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Active control enhances shear layer mixing by exciting natural instabilities. Harmoniz-
ing the periodic actuation with vortex release can be used to manipulate - and improve -
the mixing effect. This type of feedback requires tracking large shear layer vortices. We
propose an observer structure based on a very simple model, representing the collective
signal of a set of sensors as a spatiotemporal waveform. The observer tracks the slow drift
and abrupt changes in the spatiotemporal phasors (local Fourier coefficients). Benefiting
from a much longer time constant than the period of vortex release, it naturally filters
spatial and temporal high frequency noise. The discussion is illustrated by simulations
and wind tunnel experiments in the backward facing step, where the design objective is
shortening the recirculation bubble. Simulations of the ideal free shear layer are used to
illustrate means to track asynchronous vortex merging events.

I. Introduction

Shear layer flows are unstable and sensitive to periodic perturbations,1–3 a phenomenon known as Kelvin-

Helmholtz instability. The instability is manifest by the periodic release of vortices that convect and grow
along the shear layer, undergo a series of pairwise merging into larger and larger structures, and eventually
dissipate into the flow. Mixing enhancement in shear layers is a standard objective, associated, e.g., with
pressure recovery in aggressive diffusers4 and flame stabilization in a turbine engine combustor.5

Pulsating synthetic jet actuation, exciting selected vortex release frequencies, has been established as
an effective tool to either enhance or suppress shear layer instabilities. In particular, periodic excitation at
the natural resonance frequency is an effective means to enhance mixing6 and it tends to reduce aperiodic
modulations, typical of the natural flow. This harmonization effects is desirous in its own right, under a
mixing objective, as it reduces the attenuating effect of out-of-phase waveforms. Feedback is sought as a
means to both improve and, when desired, to regulate shear layer growth and mixing, by enhancing growth
at the resonance frequency.

Considering the ubiquitous backward facing step benchmark, early shear layer oscillations are hard to dis-
cern, but vortex release can be inferred from the position of downstream vortical structures. In the presence
of sinusoidal synthetic jet actuation, simulations analysis reveals that, on average, vortex release coincides
with peek blowing, in agreement with an intuitive perception of the effect of the actuation. This further
suggests that shear layer growth can be regulated by controlling the phase difference between actuation and
vortex release: Instantaneous phase differences are both well expected, due to disturbances, unmodeled low
frequency dynamics and the like, and are indeed observed in both simulations and experiments. If the sug-
gested intuition is correct, phase mismatch between actuation and shear layer dynamics has an attenuating
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effect, due the coexistence of out-of-phase harmonics in the flow. Feedback regulation that suppress pertur-
bation from the ideal regimentation of actuation and shear layer dynamics is therefore expected to remove
these attenuating effects and enhance shear layer growth. Likewise, feedback imposition of a different phase
is expected to lower the growth rate. This note develops and tests the tools to demonstrate this hypothesis.

A key component of the sought feedback algorithm is the ability to dynamically reconstruct the position
and motion of shear layer vortices. This issue is viewed here as part of the wider and relatively recent
undertaking of developing new model based feedback control methods, specifically for fluid flow systems
(see e.g. the books & reviews7–11 and our own work5,12–16 and relating modeling results17,23). A major
component of this effort is the development of models suitable for design, addressing real time implementation
issues such complexity sensitivity and nonlinearity system. Common examples include very low order vortex
models5,18–22 and very low order Galerkin models.14–17,23

Here we focus on a yet simpler modeling framework, exploiting the flip side of a generic restriction of
feasible control to slow manipulation of phase in nearly periodic actuators, such as the pulsating synthetic
jet. In that context we propose a modeling framework that is focused on the representation of sensor
signals in terms of travelling waveforms with slowly varying Fourier coefficients (also known as dynamic

phasors24,25), which are the subject of dynamic estimation. Following our preliminary results in,13,26 this
article examines the development of such models and their application to feedback, in the backward facing
step benchmark, as well as in the ideal two dimensional free shear layer, where an added complexity is
introduced by asynchronous vortex merging.

II. Observation and Control of the Backward Facing Step
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Figure 1. Flow field downstream of a backward-facing step. Left: A schematic of our experimental testbed.

Right: A detailed 3D Large Eddy simulation from Ref.27

A. The flow over a backward facing step

The discussion in this section is based on an experimental setup which is schematically sketched in Fig. 1.
The flow detaches at the step and reattaches downstream. The wake area of current interest comprises a
recirculation bubble bounded by a shear layer and a reattachment zone. Sinusoidal zero net flow actuation
through a slot at the corner is effected by a loudspeaker, allowing for slow modulation of actuation amplitude
and phase. In the context of this note, actuation is used to excite faster shear layer growth to enhance
mixing. Reattachment in the natural flow is at over six step-heights downstream, whereas the increased
stirring motion under open loop actuation at or near the natural instability frequency can bring it to about
four step-heights. The actuation frequency and amplitude will be denoted ω and A, respectively:

a(t) = A sin(φa),
d

dt
φa = ω (1)

The reattachment point is determined in terms of the (period) average location of the zero shear stress
point on the wall. Kelvin-Helmholtz vortices evolve along the shear layer and become large enough to be
apparent at about two step-heights downstream. At Reynolds number of 4000 (calibrated with respect to
step height), the shear layer above the recirculation and the reattachment zones typically comprises 2–4
vortical structures (depending on the actuation frequency), where the downstream pair merges to form a
larger structure. While dynamically much simpler than the free shear layer, modeling the backward facing
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step benchmark includes challenging asynchronous perturbations due to low frequency modulation of vortex
release and merging.

Previous studies of feedback control of this system at TU Berlin aimed to regulate the reattachment
point, using the actuation voltage amplitude as a command signal. Flow information is obtained from an
array of 15 pressure gages (microphones) on the floor of the reattachment zone, using the finding, that the
maximum of the pressure flucuations is at 90% of the reattachment length.28–30

Here the objective is to refine the control command with flow phase actuation: Simulations of the
sinusoidally actuated flow reveal that the average actuation phase is φa = 0.5π mod 2π at the release of
a new vortex. Since the flow responds to a destabilizing perturbation by synchronizing its unstable mode
with the actuation, this phase coincidence is viewed as optimal for shear growth, and the design objective
set forth is to introduce slow corrections into the actuation, to compensate for occasional spontaneous and
disturbance driven drifts from this phase relationa. That is, control design, in this note, concerns slow
feedback corrections to the phase dynamics, in (1).

The flow phase is defined by the (nearly) periodic vortex release at the step corner. A dynamic observer,
estimating the flow phase, is a critical component in this scheme. As mentioned above an array of microphones
is aligned in the stream-wise direction, on the step floor. The microphones provide readings pi(t) of the short
time pressure fluctuations p′

w(t,x) (where x = (x, y) is the location of a point in the 2D section in which the
microphones are located). Pressure fluctuations at each point result from the low pressure associated with
passing shear layer vortices. Thus, the travelling wave formed by p′

w(t,x) has a fixed nominal phase relations
to shear layer vortices flow and the control objective can be restated in terms of a desired relation between
the actuation phase and the phase of that travelling wave, as determined from long term average of the
sinusoidally actuated flow. Experiments validate the theoretically predicted 0.5π phase difference between
the vortex wave form and the measured pressure waveform, and the optimal design objective is thus to keep
the actuation in phase with the waveform p′

w(t,x).

B. Observer and Feedback for the Backward Facing Step Flow

One approach to locate shear layer vortices is to solve an instantaneous inverse problem, directly from a
detailed flow model (e.g., a Lagrangian vortex model)31,32 . This approach suffers from several potential
disadvantages, including the required number of sensors, and numerical ill-conditioning, and noise effect.
Whether explicitly or implicitly, the common practice in feedback engineering is to exploit a priori assumption
concerning the dynamics of a system, to alleviate these difficulties. Indeed, the use of dynamic observers has
the dual effect of adding time trajectory data to the solution of inverse problem at each point in time, and of
filtering unmodeled noise. Here we consider a very simple modeling option, which was previously tested in
the context of a rotating vortex pair:13 The temporally and spatially periodic travelling waveform p′

w(t,x)
is ideally represented by a fixed set of Fourier coefficients, or phasors. The system model is then reduced to
a slow drift in these phasors, driven by a disturbance. Extracting the innovation signal from a comparison
of sensor readings projection on the waveforms subspace and the predicted waveform is an effective means
for filtering pervasive high frequency perturbations and random span-wise dynamics in the flow (i.e., in the
orthogonal direction to the crosscut plane of Figure 1).

The detection of vortex release in terms of the position of downstream vortices creates a delay of roughly
one convection time period in the feedback loop. As in any other control system, this delay restricts feasible
closed loop bandwidth to time constants that are significantly longer than that delay. Additionally, high
bandwidth and high gain actuation can introduce flow structures that deviate significantly from the pos-
tulated periodically dominated flow, or for that matter, the predictive power of any very low order model.
Control and observer parameters are thus selected to adhere to the rather limited dynamic repertoire that
such a model can cover. Following are specific steps in the suggested algorithm. Preprocessing of raw sensor
data comprise of the following:

• Microphones capture pressure fluctuations and induce frequency dependent nonlinear phase shift and
damping. These effects are calibrated against ideal values of p′

w(t,xi), where xi is the ith microphone
location.

aWe are content here with a heuristic justification of the chosen design objective, for two reasons: To begin with, it serves the
essence of this benchmark study, which is rather to demonstrate the utility of dynamic phasor estimation for phase corrections
in nearly periodic flow and actuation, as detailed below. Moreover, while a rigorously found objective could be based, say, on
adjoint optimization of a well defined cost function, our criterion is well grounded in basic tenets of fluid mechanics, and its
validity in the current context will be demonstrated in experimental results.
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• In addition to the effect of passing shear layer vortices, pressure fluctuations are caused by external
acoustic disturbances and are subject to drift. Both the effect of remote sources and slow drift are
characterized by relatively low spatial frequency, hence similar impact on the (calibrated) readings of
all sensors. That component is removed by subtracting the calibrated value of one sensor reading from
those of all the other sensors.

• Due to vortex growth and shear-layer bending, pressure fluctuations increase in the downstream di-
rection. The envelope varies as a function of changes in the reattachment point, and is determined by
a combination of an off-line, long term computation in a preprocessing step, and low-pass real time
correction. Sensor readings are normalized by the envelope amplitude, to create readings of an ideal
sinusoidal travelling wave. The normalized instantaneous value of the ith sensor are denoted pn

i .

The normalized travelling waveform representation of the sensor readings is ideally of the form

pn
i (t) = R sin(φw(t) − 2πxi/λ)

= R sin(φa(t) + φd − 2πxi/λ)
(2)

where φw(t) is defined as the phase of the pressure fluctuation wave form, φa(t) is the actuation phase, as in
(1), λ is the spatial period and φd stands for the phase difference between the normalized travelling wave and
the actuation. In particular, the nominal natural dynamics are determined by (1) and a postulated constant
wave length λ.

d

dt
φw = ω,

d

dt
λ = 0 (3)

The instantaneous spatial Fourier coefficients of the combined sensor readings are

α(t) = R sin(φw(t)) = R cos(φa(t) + φd)

β(t) = R cos(φw(t)) = R sin(φa(t) + φd)
(4)

and our control objective is stated in terms of a target value φd∗ for φd, whether φd∗ is assigned the ideal
value of φd∗ = 0 or otherwise.

The need for feedback is due to the possibility (indeed, likelihood) for slow drift in both R, λ and φd. For
example, fluctuations in λ (and R) will result from changes in the mean incoming flow velocity. Other causes
include low frequency dynamics in both the span-wise and stream wise directions that are not manifest in
low order models. The next processing steps aim to extract measurements of R, λ and φd from sensor data:

• The instantaneous measurements pn
i (t) are projected (using straightforward least mean square approx-

imation) on the spatial harmonic modes cos(2π
λj

x) and sin(2π
λj

x), for an array of wave lengths λj , to

obtain associated first harmonic spatial Fourier coefficient pairs (αj(t), βj(t)). Using the subscript “m”
to indicate the value selected as the measured quantity, the instantaneous measured wave length λm and
the associated measured (αj(t), βj(t)) are those for which the measured amplitude Rm =

√
α2

m + β2
m

is the largest among Rj =
√

α2
j + β2

j . The measured oscillation phase is φm(t) = 6 (αm(t), βm(t)).

• Dynamic observers, estimating the values of λ and φ, are simple 1st order low pass filters, suppressing
high frequency disturbances. Implemented in discrete time these are of the form

λ̂(tk+1) = (1 − σ)λ̂(tk) + σλm(tk+1)

φ̂w(tk+1) = (1 − ρ)(φ̂w(tk) + △tω) + ρφm(tk+1)
(5)

where 0 < σ, ρ << 1 are the filter coefficients and △t = tk+1 − tk is the time step.

An estimate p̂′
w(t,x) of the distributed pressure fluctuations can now be obtained by reversing the normal-

ization step, using Rm (or a low pass filtered version) and the estimated λ̂ and φ̂w in (2). That estimate,
however, is unnecessary. The practical aspect of the estimation is the correction for drift in φd in the
actuation:

• The actuation phase at the time tk is determined by the estimated phase of the sensor signal signal
wave form and the designated φd∗.

φa(tk) = φ̂w(tk) − φd∗ (6)
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C. Experimental Results

The algorithm was implemented in the testbed in Figure 1. The step height is H = 2cm and the incoming
flow velocity is U0 ≈ 3m/s, corresponding to a Reynolds number of 4000. The actuation frequency of 30Hz
corresponds to a Strouhal number of St ≈ 0.2, meaning an actuation period of Ta ≈ 5 convection time
units. The actuation voltage amplitude is set at A = 200mV . The controller clock is set at 1kHz, meaning
that △t = 0.15 convection time units. The spatial wave length filter was designed with a convergence time
constant of 10Ta and the filter for the estimated pressure waveform phase, with a time constant of in a range
from 0.05Ta to 1.0Ta. This means that we use σ = △t/10Ta and ρ = △t/0.05Ta to ρ = △t/Ta.

Results are depicted in Figure 2. The left plot displays the maximum of pressure fluctuations (rms-values)
for the natural flow, and for the flow under open- and closed-loop actuation. Phase estimation occured
with ρ = △t/0.5Ta. Feedback actuation yields higher fluctuation levels as open-loop, with a minimum at
φd∗ = 0 and increasing levels for higher and lower commanded φd∗. However, the right plot reveals, that the
reattachment length xR, and therefor the location of the pressure maximum, is shifted compared to open-loop
actuation. Commanding φd∗ > 0 appearently hampers mixing and increases the reattachment length, while
φd∗ < 0 enhances mixing and thus decreases the length of the recirculation bubble. The tracking capability
of the observer deteriorates at very high and very low φd∗, respectively. This puts a limit to both increase
and decrease of efficiency.
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Figure 2. The backward facing step flow. Left: Maximum pressure fluctuations normalized by the level of the

natural flow for the flow under open- and closed-loop actuation. Right: Comparison of the period average of

the reattachment point xrR, normalized by the reattachment length of the natural flow. The red lines refer to

the open-loop actuation, the blue dots to closed-loop actuation.

III. A Phasor Model and an Observer for the Free Shear Layer

A. The free shear layer

The two dimensional free shear layer is an idealization of systems such as the wake behind a thin airfoil,
where no boundary interactions occur past the inception of the shear layer. A schematic is depicted at the
top of Figure 3, featuring the discrepancy between the incoming flow velocities above and below a separating
wall, and the growth of the of the shear layer as it evolves, downstream. Both Kelvin-Helmholtz vortices
and vortex pairing are apparent in the shear layer visualization at the bottom plot of Figure 3. The flow
velocity along the shear layer is the average of the two input velocities, and shear layer vortices convect
at that velocity, creating a simple relation between the vortex generation frequency and the spatial wave
length (i.e., the average distance between vortices in the near field). A natural instability determines a peak
sensitivity at a characteristic frequency, but the flow is sensitive to disturbances at a range of frequencies,
a fact that is reflected by seemingly random drifts in the upstream periodic behavior as well as aperiodic
vortex pairing, further downstream.

For rapid prototyping and observer proof of concept we use a moderate order simulation vortex model.
Its main parameters are: Incoming flow velocities of U1 = 1.5, U2 = .5, hence a shear layer velocity of
Us = 0.5(U1 + U2) = 1. The initial vortex core radius, defining the characteristic length, is R = 1 and
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Figure 3. Left: A schematic of the free shear layer with a flap actuator and velocity sensors located belowe the

shear layer. Right: Visualization of a detailed 3D numerical simulation from Ref.33 using the source term Q

of the pressure-Poisson equation. The primary Kelvin-Helmholtz vortices in the early shear layer are marked

by a yellow volumetric representation of Q cos2 θ < 0, where θ is local angle between the vorticity vector and

the spanwise direction. Rib vortices in the later shear layer are represented by red iso-surfaces of Q sin2 θ.

the circulation production rate is dG/dt = −1. The Strouhal number (i.e., the natural instability frequency,
normalized by the characteristic length and period) is St = fR/U = 0.05, leading to a frequency of ω = 0.1π,
time period T = 20 and spatial wave length λ = 20. Periodic actuation at the instability frequency is
represented by an oscillating flap at the end of the separating wall (Figure 3, top). The flap length is λ = 20
and the vertical oscillation stroke is 0.05λ.

Random perturbations and drift in the periodic behavior will be a challenge in observer design, where the
objective is the estimation of the center location of vortical structures from data obtained from an array of
sensors. As will be seen in the backward step benchmark, this information can be used to further harmonize
vortex release, enhance shear layer growth and increase its mixing effect. Locating vortex position can also
be used in a control aiming to enhance or delay vortex merging by local actuation at a specific location along
the shear layer.13,19,31 Here we shall only discuss the dynamic estimation component. In that context we
postulate measurements of the stream-wise fluid velocity at 24 points along the line y = −15 (relative to
Figure 3). Velocity sensors were selected due to the relative ease to incorporate them in the vortex model
we use to test the suggested framework, but the proposed estimation framework is equally applicable to
more practical alternatives, such as pressure gages, as is done in the experimental setup used in our next
benchmark, in §A.

B. A Free Shear Layer Observer

Here we highlight features added to the previous case, to address the presence of asynchronous vortex
merging. The sampled trajectory of velocity measurements is denoted um(t) = (um(t, (xi,−15))i, and the
observer estimates the x-coordinates of shear layer vortices.

The Near Field Shear Layer (0 ≤ x ≤ 4λ):
Vortices do not merge and maintain the time frequency ω, the spatial wave length λ, and a convection
velocity of Us.

• The [0, 4λ] component of um forms a single harmonic travelling wave. Its spatio-temporal Fourier
coefficients are ideally constants. Dynamic corrections are obtained by the low pass filtered deviation
between the coefficients of the projected instantaneous wave form and previous estimates. The used
filter time constant is 0.67T .

• Stream-wise velocity below the shear layer is negative. Local minima indicate passing vortices. Mea-
sured locations of local minima are easily extracted from the reconstructed single (first) harmonic wave
form.

• As a vortex estimate reaches x = 4λ, it is handed over to the downstream observer and a new upstream
vortex location is estimated at x = 0.
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The Downstream Shear Layer (4λ ≤ x ≤ 14λ):
Estimation of individual vortex locations becomes local and the convection velocity varies between vortices
due to the effect of paired vortices and varying distances between them. The dynamic estimates for each
vortex therefore includes both the position x̂i and convection velocity ûi, initiated at 4λ and Us, respectively.
Measured corrections, as described below, are low pass filtered with a long time constant.

• A vortex pair is merged and the estimator for one of the two is removed once their estimated horizontal
distance reduces below a tolerance η = 2 = 0.1λ.

• We distinguish between several cases, relating to the position and convection velocity of the ith vortex:

– If the i + 1st vortex is a merged (double) vortex, its effect on sensor readings is typically larger
than that of the ith vortex, excluding the search for- and use of the location of a local minimum
in the measured fluid velocity below the ith vortex. The i + 1st vortex has an accelerating
effect on the ith vortex. A very simple way to correct for that effect is as follows: At the time
tk+1, the sensor readings over the interval [x̂i(tk), x̂i(tk) + 2λ] are projected over the 1st spatial
subharmonic. The located minimum of this waveform indicates a point x̄i+1 of maximal effect
of the merged vortex. This position is used as a low pass filtered update for the next position:
x̂i(tk+1) = (1 − ν) x̂i(tk) + νx̄i+1 + ûi(tk) · △t, with the corresponding update on the convection
velocity. A long filter time constant of 8T was used.

– Else, the second harmonic expansion of sensor signals is evaluated over the interval [x̂i(tk) −
0.25λ, x̂i(tk)+0.25λ]. If this expansion attains a minimum over [x̂i(tk)−0.125λ, x̂i(tk)+0.125λ],
that minimum will be used as a new measured position, and low pass filtered (with a time constant
of 0.8T ) to update both x̂i(tk+1) and ûi(tk+1). Sharper minima due to the presence of paired
vortices motivates the use of the 2nd harmonic.

– Else, the first harmonic expansion of sensor signals is evaluated over the interval [x̂i(tk) −

0.5λ, x̂i(tk) + 0.5λ]. If this expansion attains a minimum over [x̂i(tk) − 0.25λ, x̂i(tk) + 0.25λ], it
will be used as a measured position in updates, as above.

– If no local minimum is found, no velocity update is applied: ûi(tk+1) = ûi(tk) and x̂i(tk+1) =
x̂i(tk) + ûi(tk+1) · △t.

Figure 4 depicts two generic snapshots of the vorticity distribution in the flow and dynamic estimates
of the locations of vortical structures. The figure illustrates both near field shear layer vortex tracking
and a reasonable ability to continue tracking vortices as they aggregate into larger structures. Some local
estimation distortions are due to the effect of variations in the vertical vortex positions on the measured
velocity. These variations are not accounted for in the simple model used here, illustrating the potential
advantages of including more details, such as using a Biot-Savart equation in the context of aggregated
vortices, as a forward model in a dynamic inverse problem solution.

Figure 4. Snapshots of the vorticity distribution and vortical structures tracking in the free shear layer. Dark

spots indicate high vorticity. Vertical lines are estimates of vortex location and yellow dots along y = −15
indicate velocity sensors. Estimates downstream of the last sensor are not updated.
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IV. Concluding Remarks

A proposed simple observer structure estimates vortex locations along a shear layer from an array of
velocity or pressure sensors. It is based on a phenomenological dynamic phasor model for the travelling
waveform of sensors’ readings. The dynamic estimate provides phase information that enables harmonic
corrections in a periodic actuation signal, in order to manipulate - and increase - shear layer growth, with
beneficial effects on mixing. The observer is illustrated in both simulations and closed loop control exper-
iments for the flow over a backward facing step, and in an ideal free shear layer simulation. Future works
may include means to enhance the tracking capability of the observers under closed-loop actuation. Another
question is, whether the used scheme to determine the reattachment length by evaluating the position of the
maximum pressure fluctuations is meaningful under closed-loop actuation or not. The effect of closed-loop
actuation on pressure recovery may be investigated as well.
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