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Abstract The present study proposed the framework of the spatiotemporal super-
resolution measurement based on the and sparse regression with dimensionality re-
duction using the proper orthogonal decomposition (POD). The non-time-resolved
particle image velocimetry (PIV) and the time-resolved near-field acoustic measure-
ments using microphones were simultaneously performed for a Mach 1.35 super-
sonic jet. POD is applied to PIV and microphone data matrices and the sparse lin-
ear regression model of the reduced-order data is calculated using the least absolute
shrinkage and selection operator regression. The effects of the hyperparameters of
the superresolution measurement were quantitatively evaluated through randomized
cross-validation. The superresolved velocity field indicated the smooth convection of
the velocity fluctuations associated with the screech tone, while the convection of the
large-scale structures at the downstream side was not observed. The proposed frame-
work can reconstruct the unsteady fluctuation with multiple frequency phenomena,
although the reconstruction is limited to the phenomena that is associated with the
microphone output.
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Nomenclature

Scalar variables
D : nozzle exit diameter
E : reconstruction error
f : frequency
fs : peak frequency of screcch tone

Lsh : shock cell length
m : number of data points in space
M : Mach number
n : number of data points in time

ntd : number of data points for time-delay
N : total number of PIV snapshots
p j : microphone data acquired by jth microphone
PR : projection ratio
r : number of POD modes for the dimensionality reduction
St : Strouhal number
ti : discrete-time

u,v : streamwise and radial velocity
uc : convection velocity
U j : streamwise velocity at the nozzle exit derived under

the assumption of the isentropic flow
κ : sampling-rate ratio of the acoustic and PIV measurements
λ : regularization parameter for group-LASSO regression

Vectors and Matrices
M : time-delay embedded microphone data matrix
S : diagonal matrix of singular values
u : column vector of streamwise velocity components
U : orthogonal spatial modes matrix
v : column vector of radial velocity components
V : orthogonal temporal modes matrix
X : Data matrix
Z : POD coefficients matrix

ZΦ : projection of the ZPIV onto the Φ space
Ψ : regression coefficients matrix
Φ : regression coefficients matrix

consists of the non-zero components of Ψ

Superscripts
¯ : time-averaged component˜ : fluctuation component
ˆ : estimated component
′ : downsampled component

Subscripts
MIC : microphone data
PIV : PIV data



Spatio-temporal Superresolution Measurement 3

1 Introduction

The exhaust flow of a supersonic aircraft engine emits strong acoustic waves and
causes serious noise pollution around the airport. Therefore, a lot of studies have
been performed for investigating supersonic jet noise in past decades. When the jet
flow contains shock waves, the peaky noise called the screech tone dominates the
acoustic field. Powell (1953b,a) firstly proposed the generation mechanism of the
screech tone and a lot of studies have been dedicated to this field for a long time
(Bailly and Fujii, 2016; Raman, 1999; Tam, 1995). The screech tone is generated
due to the acoustic feedback loop that consists of turbulent structures and acoustic
waves. The turbulent structures at the nozzle lip develop with their convection, and
the interference of the shock waves and the turbulent structures generates the acoustic
waves. Then, the acoustic waves propagating upstream excite the instability waves at
the nozzle lip. The interaction of shock waves and vortex structures was computation-
ally investigated by Suzuki and Lele (2003) and they showed that the shock waves
tend to leak near the saddle point of the vortex structures resulting in the acoustic
radiation. This shock leakage is also observed by Shariff and Manning (2013). For
an axisymmetric cold jet in the screeching condition, there are four kinds of insta-
bility modes that are experimentally identified by the early study of Powell (1953b).
The axisymmetric modes A1 and A2 dominate the aeroacoustic field when the Mach
number is relatively low (M j ≤ 1.3), and the flapping mode B and the helical mode
C appear at the higher Mach numbers. In addition to those modes, sinuous/flapping
mode D was identified. The characteristics of these modes have been extensively in-
vestigated using both the computations and experiments (Panda, 1999; André et al.,
2011; Edgington-Mitchell et al., 2014; Mercier et al., 2016).

Although the physical mechanism and characteristics of the screech tone are well
understood based on the statistical data, the time-resolved data of the unsteady dy-
namics is limited. Numerical simulations are often performed for the discussion of the
unsteady dynamics of the screech tone (Gojon and Bogey, 2017; Arroyo et al., 2019;
Li et al., 2020). However, a large-eddy simulation that can compute the aeroacoustic
field of the high-Reynolds-number jet requires excessive computational cost and is
not suitable for parametric analysis, see e.g. Nonomura et al. (2019, 2021c); Pineau
and Bogey (2021b,a). On the other hand, the experimental techniques are productive
while the measurable quantities are limited. The recent technology advancement al-
lows experimentally measuring the time-resolved data using a high-speed camera,
and the data-driven analysis such as the proper orthogonal decomposition (POD)
(Berkooz et al., 1993) or dynamic mode decomposition (Schmid, 2010) is often em-
ployed. There are many attempts to identify the screech tone from the time-resolved
schlieren images (Li et al., 2021; Lim et al., 2020; Rao et al., 2020; Ozawa et al.,
2018; Mercier et al., 2017; Ohmizu et al., 2022). However, a conventional high-speed
camera still does not have a sufficient sampling rate for the visualization of the entire
flow field with high spatial resolution. As an example, a Phantom V2640 camera,
which is a fastest high-speed camera with a 4M pixels image sensor, has the max-
imum sampling rate of 6.6 kHz at full pixels (2048× 1920 pixels). Considering a
laboratory-scale supersonic jet with a diameter of 10 mm and a velocity of 400 m/s,
the shear layer thickness is 1 mm or less. When the spatial resolution is assumed to be
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0.1 mm/pixels that is 1/10 of the shear layer thickness, the sampling rate of 500 kHz
(2 µs) can achieve the displacement on the image of 8 pixels that can visualize the
unsteady dynamics. Therefore, there are no high-speed cameras that can visualize the
supersonic flow with a sufficiently high sampling rate with maintaining the full im-
age resolution, though the corresponding PIV spatial resolution is acceptable but not
significantly high due to its interrogation window. Here, it should be noted that al-
though the spatial resolution substantially decreases due to the interrogation window
when applying the image correlation such as the particle image velocimetry (PIV) or
background oriented schlieren (BOS) (Lee et al., 2021; Tan et al., 2019; Edgington-
Mitchell et al., 2018), the improvement of the spatial resolution for the image cor-
relation is out of scope in the present study while there are some studies regarding
this topic. For example, one of the methods for the improvement of spatial resolu-
tion is the single-pixel ensemble correlation method, but its application is limited to
the time-averaged velocity field (Westerweel et al., 2004; Scharnowski et al., 2012;
Ozawa et al., 2020a; Nonomura et al., 2021a). Therefore, the improvement of spa-
tial resolution for the instantaneous fields is not straightforward and is left for future
work. Additionally, time-resolved PIV for a high-speed flow requires an expensive
high-repetition burst laser system(Price et al., 2021; Beresh et al., 2015). Owing to
the insufficient camera performance or the expensive burst laser system described
above, the spatiotemporal superresolution measurement, which is a reconstruction
of the time-resolved data from the non-time-resolved data acquired with the exist-
ing experimental devices, can be a powerful experimental technique for analyzing
high-speed flow phenomena.

The reconstruction of the time-resolved data from the non-time-resolved data
has been performed in various flow fields using stochastic estimation and sensor fu-
sion(Nickels et al., 2020; Zhang et al., 2020; Li and Ukeiley, 2021). Those works
rely on the linear stochastic estimation (LSE) combined with POD and the low-
dimensional dynamics of the energy-containing structures in high-Reynolds-number
flow was estimated. Tinney et al. (2008) performed PIV and near field pressure mea-
surements of a M j = 0.85 axisymmetric jet and constructed a reduced-order model
based on the Fourier-azimuthal decomposition and POD. Tu et al. (2013a) performed
the time-resolved PIV and hot-wire measurements of a wake flow behind a model
and estimated the time-resolved velocity field using the downsampled PIV data and
time-resolved hot-wire data. The reconstruction of the time-resolved velocity field
is based on the multi-time-delay modified linear stochastic estimation (MTD-mLSE)
(Durgesh and Naughton, 2010) that can strengthen the correlation of each coeffi-
cient. The proposed method effectively reconstructs the unsteady dynamics of the
wake structures. It should be noted that the spatiotemporal superresolution technique
has strong relation with the low-dimensional modeling of flow fields and their appli-
cations (Brunton and Kutz, 2019; Suzuki et al., 2020; Nankai et al., 2019; Nonomura
et al., 2021b; Kanda et al., to appear).

The present study applied this method to the aeroacoustic fields of an M j = 1.35
axisymmetric jet and reconstructed the time-resolved velocity fields. The ideally ex-
panded supersonic jet was measured by means of the non-time-resolved PIV mea-
surements and time-resolved near-field acoustic measurement using microphones.
Thus far, there were some studies reconstructing the time-resolved velocity fields us-
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ing pressure data (Li and Ukeiley, 2021; Tinney et al., 2008), and the present authors
also tried the reconstruction using the leading POD modes and the linear least square
regression, as reported in Ozawa et al. (2021). However, the error was 99% and its
accuracy was disappointing, where the definition of the error is the same as that in
the present study. This might be because of weak correlation between the microphone
signals and the PIV modes. The present study extracts only the PIV modes associ-
ated with microphone signals using the least absolute shrinkage and selection opera-
tor (LASSO) regression (Tibshirani, 1996) and improves the estimation accuracy of
the linear regression model. The quantitative evaluation of the proposed method was
conducted based on the cross-validation and the effectiveness and limitation of the
POD-based superresolution measurement are provided.

2 Experimental setup

A supersonic jet generating system installed in an anechoic room at Tohoku Univer-
sity was employed for the present experiment. Refer to Ozawa et al. (2020b,a) for
more details on the experimental facilities. The underexpanded supersonic jet with
M j = 1.35 was reproduced using a contoured convergent nozzle. The contour of the
convergent nozzle was designed based on the reference (André et al., 2013), and the
diameter at the nozzle exit D was set to be 10 mm. The nozzle pressure ratio was
2.97, and the Reynolds number based on the nozzle exit diameter was 4.62× 105.
The stagnation temperature was 297 K.

The present study simultaneously performed the PIV and the near-field acoustic
measurement using microphones. Figure 1 shows the schematic image of the ex-
perimental setup. The nozzle and the stagnation chamber are located in the center
of the anechoic room and the jet flow towards the upper side. Eight microphones
(TYPE4158N, ACO) were placed around the nozzle lip with keeping the distance of
r/D = 4, and the near-field acoustic measurement was conducted. The support for
the microphones was covered by the sound-absorbing panel to prevent acoustic re-
flections. The acoustic signals were recorded using an amplifier (TYPE5006/4, ACO)
and a data acquisition system (USB-6366, National Instruments).

The high-speed camera (Phantom V1840, Vision Research) and the double-pulsed
laser (LDY-300PIV, Litron) are installed in the anechoic room and the non-time-
resolved planar PIV data are acquired. The field of view (FOV) of the PIV is 150×
50 mm as shown in Fig. 1. The camera lens (Nikkor 80–200 mm f/2.8, Nikon) and
the 12 mm long extension tube were employed for the optics and the spatial resolu-
tion of the high-speed camera was set to be 2048× 776 pixels. Tracer particles for
PIV measurement are generated using a glycerin 50% aqueous solution and Raskin
nozzles. Raskin nozzles are incorporated into the jet generating system as well as the
anechoic room. Refer to Ozawa et al. (2020b) for details. Therefore, both jet and am-
bient flow was fully seeded by the tracer particles. The diameter of the tracer particles
is approximately several micrometers (Kähler et al., 2002).

The PIV and acoustic measurements were synchronized using a trigger signal
generated from the function generator (WF1974, NF). Table 1 summarizes the spatial
and temporal resolution of each measurement. In contrast to the low sampling rate of
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the PIV system, that of the acoustic measurement is sufficiently high to resolve the
dynamics of the large-scale structures. Here, the ratio of the sampling rate of the PIV
and acoustic measurements was defined as κ = 50.

Camera Jet

Laser

Microphone

Nozzle

FOV of PIV
150 mm

50 mm

80 mm

Fig. 1 Schematic image of the PIV plane and the microphone positions.

Table 1 Parameters of the measurements.

PIV Acoustic measurement
Spatial resolution 256×97 vectors 8 points

Temporal resolution 4,000 Hz 200,000 Hz
Number of dataset 15,000 snapshots 749,951 points

3 Calculation procedure of the superresolution

Figure 2 illustrates the flow chart of the data analysis for the proposed method. The
first step of the superresolution is the construction of the data matrix using the simul-
taneously measured PIV and microphone data. Then, the reduced-order POD coeffi-
cients of each data matrix are obtained by applying the singular value decomposition
(SVD) in the second step. The third step is the construction of the linear regression
model that estimates the POD coefficients of the PIV from the microphone data. The
calculated regression coefficients matrix is simply multiplied by the time-resolved
POD coefficients matrix of the microphone data in the fourth step, and the time-
resolved POD coefficients of the PIV data can be obtained. The detailed procedure of
the superresolution is described in the following subsections.
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XPIV

SVD

Time-delay embedded matrix

Reconstruction of time-resoloved PIV modes

PIV data Microphone data

Mean value subtraction

high-pass filter

 

ZPIV ZMIC

XMIC

Group LASSO regression

Φ

ZΦ
^

ZMIC
'

SVD

Downsampling

3.4 Reconstruction

3.3 Construction of the regression model

3.2 Dimensionality reduction

3.1 Construction of the data matrix

Fig. 2 Flowchart of the data analysis for the superresolution.

3.1 Definition of the data matrices

The data matrices are firstly constructed using the acquired experimental data. Fig-
ure 3 depicts the schematics of the data matrices definition. The colored boxes in
this figure indicate the data point of each measurement. The data points of the PIV
measurement are sparsely distributed because the sampling rate of the PIV is lower
than that of the acoustic measurement. Note that this figure does not depict the actual
sampling of the present experiment.
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u(t), v(t)

p(t)

tκ t2κ t3κ tNκ

tκ t2κ t3κ tNκ

tκ t2κ t3κ tNκ

tκ t2κ t3κ tNκ

tκ t2κ t3κ tNκ

...
...

...
...

...

tκ t2κ t3κ tNκ...

tκ t2κ t3κ tNκ... tκ t2κ t3κ tNκ...

ntd points

2ntd+1 points

Time

PIV data

Microphone data N points

XMIC=

XPIV=

Fig. 3 Schematic image of the data matrices definition.

The PIV snapshots contain the two-dimensional components of the velocity field,
u and v, on the visualization plane. The present study subtracts the mean velocity
from each snapshot and only the fluctuation components of the velocity are used:

u = ū+ ũ,
v = v̄+ ṽ, (1)

where notations ◦̄ and ◦̃ indicate the mean and fluctuation components, respectively.
Here, the discrete-time ti (1 ≤ i ≤ Nκ) is defined based on the sampling rate of the
acoustic measurement, where N and κ are the total number of PIV snapshots and
the ratio of the sampling rate of the acoustic and PIV measurements, respectively.
The PIV data matrix XPIV is constructed collecting the velocity fluctuation of each
snapshot:

XPIV =

[
ũ(tκ) ũ(t2κ) ũ(t3κ) · · · ũ(tNκ)
ṽ(tκ) ṽ(t2κ) ṽ(t3κ) · · · ṽ(tNκ)

]
, (2)

where ũ(ti) and ṽ(ti) are the vector form of the streamwise and radial components of
the measured velocity. The size of this matrix is XPIV ∈ R2m×N , where m is the total
number of velocity vectors.

The microphone data matrix XMIC is constructed using the acoustic signals. Mi-
crophone signals are first applied to the high-pass filter of 1 kHz and the noise due to
the acoustic reflection is eliminated. Although the temporal resolution is sufficiently
high to resolve the unsteady dynamics of the jet, the spatial resolution of the acous-
tic measurement is quite low compared with that of PIV, resulting in the less rank
of the matrix. Moreover, the PIV and acoustic measurements acquire the different
physical quantities that are not directly connected. Therefore, the reconstruction of
the time-resolved velocity fields does not work well when the same formulation as
the PIV data matrix is directly applied to the microphone data. To solve this issue, the
time-delay embedded data matrix was constructed using the microphone data and the
matrix rank increased. The present study defines that the time-delay ntd is the number
of data points of both past and future at a given time as illustrated in Fig. 3. This is the
same as the definition in the MTD-mLSE of the references (Durgesh and Naughton,
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2010; Tu et al., 2013b). The time-delay embedded microphone data matrix is defined
for each microphone as follows:

M j =


p j
(
t1−ntd

)
p j
(
t2−ntd

)
p j
(
t3−ntd

)
· · · p j

(
tNκ−ntd

)
...

...
...

. . .
...

p j (t1) p j (t2) p j (t3) · · · p j (tNκ)
...

...
...

. . .
...

p j
(
t1+ntd

)
p j
(
t2+ntd

)
p j
(
t3+ntd

)
· · · p j

(
tNκ+ntd

)

 , (3)

where p j(ti) is the microphone data acquired by jth microphone (1 ≤ j ≤ 8). The
size of this matrix is M j ∈ R(2ntd+1)×Nκ . Finally, the matrix of each microphone was
collected and the microphone data matrix XMIC is defined as follows:

XMIC =


M1
M2

...
M8

 . (4)

Here, time-delay ntd is one of the hyperparameters of the proposed method. The effect
of ntd is discussed at Sec. 5.2.

3.2 Dimensionality reduction based on the POD

The POD is a modal analysis method and extracts an orthogonal basis that expresses
the data with the utmost efficiency (Berkooz et al., 1993; Taira et al., 2017). After
Lumley (1967) firstly applied this analysis method into the fluid dynamics, the POD
has been applied to various flow fields and extracted the coherent structures of tur-
bulent flows. In application of the POD to fluid data, the data matrix X ∈ Rm×n is
constructed using a column vector of fluid data at a given time. Here, m and n are the
number of data points in space and time, respectively. The POD modes are simply
calculated as the SVD as follows:

X = USVT, (5)

where U ∈Rm×m, S ∈Rm×n, and V ∈Rn×n are orthogonal spatial modes, a matrix of
which diagonal components are singular values σ , and orthogonal temporal modes.
The singular values σ represent the contribution of each mode with respect to the
original data, and they are arranged in the matrix S in descending order in the present
study. Therefore, equation 5 can be interpreted that the spatial mode U evolves with
POD modes coefficients SVT. Here, the dimensionality reduced matrix of the original
data matrix X(r) is calculated using the first r POD modes:

X(r) = U(r)Z, (6)

Z = S(r)V(r)T, (7)
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where Z is the POD coefficients of the first r modes. In the present study, the SVD
was applied to the data matrices of the PIV XPIV and microphones XMIC, and those
dimensionality reduced matrices were obtained with the rank of rPIV and rMIC, re-
spectively:

ZPIV = S(rPIV)
PIV V(rPIV)T

PIV , (8)

ZMIC = S(rMIC)
MIC V(rMIC)T

MIC , (9)

where ZPIV ∈ RrPIV×N and ZMIC ∈ RrMIC×Nκ . Figure 4 shows the partial amount of
energy contained in the first r POD modes. In this figure, the PIV modes were cal-
culated using 15,000 snapshots, and the microphone modes were calculated from the
microphone data matrix of ntd = 200. Since the supersonic jet is fully turbulent, the
modal decomposition of PIV data is not efficient. On the other hand, the energy of the
first four microphone modes is high. This is because the acoustic field is dominated
by the screech tone and the microphone modes associated with the screech tone are
efficiently extracted. Here, the present study employed the first 100 PIV and micro-
phone modes for the superresolution measurement (rPIV = rMIC = 100). The energy
contained in the first 100 PIV and microphone modes was approximately 73% and
89%, respectively. Therefore, even after the dimensionality reduction, the PIV and
microphone modes still have sufficient energy to express the original aeroacoustic
field. In the present study, the row vectors of ZPIV and ZMIC are referred to as the
PIV and microphone modes, respectively.

100 102 104

r

0

0.2

0.4

0.6

0.8

1

ik
i2  / 

iN
i2

PIV mode
Microphone mode

Fig. 4 Partial amount of energy contained in the first r POD modes.

3.3 Construction of the regression model

The present study construct the linear regression model using the POD coefficients of
the PIV and microphone data matrices defined in the previous section. The PIV and
microphone data of a screeching jet may have a strong correlation because the aeroa-
coustic field is dominated by the screech phenomena. Therefore, the present study
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firstly applied the linear regression for the PIV and microphone data of a supersonic
jet and evaluate its applicability and limitations. The superresolution measurement
assumes that the PIV modes can be correlated with the microphone modes as a form
of a linear regression model:

ZPIV = ΨZ′MIC, (10)

where Ψ is the regression coefficients matrix, and Z′MIC is a downsampled matrix of
ZMIC, which consists of the extracted row vectors of ZMIC at the timing when the PIV
snapshots exist. In other words, the PIV modes can be estimated from only regression
coefficients and the time-resolved microphone modes. Although the dimensionality
reduction was applied to the microphone data, all of the phenomena in PIV modes
cannot be fully estimated from the dominant microphone modes. This is because the
generation of the acoustic waves measured by microphones is caused by a small part
of the fluid fluctuation. Thus far, the regression of the largest microphone modes to
the largest PIV modes was tried, but the flow feature was not recovered and the error
of the reconstruction became no less than 98 % (Nishikori, 2022). Consequently, the
present study improves the estimation accuracy of the linear regression model using
only the microphone modes of which correlation with the PIV modes is high. This
is realized using the LASSO regression (Tibshirani, 1996) that is the regression anal-
ysis method incorporating variable selection by a `1 regularization. The microphone
modes selection for improving the regression accuracy corresponds to the selection of
the column vector in the regression coefficient matrix as shown in Fig. 5. Therefore,
the group LASSO algorithm (Yuan and Lin, 2006) that conducts the regularization
using the group `1 norm was employed. The regression coefficients matrix Ψ was
obtained by optimizing following objective function:

arg min
Ψ∈RrPIV×rMIC

1
2
‖ΨZMIC−ZPIV‖2

2 +λ

rMIC

∑
i=1
‖ψi‖2, (11)

where the notation ‖ ◦ ‖2 indicates the `2 norm, and ψi is the i-th column vector of
Ψ. This objective function was optimized by the fast iterative shrinkage thresholding
algorithm (FISTA) (Beck and Teboulle, 2009). Here, the regularization parameter λ

that controls the sparsity of the regression coefficients matrix Ψ is one of the hyper-
parameters of the proposed method. When the regularization parameter λ is large,
the number of the selected microphone modes becomes less, and the regression coef-
ficient matrix Ψ becomes sparse in the row direction.
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Fig. 5 Schematic image of the regression model.

Here, Φ is defined as the matrix that consists of the non-zero components of the
regression coefficient matrix Ψ, as illustrated in Fig. 5. The matrix Φ is interpreted as
the space of PIV mode that can be reconstructed by the microphone modes. There-
fore, the PIV mode coefficients that can be reconstructed by the microphone modes
ZΦ is defined as follows:

ZΦ = ΦΦ
†ZPIV, (12)

where ◦† indicates the pseudo-inverse operation. The matrix ZΦ is a projection of
the ZPIV onto the Φ space, and the projection ratio PR is defined using the Frobenius
norm of the matrices:

PR = 100×

(
1−

√
‖ZPIV−ZΦ‖2

F

‖ZPIV‖2
F

)
. (13)

This projection ratio indicates the reproducibility of the PIV data that can be recon-
structed by the microphone modes with respect to the original reduced-order PIV
data. In other words, this ratio represents the upper limit of the total energy of the
phenomena that can be reconstructed by the present superresolution measurement.

3.4 Reconstruction of the time-resolved PIV modes

The time-resolved coefficient of PIV modes can simply be estimated using the re-
gression coefficient matrix and the time-resolved microphone modes as follows:

ẐΦ = ΨZMIC, (14)

where ẐΦ is the estimated time-resolved PIV modes coefficients. Consequently, the
time-resolved velocity field can be reconstructed using the spatial mode of PIV data:

X̂PIV = U(rPIV)
PIV ẐΦ. (15)

Here, to evaluate the performance of the linear regression model, the model recon-
struction error E is also defined in addition to the projection ratio:
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E = 100×

√√√√∥∥ZΦ− ẐΦ

∥∥2
F

‖ZΦ‖2
F

. (16)

Equation 16 only evaluates the model reconstruction error of the linear regression
model in the space of ZΦ, and does not directly indicate the reproducibility of the
original reduced-order PIV data. Therefore, the quantitative performance of the su-
perresolution measurement was evaluated using both Eqs. 13 and 16.

3.5 Randomized cross-validation

The present study evaluates the generalization performance of the superresolution
measurement using a randomized k-fold cross-validation with k = 10. Figure 6 de-
picts the schematic image of the randomized k-fold cross-validation while k was set
to be three for graphical explanation. The randomized cross-validation randomly se-
lects the test and training data without overlapping, and sequential test and training
datasets are not employed at all. This randomized cross-validation minimizes the ef-
fects of the trend components of the experimental data, whereas the trend component
appears in the experimental data due to the slight changes in the experimental setup
or the jet condition during the measurement. This procedure leads to the evaluation of
the generalized performance of the superresolution measurement of non-trend com-
ponents of target flow fields, which is of interest in the present study.

Test dataset
Training dataset

Fold #1
Fold #2
Fold #3

Fig. 6 Schematic image of the randomized cross-validation.

4 Basic Characteristics of the Supersonic Jet

Figure 7 shows the mean velocity fields of the streamwise and radial components, the
standard deviation of the streamwise velocity, and the Reynolds stress, respectively.
The velocities are nondimensionalized by the theoretical streamwise velocity at the
nozzle exit U j = 392 m/s that is derived under the assumption of the isentropic flow.
The mean velocity fields identify the shear layer development, the potential core, and
the shock wave structures called shock cells. As the shear layer develops towards the
downstream, the standard deviation and the Reynolds stress increases and reach the
maximum values near the end of the potential core. The present study eliminates the
region near the nozzle exit (x/D ≤ 0.5) because the thinner shear layer may induce
an error of the PIV algorithm due to the lack of the spatial resolution. The maximum
fluctuation and Reynolds stress are observed at x/D≈ 8 which is near the end of the
potential core. This agrees well with the previous findings on the supersonic jet (Tam,
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1995) and indicates the existence of a strong noise source. The screech frequency fs
can be estimated using Eq. 17 proposed by Powell et al. (1992):

n
fs
=

nshLsh(1+Mc)

uc
, (17)

where Mc, uc, and Lsh are the convection Mach number, the convection velocity, and
the shock cell length, respectively. Variables n and nsh are integers that indicate the
number of screech cycles and the length of the noise source position. The observation
of Gao and Li (2010) showed that the integers are n = 5 and nsh = 5 in the case
of a Mach 1.35 supersonic jet that exhibits the flapping mode. The present study
calculated the shock cell length Lsh as the mean distance between the streamwise
positions where the maximum velocity gradient is observed in the potential core. The
calculated shock cell length is Lsh = 11.3 mm, and the estimated screech frequency
is fs = 12.5 kHz when uc = 0.7U j. This estimated screech frequency is verified with
the microphone data.
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Fig. 7 Basic characteristics of the velocity field.

Figure 8 is the acoustic spectrum measured at (x/D, r/D) = (0, 4). The Strouhal
number was defined as follows:

St =
f D
U j

, (18)

where f and D are the frequency and the diameter at the nozzle exit, respectively. The
spectrum agrees well with that of the report of André et al. (2013). A distinct peak
with over 20 dB amplitude is observed at 12.3 kHz (St = 0.32). This is caused by the
screech tone which is driven by a strong feedback loop and the resonance frequency
agrees well with that estimated from Eq. 17. The harmonics of the screech tone were
also observed at 24.6 and 36.9 kHz. Therefore, the aeroacoustic field of the super-
sonic jet is dominated by the screech tone and the superresolution measurement in
the present study mainly focuses on the reconstruction of the time-resolved velocity
fluctuation associated with the screech tone generation.
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Fig. 8 Acoustic spectra of the supersonic jet measured at (x/D, r/D) = (0, 4).

5 Results and discussion

The superresolution measurement in the present study contains some hyperparam-
eters in the analysis procedure as described in Sec 3. Therefore, the effects of the
hyperparameters on the model reconstruction error are firstly discussed, and then,
the superresolved velocity fields are discussed in the case of the minimum model
reconstruction error.

5.1 Effect of dataset length N

Figure 9 shows the model reconstruction error with respect to the different dataset
length N. In the cases of N ≤ 14,000, the central part of the original dataset of
N = 15,000 is extracted by equally truncating both ends and the shorter datasets are
reproduced. Therefore, the center data of the different datasets do not change with
regardless of the dataset length, and the linear regression model is constructed based
on the data which has almost the same trends in the dataset.

The minimum model reconstruction error was observed at N = 2,000, and it does
not significantly change until N ≤ 6,000. The reconstruction accuracy may become
worse due to insufficient training data when the dataset length is short (N ≤ 1000). On
the other hand, the model reconstruction error monotonically increases at N ≥ 7,000.
This might be because the experimental setup or the jet condition may be slightly
changed within the data acquisition duration when the dataset length is longer. Those
may affect the POD mode coefficients as trend components of which the change is
slower than that of the target phenomena, and cause an error in the construction of the
regression model of the non-trend components in the present study. The reconstruc-
tion error can be reduced for a longer duration dataset if the good regression model
including the trend components is constructed. However, the trend components of the
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present dataset could not be simply expressed in the linear regression model, though
the present authors tried. Therefore, the present study employs the simple linear re-
gression model and the dataset length of N = 2,000, which minimizes the effect of
the trend component, was selected.
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Fig. 9 Effect of the dataset length N on the model reconstruction error.

5.2 Effect of time-delay ntd

Figure 10 shows the effect of the time delay ntd on the minimum model reconstruction
error in the case of N = 2000. The model reconstruction error decreases as the time
delay ntd increases. The large ntd may strengthen the correlation between the PIV and
microphone signals because the supersonic jet is fully turbulent and there is no exact
time delay that is optimal for all snapshots. The minimum model reconstruction error
is observed at ntd = 500, and it increases at ntd≥ 600. The time-delay that achieves the
minimum reconstruction error corresponds to the 2.5 ms. Since the screech frequency
was 12.3 kHz, the column vector of the microphone data matrix includes 61.5 periods
of the fundamental screech frequency. The present study employed ntd = 500 for
further analysis.
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Fig. 10 Effect of the time delay ntd on the model reconstruction error.

5.3 Effect of regularization parameter λ

Figure 11 shows the effect of the regularization parameter λ on the model recon-
struction error and the projected ratio in the case of N = 2000 for ntd = 500. As the
regularization parameter increases, both model reconstruction error and projected ra-
tio decrease. The large regularization parameter reduces the number of the selected
microphone modes for the reconstruction. This means that the PIV space that can be
reconstructed by the microphone modes becomes partial, resulting in the decrease in
the projected ratio. Therefore, the phenomena that can be reconstructed by the lin-
ear regression model are limited when the regularization parameter is large. On the
other hand, the decrease in the model reconstruction error indicates that the estima-
tion accuracy of the linear regression model increases if the number of the selected
microphone modes is small. Therefore, the linear regression model has a trade-off
relationship between the reproducibility of the phenomena and the estimation accu-
racy. The minimum model rec onstruction error was 60.7 % observed at λ ≥ 109.
The selected microphone modes were the first four modes related to the screech tone,
similar to those shown in Fig. 4. Since the velocity fluctuation associated with the
screech tone is few compared to the entire fluid phenomena, the projected ratio of
those cases was poor (3.88 %). However, time-resolved velocity fluctuations related
to the screech generation can be reconstructed. The results of the superresolved ve-
locity field are discussed in the next section.
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Fig. 11 Relation of the model reconstruction error and the projected ratio.

5.4 Superresolved velocity fields

The superresolution measurement was performed using the parameters that can mini-
mize the model reconstruction error as discussed in the previous sections. The dataset
length N, the time-delay ntd , and the regularization parameter λ were set to be 2,000,
500, and 109, respectively. The group LASSO algorithm left only the first four mi-
crophone modes in the regression with tested parameter range. Figure 12 shows
the snapshots of the actually sampled and superresolved velocity fields. Note that
the sampling rate of the superresolved snapshots is 200 kHz corresponding to that
of the acoustic measurement. Here, actually sampled velocity field is calculated as
U(rPIV)

PIV ZΦ, which is a projection of velocity field onto the space that the linear re-
gression model can express. This is apart from the raw PIV data without the low-
dimensionalization and the low-dimensionalized PIV data. The dashed line in this
figure indicates the convection of the coherent structure observed in v̄+ ṽ. The super-
resoloved velocity field at t = 0 µs qualitatively agrees with the actually sampled one
taken at the same time while the actually sampled velocity field does not resolve the
convection of the coherent structures due to the insufficient sampling rate. The movie
that compares the superresolved and actually sampled velocity field is available in
the supplementary material (Online Resource 1). The superresolved result shows the
smooth convection of the flow structure while the actually sampled velocity field can-
not illustrate the time-resolved fluid motion. The velocity distribution (ū+ ũ) exhibits
the flapping motion of the fourth and fifth shock cells in the potential core as shown
in Fig. 12. This characteristic fluctuation qualitatively agrees well with the character-
istics of the screech mode B (flapping mode) (Powell et al., 1992; Li and Gao, 2008;
Li et al., 2020). Although the unsteady fluctuation associated with the screech tone is
observed, the convection of the large-scale structures at the downstream side was not
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observed in the proposed method. This implies that the phenomena that can be re-
constructed from the microphone data are limited. In other words, the group LASSO
algorithm only left PIV modes associated with the screech tone, and constructed the
linear regression model.
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Fig. 12 Snapshots of the actually sampled velocity field U(rPIV)
PIV ZΦ and superresolved velocity fields

U(rPIV)
PIV ẐΦ. See also the movie in the supplemental materials.

The quantitative evaluation between actually sampled and superresolved velocity
fields are provided as the velocity profiles shown in Fig. 13. Since the superresolved
velocity fields can only be validated at the timing where the actually sampled velocity
fields are available, the statistic quantities are compared. The standard deviation of
the streamwise velocity and the Reynolds stress in Fig. 13 are calculated using ve-
locity fields for 0.05 seconds corresponding to 200 and 10,000 snapshots for actually
sampled and superresolved velocity fields, respectively. The standard deviation and
the Reynolds stress basically exhibit a similar profile between the actually sampled
and superresolved data although the superresolved data underestimate the velocity
fluctuations. This might be due to the measurement noise of the velocity field. Note
that even the actually sampled velocity field underestimate the velocity fluctuations
because it is a projection of velocity field onto the space that the linear regression
model can express.
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Fig. 13 Radial distributions of the streamwise velocity fluctuation and the Reynolds stress.

The streamwise velocity at (x/D, r/D)=(4, 0.5) was compared between the actu-
ally sampled and superresolved data as shown in Fig. 14. The superresolved velocity
sinusoidally oscillates over time while the actually sampled velocity does not resolve
the unsteady fluctuations. Note that even the actually sampled velocity field underes-
timates the velocity fluctuations because it is a projection of the velocity field onto
the space that the linear regression model can express, resulting in truncation of the
original fluctuations.
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Fig. 14 Comparison of the streamwise velocity at (x/D, r/D)=(4, 0.5).

To clarify the frequency characteristics of the superresoloved velocity fields, the
power spectral density (PSD) was calculated using the superresolved streamwise ve-
locity at the same position, as shown in Fig. 15. Figure 15 shows a distinct peak at
St = 0.31, which is the same as that of the screech tone observed in the acoustic spec-
trum of Fig. 8. Moreover, the second harmonic of the screech tone is also observed in
PSD. Therefore, the proposed method can reconstruct unsteady fluctuations of mul-
tiple frequency phenomena. Although conditional sampling or phase averaging has
been widely used for the analysis of high-speed phenomena, those methods capture
only the single frequency phenomena and assume the constant amplitude of the target
phenomena within the measuring time. On the other hand, the proposed method can
reconstruct the multiple frequency phenomena because this method uses the time-
resolved microphone mode coefficients that include multiple frequency phenomena.
This feature is one of the advantages of the proposed method.
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Fig. 15 PSD of the superesoloved streamwise velocity at (x/D, r/D)=(4, 0.5).

It is worthwhile to discuss the applicability and limitation of the proposed method
based on the spatial and temporal characteristics of each PIV mode in the superresolu-
tion result, since the superresolved velocity field is expressed as the superimposition
of PIV modes. Figure 16 illustrates the singular value SPIV and the spatial distribu-
tion of streamwise velocity component in UPIV. Here, this figure depicts the spatial
distributions of only the first eight PIV modes. The first two PIV modes have rel-
atively large singular values and exhibit large-scale fluctuations in the downstream
shear layer. The third–seventh modes are asymmetric with respect to the jet axis and
exhibit the cell structures in the shear layer region. These cell structures seem to ex-
press the velocity fluctuation caused by the shock cell oscillation that is a source of
the screech tone.
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Fig. 16 Characteristics of the PIV modes.

Figure 17 shows the time histories of the mode coefficients of the first six PIV
modes. This figure compares the superresolved POD coefficients with the actually
sampled ones. Although the actually sampled POD coefficients do not obviously
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resolve the unsteady fluctuations, the sinusoidally oscillating mode coefficients are
superresoloved. This frequency is expected to be the same as that of the screech
tone. Here, the fluctuation amplitudes of the superresolved third–sixth PIV modes
are much larger than those of the first two modes. The modes with large amplitude
correspond to those that express the shock cell oscillation shown in Fig. 16. This in-
dicates that the proposed method selectively left the PIV modes that highly correlate
with the screech tone. This is also observed in the entries of the regression coefficient
matrix Φ shown in Fig. 18. φi j is the entries of Φ where i and j are the indices of
the row and the column, respectively. In the present study, the numbers of the rows
and columns of Φ correspond to the numbers of the PIV and microphone modes,
respectively. Most of the regression coefficients are close to zero except for i=3–6.
Therefore, the LASSO regression left the third–sixth PIV modes that highly correlate
with the selected microphone modes.
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The characteristics of the selected microphone modes are summarized in Fig. 19.
The singular values of the first four microphone modes are significantly larger than
those of the other modes. Therefore, the dominant microphone modes are the first
four modes, and thus, the LASSO regression left these microphone modes. The fre-
quency characteristics of these microphone modes are shown as PSD in Fig. 19. PSDs
indicate the distinct peak of the screech tone at St = 0.31 and its second harmonic is
also observed. These frequency characteristics agree well with those observed in the
superresoloved velocity field shown in Fig. 15. Here, the velocity field reconstructed
from the microphone modes can be calculated as the product of the spatial modes of
PIV data U(rPIV)

PIV and the regression coefficient matrix Φ. The spatial distributions of
U(rPIV)

PIV Φ indicate the coherent structures in the shear layer region where the flapping
mode is observed. Therefore, the superresolution measurement can reconstruct the
phenomena that can be measured by the microphone.
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Fig. 19 Characteristics of the selected microphone modes for the superresolution by the LASSO algo-
rithm.
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A relation of the temporal coefficients of the microphone modes was investigated
because the superresolved velocity fields are reconstructed based on the time-resolved
microphone data. Figure 20 shows diagrams of the temporal coefficients of the mi-
crophone modes zi where zi is the ith row vector of ZMIC. Since the first two pairs of
microphone modes exhibit high energy compared to the others as shown in Fig. 19,
the diagram is plotted for each paired mode. Each diagram shows a sinusoidal wave
of the temporal coefficients, and the sum of corresponding coefficients is constant
over time. Therefore, those microphone modes are paired and express the screech
tone.
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Fig. 20 Snapshots of the actually sampled and superresolved velocity fields.

6 Conclusions

The present study proposed the framework for the spatiotemporal superresolution
measurement using the non-time-resolved PIV and time-resolved acoustic measure-
ments. The proposed framework is based on the sparse regression with the dimen-
sionality reduction based on POD and was applied to a Mach 1.35 supersonic jet
operated at the underexpanded condition. The PIV and acoustic measurements were
simultaneously performed with the sampling rates of 4 kHz and 200 kHz, respec-
tively. POD is applied to PIV and microphone data matrices and the sparse linear
regression model of the reduced-order data was calculated using the LASSO regres-
sion. The proposed framework contains the hyperparameters: the dataset length N,
the time-delay ntd , and the regularization parameter λ . The effects of these hyper-
parameters were quantitatively evaluated through randomized cross-validation, and
the parameters with which the minimum model reconstruction error can be achieved
were N = 2,000, ntd = 500, and λ = 109, respectively, in the present dataset. The
obtained minimum error is much smaller than that in the previous study using the
leading POD modes and the linear least-square regression.

The superresolved velocity field reconstructed with the parameters above illus-
trates the smooth convection of the velocity fluctuations associated with the screech
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tone, although the convection of the large-scale structures at the downstream side
was not observed. PSD of the superresolved velocity showed distinct peaks at the
first and second harmonics of the screech tone. These frequency characteristics agree
well with those of the selected microphone modes by the LASSO algorithm. There-
fore, the proposed framework can reconstruct the unsteady fluctuation with multiple
frequency phenomena, although the reconstruction is limited to the phenomena that
can be measured by the microphone. This feature is the advantage of the proposed
method because the conventional conditional sampling or phase averaging are hard
to reconstruct the multiple frequency phenomena.
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