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Abstract—The Internet of Things (IoT) is large-scale by nature,
which is manifested by the massive number of connected devices
as well as their vast spatial existence. Cellular networks, which
provide ubiquitous, reliable, and efficient wireless access, will play
fundamental rule in delivering the first-mile access for the data
tsunami to be generated by the IoT. However, cellular networks
may have scalability problems to provide uplink connectivity
to massive numbers of connected things. To characterize the
scalability of cellular uplink in the context of IoT networks,
this paper develops a traffic-aware spatiotemporal mathematical
model for IoT devices supported by cellular uplink connectivity.
The developed model is based on stochastic geometry and queue-
ing theory to account for the traffic requirement per IoT device,
the different transmission strategies, and the mutual interference
between the IoT devices. To this end, the developed model is
utilized to characterize the extent to which cellular networks can
accommodate IoT traffic as well as to assess and compare three
different transmission strategies that incorporate a combination
of transmission persistency, backoff, and power-ramping. The
analysis and the results clearly illustrate the scalability problem
imposed by IoT on cellular network and offer insights into
effective scenarios for each transmission strategy.

Index Terms—IoT, LTE cellular networks, random access, sta-
bility, stochastic geometry, queueing theory, interacting queues.

I. INTRODUCTION

The Internet of Things (IoT) is expected to involve massive

numbers of sensors, smart physical objects, machines, vehi-

cles, and devices that require occasional data exchange and

wireless Internet access [1], [2]. Based on the IoT concept,

a plethora of applications are emerging in possibly every

industrial and vertical market, including vehicular commu-

nication, proximity services, wearable devices, autonomous

driving, public safety, massive sensors support, and smart cities

applications [1], [2]. Cellular networks are expected to play

a fundamental role to provide first mile connectivity for a

big sector of the IoT [3], [4]. However, cellular networks are

mainly designed to handle massive downlink traffic demands

and the IoT is pushing the traffic to the uplink direction.

Several studies report scalability issues in cellular networks

for supporting massive uplink devices due to the random

access based uplink scheduling [3], [5], [6]. Consequently, the

next evolution of cellular networks is not only envisioned to

offer tangible performance improvement in terms of data rate,
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network capacity, energy efficiency, and latency, but also to

support massive uplink traffic in order to provide occasional

data transfer and Internet access for the massive number of

spatially-spread connected things.

To characterize the IoT performance, spatiotemporal math-

ematical models are required to simultaneously account for

the massive spatial existence of the IoT devices as well as

the traffic requirement per device. Due to the shared nature of

the wireless channel, mutual interference is generated among

the IoT devices with non-empty queues that operate on the

same channel. The IoT devices are foreseen to exist in massive

numbers and to have sporadic traffic patterns. Hence, the

mutual uplink interference between the IoT devices will be

controlled via distributed transmission schemes rather than via

centralized base station (BS) scheduling [2], [7]. Consequently,

the queue and protocol states impose a fundamental impact

on the aggregate interference generated in IoT networks, in

which the magnitude of mutual interference between the IoT

devices depends on their relative locations and the physical

layer attributes.

Characterizing the performance of wireless networks with

explicit queues interactions among the nodes is a classical

research problem in queueing theory [8]–[11]. However,

the stand-alone queueing models in [8]–[11] adopt simple

collision model to capture the interactions among the queues,

which fails to account for interference based interactions that

differ according to the distances and channel gains between

the devices. Stochastic geometry is a solid mathematical tool

to account for mutual interference between devices in large-

scale networks [12]–[14]. However, stochastic geometry based

models are usually traffic agnostic and assume backlogged net-

work with saturated queues. Stand alone stochastic geometry

or queueing theory models can only obtain loose pessimistic

bounds on the performance due to the massive numbers of

IoT devices. Recently, [15] integrates stochastic geometry and

queuing theory to study sufficient and necessary conditions for

queue stability in a network with spatially spread interacting

queues. However, the model in [15] is well suited for ad hoc

networks with constant link distances and only derives stability

conditions.

This paper develops a novel spatiotemporal mathematical

model for IoT-enabled cellular networks.1 From the spatial

domain perspective, stochastic geometry is used to model both

of the cellular network BSs as well as the IoT devices using

1This paper is presented in part in [16].
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independent Poisson point processes (PPPs). In addition to

simplifying the analysis, there are several empirical founda-

tions that validate the PPP model for cellular networks [13]–

[15], [17]–[19]. From the temporal domain perspective, two-

dimensional discrete time Markov chain (DTMC) is employed

to track the time evolution of the queue and the transmission

protocol states of the IoT devices. The proposed system model

abstracts the IoT-enabled cellular network to a network of

spatially interacting queues, where the interactions reside in

the mutual interference between the devices.

A. Methodology, Contribution, and Organization

While the queue arrival process is a function of the under-

lying IoT application only, the queue departure (i.e., service)

process depends on the transmission signal-to-interference-

plus-noise ratio (SINR) across time slots. We first show that

the SINR involves a negligible temporal correlation across

time slots due to the interference temporal correlation. There-

fore, we drop the time index and assume independent SINR at

each time slot. Then, we employ a two-dimensional Geo/PH/1

DTMC for each IoT device, where Geo stands for geometric

inter-arrival process and PH stands for the Phase-type de-

parture process [20], [21]. The Geo/PH/1 queueing model is

particularly chosen for its simplified memoryless inter-arrival

process and its general departure process that can account for

the interference based interactions between the IoT queues. To

this end, we study three different transmission protocols that

are defined by cellular systems for uplink random channel

access [22], namely, the baseline scheme, the power-ramping

scheme, and backoff scheme. For each protocol, we derive

sufficient conditions and necessary conditions for network

stability, in which the stability is defined according to Loynes

theorem [23]. That is, the network is considered stable if the

average arrival rate is less than the average service rate for a

randomly selected queue in the network. The scalability and

stability tradeoff in IoT cellular networks is then determined

by plotting the Pareto-frontier of the stability region defined by

the arrival process, the intensity of IoT devices, and the SINR

detection threshold. The Pareto-frontier of the stability region

shows the spatial traffic intensity limit (i.e., the maximum

limit of IoT density for a given traffic requirement) that

a cellular network can support, beyond which the queues

become unstable and packets are lost with probability one. For

stable networks, we obtain the average queue size, the average

packet delay, and the average service time. On the other hand,

for unstable networks, we only calculate the average service

time. The contributions of this paper can be summarized by

the following:

• Develop a novel spatiotemporal mathematical paradigm

for IoT enabled cellular networks.

• Integrate two dimensional Geo/PH/1 DTMC within

stochastic geometry framework to account for interfer-

ence based queue interactions in large-scale IoT network.

• Derive sufficient and necessary conditions for IoT net-

work stability.

• Characterize the scalability/stability tradeoff by showing

the maximum spatial traffic intensity that a cellular net-

work can accommodate.

• Assess and compare three different transmission schemes

in terms of transmission success probability, average

packet delay, and average queue size.

The rest of the paper is organized as follows. Section II

presents the system model and the assumptions. The outline of

the analytical framework is established in Section III. Section

IV characterizes the different transmission schemes. Section V

provides the numerical and simulation results. Finally, Section

VI concludes the paper.

II. SYSTEM MODEL AND ASSUMPTIONS

A. Spatial & Physical Layer Parameters

We consider an IoT-enabled cellular network in which the

cellular BSs and the IoT devices are spatially distributed in R
2

according to two independent homogeneous PPPs, denoted as

Ψ and Φ, with intensities λ and U , respectively. Without loss

of generality, each of the devices is assumed to communicate

its packets via the nearest BS. The average number of devices

connected to each BS is α = U
λ

.

A power-law path-loss model is considered where the signal

power decays at a rate r−η with the propagation distance r,

where η > 2 is the path-loss exponent. In addition to the

path-loss attenuation, Rayleigh fading multipath environment

is assumed where the intended and interfering channel power

gains (h and g) are exponentially distributed with unity mean.

All channel gains are assumed to be independent of each

other, independent of the spatial locations, and are identically

distributed (i.i.d). The IoT devices use full path-loss inversion

power control with a threshold ρ. That is, each device controls

its transmit power such that the average signal power received

at the serving BS is equal to a predefined value ρ, which

is assumed to be the same for all the BSs. It is assumed

that the BSs are dense enough such that each of the devices

can invert its path loss towards the closest BS almost surely,

and hence the maximum transmit power of the IoT devices

is not a binding constraint for packet transmission. Since the

main focus of this paper is to integrate stochastic geometry

and DTMCs to study scalability and stability of IoT enabled

cellular networks, we particularly select power-law path-loss,

Rayleigh fading, and full-path-loss inversion for mathemat-

ical simplicity. Future extensions of this work may include

multi-slope path loss models [24], [25], advanced fading

models [26], multi-antenna [27], and/or fractional channel

inversion power control [27], [28].

B. MAC Layer Parameters

This paper considers a synchronous time slotted cellular sys-

tem and geometric packet inter-arrival process with parameter

a ∈ [0, 1] (packet/slot) at each IoT device. We assume that the

duration of each time slot is small enough such that a single

packet arrival and/or departure can take place per time slot.

The arrived packets at each IoT device are stored in a buffer

(i.e., queue) with infinite length until successful transmission.2

2The infinite buffer is assumed for mathematical convenience. In Section V,
it is shown that small buffer sizes are sufficient as long as the network is stable.
Otherwise, the buffers of the devices will overflow irrespective of their sizes.
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Fig. 1. Queue aware schematic diagram for the baseline scheme. The green
color indicates empty queue and hence idle state (not transmitting) and the
red color indicates non-empty queue with transmission state.

The BSs are unaware about the queue status of the devices,

and hence, no scheduling decision for the packets is taken at

the BS side. Therefore, we assume that each device with non-

empty queue directly transmits backlogged packets via a First

Come First Served (FCFS) service discipline, which complies

with the narrow-band IoT (NB-IoT) operation defined by the

3GPP standard [2].

A two-dimensional Geo/PH/1 Markov chain is employed

to model each IoT device, in which the levels indicate the

number of packets in the queue and the phases indicate the

transmission protocol states. Let pm be the probability of

packet transmission success when the IoT device operate at

transmission phase m and let (̄·) = (1− ·) denote the proba-

bility complement operator. Then, the considered transmission

protocols are shown in Figs. 1, 2(a), and 2(b), which are

described below:

1) Baseline scheme: devices with non-empty queues keep

transmitting backlogged packets in each time slot with the

same power control threshold ρ. A queue aware schematic

diagram for the DTMC of the baseline scheme is shown in

Fig. 1, where each level represents the number of packets in

the queue. Note that the baseline scheme has a single protocol

state for packet transmission, and hence, the phase subscript

for p1 is dropped and the scheme is represented by the single-

dimension DTMC shown in Fig. 1.

2) Power ramping scheme: devices with non-empty queues

keep transmitting backlogged packets in each time slot, but

with increasing power control threshold after each unsuc-

cessful transmission until the maximum allowable threshold

ρM is reached. Let ρm be the used power control threshold

at the mth access attempt, then the power-ramping strategy

enforces ρ1 < ρ2 <· · ·< ρm <· · ·<ρM to prioritize delayed

packets. Upon transmission success with non-empty buffer

and/or the maximum number of retransmissions M is reached,

the device repeats the same strategy starting from the initial

power control threshold ρ1 to relief interference. A queue and

transmission state aware DTMC schematic diagram for the

power-ramping scheme is shown in Fig. 2(a), where pm is the

packet transmission success probability given that the device

is using the power control threshold ρm.

3) Backoff scheme: devices with non-empty queues at-

tempt to transmit their packets, however, they defer their at-

tempts upon transmission failure to alleviate congestion on the

uplink channel. The backoff procedure contains deterministic

backoff state for N time slots followed by a probabilistic back-

off state with probability 1− q. The selected backoff scheme
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āp
1

āp
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qā
qā
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(b) Backoff Scheme.

Fig. 2. Queue and state aware DTMC for (a) the power-ramping scheme and
(b) The backoff Scheme. The green color indicates empty queue and hence
idle state (not transmitting), the red color indicates non-empty queue with
transmission state, and cyan color indicates non-empty queue with backoff
state.

is general to capture deterministic backoff only by setting

q = 1, random backoff only by setting N = 0, and generic

combinations of both deterministic and random backoff states

by setting N ≥ 1 and q ≤ 1. A queue and state aware DTMC

schematic diagram for the device in the backoff scheme is

shown in Fig. 2(b). Although there are multiple phases in the

backoff scheme, there is only one transmission phase where

the packet can be successfully transmitted. Hence, the phase

subscript for the success probability in the transmission phase

p1 = p is dropped.

It is assumed that all IoT devices use one of the afore-

mentioned transmission schemes to access the channel. Fur-

thermore, the employed transmission scheme is used along

with randomized channel access over nC orthogonal channels

to alleviate congestion. For instance, the LTE defines prime-

length Zadoff-Chu (ZC) sequences for random access channel

(RACH) [22]. Without loss of generality, we assume that

all BSs have the same number of pseudo codes and that

different codes are orthogonal. It is also assumed that each

device randomly and independently selects one of the available
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codes at each transmission attempt. Hence, the average number

of devices that may use the same pseudo code per BS is

α̃ = U
λnC

, where nC is the number of pseudo codes per BS.

Note that α̃, measured in device/BS/code, is crucial network

parameter that is used later to study the scalability of cellular

networks.

III. OUTLINE OF THE ANALYTICAL FRAMEWORK

We employ the matrix-analytic-method (MAM) to ana-

lyze the Geo/PH/1 queueing model representing each IoT

device [20], [21], and stochastic geometry to analyze the

interference based interactions among the queues. Before

delving into the analysis details for each transmission scheme,

this section describes the general analytical framework used

in the analysis.

A. Queueing Analysis

From the queueing perspective, the PH type distribution

tracks the phases that the queue may experience until the

packet is successfully transmitted. Let n be the number of

transient phases. Following [21], the PH type distribution is

defined by the tuple (β,S), where S ∈ R
n×n is the transient

sub-stochastic matrix and β ∈ R
1×n is the initialization

row-vector for the transient states. Particularly, the PH type

distribution models the service procedure with an absorbing

DTMC with the following transition matrix

P =

[

1 0
s S

]

, (1)

where s ∈ R
n×1 is given by s = e−S× e and e is a column

vector of ones with the proper length. From (1), it is clear that

S captures the transition probabilities between phases until ab-

sorption and s captures the probability of absorption from each

phase, in which absorption corresponds to successful packet

transmission through the channel. Exploiting the MAM with

PH type service along with the packet-by-packet generation

and service assumption, each IoT device employing any of the

aforementioned transmission schemes can be represented by a

Quasi-Birth-Death (QBD) queueing model with the following

general probability transition matrix

P =











B C

E A1 A0

A2 A1 A0

A2 A1 A0

. . .
. . .

. . .











, (2)

where B ∈ R,C ∈ R
1×n,E ∈ R

n×1,A0 ∈ R
n×n,A1 ∈

R
n×n, and A2 ∈ R

n×n are the sub-stochastic matrices that

capture the transitions between the queue levels. Particularly,

the sub-matrix A0 = aS captures the event where a packet

arrives while being in the transient service state, which in-

creases the number of packets in the queue by one. The

sub-matrix A2 = āsβ captures the event where a service

completion occurs and no packet arrives, which decreases

the number of packets in the queue by one. The sub-matrix

A1 = asβ+āS captures the events where a service completion

occurs and a packet arrives or no packet arrives while being

ρ1 ρ3ρ2 ρM
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p
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Fig. 3. State aware DTMC for unstable network operation.

in transient state, which leaves the number of packets in the

queue unchanged. The transitions captured by A2, A1, and

A0 are visualized in Figs. 1, 2(a), and 2(b) by green, red, and

black arrows, respectively. Boundary vectors B = ā,C = aβ,

and E = ās capture the transitions from idle-to-idle, idle-

to-level (i=1), and from level (i=1)-to-idle, respectively. Note

that B,C, and E have different sizes than A2, A1, and A0

due to the different phase structure between the idle state and

the other levels (i ≥ 1). It is worth noting that the vector β

appears in C,A1, and A2 to initialize the transient service

states for a new packet.

Let A = A0+A1+A2, and let the vector π be the unique

solution of πA = π with the normalization condition πe = 1.

Then, the DTMC in (2) is stable if and only if πA2e >
πA0e, which implies that the departure rate is higher that

the arrival rate [20], [21]. For stable systems, the steady state

solution can be obtained by solving

xP = x, xe = 1, (3)

where x = [x◦, x1,1x1,2, . . . , xi,j−1, xi,j , xi,j+1 . . . ] is the

row vector that contains the steady-state probabilities, in

which x◦ denotes the idle state probability and xi,j is the

probability of being in level i and phase j. Note that x is also

denoted as the steady state distribution of the queue. When the

stability condition (πA2e > πA0e) is not satisfied, the queue

becomes unstable and the queue length grows indefinitely and

the system in (3) with the transissiom matrix in (2) cannot

be analyzed [20], [21]. Consequently, we abstract the queue

size for unstable queues and look into the marginal phase

distribution only Π as shown in Figs. 3(a) and 3(b), which

is obtained by solving the following system

ΠP = Π, Πe = 1, where P = sβ + S, (4)

such that Π contains the probabilities for the states shown in

Figs. 3(a) and 3(b). Note that the systems shown in Figs. 3(a)

and 3(b) are finite and ergodic, and hence, are always stable.

To analyze the queue stability and solve the above queueing

systems, the PH type distribution parameters (β,S) should

be determined. As discussed earlier and shown in Figs. 1,

2(a), and 2(b), the transmission protocol restarts its phases

after each successful transmission. Hence, β={1,0} where

4
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0 is a row vector of zeros with the proper length. This

makes S the only missing component to solve the presented

queueing model. Figs. 1 and 2 show that S involve computing

the transmission success probabilities p and pm, which are

discussed in the next section.

B. Stochastic Geometry Analysis for Service Probability

A packet sent by an IoT device (i.e., queue) is successfully

decoded at the serving BS (i.e., server) if the received SINR

at the BS exceeds a certain threshold θ. Mathematically, the

transmission success probabilities for the baseline and backoff

schemes are expressed as

p=P

{

ρh◦
∑

yi∈Φ̃

Pigi ‖yi−z◦‖−η

︸ ︷︷ ︸

,I

+σ2
>θ

}

=exp

{

−σ2θ

ρ

}

LI

(
θ

ρ

)

,

(5)

where ‖·‖ is the Euclidean norm, LI(·) denotes the Laplace

transform (LT) of the PDF of the aggregate interference I,

h◦ is the intended channel gain, Φ̃ is the set containing

the locations of interfering devices, Pi, gi, and yi ∈ R
2

are, respectively, the transmit power, the channel power gain,

and location of the ith interfering device, z◦ ∈ Ψ is the

location of the serving BS of the test device, σ2 is the

noise power, and θ is the SINR detection threshold. Note

that (5) follows from the channel inversion power control,

the exponential distribution of h◦, and the definition of the

Laplace transform [29]. Similarly, the success probability for

the power-ramping scheme for the test device when using

power control threshold ρm is given by

pm = P

{

ρmh◦

M∑

k=1

∑

yi∈Φ̃k

Pi,kgi ‖yi − z◦‖−η

︸ ︷︷ ︸

,Ik

+ σ2

> θ

}

= exp

{

−σ2θ

ρ

} M∏

k=1

LIk

(
θ

ρm

)

, (6)

where Φ̃k is the set containing the locations of interfering

devices operating with power control ρk, Pi,k is the transmit

power of the ith device in Φ̃k, Ik is the aggregate interference

power from devices in Φ̃k. The transmit powers Pi and

Pi,k in (5) and (6) are random variables that depend on

the distance between the ith interfering IoT device and its

own serving BS. The expression in (6) follows from the

employed channel inversion power control, the exponential

distribution of h◦, the definition of the Laplace transform,

and the independence between Φ̃k, ∀k at a given time slot.

Equations (5) and (6) capture the interactions between the

queues in the aggregate interference term. The equations also

involve the effect of propagation, fading, and power control on

the transmission success probabilities. The interference terms

in (5) and (6) are functions of the points processes Φ̃ and Φ̃k,

respectively. Due to the random pseudo code selection and
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and η = 4 when the probability of having common interfering sources is 1

2
across time slots.

the independent thinning property of the PPP, both Φ̃ and Φ̃k
are PPPs at any time slot. However, there may exist common

interfering devices seen by the same BS from one time slot to

another, which introduces temporal correlation for the success

probability. Such temporal correlation involves memory to

the queues and highly complicates the queueing analysis.

Furthermore, the transmission powers of nearby devices are

spatially correlated due to the employed channel inversion

power control. Such temporal and spatial correlations impede

the model tractability. Fortunately, the aforementioned tempo-

ral and spatial correlations have a negligible impact on the

performance of the employed system model, which is verified

by numerical results and simulations. Formal statements and

comments on the involved approximations are given in the

sequel.

Approximation 1. The spatial correlation among the trans-

mission powers of the interfering IoT devices is ignored.

Remark 1. The spatial correlation among the transmission

powers of interfering devices is a common feature uplink

systems [27]–[32], which is always ignored to maintain math-

ematical tractability. It is shown that such spatial correlation

of the interfering powers is weak and have a negligible effect

on the success probability [27]–[32]. In Section V, we verify

the accuracy of such approximation within our mathematical

model. It is worth noting that the devices in our system model

transmit according to a distributed transmission protocol (i.e.,

baseline, power ramping, and backoff), which is different from

the centralized BS scheduling in [27]–[32]. Consequently, the

uplink transmission in the considered IoT scenario experience

intra-cell and inter-cell interference.

Approximation 2. Under the employed full channel inversion

power control, the temporal interference correlation has a neg-

ligible effect on the transmission success probability. Hence,

we ignore the temporal SINR correlation and assume that the

test IoT device sees almost independent Φ̃ and Φ̃n in each

5
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time slot.3

Remark 2. Let P {SINRt2<θ|SINRt1<θ} be the condi-

tional failure probability (i.e., the complement of the suc-

cess probability), where SINRti is the SINR at the ith

time slot. Appendix A derives a closed form expression for

P {SINRt2<θ|SINRt1<θ} in (38). Fig. 4 compares the con-

ditional success probability derived in (38) to the marginal

success probability derived in (15) for an aggressive scenario

where all IoT devices are active and only two pseudo codes

are available. The negligible effect of the temporal corre-

lation shown in Fig. 4, even when the test BS sees 50%
common interfering devices from one time slot to another,

strongly supports Assumption 1. The system model used in

this manuscript impose far less probability of having common

interferers across time slots due to the availability of multiple

pseudo codes (typically 64 code [22]) and the probability of

having idle/backoff states, which further diminishes the effect

of interference temporal correlation [33].

Based on Approximation 2, it is reasonable to assume that

all devices experience i.i.d. steady state queue distributions

(i.e., x) irrespective of their locations. Thanks to the full

channel inversion power control and randomized channel

access that minimize the location dependent discrepancies in

the coverage probability among the uplink devices. Let x◦
denote the probability of the idle state and let Π be the steady

state marginal distribution for all protocol states such that

Πj =
∑∞
i=1 xi,j . Then the intensities of Φ̃ in the baseline and

backoff schemes are Ũ = (1−x◦)U
nC

and Ũ = Π1U
nC

, respectively.

Similarly, the intensity of Φ̃k in the power-ramping scheme

is Ũk = ΠkU
nC

. Note that the aforementioned intensities of

interfering IoT devices are functions of the power control,

traffic profile, transmission protocol, relative devices to BS

densities, and aggregate interference, which is different from

the load-aware intensity adjustments that are functions of

the relative devices to BS densities only [24], [34]–[37]. As

will be shown later, the interfering devices intensity in our

mathematical model depends on the steady state marginal

distribution Π (or equivalently the steady state probability

vector x), which imposes the mathematical causality problem

discussed in the next section.

C. Causality problem and the iterative solution

The queueing and stochastic geometry analysis discussed in

Sections III-A and III-B are interdependent, which impose a

mathematical causality problem. Particularly, the matrix S that

is required to construct and solve the queuing model in Section

III-A depends on the transmission success probabilities in

(5) and (6) of Section III-B. The converse is also true, the

point processes Φ̃ and Φ̃n in (5) and (6) of Section III-B

are constructed based on the steady state solution of (3) in

Section III-A. To solve this causality problem, we employ an

iterative solution, shown in Algorithm 1, to find the steady

state probabilities and the associated aggregate interference.

3It is important to note that Approximation 2 is only accurate for the
full channel inversion power control. For constant power uplink or downlink
transmissions, such accuracy may not hold.

Algorithm 1 General Framework for the Analysis

Initialize x
[0]
◦ and Π

[0] such that x◦ +Π
[0] × e = 1.

Set i =1.
1- Use Π

[i−1] to calculate the transmission success probabilities in
(5) and (6) via stochastic geometry.
2- Use the transmission success probabilities from step 1 to construct
the matrix S.
3- Check the stability condition (πA2e > πA0e) then
if stable then

Use the MAM to solve the QBD system in (3) using P in (2)
and obtain x.

else
Use the MAM to solve the system in (4) using P in (4) and
obtain x.

end

4- Use the steady state distribution x
[i]
0 to update x◦ and the marginal

distribution Π
[i].

Repeat steps 1 to 4 until max |Π[i] −Π
[i−1]| ≤ ǫ Return Π ←

Π
[i].

The iterative algorithm in Algorithm 1 is equivalent to

solving the system

x
[i]

P

(

x
[i−1]

)

= x
[i] , x

[i]T
e = 1, (7)

where P
(

x
[i−1]

)

is updated based on (5) and (6). Due to the

ergodicity of the used queueing models, the system in (7) has

a unique solution x
[i] for each x

[i−1] [21]. Hence, Algorithm 1

converges by virtue of the fixed point theorem [38].

D. Performance Metrics

After determining the steady state solution x for the system

via Algorithm 1, many performance metrics can be obtained.

For instance, transmission success probability at steady state

is
pm = P {Υm(Π) > θ} , (8)

where Υm(Π) is the SINR when using transmission phase

m and the activity of the nodes is determined by Π, in

which Π is the steady state marginal distribution of the

phases. Constructing an absorbing Markov chain for the phases

the packet sees until successful transmission, the expected

transmission delay can be estimated using [21, eq(2.24)] as:

D =
1

E[pm]
=

1− x◦
∑

mΠmpm
, (9)

where the expectation in the denumerator accounts for the

different states that the IoT device may be in, x◦ is the

probability of being idle, Π = [Π1,Π2, .......] is the marginal

distribution of the phases.

For stable systems, we can additionally find the average

queue size, denoted as E[QL], and the average queueing delay,

denoted as E[Wq]. Let QL be instantaneous queue size, then

the average queue size in given by

E [QL] =
∞
∑

n=1

nP {QL = n} =
∞
∑

n=1

n
∑

j

xn,j . (10)

The average waiting time for packet transmission accounts

for the queueing delay only. Let W be the queueing delay

6
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(i.e., the number of time slots spent in the queue before the

service starts) for a randomly selected packet, then the average

queueing delay is given by [21] as

E [Wq] =
∞
∑

n=1

nP {W = n} , (11)

where, P {W = 0} = x◦, and P {W = j} =

j
∑

v=1

xvB
(v)
j ,

with B
(k)
j =







Sj−1s k = 1, j ≥ 1
(sβ)k j = k, k ≥ 1

SB
(k)
j−1 + sβB

(k−1)
j−1 k ≥ j ≥ 1

. (12)

The average queueing plus transmission delay is then obtained

as E [Wq] +D.

IV. PERFORMANCE ANALYSIS

For the sake of organized presentation, we divide this

section into three parts corresponding to each transmission

scheme. For each transmission scheme we first analyze the

necessary condition and sufficient condition for stability, then

we conduct the analysis as discussed in Section III.

A. Baseline Scheme

We start by the baseline scheme, which is the simplest

transmission scheme. Fig. 1 shows that the baseline scheme

has only one transmission phase. Hence, the transient state

of (1) is just S = p̄, where p is the transmission success

probability given by (5). This reduces the Geo/PH/1 queueing

model in (2) to a simple Geo/Geo/1 queue with the following

transmission matrix

P =











ā a
āp āp̄+ ap ap̄

āp āp̄+ ap ap̄
āp āp̄+ ap ap̄

. . .
. . .

. . .











. (13)

Let x = [x◦, x1, x2, . . . , ] be the stationary distribution,

where xi represents the probability of having i packets in the

queue, then solving (3) with the transition matrix in (13) gives

xi = Ri x◦

p̄
, where R = ap̄

āp
and x◦ = p−a

p
. (14)

Using stochastic geometry, the transmission success probabil-

ity p for the baseline scheme is characterized via the following

lemma.

Lemma 1. The transmission success probability in the de-

picted IoT network with baseline transmission scheme is given

by

p ≈
exp

{

−σ2θ
ρ

− 2θx̄◦α̃
(η−2) 2F1 (1, 1− 2/η, 2− 2/η,−θ)

}

(

1 + θx̄◦α̃
(1+θ)c

)c

(η=4)
=

exp
{

−σ2θ
ρ

− x̄◦α̃
√
θ arctan

(√
θ
)}

(

1 + θx̄◦α̃
(1+θ)c

)c (15)

where c = 3.575, 2F1(.) is the Gaussian hypergeometric

function, and the approximation is due to the employed ap-

proximate PDF of the R
2 PPP Voronoi cell area in (44) and

Approximation 1.

Proof: See Appendix B.

The case of η = 4, which is a typical path loss exponent

for urban outdoor environment, shown in (15) is of interest

because it simplifies the transmission success probability in

terms of the elementary arctan(·) instead of the Gaussian

hypergeometric function.

The interdependence between x◦ in (14) and p in (15)

clearly shows the causality problem discussed in Section III-C.

Although an iterative solution similar to Algorithm 1 is

required to solve (14) and (15), we can still obtain explicit

conditions for network stability as shown in the following

lemma and corollary.

Lemma 2. For the baseline scheme in the depicted IoT

network, the condition shown in (16) is sufficient for network

stability and the condition shown in (17) is necessary for

network stability.

exp
{

−σ2θ
ρ
− 2θα̃

(η−2) 2F1 (1, 1− 2/η, 2− 2/η,−θ)
}

a
(

1 + θ
(1+θ)

α̃
c

)c > 1 (16)

exp
{

−σ2θ
ρ
− 2θaα̃

(η−2) 2F1 (1, 1− 2/η, 2− 2/η,−θ)
}

a
(

1 + θ
(1+θ)

aα̃
c

)c > 1 (17)

Proof: The queue is stable if and only if the service

probability is higher than the arrival probability p > a.

Substituting p from (15) with the maximum and minimum

activity factors (i.e., x̄◦ = 1 and x̄◦ = a), the sufficient and

necessary inequalities are obtained, respectively.

From Lemma 2, upper bounds on α̃ can be obtained from

the following corollary.

Corollary 1. Upper bounds for α̃ device/BS/code, such that

the necessary condition and sufficient conditions in (16) and

(17) hold, are respectively given in as

α̃ ≤
(

1
c
√
a
− 1

)
(θ + 1)c

θ
and α̃ ≤

(
1
c
√
a
− 1

)
(θ + 1)c

aθ
.

(18)

Proof: Taking the log(·) for the both sides of (16) and

(17), it is noticed that the sufficient and necessary conditions

are satisfied, if and only if the conditions in (18) hold.

Lemma 2 and Corollary 1 show the scalability and sta-

bility tradeoff imposed by the IoT network and give prior

information about the network stability before conducting the

iterative solution. The upper bound in Corollary 1 identifies

the maximum spatial intensity α̃ device/BS/code that can be

supported by cellular networks for a given traffic requirements

and SINR detection threshold. Furthermore, the sufficient

condition given in Lemma 2 determines α̃ that guarantees

stable network operation. Note that α̃ can be decreased by

network densification and/or increasing the number of or-

thogonal channels available for IoT operation. To study the

7
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Algorithm 2 Computation of x◦ and p for the baseline scheme.

Initialize x◦.

while

∣
∣
∣x

[i]
◦ − x

[i−1]
◦

∣
∣
∣ ≥ ǫ do

1- Calculate p in (15) using x
[i]
◦ .

2- Check the stability condition.
if p > a then

Calculate x
[i+1]
◦ using (14).

else
return x◦ ← 0 and calculate p in (15) for x̄◦ = 1.
Break.

end
3- Increment i.

end

return x◦ ← x
[i]
◦ and p.

network stability when the necessary condition is satisfied but

the sufficient condition is not satisfied, the iterative solution

should be utilized. Also, the network performance can only

be determined via the iterative algorithm given in the next

theorem.

Theorem 1. The probability of being in the idle state with

an empty buffer for a generic IoT device operating with the

baseline transmission scheme is obtained via Algorithm 2.

Proof. The proof follows from Lemma 1 and (14).

Using x◦ and p from Theorem 1, the baseline IoT network

can be fully characterized. For stable network, the steady state

probability distribution can be obtained via (15). For stable

networks, the average queue length and the average queueing

delay can be obtained for Geo/Geo/1 as [21]

E [QL] =
aāpx◦

(p− a)2
and E [Wq] =

aāx◦

(p− a)2
. (19)

It is worth emphasizing that (19) cannot be used directly

to study the queue size and queueing delay when varying the

arrival rate. Instead, the steady state x◦ and p should be first

characterized via Algorithm 2 for any change in the arrival

rate a, then (19) can applied if the network is stable.

B. Power-Ramping Scheme

In the power-ramping scheme, the transmission success

probability depends on the transmission phase, and hence, a

Geo/PH/1 queueing model is employed. From Fig. 2(a), it can

be observed that each IoT device increments its power control

threshold upon transmission failure, which gives the following

PH type transient matrix

S =











0 p̄1 0 0 . . . 0
0 0 p̄2 0 . . . 0
0 0 0 p̄3 . . . 0
...

...
...

. . .
. . .

...
0 0 0 0 . . . p̄M−1

p̄M 0 0 0 . . . 0











. (20)

Let x = [x◦,x1,x2, . . . , ] be the stationary distribution,

where x◦ represents the probability of having an idle queue

and xi = [xi,1xi,2 . . . xi,M ] is the probability vector for

transmission phases when of having i packets in the queue.

The steady state solution for the power-ramping queueing

model is given in the following lemma

Lemma 3. Solving (3) with the transition matrix in (2) and

the transient matrix in (20) gives the following steady state

solution

x◦ =
(
1 +C ([I− asβ − āS−Rāsβ][I−R])−1

e
)−1

and

xi =

{
x◦C[I− asβ − āS−Rāsβ] i = 1

x1R
i−1 i > 1

, (21)

where R is the rm MAM R matrix and is given by R =
aS[I− asβ − āS− aSeβ]−1.

Proof: x◦ and x1 are obtained by solving the boundary

equation x1 = x◦C + x1(A1 + RA2) and normalization

condition x◦ + x1[I − R]−1
e = 1, where A1 and A2 are

defined in (2). Then xi in (21) follows from the definition of

the R matrix [20], [21], which is the minimal non-negative

solution of R = A0 + RA1 + R
2
A2. Since A2 is a rank

one matrix, an explicit expressions for R is obtained as

R = aS[I− asβ − āS− aSeβ]−1 [21].

Let Πm be the marginal probability of using the power

control threshold ρm. Following [20], [21] and using the

steady state solution in Lemma 3, the marginal probability

distribution of the phases Π = [Π1,Π2, . . . ,ΠM ] can be

obtained as

Π = x1[I−R]−1. (22)

The marginal probability distribution Π is necessary for cal-

culating the transmission success probabilities pm, ∀m in the

power-ramping scheme, which are characterized via stochastic

geometry in the following lemma.

Lemma 4. In the depicted IoT network with power-ramping

scheme, the transmission success probability for an IoT device

operating with the power control threshold ρm is given by (23),

where ρm,k = ρm
ρk

, c = 3.575, and the approximation is due

to the employed approximate PDF of the R
2 PPP Voronoi cell

area in (44) and Approximation 1.

Proof: See Appendix C.

The interdependences between Π in (22), S in (20), and

pm in (23) clearly show the causality problem in the power-

ramping scheme as discussed in Section III-C. Similar to the

baseline scheme, we can study the necessary and sufficient

conditions for network stability in the power-ramping scheme

prior to applying the iterative solution to find pm and Π. Let

A = A0 + A1 + A2 = sβ + S and π = [π1, π2, . . . , πM ],
then solving the system

πA = π and πe = 1, (24)

leads to

πm+1 = πmp̄m, where π1 =

(

1 +

M∑

i=1

i∏

m=1

p̄m

)−1

(25)

where pm is given in (23). The power-ramping queueing

system is stable if and only if

8
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pm ≈ exp

{

−σ
2θ

ρm

} M
∏

k=1

exp

{

− 2Πkα̃θρk,m

(η−2) 2
F1

(

1, 1− 2
η
, 2− 2

η
,−θρk,m

)
}

(

1 +
θρk,m

(1+θρk,m)
Πkα̃

c

)c

(η=4)
= exp

{

− σ2θ

ρm

} M
∏

k=1

exp

{

−Πkα̃
√

θρk,m arctan
(√

θρk,m
)

}

(

1 +
θρk,m

(1+θρk,m)
Πkα̃

c

)c ,

(23)

Algorithm 3 Computation of x◦ and p for the power-ramping

scheme.
Initialize x◦ and Π such that x◦ +Π× e = 1.

while

∣
∣
∣Π

[i] −Π
[i−1]

∣
∣
∣ ≥ ǫ do

1- Calculate pm, ∀m in (23) using Π
[i].

2- Construct S using pm as in (20).
3- Construct π = [π1, π2, . . . , πM ], where πm+1 = πmp̄m and

π1 =

(

1 +
M∑

i=1

∏i

m=1 p̄m

)−1

.

4- Check the stability condition.
if πāsβe > πaSe then

Calculate x1 from Lemma 3 and Π
[i+1] from (22).

else
Set x◦ ← 0.
Solve the system ΠP = Π and Πe = 1 with the transition
matrix in (4).

end
5- Increment i.

end

return Π← Π
[i], x◦ ← 1−Πe, and pm.

āπsβe > aπSe. (26)

The necessary condition is obtained via (26) with pm in (23)

at x◦ = 1 − a and Π1 = a, which represent the mildest

traffic and interference. Furthermore, the sufficient condition is

obtained via (26) with pm in (23) at ΠM = 1, which represent

the highest traffic and strongest interference. Similar to the

baseline scheme, the necessary and sufficient conditions can

be exploited to find bounds on the intensity of IoT deceives

that a network can support. The steady state solution for the

power-ramping scheme is obtained via the iterative algorithm

given in the following theorem.

Theorem 2. The marginal steady state probability vector Π

for a generic IoT device operating with the power-ramping

transmission scheme is obtained via Algorithm 3.

Proof. The proof follows from Lemma 3 and Lemma 4.

Using x◦, Π and pm from Theorem 2, the IoT network

operating with the power-ramping scheme can be fully char-

acterized. Applying the law of total probability, the average

transmission success probability conditioned on that the IoT

device is active can be given by

Psuccess = E[pm] =

M∑

m=1

Πm

1− x◦
pm. (27)

From (9), the mean number of retransmissions for each suc-

cessful packet delivery is given by D = (1−x◦)/
M
∑

m=1

Πmpm.

For stable network, the steady state probability distribution

and the R matrix can be obtained via Lemma 3. Also, by using

(10), the average queue length for stable network is given by

E [QL] = (x1 + 2x2 + 3x3 + · · · )e = x1(1 + 2R+ 3R+ · · · )e
= x1(I−R)−2

e. (28)

where (28) follows from the fact that R has a spectral radius

less than one [21]. The average queuing delay is given by

solving (11) with S given in (20) along with x and pm obtained

through Algorithm 3.

C. Backoff Scheme

In the backoff scheme, the IoT devices defer their trans-

missions and go to backoff upon transmission failures. From

Fig. 2(a), it can be observed that there are deterministic and

probabilistic backoff states in which the PH type transient

matrix can be represented as

S =











0 p 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
q 0 0 0 0 q
q 0 0 0 0 q











. (29)

Let x = [x◦, x1,1, x1,2, . . . , xi,j−1, xi,j , xi,j+1 . . . ] be the

stationary distribution, where x◦ represents the probability of

having an idle queue, xi,1 represents the probability of being in

the transmission phase, and xi,j for i ≥ 1 and j > 1 represents

the probability of being in one of the backoff phases (i.e.,

having non-empty buffer but not transmitting). The steady state

solution for the backoff scheme can be obtained via Lemma 3

but with S given in (29).

Using the same definition for Π as in Section IV-B, it is

noticed that Π1 is the probability of being in transmission

state and Πn n > 1 is the probability of being in the

backoff phase. The marginal distribution Π for the backoff

scheme can be obtained via (22) but with S given in (29). As

discussed earlier, the marginal distribution Π is required to

obtain the transmission success probability, which is given in

the following lemma.

Lemma 5. The transmission success probability in the de-

picted IoT network with backoff transmission scheme is given

by

9
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p≈
exp

{

−σ2θ
ρ
− 2θΠ1α̃

(η−2) 2F1 (1, 1− 2/η, 2− 2/η,−θ)
}

(

1 + θΠ1α̃

(1+θ)c

)c

(η=4)
=

exp
{

−σ2θ
ρ
−Π1α̃

√
θ arctan

(√
θ
)}

(

1 + θΠ1α̃

(1+θ)c

)c . (30)

where c = 3.575 and the approximation is due to the employed

approximate PDF of the R
2 PPP Voronoi cell area in (44) and

Approximation 1.

Proof: See Appendix B.

The condition for network stability for the backoff

scheme can be determined following the same methodol-

ogy that is used in Section IV-B. Specifically, let π =
[π1, π2, . . . , πN+1, πq], then solving (24) with S given in

(29) leads to πi = p̄π1 for i ∈ {2, . . . , N + 1} and

πq = π1p̄
(

1
q
− 1

)

, where π1 =
(

1 + (N − 1)p̄+ p̄
q

)−1

and

p is given in (30). Consequently, the necessary and sufficient

conditions for the backoff scheme can be respectively obtained

via (āπsβe > aπSe) by setting Π1 = a and Π1 = 1 in p. The

steady state probabilities for the backoff scheme are obtained

via the iterative algorithm given in the following theorem.

Theorem 3. The marginal steady state probability vector Π

for a generic IoT device operating with the backoff transmis-

sion scheme is obtained via Algorithm 4.

Algorithm 4 Computation of x◦ and p for the backoff scheme.

Initialize x◦ and Π such that x◦ +Π× e = 1.

while

∣
∣
∣Π

[i] −Π
[i−1]

∣
∣
∣ ≥ ǫ do

1- Calculate p in (30) using Π
[i]
1 .

2- Construct S using p as in (29).
3- Construct π = [π1, π2, . . . , πN+1, πq] such that πi = p̄π1

for i ∈ {2, . . . , N + 1} and πq = π1p̄
(

1
q
− 1
)

, where π1 =
(

1 + (N − 1)p̄+ p̄

q

)−1

.

4-Check the stability condition.
if āπsβe > aπSe then

Calculate x1 from Lemma 3 and Π
[i+1] from (22).

else
Set x◦ ← 0 and solve the system ΠP = Π and Πe = 1
with the transition matrix in (4).

end
5- Increment i.

end

return Π← Π
[i], x◦ ← 1−Πe, and p.

Proof. Similar to Theorem 2.

Using x◦, Π and p from Theorem 3, the IoT network

operating with the backoff scheme can be fully characterized.

The probability of successful packet transmission is given by

Psuccess = E[pm] = Π1p
1−x◦

, where the expectation accounts

just for the IoT devices that transmit i.e. not in backoff

state(s). From (9), the mean number of retransmissions for

each successful packet delivery is given by:

D =
1− x◦
Π1p

. (31)

For stable network, the steady state probability distribution and

the R matrix can be obtained via Lemma 3. Also, the average

queue length and the waiting time for the stable network

operating with the backoff scheme can be obtained via (28)

and (11), respectively, with S given in (29) along with x and

p obtained through Algorithm 4.

As shown in Fig. 2(b), the size of deterministic backoff

slots is determined by N and the probabilistic backoff is

parametrized by q. Consequently, N and q are two fundamen-

tal design parameters in the backoff scheme. The transmission

probability Π1 can be controlled by manipulating N and q,

which impose a tradeoff between the transmission success

probability and the probability of being in transmission. Par-

ticularly, selecting a large N or small q lead to a conservative

spectrum access with high transmission success probability

(i.e., high p), and vice versa. For the optimal selection of N
and q, we formulate the following problem

minimize
N,q

E[Wq]

subject to N ∈ Z , 0 ≤ q ≤ 1
(32)

in which the objective is to minimize the queue waiting time,

which is given in (11). Due to space constraints, we do not

delve into the analysis of (32) and employ a straightforward

exhaustive search solution. It is worth mentioning that the

feasible set for the employed exhaustive search contains all

paris (N, q) that lead to a stable queue performance. In the

case where none of the combinations of N and q leads to a

stable network, the optimal values of N and q are obtained

by replacing E[Wq] with D in (32) such that the objective is

changed to minimizing the average number of retransmissions

given in (31).

V. NUMERICAL RESULTS & SIMULATIONS

At first, we compare the proposed analysis with independent

system level simulations. It is important to note that the

simulation is used to verify the stochastic geometry analysis

for the transmission success probabilities, which incorporate

Approximation 1 related to the spatial correlation between the

transmission powers of devices as well as the approximation of

PDF of the Voronoi cell area while calculating the distribution

of the number of users in the cell. On the other hand, the

queueing analysis is exact, and hence, is embedded into the

simulation. In each simulation run, the BSs and IoT devices

are realized over a 100 km2 area via independent PPPs. Each

IoT device is associated to its nearest BS and employs channel

inversion power control. The collected statistics are taken for

devices located within 1 km from the origin to avoid the

edge effects. Unless otherwise stated, we choose a = 0.1,

x
[0]
◦ = .75, α̃ = 1, 4, and 8 device/BS/code,4 η = 4,

ρ = −90 dBm, σ2 = −90 dBm, and −20 ≤ θ ≤ 0 dB.

For the power-ramping scheme, the values of ρm are chosen

to vary from −90 dBm to −70 dBm with 4 dBm resolution

(i.e with a maximum number of retransmissions of 5). For the

backoff scheme, the values of N and q are obtained via (32)

for every value of θ.

4For 10 BS/km2 and 64 code per BS, the chosen values of α̃ correspond
to U = 640, 2560, and 5120 device/km2.
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Fig. 5. Transmission success probability for the three schemes
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Fig. 6. Average queue length in the device’s buffer for the three schemes.
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Fig. 7. Average waiting time in the queue for the three schemes.
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Fig. 8. Average number of retransmissions for the three schemes.
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Fig. 5 shows the spatially averaged transmission success

probabilities at steady state versus the SINR detection thresh-

old. First, we note the close match between the analysis and

simulation results, which validates the developed mathematical

framework. The discontinuities shown in Fig. 5 separate stable

from unstable network operation. At stable network operation,

the IoT devices are able to empty their buffers and go

into idle state, which diminishes the aggregate interference.

Increasing the required SINR threshold reduces the service

rate drastically for two reasons. First, setting higher detection

threshold reduces the probability of transmission success.

Second, it increases the intensity of interfering deceives as the

probability of flushing the queue is reduced, which reduces the

average SINR. Consequently, θ has a composite effect on the

service rate, and hence, the network stability is sensitive to θ.

Such sensitivity justifies the discontinuity point in the success

probability curves in which a sudden transition occur from

stable network operation (i.e., idle state probability x0 > 0)

to unstable network operation (i.e., x0 = 0). Note that the

magnitude of the discontinuity in each curve depends on the

value of x0 at which the transition occurs. For instance, the

transition from stable to unstable network operation occurs

in the power-ramping scheme for α̃ = 4 and α̃ = 8 at

x0 = 0.71 and x0 = 0.45, respectively, which explains the

higher discontinuity gap for α̃ = 4.

Fig. 6 and Fig. 7 show, respectively, the average queue

length E[QL] and the average queueing delay E[Wq] for each

of the transmission schemes at stable network operation. These

two figures show an interesting behavior where the power-

ramping scheme outperforms both the baseline and backoff

schemes at low and moderate IoT device density, α̃ = 1
and α̃ = 4. This is because the power-ramping scheme at

these device densities offers a quicker buffer flushing before

falling into instability which leads to a lower average queue

length and average queueing delay. Moreover, Fig. 6 depicts

that the power-ramping is able to extend the stability of the

network at traffic arrival, a = 0.1, for low and moderate IoT

device intensities. However, at high IoT device intensity and

traffic arrival a = 0.1 the power-ramping offers the same

stability performance but at higher average queue length. The

behavior of the power-ramping scheme can be explained by its

ability to prioritize the transmission of packets that experience

previous transmission failures by increasing their power. Such

prioritization works well for low device intensity that already

imposes low probability of transmission failure at initial power

control thresholds, and hence, only a few devices would

ramp their powers. Increasing the intensity of IoT devices

increases the interference and impose higher packet failure

probabilities for low transmission powers, which increases the

density of devices ramping their powers. In this case, packets

are not successfully transmitted unless a high power thresh-

old is reached, which enforces unnecessary phase transitions

through ineffective power-ramping phases and imposes higher

interference and delay. Consequently, at high traffic density,

it is better to employ the baseline or backoff schemes which

gives an equal probability for all packets to be successfully

transmitted. Hence, increasing the probability of faster queue

flushing, which increases the probability of being idle and

decreases interference.

Fig. 8 shows the average service (i.e., transmission) delay D
for each of the transmission schemes for stable and unstable

network. Fig. 8 shows consistent insights with the previous

results in which the power-ramping scheme works better

for low and moderate device intensities for both stable and

unstable network. On the other hand, when the network is

stable the baseline/backoff scheme works better for higher

traffic intensities, and when the network is unstable the bakoff

outperforms the baseline and the power-ramping at high IoT

device intensity. Furthermore, Fig. 8 sheds light on a reason

for network instability in which a sudden transition occurs in

the transmission delay that leads to service probability less

than the arrival probability.

All the pervious figures show an equivalent performance

between the baseline and backoff schemes as long as the

network is stable. Such behavior can be explained by looking

into the optimum values for the backoff parameters N and q,

which are reported in Table I. It can be inferred from Table I

along with Figs. 5-8 that whenever the network is stable the

optimal parameters are N = 0 and q = 1, which reduces

the backoff scheme to the baseline scheme. This explains

the matching behavior between both schemes in Figs. 5-8

and shows that the backoff has only a potential in congested

network scenarios. Stable network operation does not need

backoff regulation for the channel access as the service rate is

already higher than the arrival rate. Consequently, employing

the baseline scheme leads to quicker buffer flushing, which

automatically relieves interference due to idle devices. On

the other hand, at congested network operation when all

the devices maintain non-empty buffers, i.e. the network is

unstable, it is mandatory to regulate the channel access through

the appropriate backoff strategy which makes the backoff

scheme outperforms the baseline as well as the power-ramping

scheme.

TABLE I
OPTIMUM VALUES FOR BACKOFF PARAMETERS.

Intensity (α̃) SINR thresholds (θ) # backoff slots (N ) backoff probability (q) Mean Backoff time Stability

1 [−10,−6,−2] dB 0 1 0 Stable

4
[−10,−6] dB 0 1 0 Stable

−2 dB 2 .91 3.1 Unstable

8

−10 dB 0 1 0 Stable

−6 dB 2 .87 3.15 Unstable

−2 dB 4 .29 7.45 Unstable

Fig. 9 shows the scalability/stability tradeoff be plotting the

Pareto-frontier of the stability regions in terms of the SINR

detection threshold θ, the packet arrival probability a, and

device spatial intensity α̃. The figure shows that the stability

region shrinks for higher α̃ and higher θ, in which the cellular

networks can only accommodate less traffic per IoT device.

As discussed earlier and shown in Table I, the baseline and

backoff schemes are equivalent for stable network operation,

and hence, the backoff scheme does not provide scalability

gains for the IoT network. Fig. 9 shows that the power-ramping

scheme provides a tangible extension for the stability region

at high SINR, which is consistent with our findings in Figs. 5-

7. On the other hand, the baseline scheme provides larger

12
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stability region for low SINR. At moderate SINRs both tech-

niques have approximately similar performance with a slight

advantage of the power-ramping scheme. Such advantage is

because the power-ramping scheme assigns lower power to

packets that experience fewer failures, which increases the

service probability for packets transmitted at higher power.

On the other hand, the baseline scheme has similar success

probability for all packets, which impose poor performance at

low service probability.

The key take away message from the results is that stable

network operation cannot be maintained when scaling up the

IoT device intensity. Operating at a lower detection threshold

(θ) and/or decreasing the traffic intensity are two solutions to

retain stable network operation when increasing the IoT device

intensity. Furthermore, network densification and/or increasing

the number of channels can compensate for increasing the

IoT device intensity to maintain stable network operation.

When the network is stable, power-ramping scheme performs

well for high SINR threshold as well as for moderate IoT

intensities. On the other hand, for low SINR threshold and

high IoT intensities, persistent transmission is more effective

to keep lower delay and higher network stability than power-

ramping scheme to avoid unnecessary transitions throughout

lower power phases. Last but not least, backoff is not necessary

at stable network operation. For unstable network operation,

the power-ramping still achieves lower average number of

retransmissions at moderate IoT device intensity, but at high

IoT device intensity the backoff scheme is necessary to enforce

backoff time before reattempting to access in order to re-

lief congestion. Consequently, interference levels are relaxed,

transmission success probability is increased while providing

a better average number of retransmissions.

VI. CONCLUSIONS

Exploiting stochastic geometry and queueing theory, this

paper develops a novel traffic-aware spatiotemporal mathemat-

ical model for IoT cellular networks. The developed model is

used to characterize the uplink scalability to serve massive IoT

devices as well as to study and compare three transmission

strategies employed by the IoT devices, which incorporate a

combination of transmission persistency, backoff, and power-

ramping. The proposed analysis abstracts the IoT devices

and their serving base stations to a network of interacting

queues where the interactions reside in the mutual interfer-

ence between the devices. To this end, a two-dimensional

discrete time Markov chain (DTMC) is proposed to model

the queue and protocol states of each IoT devices where the

transition matrices are populated with the transmission success

probabilities obtained via stochastic geometry analysis. Also

the stochastic geometry analysis depends on the steady state

solution obtained by solving the DTMC. Such interdependence

between the DTMC solution and stochastic geometry analysis

creates a causality problem that is solved via an iterative

solution. The results characterize the scalability of uplink

cellular networks by plotting the Pareto-frontier of the stability

region, which defines the network parameters at which the

cellular networks can serve all packets generated by the IoT

devices in finite time. Moreover, the results showed different

solutions to maintain stable network operation when scaling

the IoT device intensity. Design insights for the employed

transmission schemes are provided and the effective operation

scenario of each scheme is highlighted. For instance, it is

shown that the power-ramping scheme is effective at high

SINR threshold and persistent fixed power transmission is

effective at low SINR threshold. Last but not least, deferring

transmission upon failure is not required at stable network

operation.

APPENDIX

A. Proof of Proposition 1

Let Φ̃ti ⊂ Φ and Iti ∈ R denote the realization of the

locations of the interfering IoT devices and the generated

aggregate interference power at the test BS, respectively, at the

ith time slot. The set Φ̃ti is obtained from Φ by independent

thinning with probability K, and hence, Φ̃ti is a PPP ∀i.
Also, Φ̃ti and Φ̃tj may have common elements for i 6= j.
This appendix derives the joint transmission failure probability

defined as
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P {SINRt1 < θ, SINRt2 < θ} = 1− P{SINRt1 >θ}
︸ ︷︷ ︸

I

− P{SINRt2 >θ}
︸ ︷︷ ︸

II

+ P {SINRt1 >θ, SINRt2 >θ}
︸ ︷︷ ︸

III

, (33)

where SINRti represents the SINR for the ith time slot. The

terms I and II are obtained using (15) by replacing x̄0 with

K. The term III can be defined as

P

{
ρht1

σ2 + It1
>θ,

ρht2

σ2 + It2
>θ

}

= exp

{

−2σ2θ

ρ

}

L
I
(in)
t1

,I
(in)
t2

(
θ

ρ
,
θ

ρ

)

L
I
(out)
t1

,I
(out)
t2

(
θ

ρ
,
θ

ρ

)

, (34)

which is obtained by decomposing Iti to I(in)
ti + I(out)

ti , where

I(in)
ti and I(out)

ti denote the intra-cell and inter-cell interfer-

ence, respectively, at time slot ti. Then (34) follows from

the i.i.d. exponential distribution of hti ∀i along with the

independence between I(in)
ti and I(out)

ti . Hence, correlations

exist between I(in)
ti and I(in)

tj as well as I(out)
ti and I(out)

tj due

to the probability of common interferers. The joint Laplace

transform between the inter-cell interferences in two time

slots is expressed in (36), which is obtained using similar

analogy to [39] for the joint LT and [29] for the uplink

scenario, in which K(1−K)U is the intensity of {Φti \ Φtj}
and K2U is the intensity of {Φti ∩ Φtj}. Let V denote that

Voronoi cell of the test BS and | · | denote the set cardinality.

Also, let K = |V ∩ {Φ1 \ Φ2}| , L = |V ∩ {Φ2 \ Φ1}|, and

N = |V ∩ {Φ1 ∩ Φ2}|, then the conditional joint LT of the

intra-cell interference is given by

L
I
(in)
t1

,I
(in)
t2

(s1, s2 | K,L,N) = E

[

e
−s1

∑

i∈V ∩Φt1

ρgt1,i−s2
∑

j∈V ∩Φt2

ρgt2,j
]

=
1

(1 + s1ρ)K+N (1 + s2ρ)L+N
.

(35)

Putting all together, the joint failure probability in

(33) can be expressed as in (38), where ψ(N, η, θ) =

2F1 (1, N − 2/η,N + 1− 2/η,−θ), ϕ(τ, ξ) =
(

1 + τξα̃
c

)−c

and c = 3.575. Note that (38) follows by substituting (15),

(36), and (35) in (33), averaging over K, L, and N , with are

i.i.d. distributed with CDF in [40, Eq. (8)], and substituting

EP

[

P
2
η

]

= ρ
2
η

πλ
[29]. Finally, the Fig. 4 in Proposition 1 is

plotted using

P {SINRt2<θ |SINRt1<θ} = P {SINRt1<θ, SINRt2<θ}
P {SINRt1 < θ} .

(37)

B. Proof of Lemma 1

Due to the unscheduled transmission there are two source

of interference, namely, an intra-cell and an inter-cell interfer-

ences. To evaluate the interference experienced by a device, we

find the LT of the aggregate intra-cell interference along with

the inter-cell interference. Because of the independtancy of the

PPP in diffrent regions [12], (5) can be written as follows:

p = exp

{

−σ2θ

ρ

}

LIout

(
θ

ρ

)

LIin

(
θ

ρ

)

. (39)

Note that the nearest BS association and the employed power

control enforce the following two conditions; (i) the intra-cell

interference from an interfering device is equal to ρ, and (ii)

the inter-cell interference from any interfering device is strictly

less that ρ. Approximating the set of interfering devices by a

PPP with independent transmit powers, the aggregate inter-cell

interference received at the BS is obtained as:

Iout =
∑

ui∈Φ\{o}

✶{Pi‖ui‖−η<ρ}Pigi ‖ ui ‖−η . (40)

Ignoring the correlations between the transmission powers of

the devices in the same and adjacent Voronoi cells, the Laplace

Transform of (40) can be approximated as:

LIout(s) ≈ exp

(

−2π x̄◦ Ũ s
2
η EP

[

P
2
η

] ∫ ∞

(sρ)
−1
η

y

yη + 1
dy

)

.

(41)

The LT is obtained by using the probability generating function

(PGFL) of the PPP [12] and following [29], [39], where Ex[.]
is the expectation with respect to the random variable x , the

Laplace Transform is obtained by substituting the value of

EP

[

P
2
η

]

from [Lemma 1, [29]]. The Intra-cell interference

conditioned on the number of neighbors is given by:

Iin|n =
∑

n

ρgn. (42)

The Laplace Transform of (42) is obtained as:

LIin|n(s) = E[e−sI ] =
1

(1 + sρ)n
. (43)

The probability mass function of the number of neighbors N
which is found in [40] as:

P{N = n} ≈ Γ(n+ c)

Γ(n+ 1)Γ(c)

Un(λc)c
(U + λc)n+c

(44)

where Γ(.) indicates the Gamma function, c = 3.575 is

a constant related to the approximate the PDF of the PPP

Voronoi cell area in R
2. Considering that there is only Inter-

cell interference when the number of neighbors in the cell is

0, and both of inter-cell and intra-cell interference otherwise

we can write equation (39) as follows:

p = exp

{

−σ2θ

ρ

}

LIout

(
θ

ρ

)[

P {N = 0}+
∞∑

n=1

P {N = n}
(1 + sρ)n

]

.

(45)

After some manipulations, (15) in Lemma 1 is obtained.

14
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L
I
(out)
t1

,I
(out)
t2

= exp























−2πKUEP

[

P
2
η

]













K

∞
∫

(ρ)

−1
η

(

1 −
1

1 + s1yη

1

1 + s2yη

)

dy + (1 − K)













s
2
η
1

∞
∫

(s1ρ)

−1
η

y

yη + 1
dy + s

2
η
2

∞
∫

(s2ρ)

−1
η

y

yη + 1
dy















































(36)

P
{

SINRt1 < θ, SINRt2 < θ
}

= 1 − 2ϕ(1) exp

{

−
σ2θ

ρ
−

2θŨ

(η − 2)λ
ψ(1, η, θ)

}

+ ϕ(K) ϕ(1 − K)
2

× exp

{

−
2σ2θ

ρ
−

4θŨ

λ

(

1 − K

η − 2
ψ(1, η, θ) +

2K

η

[

2 + θ

4(1 + θ)
+

(η − 2)θ ψ(2, η, θ)

8(η − 1)
+
ψ(1, η, θ)

η − 2

])

}

(38)

C. Proof of Lemma 4

The intra-cell interference in this case is Iin =
∑M
k=1

∑N
n=1 ρkgn,k, while the inter-cell interference is

Iout =
∑M
k=1

∑

ui∈Φ\{o} ✶{Pik‖ui‖−η<ρk}Pikgi ‖ ui ‖−η .

Hence, (6) can be written as

pm = exp

{

−σ
2θ

ρm

} M
∏

k=1

L
I
(k)
out

(

θ

ρm

)

L
I
(k)
in

(

θ

ρm

)

. (46)

Using similar procedure to the proof of Lemma 1, (23) in

Lemma 4 is obtained. Note that (23) is an approximation be-

cause L
I
(k)
in

(·) in (46) is obtained by ignoring the correlations

between the transmission powers of the devices in the same

and adjacent Voronoi cells.
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