
Spatiotemporally Adaptive Estimation and 

Segmentation of OF-fields 

H.-H. Nagel 1'2 and A. Gehrke I 

1 Institut fiir Algorithmen und Kognitive Systeme 

Fakult~t fiir Informatik der Universit~t Karlsruhe (TH) 

Postfach 6980, D-76128 Karlsruhe / Germany 

2 Fraunhofer-Institut fiir Informations- und Datenverarbeitung (IITB) 

Fraunhoferstr. 1, D-76131 Karlsruhe / Germany 

Tel. +49-721-6091-210; Fax +49-721-6091-413; email hhn@iitb.fhg.de 

Abstract. A grayvalue structure tensor provides knowledge about a lo- 

cal grayvalue variation. This knowledge can be used to devise a spa- 
tiotemporally adaptive optic flow estimation process. Such an adaptive 

estimation lowers the level at which the resulting optic flow (OF) field is 

disturbed by noise and estimation artefacts. This in turn substantially 

simplifies the analysis of remaining - often subtle - effects which easily 

jeopardize a 'naive' segmentation approach. Appropriate treatment of 

such effects eventually results in a basically simple, but nevertheless sur- 

prisingly robust segmentation approach. Various stages of this approach 

are illustrated by examples for the extraction of moving vehicle images 

from a digitized road intersection video-sequence. 

1 I n t r o d u c t i o n  

In order to extract  a weak, straight line edge segment from a noisy image, it 

is advantageous in general to employ a gradient filter with a suitably elongated 

support  - see, e.g., [10]. The low-pass contribution to the derivative filter will 

then act more along the edge segment than across it. Evidently, such an approach 

implies a hen-and-egg dilemma: in order to extract  the edge segment, one has to 

know its orientation, and in order to determine its orientation, one has to know 

the edge segment. 

An analogous problem appears in the case where one has to segment an optic 

flow (OF) field to be est imated in the first place: segmentation of an OF-field 

requires the detection of discontinuities in an estimated vector field, i. e. it implies 

at first glance some kind of derivative operation, followed by a detection step 

which decides whether the local change appears  significant enough to decide 

in favor of a discontinuity in the OF-field. Alternatively, one might consider 

region growing from some 'seed region'. For both  alternatives, the hen-and-egg 

problem pops up in a different disguise: either location and structure of a segment 

boundary  element or a seed region together with some appropriate  stopping 

criterion for region growing have to be determined simultaneously in the OF 

vector field. 
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Optic flow - the apparent shift velocity of a grayvalue structure in the image 

plane - will be considered here as a threedimensional vector u = (ul, u 2 ,  1) T in 

an (x,y,t)-space formed by the image plane coordinates x' = (x, y)T and time 

t. A location in this (x,y,t)-space will be given by the threedimensional vector 

x = (x, y, t) T. OF is usually estimated based on the postulate that  the grayvalue 

g(x ,y , t )  is locally stationary as a function of x, y, and t: dg(x,y , t )  = O. This 

results in the so-called 'Optic Flow Constraint Equation (OFCE)'  [4]: 

og(x, y, t) 
(g~, gy, gt) u = (Vg)Tu = 0 with gx - Ox , etc. (1) 

Due to space limitations, we refer to [1] for a general review of optic flow esti- 

mation. In the sequel, we first concentrate on our approach in order to provide a 

frame of reference for a discussion of related research in the concluding section. 

2 T h e  G r a y v a l u e - L o c a l - S t r u c t u r e - T e n s o r  G L S T  

The gradient operator V for the computation of Vg(x) will be realized by a 

convolution of g(x) with partial derivatives of a trivariate Gaussian G(x) given 

by 

1 e_�89 (2) 
a(x) = Iv/  

The covariance matrix Z is initially set to 

0 0) 

with values for the standard deviations ax in the x-direction, ay in the y- 

direction, and at in the t-direction chosen by the experimenter on the basis 

of a-priori knowledge. 

Due to the fact that  (1) is underdetermined at a single location x, one mod- 

ifies the estimation postulate into the requirement that  the squared magnitude 

of the OFCE, averaged over some local environment, should be minimized by a 

suitable choice of u: 

](Vg)Tul 2 = ((Vg)Tu) T ((Vg)Tu) = uT V g ( x ) ( V g ( x ) ) T u  i. min . (4) 
u 

According to [7], let the spatiotemporal Gaussian introduced by (2) with covari- 

ance matrix 2Z  describe the local environment around a location x. We then 

define the location-dependent 'Grayvalue-Local-Structure-Tensor (GLST)'  as 

+eo 

GLST(x )  = / d( Vg(~ - x ) ( V g ( (  - -  x ) )  T e _ � 8 8  ~ _ x ) T 2 : - I ( ~  __ X) (5) 

--(213 



88 

By definition, the GLST is positive-semidefinite. GLSTina denotes a Grayvalue- 

Local-Structure-Tensor computed by using Zinit as given by (3). 

Let eGLST~,it,i denote the i-th eigenvector of GLSWinit and .~init,i the corre- 
sponding eigenvalue, with ~init,1 ~ ,~init,2 ~_~ )~init,3 ~ 0 . GLSTinit can then be 
written in the form 

GLSTinit : 

(eGLSTi.lt,1 , eGLSTi.lt,2 , eGLSTi.lt,3 ) 0 Ainit,2 0 | eGLSTinit,2 
T 0 0 )~init,3 ~keGLSTIaIt,3 

(6) 

According to (4), optic flow is given as the projection of the GLST-eigenvector 

eGLST,3 (X) : (eGLST,31, eGLST,32, eGLST,33) T, which corresponds to the small- 

est eigenvalue )~GLST,3 (X) of GLST(x), into the image plane. This is equivalent 

to the hypothesis that the eigenvector related to the smallest GLST-eigenvalue 

points into the direction of smallest temporal change, which in turn is ascribed 

to a grayvalue structure shifting smoothly in the (x, y, t)-space. The projection 

of this eigenvector into the image plane will be normalized to a unit value for 

the third (i. e. temporal) component in order to remain compatible with the 

definition given in Sect. 1: 

T 
u(x) = ( eGLST,31 , eOLST,32 , eCLST,33 _ 1 (7) 

eGLST,33 eGLST,33 eC.LST,33 

3 A n  A d a p t i v e  F i l t e r  B a s e d  o n  t h e  G L S T  

Let us substitute GLSTinit(x) for Z -1 in (2) and recompute the gradient of g(x). 

A large eigenvalue of GLSTinit (x) will severely restrict the extent over which 

grayvalues contribute to the partial derivative in the corresponding direction, 

whereas the low-pass action implied by the Gaussian will extend much more 

in the directions corresponding to eGLST~,~t,2 and eGLSTi,~t,3. We thus obtain 

exactly the desired effect of less low-pass filtering in the direction of largest 

local grayvalue change than in the directions perpendicular to it. In general, 

the amount of low-pass filtering in the direction corresponding to an eigenvalue 

"~init,i of GLSTinit (x) will be determined by the magnitude of this eigenvalue. 

We may exploit this information in order to improve the derivative operation. 
Use of GLSTinit(x) instead of a constant Z -1 during a recomputation of the 

gradient at each image location x automatically adapts the low-pass action of 

the Gaussian in the partial derivative operators to the local grayvalue structure. 

3.1 Del imi t ing  the  Extent  of  an Adapt ive  C o n v o l u t i o n  Mask 

There occur problems, however, unless we proceed with caution. In rather ho- 

mogeneous image regions, the area of support can locally grow to a size where a 
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standard implementation of a Finite Impulse Response (FIR) filter by a digital 

convolution operation may begin to fail. An uncontrolled adaptation can result, 

for example, in excessive mask sizes. On the other hand, it may well happen that  

an eigenvalue becomes very large in image areas with particularly strong gray- 

value transitions. As a consequence, the Gaussian in (2) will decrease so sharply 

that  the sampling theorem may be violated upon conversion of the resulting filter 

to a digital version for a sampling grid given by the - already - digitized image 

sequence. We are thus forced to restrict the mask size to be used, without jeop- 

ardizing the desired adaptation effect whenever the eigenvalues of GLSTinit(x) 

remain compatible with the minimal and maximal mask size provided by the 

available implementation of a FIR digital convolution operation. 

Let aminsiz e 2  be a parameter which forces a diagonal element in the covariance 

matr ix for the Gaussian in (2) to remain compatible with the smallest admissible 

2 2 determines the mask size. Crmaxsiz e 2  should be defined such that  O-minsiz e -}- O'maxsiz e 

largest admissible mask size. Let 

U = (eGLs~. i t ,1 ,  eGLSN.it,2, eGLS~.it,3 ) (8)  

denote the 3D rotation matrix in the (x, y, t)-space which aligns the coordinate 

axes with the eigenvector directions of GLSWinit (x). Denoting the 3x3 unit ma- 
trix by I and using I = U(x)UT(x), we introduce a locally adapted covariance 

matr ix ~ ( x )  as 

~ ( x )  = 

/ ( )) maxsize 
1+o .2 . ,x~ (x) 0 0 

maxs l ze  1 ~  2 

U ( x )  2 1 -~- 0 . . . .  i2e 0 uT(x) 
O'minsize l + a  2 . ) ~  (x)  

maxslze ~ a2 

maxslze 
0 0 i + ~ o ~ ' ( ~ )  

(9) 

with A~(x) = ) ~ i n i t , i ( x ) ,  i E {1, 2, 3}. For experiments to be discussed shortly, 

we have chosen aminsiz e 2  = 0.5 and O-maxsiz e 2  _- 4.0. Let us assume for the moment 

that  GLSTi. i t(x)  has an eigenvalue ~ini t ,3  close to zero due to lack of grayvalue 

variation in the corresponding direction. In the limit of zero for ) l in i t ,3  , the third 

eigenvalue of Z (x )  will become 6rminsiz e 2  + O-maxsize,2 thereby restricting a digi- 

tized version of the resulting Gaussian to the chosen maximal mask size. In case 

of a very strong straight line grayvalue transition front in the vicinity of image 

location x, the first eigenvalue Ainit,1 (x) of GLSTi,it  (x) will force the second con- 

tribution to the corresponding eigenvalue of Z (x )  in (9) to be small, delimiting 

the sum of both terms from below by a suitably chosen 2 O'minsiz e �9 

Equation (9) will only yield acceptable results for the eigenvalues of Z(x) ,  

if the eigenvalues of G L S T i n i t  range between O-minsiz e 2  and O-maxsize.2 If most of 

the initial eigenvalues, however, are far outside of this interval - by experience 

we have seen that  most of the eigenvalues from GLSTinit range above 50 - the 
2 eigenvalues of Z(x)  which are determined according to (9) are all close to aminsiz e 
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and therefore all are similar. Normalizing the eigenvalues by �89 
- i. e. setting ~ (x) = ~,m~t,~(x) �89 i E {1, 2, 3} -- forces the eigenvalues 

of Z(x)  to vary between reasonable limits. 

3.2 E s t i m a t i o n  of  an  I m p r o v e d  G L S T  

The matrix Z(x)  given by (9) describes the local grayvalue variation at location 

x in such a manner that  the effects of noise on gradient computation will be 

reduced in comparison with that  based on (3), since the low-pass filter action 

along the directions of smaller gray value variations will be increased. In addition, 

the influence of strong neighboring grayvalue structures is expected to be reduced 

due to a limitation of the filter extent in the direction of strong changes, which 

should lead to a less distorted gradient estimation at location x. The choices for 

the parameters ~7minsiz e 2  and O-maxsiz e 2  facilitate to incorporate a-priori knowledge 

about the spatiotemporal extent of semantically relevant grayvalue changes in 

an image sequence. 

We may now exploit the knowledge about the local spatiotemporal grayvalue 

variation at image sequence location x in order to recompute the 'Grayvalue- 

Local-Structure-Tensor' as defined by (5), but this time using the spatiotempo- 

rally adaptive Z(x)  given by (9) in the Gaussian of (2) instead of the constant 

given by (3). 

4 A d a p t i v e  E s t i m a t i o n  o f  O p t i c  F l o w :  S p e c i a l  C a s e s  

Fig. 1. Image frame No. 424 from the image sequence 'dt_v'. The optical flow fields for 
the three selected windows will be illustrated subsequently in more detail. 

In certain situations, a determination of the OF-vector according to (7) will 

not yield acceptable results. One condition occurs obviously at a location x 
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where the local grayvalue is distributed so homogeneously that  all eigenvalues 

of GLST practically vanish. This case can simply be detected by comparing 

t race(GLST(x))  - which represents the squared norm of the gradient averaged 

around x - against a minimal size threshold min_norm_of_GLST. We shall 

call pixel positions, where this threshold is not surpassed, as neutral. At such a 

location, it will not be possible to reliably detect any motion at all. A forteriori, 

it thus is not possible to decide at such a location whether the image of a scene 

surface element depicted at x moves relative to the recording camera against a 

non-contrasting background. 

The convention which underlies (7) will lead to counter-intuitive results for a 

different situation, too. At a location x with a locally dominant straight line gray- 

value transition front, all spatial gradients in the neighborhood around x point 

more or less into the same direction. Since Z(x)  adapts to this local grayvalue 

structure, the GLST computed using &(x) will have a very small component 

perpendicular to the prevailing spatial grayvalue gradient direction. It happens 

occasionally that  this spatial variation is smaller than the temporal one, even if 

the local grayvalue structure shifts smoothly in the image plane with time. In 

such situations, one is confronted with the fact that  the eigenvector correspond- 

ing to the smallest eigenvalue of GLST(x)  does not reflect the apparent shift of 

a grayvalue structure with time. 
We can detect this special condition by inspection of the third, i. e. temporal, 

component eGLST,33(X) of the eigenvector related to the smallest eigenvalue 

)~GLST,3(X) of GLST(x) .  If eGLST,33(X ) ~ e33mmflow, we consider the smallest 

eigenvalue to represent a purely spatial local grayvalue variation. We denote such 

a pixel as spatially_tangent since the eigenvector eGLST,3 (X) corresponding to the 

smallest eigenvalue is oriented in this case within the image plane to be tangential 

to an edge: it points into a direction with an essentially constant local grayvalue 

distribution. The characteristics of such a spatially_tangent location differ from 

those of a neutral one by exhibiting at least one eigenvalue significantly different 

from zero - see Fig. 2(c). Since the three eigenvectors of GLST(x)  are mutually 

perpendicular to each other, any temporal variation at a ST-pixel must then be 

reflected by a vector in the normal plane to  eGLST,3(X). The direction of the 

smallest grayvalue variation with a temporal component will thus be given by 

the second eigenvector eGLST,2(X) which corresponds to the middle eigenvalue. 

5 Pixel  Assignment to Categories 

As a preparatory step for the segmentation of an OF-field, we first categorize each 

pixel by an hierarchical classification procedure according to its local spatiotem- 

poral grayvalue structure. As will be seen, subtle characteristics of this spa- 

t iotemporal structure may substantially influence subsequent clustering, split, 

and merge steps. 

The first test at a pixel location x determines if t race(GLST(x))  < rain_ 
norm_o]_GLST is true: such a pixel is assigned to the category neutral (N). In 

the case where t race(GLST(x))  > min_norm_o]_GLST, we can be sure that  at 
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Fig. 2. Enlargement of window 2 in Figure 1. Overlaid are the OF-vectors wich are 

color-coded as follows: The yellow vectors show regular_optical_flow (R_OF). The vec- 

tors at the OF_discontinuity (OF_D) locations are color-coded in red and at the dom- 
inant_gradienLdirection (DGD) locations in turquoise. If a pixel could be assigned to 
the category OF_discontinuity (OF_D) and simultaneously complied with the criterion 

for the category dominant-gradient-direction (DGD), it has nevertheless been assigned 

to the category OF_discontinuity (OF_D) and is, therefore, shown in red. The assign- 

ment of pixels to these categories is explained in Sect. 5. (a): The optic flow was 

estimated based on GLSTinit. Note that the pixels, which have been assigned to the 

category dominant_gradient_direction (DGD), are located at roadway markings with a 

homogeneous grayvalue structure in spatial direction. (b): Compared to panel (a), we 

have lowered the discontinuity_threshold. The number of locations assigned to category 

OF_D increases, thereby reducing the areas covered by accepted regular optic flow vec- 

tors. (c): Analogous to (b), but treating optical flow vectors at spatially_tangent (S_T) 
locations according to Sect. 4. The concerned pixels are mainly located at the roadway 

marking in front of the vehicle which exhibit a more or less homogenous grayvalue 

within the marking. At these locations, therefore, the OF-vector point along the direc- 

tion of homogenous grayvalue, if we used the eigenvector corresponding to the smallest 

eigenvalue for the OF estimation - see panel (b). (d): Analogous to panel (c), but the 

overlaid estimated optical flow vectors are based on GLST(z) as described in Sect. 3 

rather than based on GLSTinit. The number of pixels at the depicted vehicle image, 

which are incorrectly assigned to the category OF_D, is smaller than indicated in panel 

(c) although we use the same low discontinuity_threshold value as in panel (b) and (c). 

Simultaneously, the 'discontinuity wall' around the vehicle image in panel (d) contains 

less holes than the 'discontinuity wall' depicted in panel (c). 
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least one eigenvalue of GLST(x)  differs significantly from zero. It thus is justified 

to speak about the smallest eigenvalue )kGLST,3(X ) of GLST(x) .  

In c a s e  eGLST,33(X) > e33m,nflow is true, the pixel at image location x is 

assigned to category OF_discontinuity (OF_D), provided 

~GLST,3(~) 
�89 (GLST(x) ) 

> discontinuity_threshold. (10) 

Figure 2 shows the OF-vectors at these locations color-coded in red. 

This test captures the observation that  the temporal  change - represented 

here by "~GLST,3(X) - -  is larger than deemed acceptable for a smooth shift of a 

grayvalue structure in the image plane. A large )~GLST,3(X) signifies tha t  there 

is no direction with small grayvalue variation. According to (1) this means that  

there exist different OF-vectors in the local region considered. Please note that  

the left hand side of (10) varies by definition between 0 and 1 which allows to 

restrain the choice of a threshold to this range. 

If, however, this location must be treated as spatially_tangent (S_T), because 

eGLST,33(X) ~ e33m,nflow, the second eigenvalue ,~GLST,2(X) indicates the small- 

est temporal change. Optic flow must then be defined as 

T 
U(X) : I eGLST'21 ~ eGLST'22 , r - - 1 )  , (11) 

eGLST,23 eGLST,23 eGLST,23 

see Fig. 2(c). In this case, the test for a discontinuity in the optic flow field must 

be applied to the second eigenvalue, i. e. location x is assigned to category OF_D 
if 

~aLST,~(x) > discontinuity_threshold. (12) 
�89 (GLST(x)) 

Among the remaining image plane locations which are neither neutral (iV) nor 

OF_discontinuity (OF_D), we still have to detect any potential bias due to the 

aperture problem which occurs whereever the grayvalue structure is dominated 

by a straight line grayvalue transition front: the second eigenvalue differs from 

zero, but  only by a small amount which may be insufficient to facilitate a reliable 

estimation of optic flow. We detect such situations, therefore, by the following 

test: 

AcLsr,2 (x) + ACLST,3 (X) 
2trace (GLST(x)) 

< thresholddomi,~anLgradi~nt_d,rectio,~ , (13) 

Again, the left hand side of this equation varies by definition between 0 and 1. 

All pixels not assigned in the course of this test sequence to one of the 

categories neutral (N), OF_discontinuity (OF_D), or dominant_gradient_direction 
(DGD), will be treated as regular_optical_flow (R_OF) locations. These surviving 

locations are depicted in Fig. 2 through the yellow vectors. 
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6 S e g m e n t a t i o n  o f  E s t i m a t e d  O p t i c  F l o w  F i e l d s  

The basic approach consists in identifying image locations where the temporal 

grayvalue change does not become small enough to justify a classification of the 

local spatiotemporal grayvalue variation as a smooth temporal shift of a char- 

acteristic spatial grayvalue structure. Ideally, such OF_discontinuity-locations 

should form a 'wall of discontinuities' around the image of an object moving 

relative to the camera with a velocity different from that  of its environment. We 

proceed in four basic steps: 

1. Each pixel is assigned - according to Sect. 5 - to one of the following cate- 

gories: 

- neutral (N), 

- OF_discontinuity (OF_D), 

- dominant_gradient_direction (DGD), 

- regular_optical_flow (R_OF). 

2. Pixels which have been assigned to the same category are clustered into 4- 

connected components, using a standard run-length algorithm as described, 

e. g., in [3]. 

3. If the variance of OF-vectors within a connected-component suggests two 

or more significant clusters, the originally obtained connected-component is 

split in order to increase the homogeneity of OF-vectors within a region. 

4. Certain combinations of the connected components resulting from previous 

steps are merged in order to improve a mask covering the image of an object 

which potentially moves in the scene relative to the recording video camera. 

6.1 ' D i s c o n t i n u i t y  Wal l s '  

The approach outlined above should result in clusters of R_OF-locations, sur- 

rounded by 'walls' of OF_discontinuity-(OF_D-)locations. In particular, a 'dis- 

continuity wall' is expected around the image region corresponding to the image 

of an object moving in the scene relative to the camera. 

As is shown in Fig. 2(a), a number of breaches can be detected in the 'dis- 

continuity wall' around the depicted vehicle image. We may lower the discon- 

tinuity_threshold in order to detect more discontinuity locations in the hope to 

close many, if not all, of these breaches. As Figure 2(b) shows, a reduction of the 

discontinuity threshold from 0.03 to 0.023 does indeed close some holes, but  only 

at the cost of many additional false alarms, i. e. a lot of spurious OF_D-locations 

axe marked. 

Figures 2(a) and (b) also illustrates that  choosing the eigenvector associated 

with the smallest eigenvalue of the GLST may result in OF-vectors which are 

incompatible with intuition: as can be seen in Figs. 2(a) and (b), OF-vectors in 

the vicinity of strong, straight line grayvalue transition fronts tend to be oriented 

tangentially to these transition fronts - even in cases where a transition front (or 

a shadow cast in that  image area) moves more or less in the gradient direction. 

Figure 2(c) demonstrates the improvement if we subject not the smallest, but  
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the next larger eigenvalue to the discontinuity test in case of (S_T)-locations, 
using the same threshold as in Fig. 2(b). 

So far, all depicted OF-vectors have been computed based on GLSTinit. Fig- 

ure 2(d) shows the result analogous to Fig. 2(c), but  now computed on the basis 

of the locally adapted GLST(x)  rather than on the basis of GLSTinit(x). It is 

seen that  the 'discontinuity wall' contains less holes. Simultaneously, the number 

of spuriously detected discontinuities could be reduced, too. 

6.2 Gaps at 'Dominant_Gradient_Direct ion' -Locat ions  

The advantage of using this still very simple, but nevertheless more sensitive 

approach for the detection of discontinuities in the optic flow field consists not 

only in the fact that  the number of 'breaches' in the 'discontinuity wall' is re- 

duced. Even more important  is the fact that  a specific characteristic of the re- 

maining gaps can be identified: the OF-vectors in gaps, which cause a connected- 

component determination to 'leak' into the background, do not differ significantly 

in magnitude and orientation from the acceptable ones covering the image of the 

moving object. One will notice, however, that  the remaining weak points in the 

'discontinuity wall' belong to the category dominant_gradient_direction (DGD) - 
see Fig. 2(d). This insight immediately suggests a remedy: in DGD-cases, it can 

not be decided reliably whether there is a discontinuity in an OF-field due to a 

straight line segment which delimits the object image in a direction parallel to 

the image motion, since the optic flow component in the direction of a strong 

gradient vanishes for locations which either belong to the image of the moving 

object or to the background occluded by it. The more or less homogeneous na- 

ture of the occluded background (or, analogously, of the occluding foreground) 

results in a dominant gradient direction due to the border between foreground 

and background. Since there is no motion perpendicular to this border, there is 

no way to check for a discontinuity of optic flow in this direction. 

We thus decided to treat  such DGD-situations as 'potential discontinuity' lo- 

cations and to mark them separately. As a consequence, the connected-component 

subprocess will be prevented to extend across such a barrier and we obtain sur- 

prisingly clean masks covering the images of moving objects - without having to 

introduce any threshold on magnitude or orientation differences. 

6.3 Spl i t t ing C o n n e c t e d - C o m p o n e n t s  with  a Significantly 

I n h o m o g e n e o u s  OF-Vector  dis tr ibut ion 

Optic flow in the background area differs significantly from flow vectors as- 

sociated with a moving vehicle although we avoided so far to exploit a-priori 

knowledge about the fact that  the camera remains stationary with respect to 

the background. We rather proceed on the weaker assumption that  optic flow 

within the image area corresponding to a vehicle image differs significantly from 

that  outside of this area. 

The scatter plot in Fig. 4 shows the distribution of ul and u2 components 

of optic flow within the right connected-component from Fig. 3(b). Two clusters 
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Fig.  3. (a): The same window as window no. 3 from Fig. 1, but recorded 80 msec later, 

has been enlarged and superimposed with OF-vectors estimated at the pixels which 

belong to the categories OF__D (dark vectors) and R_OF (bright vectors). One notices a 

gap at the right border of the depicted vehicle image in the 'discontinuity wall': white 

R_OF-vectors leak through the dark 'discontinuity wall' around the vehicle image into 

the background region. (b): A greater image region cropped around the area shown 

in panel (a). Superimposed are the masks for which all pixels at regular_optical_flow 
(R_OF) locations are connected, provided these locations are completely surrounded by 

pixels at neutral (N), OF_d~scont~nuity (OF_D), or dominant_gradient_direction (DGD) 
locations. Due to the gap in the 'discontinuity wall', the right mask comprises a part 

of the background. 

--0.5 0 0.5 Ul 

-0.5 

0.5 

~t2 

. . :~;~..- -... 
:~:~ ':~:..; .. 

F i g .  4. The distribution of ul and u2 components of the optical flow vectors within 

the larger connected-component (right hand side) from Fig. 3(b). One can clearly 

recognize an approximately circular cluster around (ul = 0, u2 = 0) corresponding 

to the stationary background, and another elliptical cluster centered around (ul = 

-0.4,  u2 = 0.75) which corresponds to regular optic flow vectors associated with the 

moving vehicle. 
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pop out immediately which correspond to the two different segments of optic 

flow vectors contained in this connected-component. A standard clustering algo- 

rithm allows to detect and separate these two clusters automatically. It then is 

a straightforward procedure to separate the original connected-component into 

two segments, one corresponding to the image of the vehicle and the other cor- 

responding to the background. Pixels, for which the estimated optic flow yields 

values in the uncertainty area between these two clusters, are simply suppressed: 

each pixel-cluster will only accept pixels with an OF-vector whose Mahalanobis 

distance from the nearest OF-cluster-center remains below a threshold. 

6.4 Merg ing  C e r t a i n  Combina t ions  of  O F - C o n n e c t e d - C o m p o n e n t s  

Although exclusion of DGD-locations helped to prevent 'leakage' of connected- 

components for vehicles into the background, it has the disadvantage to gener- 

ate 'holes' within an object mask whenever the object image comprises marked 

straight line edge segments with substantial contrast. As can be seen in Fig. 

5(b), such DGD-pixel locations can form connected-components of their own 

which are totally surrounded by R_OF locations. It should be noted that, in 

this case, the OF-vectors estimated for DGD-locations in the interior of the car 

image do not differ in an immediately noticeable manner from their surrounding 

R_OF-vectors. 

We may now remove these 'Swiss-Cheese holes' by the simple requirement 

that a DGD-connected-component, which is completely surrounded by a R_OF- 

connected-component, can be merged into the surrounding component, provided 

the Mahalanobis distance between their mutual OF-vector distributions is com- 

patible with the hypothesis that this distance vanishes. We thus first determine 

the cluster center coordinates UDGD and UR_OF , respectively, together with the 

corresponding covariance matrices ~DGD and ZR_OF.  Subsequently, these two 

segments are merged, if 

(UDG D -- UR_OF) T ( S D G D  Jr- SR_OF)  -1  (UDGD -- UR_OF ) 

~_ t h r e s h o l d r e g i o n m e r g e - D G D - w i t h - R _ O F  �9 (14) 

As a result, we obtain a mask shown in Fig. 5(d). 

Figure 6 presents an overlay of all 'object-image-masks' obtained in this man- 

ner for the entire frame. In order to simplify the visual detection of these masks 

by a viewer, we suppressed connected-components which either are smaller than 

10 pixels or for which the average optic flow does not exceed a small threshold 

of 0.17 pixels per frame. 

Since we sample video images of the depicted scene at a rate high compared to 

the temporal change related to scene motion, the apparent shift of object masks 

from frame to frame is small. The similarity of corresponding object masks from 

consecutive frames is further increased by the implied extended temporal aver- 

aging along the locally prevailing optic flow direction, an immediate consequence 

of the manner in which optic flow vectors are estimated in this approach. 
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F ig .  5. Enlargement of window No. 1 in Fig. 1. (a): Overlaid are the OF-vectors, 

which are est imated at pixel positions belonging to the category regular_optical_flow 
(R_OF) (colored with white) and OF_d,seontinuity (OF_D) (colored with black). (b): 

The OF-vectors colored black in this panel have been est imated at pixels which have 

been assigned to the category dominant_gradient_direction (DGD). Note tha t  most of 

these vectors are placed in the interior of the car image or around the high contrast  

road markings. The white OF-vectors have been est imated at pixels belonging to the 

category neutral. (c): Masks determined in analogy to those from Fig. 3. Due to pix- 

els at DGD-locations, the depicted regular_optical_flow (R_OF)-mask exhibits a hole. 

(d): 'object- image-mask'  resulting from the requirement to include DGD-segments,  

provided these are completely surrounded by R_OF-locations and the OF-vectors esti- 

mated  at the DGD locations are similar (according to (14)) to the OF-vectors which 

are est imated at the regular_optical_flow (R_OF) -mask. 
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Fig. 6. Image frame as shown in Fig.l, with superimposed connected regions (indicated 

by their contour lines) determined according to the algorithm described in Sect. 6. The 

smaller masks in the top right quadrant as well as the one close to the top left corner 

correspond to moving people. Note the two masks around the top of a pole in the upper 

left quadrant: these two masks belong to a vehicle which is partially occluded by this 

pole. 

7 D i s c u s s i o n  o f  R e l a t e d  R e s e a r c h  a n d  C o n c l u s i o n  

[11] analysed potential  error sources in the usual pseudo-inverse solution for 

differential OF-est imation and investigated a 'Total  Least Squares'  approach 

similar to the one underlying (4). These authors suggested the use of a filter 

set comprising various orientations, bandwidths,  and resolutions. They had to 

devise means to combine results obtained by different filters - in contradistinc- 

tion to our adaptive approach which obviates the need to recombine different 

filter results. [8], too, employ multiple filters based on Hermite polynomials and 

parameterize their OF-est imation approach directly by 3-D motion parameters .  

Their algorithm evaluates intermediate results in order to properly diagnose 

critical grayvalue configurations. These authors do not, however, determine an 

OF-field with the density and resolution required for the examples used above. 

No a t t empt  has been made by these authors to actually segment the es t imated 

OF-fields and to evaluate the segmentation results in order to facilitate an as- 

sessment of OF-estimation. 
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Xiong and Shafer [13, 14] investigated hypergeometric filters somewhat sim- 

ilar to Gabor filters (see, e. g., [13, Figure 5]) in order to estimate optic flow, 

too. Xiong and Shafer do not a t tempt  to segment OF-fields estimated in this 

manner, nor do they apply their method to image sequences with discontinuities 

of the optical flow field comparable to those treated in this contribution. It thus 

remains open whether their approach could cope with such situations. 

The idea of a 'structure tensor'  had been investigated already way back by 

[6]. Subsequent generalizations of Knutsson's ideas to spatiotempora] grayvalue 

structures are discussed, e. g., by [12] who, however, only treated a few (fairly 

coarse) synthetic image examples. Knutsson also influenced the work of [5]. [2] 

recently extended the investigations of [5] and applied them to a few short image 

sequences. Neither [12] nor [5], however, exploited knowledge contained in the 

GLST about the local spatiotemporal grayvalue structure in order to devise a 

matched derivative convolution filter. These authors show several examples of 

estimated OF-fields although they do not explicitly generate masks covering 

images of moving objects. As far as can be inferred from their illustrations, the 

difficulties diagnosed and overcome by the algorithm described in the preceding 

sects. 4 through 6 had not yet even been recognized by these authors. 

An adaptive spatiotemporal filter somewhat similar to the one described here 

has already been reported by [9] who assumed that  relevant grayvalue struc- 

tures could be modelled as spatiotempora] Gaussians. The authors exploited 

this assumption in an at tempt  to separate the covariance matrix defining a lo- 

ca] grayva]ue structure in an image sequence from the filter covariance matrix. 

Difficulties arose in areas where image noise becomes relevant or where the as- 

sumption about the underlying grayvaiue structure begins to break down. 

[7] used an adaptive filter in 2D which is constructed in a manner similar 

to the one described here. But no attemps have been made by [7] to apply the 

adaptive filter to the estimation and segmentation of optic flow fields. 

Extended own investigations and a judicious combination of experiences re- 

ported in the literature suggested a renewed at tempt  to simultaneously estimate 

and segment an OF-field. We converted the knowledge provided by a GLST into 

a spatiotemporally adaptive OF-estimation approach. As can be seen from ex- 

perimenta] evidence presented above, we thereby obtained a much cleaner signal 
about what happens at a particular space-time location in an image sequence. This 

improvement, in turn, greatly facilitated to identify structural criteria which dis- 

tinguish various types of failures that  may occur in estimation and segmentation 

steps. 

This diagnostic capacity allowed us to design a fairly simple, but  nevertheless 

robust segmentation algorithm for an OF-field which complies with our basic as- 

sumptions about motion and distances between objects in the scene relative to 

the recording video camera: objects, whose images have to be segmented from the 

background, move only a small distance - in comparison to their distance from 

the center of projection - during the time between consecutive video-frames, thus 

yielding essentially parallel and equal-magnitude OF-vectors. Obviously, our ap- 

proach will have to be modified if the object motion is more complicated than 

a small translation, since only the latter results in a more or less homogeneous 

optic flow field. 
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Please note that  we do not base our approach on an explicit a-priori charac- 

terization of similarity required between neighboring optic flow vectors: we just 

assume OF-vectors to be sufficiently similar due to the manner in which they 

have been estimated with a high overlap of their support areas. This ' inherited' 

similarity quickly breaks down, however, near the boundary of an image area 

corresponding to an object moving rigidly in the depicted scene. 

The methodology underlying our approach exploits entire image regions with 

acceptably homogeneous OF-vectors as a tool for quickly identifying locations 

where the homogeneity assumption is violated: clustering pixel locations with 

equal characteristics into connected-components often kind of magnifies any esti- 

mation or segmentation deficiency. Such a deficiency is likely to result in counter- 

intuive region boundaries which can be quickly identified and analysed. This 

'methodological leverage' can only be applied, however, since the increased reli- 

ability of our spatiotemporally adaptive OF-estimation approach removes enough 

artefacts and noise effects that  we obtain a chance to structurally analyse fail- 

ures - as opposed to fiddling around endlessly with at tempts to find 'the' optimal 

parameter  combination. 

As a result, we obtain 'moving object masks' whose derivation depends on 

intuitively accessible parameters - so far in an apparently uncritical manner. 

The resulting mask quality appears sufficient to initialize model-based tracking 

of vehicles. It may even facilitate a purely data-driven tracking approach in the 

picture domain. Further research into these directions has been started. 
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