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�e tra	c 
ow prediction is becoming increasingly crucial in Intelligent Transportation Systems. Accurate prediction result is
the precondition of tra	c guidance, management, and control. To improve the prediction accuracy, a spatiotemporal tra	c 
ow
prediction method is proposed combined with k-nearest neighbor (KNN) and long short-term memory network (LSTM), which
is called KNN-LSTM model in this paper. KNN is used to select mostly related neighboring stations with the test station and
capture spatial features of tra	c 
ow. LSTM is utilized to mine temporal variability of tra	c 
ow, and a two-layer LSTM network
is applied to predict tra	c 
ow respectively in selected stations. �e �nal prediction results are obtained by result-level fusion
with rank-exponent weighting method. �e prediction performance is evaluated with real-time tra	c 
ow data provided by the
Transportation Research Data Lab (TDRL) at the University of Minnesota Duluth (UMD) Data Center. Experimental results
indicate that the proposed model can achieve a better performance compared with well-known prediction models including
autoregressive integratedmoving average (ARIMA), support vector regression (SVR), wavelet neural network (WNN), deep belief
networks combinedwith support vector regression (DBN-SVR), andLSTMmodels, and the proposedmodel can achieve on average
12.59% accuracy improvement.

1. Introduction

�e accurate prediction of future tra	c conditions (e.g., traf-
�c 
ow, travel speed and travel time) is crucial requirement
for Intelligent Transportation Systems (ITS), which can help
administrators take adequate preventive measures against
congestion and travelers take better-informed decisions.
Among di�erent applications in ITS, tra	c 
ow prediction
has attracted signi�cant attention over the past few decades.
It is still a challenging topic for transportation researchers.

Due to the stochastic characteristics of tra	c 
ow,
accurate tra	c prediction is not a straightforward task.
In order to deal with this issue, many techniques are de-
ployed for modeling the evolution of the tra	c circulation.
�ese existing prediction schemes are classi�ed roughly
into three categories: parametric methods, nonparametric
methods, and hybrid methods. �e parametric methods
include Autoregressive Integrated Moving Average method
(ARIMA) [1], Seasonal Autoregressive Integrated Moving
Average method (SARIMA) [2, 3], and Kalman �lter [4,
5]. �e parametric methods are widely used in tra	c 
ow

prediction, but these methods are sensitive to the tra	c data
for di�erent situations. �e nonparametric methods include
arti�cial neural networks (ANNS) [6–9], k-nearest neighbor
(KNN) [10–14], support vector regression (SVR) [15, 16], and
Bayesian model [17, 18]. Compared to the parametric meth-
ods, nonparametric methods are more e�ective in prediction
performance. Even so, nonparametric methods require large
amount of historical data and training process. �e hybrid
methods aremainly combining the parametric approach with
nonparametric approach [19–29]. Although the prediction
accuracy of nonparametric methods and hybrid methods is
superior to parametric methods, all these methods mainly
considered the data closed to the prediction station, which
could not fully reveal the spatiotemporal characteristics of
tra	c 
ow data. Vlahogianni et al. [30] summarized existing
tra	c 
ow prediction algorithms from 2004 to 2013. Suhas
et al. [31] followed a systematic study to aggregate previous
works on tra	c prediction, highlight marked changes in
trends, and provide research direction for future work. Lana
et al. [32] summarized the latest technical achievements in
tra	c prediction �eld, along with an insightful update of
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the main technical challenges that remain unsolved. �e
readers interested in details of models that applied in tra	c
prediction �eld could refer to review reference paper.

With the widespread traditional tra	c sensors and new
emerging tra	c sensor technologies, tremendous tra	c sen-
sors have been deployed on the existing road network, and a
large volume of historical tra	c data at very high spatial and
temporal resolutions has become available. It is a challenge to
deal with these big tra	c data with conventional parametric
methods. But for nonparametric methods, most are shallow
in architecture, which cannot penetrate the deep correlation
and implicit tra	c information. Recently, deep learning, an
emerging machine learning method, has drawn a lot of
attention fromboth academic and industrial �led. Tra	c
ow
prediction based ondeep learningmethods has become anew
trend.

Huang et al. [33] proposed a deep architecture for tra	c

ow prediction with deep belief networks (DBN) and mul-
titask learning. Lv et al. [34] used a stacked autoencoder
(SAE) model to learn generic tra	c 
ow features. Duan et al.
[35] evaluated the performance of the SAE model for tra	c

ow prediction at daytime and nighttime. Soua et al. [36]
proposed a DBN based approach to predict tra	c 
ow with
historical tra	c 
ow, weather data, and event-based data. An
extension of dempster-shafer evidence theory was used to
fuse tra	c prediction beliefs coming from streams of data
and event-based data models. Koesdwiady et al. [37] pre-
dicted the tra	c 
ow andweather data separately using DBN.
�e result of each prediction was merged using dada fusing
techniques. Yang et al. [38] proposed a stacked autoencoder
Levenberg-Marquardtmodel to improve prediction accuracy.
�e Taguchi method was developed to optimize the model
structure. Zhou et al. [39] introduced an adaptive boosting
scheme for the stacked autoencoder network. Polson and
Sokolov [40] developed a deep learning model to predict
tra	c 
ows. An architecture was proposed combined with
a linear model that was �tted using regularization and a
sequence of tanh layers. Zhang and Huang [41] employed
the genetic algorithm to �nd the optimal hyperparameters
of DBN models. In recent years, recurrent neural network
(RNN) was more practical in comparison with other deep
learning structures for processing sequential data. Ma et
al. [42] utilized a deep Restricted Boltzmann Machine and
RNN architecture to model and predict tra	c congestion.
However, the traditional RNNs face problems of vanishing
gradients and exploding gradients. To solve this problem,
a long short-term memory network (LSTM) was proposed.
Because LSTM can automatically calculate the optimal time
lags and capture the features of time series with longer time
span, a better performance can be achievedwith LSTMmodel
in tra	c 
ow prediction. LSTM was developed to capture
the long-term temporal dependency for tra	c sequences by
Ma et al. [43]. Shao and Soong [44] utilized LSTM to learn
more abstract representations in the nonlinear tra	c 
ow
data. In recent years, LSTM was very successful in tra	c

ow prediction, but the spatiotemporal characteristics of
tra	c 
ow were hardly considered. Zhao et al. [45] proposed
an origin destination correlation matrix to represent the
correlations of di�erent links within the road network, and

a cascade connected LSTM was used to predict tra	c 
ow.
However, the architecture of proposed LSTM model was
overly complicated, making comprehension di	cult. �e
prediction results were not very stable and reliable in di�erent
observation points.

In this paper, inspired by the successful application of
LSTM in tra	c 
ow prediction, the high spatiotemporal
correlation characteristics of tra	c 
ow data are considered
in order to improve prediction performance. A hybrid tra	c

ow prediction methodology is proposed based on KNN and
LSTM. KNN is used to choose mostly related neighboring
stations with the test station. Amultilayer LSTM is applied to
predict tra	c 
ow in all selected stations. �e �nal prediction
results are obtained by weighting the prediction values in all
selected stations. �e weights are assigned by adjusting the
weight dispersion measure with rank-exponent method. �e
experiment results show that proposed method has better
performance on accuracy compared withmost existing tra	c
prediction methods.

�e main contributions of this paper are summarized as
follows.

(1) A hybrid tra	c 
ow prediction methodology is pro-
posed combined KNN with LSTM, which utilizes the spa-
tiotemporal characteristics of tra	c 
ow data. Experimental
results demonstrate that proposed approach can achieve on
average 12.59% accuracy improvement compared to ARIMA,
SVR, WNN, DBN-SVR, and LSTM models.

(2) �e prediction results are obtained by weighting the
prediction values in all selected stations by adjusting the
weight dispersionmeasure with rank-exponent method. Dif-
ferent from the traditional weighting method, the proposed
method highlights the importance of the highly relevant
stations to the prediction result.

(3) From classical understanding, closer stations from the
prediction station have more correlation than those further
stations. In fact, some further stations have also correlation
with the prediction station. However, it is consistent with
the general fact that the tra	c 
ow in the upstream and
downstream has great in
uence on the prediction result in
the tra	c 
ow prediction.

�e rest of this paper is organized as follows. Section 2
gives details on a hybrid tra	c prediction method based on
KNN and LSTM. In Section 3, the dataset used is introduced
for the numerical experiments. �e results and performance
evaluation are also presented. Finally, the conclusions and the
future research are given in Section 4.

2. Methodology

2.1. LSTM Network. RNN is a neural network that is spe-
cialized for processing time sequences. Di�erent from con-
ventional networks, RNN allows a “memory” of previous
inputs to persist in the network internal state, which can then
be used to in
uence the network output. Traditional RNN
exhibits a superior capability of modeling nonlinear time
sequence problems, such as speech recognition, language
modeling, and image captioning. However, traditional RNN
is not able to train the time sequence with long time lags.
To overcome the disadvantages of traditional RNN, LSTM is
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Figure 1: LSTM memory block with one cell.

proposed. LSTM is a special kind of RNN, designed to learn
long term dependencies. �e LSTM architecture consists of
a set of memory blocks. Each block contains one or more
self-connected memory cells and three gates, namely, input
gate, forget gate, and output gate. �e typical structure of
LSTM memory block with one cell is in Figure 1. Input gate
takes a new input from outside and process newly coming
data. Forget gate decides when to forget the previous state
and thus selects the optimal time lag for the input sequence.
Output gate takes all results calculated and generates output
for LSTM cell.

Let us denote the input time series as � =[�1, �2, ⋅ ⋅ ⋅ , ��], and � is input sequence length. � is
the number of inputs, � is the number of cells in the hidden
layer, and � is the number of memory cells. �e subscripts 	,
, and � refer to the input gate, forget gate, and output gate,
respectively. ��� is the weight of the connection from 	 unit
to unit . ��� is the network input to some unit  at time �, and��� is the value a�er activation function in the same unit. ��� is
the state of cell at time �. � is the activation function of the
gates, and � and ℎ are, respectively, the cell input and output
activation functions. �e LSTM model can be conducted by
the following equations.

Input Gates

��� = �∑
�=1
������ + 	∑

ℎ=1
�ℎ���−1ℎ + �∑

�=1
�����−1� (1)

��� = � (��� ) (2)

Forget Gates

��� = �∑
�=1
������ + 	∑

ℎ=1
�ℎ���−1ℎ + �∑

�=1
�����−1� (3)

��� = � (���) (4)

Cells

��� = �∑
�=1
������ + 	∑

ℎ=1
�ℎ���−1ℎ (5)

��� = �����−1� + ��� � (���) (6)

Output Gates

�� = �∑
�=1
����� + 	∑

ℎ=1
�ℎ��−1ℎ + �∑

�=1
����−1� (7)

�� = � (��) (8)

Cell Outputs

��� = ��ℎ (���) (9)

By the function of the di�erent gates, LSTM network
has the capability of processing arbitrary time lags for time
sequence with long dependency.

2.2. KNN Algorithm. KNN algorithm is a nonparametric
method used for classi�cation and regression. �e KNN
method makes use of a database to search for data that are
similar to the current data. �ese found data are called the
nearest neighbors of the current data. In this paper, KNN is
used to select mostly related neighboring stations with the
test station. Suppose there areM stations in the road network.�(�) = [�0(�), �(� − 1), ⋅ ⋅ ⋅ , �(� −�)] is the historical tra	c

ow data in test station, and � is the sample data length.��(�) = [��(�), ��(�−1), ⋅ ⋅ ⋅ , ��(�−�)] (� = 1, 2, ⋅ ⋅ ⋅�−1)
is the historical tra	c 
ow data in the mth station, which is
di�erent from the test station. �e Euclidean distance [see
(10)] is used to measure the correlation between the test
station with others.

�� = ����� (�) − �� (�)����2 = √∑
�
(� () − �� ())2 (10)

According to the calculated distance, a total of K-nearest
neighbors are found, and K stations are selected as mostly
related stations with the test station.

2.3. Proposed Method. Di�erent form the conventional
LSTM network, KNN algorithm is used to select spatiotem-
poral correlation stations with the test station at �rst. A
two-layer LSTM network is applied to predict tra	c 
ow,
respectively, in selected stations. �e �nal prediction results
in test station are obtained by weighting with rank-exponent
method. At time �, the tra	c 
ow data in the test station is
denoted as�(�) = [�0(�), �(�−1), ⋅ ⋅ ⋅ , �(�−�)].�e tra	c

ow data for�−1 stations near the test station is denoted as
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��−1 (�)

= [[[[[[[

�1 (�) , �1 (� − 1) , ⋅ ⋅ ⋅ , �1 (� − �)�2 (�) , �2 (� − 1) , ⋅ ⋅ ⋅ , �2 (� − �)... ... ⋅ ⋅ ⋅ ...��−1 (�) , ��−1 (� − 1) , ⋅ ⋅ ⋅ , ��−1 (� − �)

]]]]]]]
(11)

���(�) (	 = 1, 2, ⋅ ⋅ ⋅ %) is the station selected by KNN.�e
prediction tra	c 
ow in the selected stations and test station
can be calculated as

�̂�� (� + 1) = 'ℎ�� + � (	 = 1, 2, ⋅ ⋅ ⋅ %) (12)

where'ℎ is the weight matrix between the hidden layer
and output layer and � is bias term.�e�nal prediction results
in test station are obtained by weighting according to (12).

*- (� + 1) = �∑
�=1
'��̂�� (13)

where '� is the weight coe	cient. �e Rank-Exponent
method of weights is used in this paper. Rank-Exponent
method can provide some degree of 
exibility by adjusting
the weight dispersion measure as shown in (13). �e value of/ is set to 2 as indicated by the authors [46].

'� = (% − 0� + 1)�∑��=1 (% − 0� + 1)� (14)

where 0� is the rank of the 	�ℎ selected station, % is the
total number of selected stations, and / is weight dispersion
measure.

�e 
owchart of the proposed method is shown in
Figure 2, and the detailed calculation process is shown as
follows.

Step 1. Calculate the Euclidean distance between adjacent�− 1 stations with the test station according to (10).

Step 2. Select mostly related %stations with the test station.

Step 3. Predict tra	c 
ow with LSTM network, respectively,
in selected stations according to (13).

Step 4. Weigh prediction value in selected stations according
to (14).

Step 5. Calculate the RMSE for the predicted tra	c 
ow.

Step 6. Repeat Steps 2–5 with the di�erent % (% ≤ �).

Step 7. Find the smallest RMSE in all the di�erent %.
Step 8. Obtain the predicted tra	c 
ow in the test station
when RMSE is the smallest.

3. Experiments

3.1. Data Description. �e data used to evaluate the per-
formance of the proposed model was collected in mainline
detectors provided by the Transportation Research Data Lab
(TDRL) at the University of Minnesota Duluth (UMD) Data
Center fromMarch 1st, 2015, toApril 30th, 2015.�e sampling
period of the testing dataset was 5 min. In our experiment,
we selected the road network in Figure 3 as the experiment
area. �e area mainly contains four expressways numbered
I394, I494, US169, and TH100.�ere are 36 stations in the
experiment area. �e station locations and ID that are used
are shown in Figure 3. Stations S339 and S448 are located near
a transportation hub in road networks in the experiments.
�erefore, they were selected as the test stations for the tra	c

ow prediction. Due to the similarity of tra	c 
ow on the
same workday in di�erent weeks, we used the data in the
one workday as train and test data in order to ensure the
prediction stability. In our experiment, we chose the tra	c

ow data on Tuesday. Of course, we can choose any one
workday from Monday to Friday. �ere was a total of 9-
day tra	c 
ow data on Tuesday in our test dataset. �e
dataset was divided into two datasets. �e data in �rst 8
days was used as training sample, while the remaining data
was employed as the testing sample for measuring prediction
performance.�emost commonly used prediction interval is
5min, andwe also select the prediction time interval as 5min,
and it is veri�ed to be reasonable by the real experimental
results.

Tra	c 
ows for 5 consecutive Tuesdays are shown in
Figure 4 in the station S339, and typical tra	c 
ows are
shown in Figure 5 in the station S339 and four neigh-
boring stations. From Figure 4, we can see that there is
a little di�erence in the rush hours; however, the pro-
�les of the tra	c 
ows are basically consistent. From
Figure 5, it can be seen that there are some di�erences
in di�erent stations, but the data distribution is similar
to the station S339. Because tra	c 
ow data has high
spatiotemporal correlation characteristics, it is e�ective to
improve tra	c prediction accuracy with the spatiotemporal
correlations.

3.2. Performance Indexes. In order to evaluate the prediction
performance, Root Mean Square Error (RMSE), which was
the most frequently used metrics of prediction performance
in previous work, and predicting accuracy (ACC) were
chosen to evaluate the di�erence between the actual values
with predicted values.

5�67 = √ 1�
�∑
�=1
(-̂� − -�)2 (15)

:�� = (1 − 1�
�∑
�=1

<<<<<<<< -̂� − -�-�
<<<<<<<<) × 100% (16)

where � is the length of prediction data and -� and -̂� are
the measured value and predicted for ith validation sample,
respectively.
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Figure 2: �e 
owchart of the proposed method.

4. Results and Discussions

4.1. Results Analysis. In our experiment, stations S339 and

S448 are chosen as the test stations, which are located in

the two directions of the road network. �e timesteps are an
important hyperparameter, which are the input size to the

model and determines number of LSTM blocks in each level.
�rough experiment, when timesteps are set as 6, the predic-
tion performance can achieve the optimal value. To validate
the e	ciency of the proposed method, the performance is
compared with some representative approaches, including
ARIMAmodel, SVR, wavelet neural network (WNN), DBN,
and LSTM. In SARIMAmodel, AR andMA order are set as 5
and 4, and normal and seasonal di�erencing order are set as
1 and 2. In SVR model, kernel function is set as Radial Basis
Function (RBF), the penalty parameter of the error term as
300, and the iteration number as 1000. In WNN model, the

number of hidden nodes is set as 6, the learning rate as 0.001,
and the iteration number as 500. For DBN model, 3-layer
architecture is used, and the number of nodes in each layer
is set to 128 for simplicity.

�e predicted results of di�erent models and real tra	c

ow are shown within one day in Figures 6 and 7. It is
observed that the predicted tra	c 
ow has similar tra	c
patterns with the real tra	c 
ow and the prediction value
of the proposed KNN-LSTMmodel is almost coincided with
the measured data, especially in morning and evening peak
hours. �e RMSE and ACC for di�erent models are shown
for stations S339 and S448 in Table 1. It can be seen that
the proposed method has the minimum RMSE. �e average
ACC for the proposed method is 95.75%, which improve
by 28.92%, 8.31%, 14.44%, 6.95%, and 4.32% compared with
other models. �e traditional ARIMA model has the worst
prediction performance, which assumes the tra	c 
ow data
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Figure 3:�e ID and locations of stations in our experiment.
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Figure 4: Tra	c 
ows for 5 consecutive Tuesdays in the station S339.

is a stationary process but this is not always true in reality.
�e SVR and WNN method receive better RMSE and ACC
than the ARIMA model, while they show weakness when
compared with the deep learning methods. �e DBN model
has also no obvious advantage over SVR.

4.2. Discussions. In this paper, KNN is used to select mostly
related% stations with the test station. �e di�erent% values
have di�erent prediction performance. We search for all
possible values for %, the corresponding % is the optimal
value when the RMSE is minimum.�e optimal% is set as 10
for the station S339 in our experiment, and the ID numbers of
selected stations are S339, S340, S341, S321, S337, S342, S338,

S344, S336, and S293. �e optimal % is set as 6 for station
S448, and the ID numbers of selected stations are S448, S447,
S446, S450, S737, and S452. As shown in Figure 3, it can
be seen that almost all of the selected stations are located
in upstream and downstream in the test stations. From
classical understanding, closer stations from the prediction
station have more correlation than those further stations.
In fact, some further stations have also correlation with the
prediction station. For the test station S339, the closer station
S343 is not selected, and closer station S451 is not selected for
the test station S448.However, it is consistentwith the general
fact that the tra	c 
ow in the upstream and downstream
has great in
uence on the prediction result in the tra	c
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ows in the station S339 and 4 neighboring stations.
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ow prediction. When % = 1, the temporal correlation
is only considered, the average ACC is 91.43% which is
decreased by 4.32% compared with the proposed method. It
indicates that spatiotemporal features have important roles in
the tra	c prediction. �ese results verify the superiority and
feasibility of the KNN-LSTM, which employ KNN to capture
the spatial features and mine temporal regularity with the
LSTM networks.

5. Conclusions

In this paper, we proposed a spatiotemporal tra	c 
ow
prediction method combined with KNN and LSTM. KNN
is used to select mostly related neighboring stations that
indicated the spatiotemporal correlation with the test sta-
tion. A LSTM network was applied to predict tra	c 
ow,

Table 1: Prediction performances of di�erent models.

Models
S339 S448

RMSE ACC(%) RMSE ACC(%)

ARIMA 36.3223 61.09 44.6856 72.57

SVR 7.7424 88.17 18.4911 86.71

WNN 8.5240 74.69 12.4526 87.93

DBN-SVR 7.3277 89.60 15.3746 88.01

LSTM 1.8185 90.39 2.7499 92.47

KNN-LSTM 1.7403 94.59 2.5465 96.91

respectively, in selected stations. LSTM is able to exploit
the long-term dependency in the tra	c 
ow data and dis-
cover the latent feature representations hidden in the tra	c

ow, which yields better prediction performance. �e �nal
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Figure 7:�e real and predicted tra	c 
ow in S448.

prediction results in test station are obtained by weighting
with rank-exponent method. We evaluated the performance
of our model with real tra	c data provided by TDRL and
compared with ARIMA, SVR, WNN, DBN, and LSTM
model. �e results show that proposed model is superior
to other methods. Since the tra	c 
ow data is a�ected by
weather, incident, and other factors, the impact of these
factors on tra	c 
ow data will be further studied so as to
improve the prediction accuracy.
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