with 321,127 cases (95%CI: 56,058-828,797) and 34,751 deaths (95%CI: 

11,639-78,826) in the general population and 305 deaths (95%CI: 192-426) among HCW. 

The numbers provided by the underreporting scenario seems hardly compatible with the 

actual data reported so far in official reports and suggest that underreporting could not be as 

high as 50%.

Thanks to the availability of an increasing number of Ebola beds in ETUs after mid August, 

in all investigated scenarios hospital transmission drastically decreases over time. In 

particular, as of January 1, 2015 the fraction of infection from hospital-based transmission 

decreases to 17% (95%CI: 0·9-59·8) and 0·5% (95%CI: 0·1-1.9) in the baseline and 

underreporting scenarios. We stress that after mid August only a negligible number of cases 

are generated in hospitals, as we assume that Ebola patients are admitted only to ETUs. 

According to the WHO estimates, there have been 2,373 safe burials in Liberia as of 

November 12, 2014, consistent with model estimates, namely 1,462 on average (95%CI 

310–3,293).

Figure 2B shows the number of admission in ETUs and the number of Ebola patients in 

treatment over time. In agreement with observed data, the model predicts an increase of 

admissions and treated Ebola cases from mid August to mid September and a subsequent 

decrease. WHO reports following September 7, 2014 have shown a decreasing number of 

cases, suggesting that local chains of transmission have been broken in some districts. This 

is consistent with model simulations characterized by a high proportion of cases generated in 

hospitals in the initial phase of the outbreak and a consequent later decrease of transmission 

in hospitals. Although both Fig. 2B and 2C, point out that more high quality data, e.g. to 

provide field estimates of household secondary attack rate and contact patterns within 

hospitals and ETUs, are needed to reduce uncertainty of model estimates, the decrease of 

incidence after September 2014 is widespread. This is very clear in Fig. 2C, showing that 

the growth of the cumulative number of cases over time deviates from exponential growth 

and eventually flattens in all the most affected counties of Liberia.

In order to quantify the contribution of ETUs deployment and safe burials in Table 3 we 

report the EVD cases projected by the model, along with the number of averted cases when 

compared with a no interventions scenario (see also Fig. 3A). As shown in Table 3, in the 
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absence of interventions the model predicts a total of 36,775 cases (95%CI: 12,279-107,913) 

on January 1, 2015. We considered the distribution of household protection kits to a certain 

fraction of households where a case is identified. According to CDC estimates, the 

protection kit, together with the increased awareness in households where the kit is 

distributed, could reduce transmission in a household by 90%.13 This is modelled by 

reducing the transmission rate βf by 90% (the 50% reduction scenario is analysed in the SI) 

for all infectious individuals in the household where the protection kit is supplied. This 

implies a reduction of the force of infection to which individuals living in both that 

household and its additional related households are exposed. The same reduction is assumed 

for funeral transmission.

As no estimates of the coverage achieved in Liberia are currently available – this is the 

reason why we did not include the effects of protection kits in the baseline scenario – we 

model the effectiveness of deploying protection kits starting from a coverage of 30% of 

households receiving protection kits up to a 90%. The deployment is assumed to increase 

linearly from 0% on August 15 to the maximum level on October 15, 2014. Results are 

shown in Fig. 3B. Deployment of protection kits to about 50% of households might have 

contributed to further reduce incidence from about 30 daily new cases in November 2014 to 

about 10 daily cases, a value consistent with WHO reports.

Discussion

The agent-based model presented here can be used for projections of the number of cases as 

well as the potential effects of interventions during the current EVD outbreak. Early 

modelling approaches to the epidemic projected a larger number of cases, but they were 

focusing on the early exponential growth phase of the disease with models that assume the 

population of Liberia is homogeneous and well-mixed.13,15,17 The projections obtained here 

are closer to the number of EVD cases reported by the WHO as they take advantage of the 

population structure and more detailed data on intervention policies. The presented results 

demonstrate the impact of ETUs and safe burials in the decrease of incidence observed in 

Liberia after early September 2014. ETUs may have contributed to halve the number of 

cases and deaths (see Fig. 3A) and safe burial may have contributed an additional 50% 

reduction compared to a scenario with no intervention. Although it is not possible to 

quantitatively assess efficacy and coverage of protection kits, our results support the 

hypothesis that the observed decreasing trend of incidence in Liberia might be partly 

ascribable to this mitigation policy. Interestingly it seems that increasing the coverage of 

protection kits above the 50% threshold produces marginal improvements with less than a 

4% increase in the number of averted case but a nearly doubling of the effort and cost of 

deploying protection kits.

Although the presented model is informed by the most recent data available on the EVD 

outbreak in Liberia, there are important limitations in data availability, and a number of 

assumptions should be kept in mind when considering the results of this study. An estimate 

that is obtained from previous outbreaks is the 80% hospitalization rate. However, even a 

lower assumed hospitalization rate of 60%, as well as different assumed transmission 

models in hospitals, do not change the results substantially (see SI). Model estimates also do 
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not vary substantially when the case fatality ratio is increased to 70.8%, according to more 

recent, though highly variable, estimates15 (see SI), as well as by assuming key natural 

history parameters derived from the analysis of previous outbreaks12,14 (see SI). Our results 

also suggest that the reporting rate is likely much greater than 50%. However, the 

uncertainty of model estimates and sensitivity of results to assumptions about the reporting 

rate call for urgent field estimates of the reporting rate, as it is likely lower than 100%. 

Uncertainty of model estimates and sensitivity of results to the values of the transmission 

rates in households and hospitals (see Fig. 1B) indicate that more high quality data to 

provide field estimates of the household secondary attack rate and contact patterns within 

hospitals are needed to reduce uncertainty of model estimates. Finally, model estimates 

would benefit from quantitative estimates of efficacy of the ongoing interventions, 

especially for protection kits. Moreover, it would also be key to inform model with detailed 

estimates of practical implementation of policies, as simply providing supplies of 

equipments might not be sufficient.23

As detailed in the manuscript we assume that each infectious individual can transmit the 

infection in the general community on a daily basis to a limited number of individuals 

(corresponding to two additional households, in the reference scenario) living inside a circle 

(of 10 km radius, in the reference scenario) around the household of each Ebola case. This 

choice derives from the fact that there is no evidence of pre-symptomatic EVD transmission 

so far. Thus it is very unlikely that Ebola infectious individuals would be in the condition to 

travel long distances, except for those strictly necessary for seeking hospital care. On the 

other hand it is reasonable to think that susceptible individuals coming in contact with Ebola 

cases would mainly correspond to visiting relatives and friends. The reliability of such 

hypotheses is supported by our analysis, presented in detail in the SI, showing that even a 

model accounting for EVD transmission in the community only at 2.5 km at most is able to 

reproduce the observed pattern of spatial spread, and our projections are fairly insensitive to 

such an extreme assumption. Our findings are also robust with respect to increasing the 

number of contacts in the general community (here modelled as additional households in the 

network of daily contacts of each individual) and to the distance at which contacts are made 

(see SI). Therefore, although we cannot rule out that local population mobility could 

represent a possible driver of EVD dynamics in the future, for the moment there is no 

evidence that such mobility is necessary to explain what has been observed so far. However, 

we warn that we do not consider explicitly mobility due to commuting patterns or other 

business travel. Although this kind of mobility should not play a very important role in 

Ebola transmission - mobile people are generally not symptomatic thus have nearly zero or 

very low infectivity - we cannot rule out their relevance in increasing the geographical 

dispersion of the outbreak.

Finally, this modelling approach can be extended to other countries in West Africa and 

consider more detailed policies for the isolation of cases, ETUs management, and funeral 

preparation. We did not investigate pharmaceutical interventions such as vaccines, as data 

on their efficacy are not available. The presented model could however be used to analyse 

the potential effectiveness of these interventions and their deployment strategies as data 

become available.
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Panel: Research in context

Systematic Review—We queried PubMed and Google Scholar for manuscripts 

describing Ebola transmission models. The manuscripts by Legrand et al.14 introduces a 

homogeneous mixing model accounting for the main routes of Ebola transmission, namely 

community, hospitals and funerals. Models with similar epidemiological structure have been 

recently developed to provide estimates for the ongoing Ebola epidemic in West 

Africa,9,10,13 and for predicting the international spread.11,12 Models with simplified 

compartmental structure have been used to estimate the reproduction number of the 

epidemic. 16-19 Here we aim at improving estimates by explicitly accounting also for 

transmission in households and spatial structure of the population, an approach similar to 

that previously used to study the spread of other infectious diseases, e.g. influenza.3-8 We 

rely on official Liberian Ministry of Health and WHO reports 1,2 for the epidemic data and 

the paper by the WHO Ebola Response Team 15 for the disease natural history parameters.

Interpretation—This is the first study based on a microsimulation approach to evaluate the 

relative importance of different settings relevant to EVD transmission and the spatial 

dynamics of the epidemic. The approach allows a thorough assessment of the effectiveness 

of intervention options. However, our study highlights that, given the current uncertainty of 

model estimates, high quality data – e.g. quantitative estimates of household secondary 

attack rate, contact patterns within hospitals, and effects of the ongoing interventions – are 

needed to improve model estimates. The model could be used to assess strategies and 

effectiveness of pharmaceutical interventions such as vaccines as data become available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Early spread of EVD in Liberia A Top panel: cumulative number (on a log scale) of EVD 

deaths over time in the general population of Liberia. Dots refer to the data reported by the 

WHO (dark dots indicating data used for model initialization and calibration). Lines and 

shaded areas refer to estimated average and 95% CI model predictions, respectively. The 

scenario assuming 100% reporting is shown in orange, and the 50% underreporting scenario 

is shown in blue. The hospitalization rate was assumed to be 80%. Middle panel: cumulative 

number (on a log scale) of EVD cases (confirmed, probable, and suspected) over time in the 

general population. Colours as in top panel. Bottom panel: cumulative number (on a log 

scale) of EVD deaths over time among health care workers. Colours as in top panel. B 
Proportions of infections occurring within households and the community, in hospitals, and 

during funerals as of August 16, 2014. Results assuming 50% and 100% reporting rates in 

the general population are shown. C Proportion of cases among HCW and proportion of 

cases due to contacts between household members (HM) as of August 16, 2014 by assuming 

50% and 100% reporting rates in the general population. D Simulations of the spatial spread 

of EVD in Liberia as of June 16, 2014. Predicted cumulative number of EVD cases per cell 

over time in Liberia by assuming a 100% reporting rate and 80% hospitalization rate. Each 

cell corresponds to an area of about 25 km2. E As D but as of August 16, 2014.
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Figure 2. 
Spatio-temporal dynamics after mid August 2014 A Number of deaths (top panel) and cases 

(bottom panel) in the general population. Dots refer to the data reported by the WHO. Lines 

and shaded areas refer to estimated average and 95% CI model predictions, respectively. 

Orange refers to the 100% reporting scenario, blue to 50% reporting scenario. An 80% 

hospitalization rate was assumed. B Left panel: daily number of admission to ETUs by 

assuming the 100% reporting scenario. Lines and shaded areas refer to estimated average 

and 95% CI model predictions, respectively. Dots refer to the data reported by the WHO. An 

80% hospitalization rate was assumed. Right panel: as left panel but for the number of Ebola 

patients in treatment in ETUs. C Cumulative number of cases in the general population in 

the most affected counties of Liberia (the seven counties account for about 97% of overall 

cases) by assuming the 100% reporting scenario. Dots refer to the data reported by the 

WHO. Lines and shaded areas refer to estimated average and 95% CI model predictions, 

respectively.
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Figure 3. 
Impact of non-pharmaceutical interventions. A Estimated cumulative number of deaths 

(boxplot show 2·5%, 25%, 75% and 97·5% quantiles of the predicted distribution) as 

predicted by the model by assuming the 100% reporting scenario and considering different 

degrees of interventions. An 80% hospitalization rate is assumed. B Estimated median 

number of daily deaths by assuming the 100% reporting scenario, the effects of both ETUs 

and safe burials, and by varying the coverage of protection kits from 50% to 90%. An 80% 

hospitalization rate is assumed.
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Table 1

Values for the base set of parameters. In the SI it is possible to find the results of sensitivity analyses.

parameter value reference

average duration of incubation period 11·4 days 15

average time from symptom onset to death 7·5 days 15

average time from symptom onset to recovery for survivors 7·9 days 12*

average time from symptom onset to hospitalization 5 days 15

proportion of cases hospitalized 80% 12, 22

average time from hospitalization to death 4·2 days 15

average time from hospitalization to recovery for survivors 4·6 days 12*

average time from hospitalization to dismissal for survivors 11·8 days 15

average time from death to burial 2 days 14

overall case fatality ratio 54% 2

*
refers to values resulting as the difference between the time from symptom onset/hospitalization to death and time from symptom onset/

hospitalization to the end of infectiousness as reported in Gomes et al. 12
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Table 2

Parameter estimates by assuming that 80% of cases are hospitalized.

parameter 100% reporting mean (95%CI) 50% reporting mean (95%CI)

βf (days−1) 0·15 (0·04–0·28) 0·37 (0·18–0·65)

βh (days−1) 0·33 (0·15–0·67) 0·21 (0·11–0·39)

σ 0·73 (0·27–0·99) 0·56 (0·14–0·98)

household and community transmission
*
 (%)

52·9 (20·3–71·3) 72 (60·2–79·8)

hospital transmission
*
 (%)

38·4 (17·4–76·4) 17·5 (9·3–29·8)

funeral transmission
*
 (%)

8·6 (3·2–11·8) 10·4 (8·8–12)

R0 1·84 (1·60–2·13) 1·9 (1·62–2·14)

household SAR (%) 19·4 (7·2–34·8) 36·1 (21·8–55·9)

*
as of August 16, 2014.
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Table 3

Number of projected cases and average number of averted cases as of January 1, 2015 by assuming 100% 

reporting and 90% efficacy of household protection kits.

Intervention cases in the population mean (95%CI) averted cases mean

no interventions 36,775 (12,279-107,913) –

ETU only 21,479 (2,761-103,295) 15,296

ETU and safe burials 11,806 (2,388-60,857) 24,969

ETU, safe burials and protection kits (50% coverage) 6,185 (2,367-13,523) 30,590

ETU, safe burials and protection kits (70% coverage) 5,456 (2,350-10,488) 31,319

ETU, safe burials and protection kits (90% coverage) 4,993 (2,286-8,770) 31,782
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