
Citation: Zhang, L.; Li, Y.; Jin, T.;

Wang, W.; Jin, Z.; Zhao, C.; Cai, Z.;

Chen, H. SPCBIG-EC: A Robust

Serial Hybrid Model for Smart

Contract Vulnerability Detection.

Sensors 2022, 22, 4621. https://

doi.org/10.3390/s22124621

Academic Editors: Kamanashis

Biswas, Mohammad Jabed

Morshed Chowdhury, Muhammad

Usman and Naveen Chilamkurti

Received: 31 March 2022

Accepted: 17 June 2022

Published: 19 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

SPCBIG-EC: A Robust Serial Hybrid Model for Smart Contract
Vulnerability Detection
Lejun Zhang 1,2,3,* , Yuan Li 1, Tianxing Jin 4, Weizheng Wang 5, Zilong Jin 6, Chunhui Zhao 7, Zhennao Cai 8

and Huiling Chen 8,*

1 College of Information Engineering, Yangzhou University, Yangzhou 225127, China;
mx120200526@yzu.edu.cn

2 Research and Development Center for E-Learning, Ministry of Education, Beijing 100039, China
3 Cyberspace Institute Advanced Technology, Guangzhou University, Guangzhou 510006, China
4 Yangzhou Marine Electronic Instrument Research Institute, Yangzhou 225001, China; yz723@vip163.com
5 Computer Science Department, City University of Hong Kong, Hong Kong; weizheng.wang@ieee.org
6 School of Computer and Software, Nanjing University of Information Science and Technology,

Nanjing 210004, China; zljin@nuist.edu.cn
7 College of Information and Communication Engineering, Harbin Engineering University,

Harbin 150001, China; zhaochunhui@hrbeu.edu.cn
8 Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China;

cznao@wzu.edu.cn
* Correspondence: zhanglejun@yzu.edu.cn (L.Z.); chenhuiling.jlu@gmail.com (H.C.)

Abstract: With countless devices connected to the Internet of Things, trust mechanisms are especially
important. IoT devices are more deeply embedded in the privacy of people’s lives, and their security
issues cannot be ignored. Smart contracts backed by blockchain technology have the potential to solve
these problems. Therefore, the security of smart contracts cannot be ignored. We propose a flexible
and systematic hybrid model, which we call the Serial-Parallel Convolutional Bidirectional Gated
Recurrent Network Model incorporating Ensemble Classifiers (SPCBIG-EC). The model showed
excellent performance benefits in smart contract vulnerability detection. In addition, we propose
a serial-parallel convolution (SPCNN) suitable for our hybrid model. It can extract features from
the input sequence for multivariate combinations while retaining temporal structure and location
information. The Ensemble Classifier is used in the classification phase of the model to enhance its
robustness. In addition, we focused on six typical smart contract vulnerabilities and constructed two
datasets, CESC and UCESC, for multi-task vulnerability detection in our experiments. Numerous
experiments showed that SPCBIG-EC is better than most existing methods. It is worth mentioning
that SPCBIG-EC can achieve F1-scores of 96.74%, 91.62%, and 95.00% for reentrancy, timestamp
dependency, and infinite loop vulnerability detection.

Keywords: blockchain; IoT; smart contract; vulnerability detection; deep learning; serial hybrid
network

1. Introduction

In recent years, with the progressive development of the pandemic and the rapid
development of e-commerce network platforms, the Internet of Things (IoT) devices are
more integrated into the privacy of people’s lives. The IoT has encountered many industrial
pain points during its long-term development and evolution [1]. “One of the biggest issues
in IoT is knowing who you are connecting to. That requirement for trust mechanisms across
millions or billions of sensors is what makes a distributed system like a blockchain vital”,
said Richard Mark Soley, Ph.D., executive director of the Industrial Internet Consortium
based in Needham, Mass. The traditional centralized management approach is difficult to
implement effectively in the IoT era: the number of edge and end devices in the IoT era is
huge; it is difficult for a single central server or cluster to effectively manage such large-scale

Sensors 2022, 22, 4621. https://doi.org/10.3390/s22124621 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22124621
https://doi.org/10.3390/s22124621
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3458-7431
https://orcid.org/0000-0002-7714-9693
https://doi.org/10.3390/s22124621
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22124621?type=check_update&version=2

Sensors 2022, 22, 4621 2 of 32

devices, and the centralized system faces serious performance bottlenecks. Therefore, the
most remarkable permanent data preservation and tamper-proof solution, blockchain, was
introduced [2].

In 2017, China Unicom joined many companies and research institutions to set up
the world’s first Blockchain of Things (BoT) standard project. This project defines a decen-
tralized platform for trusted Internet services and shows the promise of BoT. Blockchain
has an important impact on IoT characteristics, such as subject-to-subject, openness and
transparency, secure communication, difficulty being tampered with, and multi-party con-
sensus. The IoT involves devices and sensors that can automatically communicate and
share data, and the combination of IoT with smart contracts and blockchain technology is
seen as a key innovation in trade finance [3]. Smart contracts allow us to automate complex
multi-step processes. The devices in the IoT ecosystem are the points of contact with the
physical world [4]. However, the combination of IoT and smart contracts is indeed solving
some contradictions and problems [5,6]. For example, there are complex legal issues, as
well as security issues such as unpredictable code and contractual vulnerabilities. In the
context of the big data era, people’s personalized needs have been met to a greater extent,
while at the same time, personal privacy data are also stored in large databases, which
also forms a huge hidden risk for network security. There are various means to protect
information security. The fundamental task of information network transmission is to
protect information from the source to the receiver, thereby sending information securely
and preventing it from being damaged, leaked, stolen, tampered with, etc. Safeguarding
information security is of great significance to personal information security, commercial
secret protection, and government policy operation. Existing studies have secured infor-
mation security through threat model analysis and password authentication and have
achieved significant results [7–9]. Whether security can be guaranteed has become one
of the most important concerns in various fields in all industries. While BoT technology
is vigorously promoting the development of industrial innovation, its security must also
be guaranteed. Thus, it is urgent to propose a more efficient approach to smart contract
security detection. Our research aims to propose an efficient model with robustness for
smart contract vulnerability detection.

The popularity of blockchain technology applications is generating more and more
available training data. Designing detection systems that are more sensitive to smart
contract security vulnerabilities is the focus of research on smart contract security issues.
Deep learning techniques have unique advantages: (a) Deep network models have powerful
feature learning capabilities; (b) The performance of the training model improves as the
size of the data grows; (c) Features can be extracted directly from the training data [10].
Therefore, combining deep learning techniques with vulnerability detection makes it easier
and more effective to detect vulnerabilities in smart contracts by optimizing them through
continuous learning. It has the potential to reduce labor costs and improve the accuracy
and precision of detection compared to traditional methods.

Typical deep learning models are convolutional neural networks (CNNs), recurrent
neural networks (RNNs), deep belief networks (DBNs), etc. CNNs are good at classifica-
tion, but the convolution and merging steps may lose information about the order and
position of words in an utterance [11]; RNNs are better at extracting contextual informa-
tion about time series [12,13]; and DBNs are commonly used as probabilistic generative
models for unsupervised learning and resemble self-coding machines with a slow learning
process [14–16]. Both CNNs and RNNs can be used for sequence modeling, but they per-
form differently. RNNs emphasize the order in the time dimension, and the input order of
the sequence affects the output. CNNs obtain the overall information by aggregating local
information, and they can extract hierarchical information from the input [17]. Existing
smart contract vulnerability detection methods incorporating deep learning typically use
RNNs [18]. One reason is their advantage in learning nonlinear features of sequences.
However, they also suffer from the difficulty of extracting complex vulnerability features
by ignoring the traditional code space. A combination of multiple models or mechanisms

Sensors 2022, 22, 4621 3 of 32

can achieve better performance in problem classification tasks compared to general deep
learning models [19].

A single neural network is limited in its ability to process information. The training
accuracy of the network can be improved by increasing the number of neurons and increas-
ing the degrees of freedom of the network. However, this can lead to difficulties in the
convergence of the network during training. Eventually, the accuracy requirement cannot
be met. Therefore, we propose a robust serial hybrid model based on deep learning. It is a
hybrid model that serializes CNNs with RNNs, named Serial-Parallel Convolutional Bidi-
rectional Gated Recurrent Network Model incorporating Ensemble Classifier (SPCBIG-EC).
Based on the above research background, we propose an effective hybrid model based on
deep learning to detect smart contract vulnerabilities in Ethereum. The model can detect
vulnerabilities quickly and efficiently based on patterns learned from training samples.
It is a hybrid model that serializes CNNs with RNNs, which we call the Serial-Parallel
Convolutional Bidirectional Gated Recurrent Network Model incorporating Ensemble
Classifier (SPCBIG-EC).

Our contributions are as follows:

• We propose the SPCBIG-EC model, which shows excellent performance advantages
in multi-task vulnerability detection. For multi-task vulnerability detection in this
study, we performed a vulnerability detection task for six typical existing smart
contract vulnerabilities. Details of the specific types of vulnerabilities are given below.
Meanwhile, we propose a CNN structure, Serial-Parallel CNN (SPCNN), suitable for
this serial hybrid model. The SPCNN structure is used for feature extraction to capture
the local and global features of the code sequences. The multi-scale series-parallel
convolution structure parallelizes the output of low-level and high-level features. It
makes the feature combinations of the extracted word vectors more informative.

• The SPCBIG-EC model uses an Ensemble Classifier. The Ensemble Classifier combines
multiple base classifiers to form a powerful classifier. It improves the robustness of
the model by combining the decisions of multiple classifier experts.

• We collected smart contracts from the Ethereum platform and constructed the CESC
dataset and the UCESC dataset. They are used for multiple types of vulnerability
detection and hybrid vulnerability detection tasks, separately. The CESC dataset
consists of snippets of smart contract code after data preprocessing, and UCESC
consists of original smart contract code. In our experiments, we focused on six smart
contract vulnerabilities, i.e., reentrancy, timestamp dependency, infinite loop, callstack
depth attack, integer overflow, and integer underflow.

• We compared SPCBIG-EC with 11 advanced vulnerability detection methods. Experi-
mental results show that our model has strong advantages in reentrancy, timestamp
dependency, and infinite loop vulnerability detection, with F1-scores of 96.74%, 91.62%,
and 95.00%. For the hybrid vulnerability dataset, our model also achieved an accuracy
and F1-score of over 85%, outperforming most existing detection tools.

2. Related Work
2.1. Smart Contract Security

Smart contracts are written in a high-level language, compiled into bytecode, driven
by blockchain transactions, and run on a virtual machine using the blockchain as a storage
base, all of which are subject to different security threats. Smart contract security incidents
have occurred frequently in recent years. In 2016, an attack against DAO contracts resulted
in the loss of more than 3,600,000 Ethers, which stemmed from a reentrancy vulnerability
introduced in a critical DAO contract [20]. In 2017, the Parity multi-signature wallet
vulnerability resulted in over 513,701 Ethers being locked. It led to an ongoing debate about
whether Ether needs to be upgraded by way of a hard fork [21]. In 2018, hackers attacked the
BEC contract, and an integer overflow security vulnerability caused the price of BEC to drop
to almost zero [22]. In 2020, the CertiK security research team identified multiple security
vulnerabilities in the SushiSwap project’s smart contract. These vulnerabilities could be

Sensors 2022, 22, 4621 4 of 32

exploited by the smart contract owner to allow the owner to perform arbitrary operations,
including emptying tokens from the smart contract account without authorization [23].

Smart contracts are accompanied by the discovery of different types of vulnerabilities
throughout their lifecycle [24]. There are many types of existing discovered smart contract
vulnerabilities. Our research focuses on the existing known vulnerabilities, such as reen-
trancy, timestamp dependency, infinite loop, callstack depth attack, integer overflow, and
integer underflow.

2.2. Existing Methods for Detecting Smart Contract Vulnerabilities

There are several traditional methods for detecting vulnerabilities in smart contracts.
Oyente is a vulnerability detection tool based on static symbolic execution. Oyente’s design
is modular, which allows advanced users to implement and insert their detection logic
to check custom properties in the contract [25]. Mythril is a vulnerability detection tool
based on a combination of symbolic execution and concrete execution, which covers most
types of vulnerabilities [26]. In addition, SmartCheck [27], a scalable static analysis tool,
and Securify [28], a tool that provides scalable and fully automated security analysis for
smart contracts, are advanced tools for smart contract security detection. These automated
auditing methods are still in the developmental stage, and they face three main major
problems. First, the level of automation is low. They need to have constant feedback to
audit. Second, they have a high rate of false positives. They have a low level of automation
and still require some human involvement. Third, they have a long audit time [29,30]. Our
online data research found that Mythril averaged 60 s, Oyente was about 30 s, and Securify
was about 20 s [31].

Traditional smart contract vulnerability detection tools mostly rely on fixed detection
rules, while vulnerability detection methods that incorporate deep learning techniques
avoid this problem. Yu et al. proposed DeeSCVHunter, a deep learning-based framework
for the automatic detection of smart contract vulnerabilities, and they proposed the novel
notion of Vulnerability Candidate Slice (VCS) to help models capture the key point of
vulnerability [32]. The study provided us with research ideas by helping the model capture
the key points of vulnerability. Ashizawa et al. proposed Eth2Vec, a machine learning-
based static analysis tool for smart contract vulnerability detection. It automatically learns
the features of vulnerable smart contract bytecodes through a neural network for natural
language processing [33]. Eth2Vec detects vulnerabilities with a high degree of accuracy
by implicitly extracting features and combining lexical semantics between contracts, even
after rewriting the code. However, the method suffers from the problem of not supporting
inter-contract analysis when multiple contracts are interrelated. Huang et al. developed
a smart contract vulnerability detection model based on multi-task learning. It improves
the detection capability of the model by setting auxiliary tasks to learn more directional
vulnerability features [34]. Liu et al. proposed an interpretable way to combine deep
learning with expert pattern models for smart contract vulnerability detection. The model
can obtain an interpretable panorama of fine-grained details and weight distributions [35].
Wang et al. proposed a new method called AFS (AST Fuse program Slicing) to fuse code
feature information [36]. AFS can fuse structured information from the AST with program
slicing information to detect vulnerabilities by learning new vulnerability signature infor-
mation. A study by Liao et al. proposed SoliAudit (Solidity Audit), which uses machine
learning and fuzzy testing for smart contract vulnerability assessment [37]. Distinguishing
itself from previous studies, SoliAudit can detect vulnerabilities without expert knowledge
or predefined patterns. Mi et al. proposed a new framework, VSCL, which uses DNNs
based on metric learning for vulnerability detection in smart contracts. In addition, a
new feature matrix was generated by CFG extraction to represent the smart contract and
encode the operations using Ngram and TFIDF [38]. Zhang et al. proposed a smart contract
vulnerability detection method based on information graphs and integrated learning [39].
This paper proposed an ensemble learning (EL)-based contract vulnerability prediction
method, which is based on seven different neural networks using contract vulnerability

Sensors 2022, 22, 4621 5 of 32

data for contract-level vulnerability detection. The method exhibited a high capability of
vulnerability detection. However, it cannot determine the type of vulnerabilities detected.
Although these smart contract vulnerability detection methods based on deep learning
techniques have shown excellent performance, most of these methods are optimized to
improve the processing of smart contracts, and they all essentially use single-network
structure models. They do not optimize the detection capability of the model by changing
the network structure. Different types of network structures have different focuses when
extracting abstract and semantic features, and a single network structure may have the
problem of incomplete extraction of key information due to insufficient learning of semantic
and syntactic information of smart contracts, so we consider the perspective of network
structures to explore whether feature extraction with hybrid network structures will have a
good impact on the vulnerability detection performance of smart contracts.

Given the above research background, we have come to the following conclusions.
The deep learning-based vulnerability detection approach is driven by data. It allows fine-
grained segmentation of smart contract source code files when building a dataset, which is
then fed into the model. Therefore, detection methods using deep learning only require
the construction of reasonable datasets, which can lead to a tremendous improvement in
the code coverage of detection and thus reduce the rate of missed detections. A single
neural network is limited in its ability to process information. The training accuracy of the
network can be improved by increasing the number of neurons and increasing the degrees
of freedom of the network [40]. However, this can lead to difficulties in the convergence
of the network during training. Eventually, the accuracy requirement cannot be met.
The combination of multiple models or mechanisms can achieve better performance in
classification tasks compared to general deep learning models [41]. Based on the above
research background, we propose a serial hybrid model combining CNN and RNN for
smart contract vulnerability detection.

3. Design of the Model

When using deep learning methods for smart contract vulnerability detection, two
practical problems need to be solved: (1) constructing a reasonable smart contract source
code dataset that can be trained by deep learning models; (2) constructing suitable deep
learning models for the smart contract source code dataset. For both problems, we designed
the overall implementation of the task, as shown in Figure 1.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 32

smart contract vulnerability detection method based on information graphs and inte-
grated learning [39]. This paper proposed an ensemble learning (EL)-based contract vul-
nerability prediction method, which is based on seven different neural networks using
contract vulnerability data for contract-level vulnerability detection. The method exhib-
ited a high capability of vulnerability detection. However, it cannot determine the type of
vulnerabilities detected. Although these smart contract vulnerability detection methods
based on deep learning techniques have shown excellent performance, most of these
methods are optimized to improve the processing of smart contracts, and they all essen-
tially use single-network structure models. They do not optimize the detection capability
of the model by changing the network structure. Different types of network structures
have different focuses when extracting abstract and semantic features, and a single net-
work structure may have the problem of incomplete extraction of key information due to
insufficient learning of semantic and syntactic information of smart contracts, so we con-
sider the perspective of network structures to explore whether feature extraction with hy-
brid network structures will have a good impact on the vulnerability detection perfor-
mance of smart contracts.

Given the above research background, we have come to the following conclusions.
The deep learning-based vulnerability detection approach is driven by data. It allows fine-
grained segmentation of smart contract source code files when building a dataset, which
is then fed into the model. Therefore, detection methods using deep learning only require
the construction of reasonable datasets, which can lead to a tremendous improvement in
the code coverage of detection and thus reduce the rate of missed detections. A single
neural network is limited in its ability to process information. The training accuracy of the
network can be improved by increasing the number of neurons and increasing the degrees
of freedom of the network [40]. However, this can lead to difficulties in the convergence
of the network during training. Eventually, the accuracy requirement cannot be met. The
combination of multiple models or mechanisms can achieve better performance in classi-
fication tasks compared to general deep learning models [41]. Based on the above research
background, we propose a serial hybrid model combining CNN and RNN for smart con-
tract vulnerability detection.

3. Design of the Model
When using deep learning methods for smart contract vulnerability detection, two

practical problems need to be solved: (1) constructing a reasonable smart contract source
code dataset that can be trained by deep learning models; (2) constructing suitable deep
learning models for the smart contract source code dataset. For both problems, we de-
signed the overall implementation of the task, as shown in Figure 1.

Figure 1. A holistic design solution for smart contract source code vulnerability detection based on
deep learning.
Figure 1. A holistic design solution for smart contract source code vulnerability detection based on
deep learning.

Our work in this study is divided into two parts: processing the data and passing the
processed data into a deep learning model to analyze and judge it. It is worth mentioning
that existing studies, such as model design and system implementation, fully consider the
security issues among modules, and thus, many technology-related studies on authentica-

Sensors 2022, 22, 4621 6 of 32

tion have been widely proposed and applied [42–44]. The design of our model involves the
components of each module, but they are all linear connections of neural network modules,
so the security guarantee between each module does not need further consideration here.

The main feature of this paper is the construction of deep learning models, in which
we build serial hybrid models combining CNN and RNN. Our approach is motivated by
the following considerations:

(1) The smart contracts that we process are sequential information. Both CNNs and RNNs
can be used for sequence modeling, but they perform differently. RNNs emphasize
the order in the time dimension, and the input order of the sequence affects the output.
CNNs obtain the overall information by aggregating local information, and they can
extract hierarchical information from the input.

(2) RNNs read and interpret the input information of a code vector in a single pass, so
the deep neural network must wait to process the next code vector until the current
information has been processed. This means that RNNs cannot take advantage of
massively parallel processing (MPP) as CNNs can [45].

(3) CNNs, while achieving good results in feature extraction, do not even consider the
contextual relationships of the sequence. The occurrence of each word in the code
is considered independent of other words. However, a smart contract code is a long se-
quence of words, and the occurrences of individual words are contextually interrelated.

(4) A single neural network is limited in its ability to process information. The combi-
nation of CNN and RNN enables the temporal structure and location information
of sequence data to be fully preserved. It facilitates the extraction of multivariate
combinatorial features.

3.1. SPCBIG-EC Model

We use a Serial-Parallel Convolutional Bidirectional Gated Recurrent Network Model
incorporating Ensemble Classifier (SPCBIG-EC) for vulnerability detection. The process is
as follows.

Step 1: The smart contract source code is processed into a dataset that can be used
by the model. The processed dataset D still consists of some smart contracts and can be
represented as D = {C1, C2, C3, . . . , Cn}. A smart contract Ci consists of many functions
that can be represented as Ci = { fi,1, fi,2, fi,3, . . . , fi,m}, where 1 ≤ i ≤ n. The function

fi,j is composed of the lines of code
{

ci,j,1, ci,j,2, ci,j,3, . . . , ci,j,k

}
. It can be expressed as

fi,j=
{

ci,j,1, ci,j,2, ci,j,3, . . . , ci,j,k

}
, where 1 ≤ j ≤ m.

Step 1.1: Data preprocessing is performed to remove content that is not relevant to the
vulnerability.

Step 1.2: The source code is divided into small pieces of smart contract code around
key points corresponding to different vulnerabilities. These code fragments are logically
executable.

Step 2: Small fragments of smart contract code generated by control flow analysis are
converted into vector representations.

Step 2.1: User-defined variables and functions are mapped to symbolic names; the seg-
ments in the symbolic representation are divided into a sequence of tokens by lexical analy-
sis. In this case, the original contract fragment line is represented by a sequence of multiple
tokens containing keywords, operations with built-in normalization variables, etc. The code
line ci,j,w is composed of an ordered set of tokens, ci,j,w =

{
ti,j,w,1, ti,j,w,2, ti,j,w,3, . . . , ti,j,w,q

}
,

where 1 ≤ w ≤ k.
Step 2.2: Contract fragment tokens are converted to vectors via Word2Vec [46–48].

Word2Vec maps tokens to integers and then converts them to fixed dimensional vectors.
The entire contract fragment is mapped as in step 2.1, concatenating each line of the marker
to a long list. Word2Vec creates a vector for each segment and obtains a vector of contract
segments by combining the tag embedding. We can obtain the word vector Xi.

Sensors 2022, 22, 4621 7 of 32

Step 3: The processed vectors are fed into the SPCBIG-EC model that we built. The
first layer of the model is the convolution layer, and the convolution kernel convolves the
input vectors under a convolution window to obtain the combined features C1

n. When there
are k convolution kernels convolving the word vectors under the convolution window, the
combined feature C1

n can be expressed as C1
n =

[
C1

1n, C1
2n, . . . , C1

kn
]
.

Step 4: The second layer of the model is the convolution layer, where the convolution
kernel convolves the input vectors under a convolution window to obtain the combined
features C2

n.
Step 5: C1

n is concatenated with C2
n to form a new feature combination. We use the

obtained feature vectors as input to the bidirectional gated recurrent (BiGRU) model.
Step 6: The hidden state of the last moment’s BiGRU [49] is fed into the attention

mechanism layer as a feature vector. The attention mechanism assigns weights to the
significant words in the code. The output is obtained by multiplying the normalized
weights obtained through the attention mechanism with the input feature vector of the layer.

Step 7: The attention mechanism layer is connected to the fully connected layer, which
contains an Ensemble Classifier. The Ensemble Classifier contains several weak classifiers
as candidate base classifiers (two classifiers, AM-Softmax [50] and Softmax [51,52], were
used as examples in our experiments). The weak classifier with the smallest classification
error is selected as the base classifier and trained iteratively using the re-weighting method.
The base classifiers are combined using a sequential linear weighting approach to obtain a
stronger classifier with higher robustness. The constructed strong classifiers are used as the
final classifiers to predict vulnerabilities.

Figure 2 shows the structural diagram of our model. The implementation of each
module is described in detail in the remaining subsections of Section 3.

As shown in Figure 2, the SPCNN structure consists of multiple convolutional layers,
which are based on a two-layer serial convolutional structure. Serial in our structure refers
to the linear serial structure of two convolutional layers. Parallel refers to the fact that
features extracted from the first convolutional layer are backed up and kept before being
passed to the second convolutional layer, and the backed-up features are output in parallel
with features extracted from the second convolutional layer from the higher convolutional
layer, and the two features are fused to obtain the final extracted feature information of the
SPCNN structure. The feature data C1

n extracted from the first convolutional layer is kept for
backup, while the data are input to the second layer for secondary feature extraction, and
the feature extraction data C1

n from the first layer under retention is output in parallel with
the feature extraction data C2

n output from the second layer at the end of the second layer
for feature fusion; then, the semantic and syntactic information of the smart contract is fully
extracted by taking the bottom layer features and parallelizing the output at the top layer.
When there are k convolution kernels convolving the word vectors under the convolution
window, the combined feature C1

n can be expressed as C1
n =

[
C1

1n, C1
2n, . . . , C1

kn
]
. When there

are s convolution kernels convolving the word vectors under the convolution window,
the combined feature C2

n can be expressed as C2
n =

[
C2

1n, C2
2n, . . . , C2

sn
]
. The final features

extracted by the SPCNN structure can be expressed as C = concatenate
(
C1

n, C2
n
)
. The

advantages of the SPCNN structure are: (1) replacing the single-layer convolution of
equivalent steps with a double-layer serial-parallel convolution, which serves to improve
the nonlinearity; (2) reducing the impact of the possible loss of key information, such
as local position information and destruction of sequence structure, by the convolution
pooling operation.

Sensors 2022, 22, 4621 8 of 32
Sensors 2022, 22, x FOR PEER REVIEW 9 of 32

Figure 2. SPCBIG-EC.

Figure 2. SPCBIG-EC.

Sensors 2022, 22, 4621 9 of 32

Recurrent neural networks are good at dealing with sequential aspects due to their
memory function. With GRU, as a unidirectional recurrent neural network, the next mo-
ment’s predicted output is jointly influenced based on the inputs from multiple previous
moments. However, the semantic structure among smart contracts is complex, and the pre-
diction results may be influenced by the inputs of both past moments and future moments,
so our model considers a bidirectional gated recurrent (BiGRU) network for temporal mod-
eling. BiGRU is a neural network model consisting of unidirectional, oppositely oriented
outputs jointly determined by the states of two GRUs. As shown in Figure 2, at each
moment, the input will provide two GRUs with opposite directions simultaneously, and
the output is jointly determined by these two unidirectional GRUs.

Ensemble learning often achieves significantly better generalization performance than
a single learner by combining multiple learners. There are various aggregation methods for
ensemble learning, and in this paper, we use the sequence integration method, as shown in
Figure 2. It consists of iteratively using weakly learned classifiers and joining their results
into a final strongly learned classifier. The joining process usually assigns different weights
based on their classification accuracy. After adding a weak learner, the data are usually
re-weighted to reinforce the classification of previously misclassified data points. First, we
select a classifier from the candidate classifier set as the base classifier and then stack the
base classifiers in layers. Each layer is given a higher weight for samples that are wrongly
classified by the base classifier in the previous layer during training. When testing, the final
result is obtained by weighting the results of each layer of classifiers. This makes use of the
dependencies between the base learners. By assigning higher weights to the samples that
were incorrectly labeled in the previous training, the overall prediction can be improved.

The implementation principles of each module of the model are described in detail in
Sections 3.2–3.5.

3.2. Dataset Processing

The dataset processing process consists of two steps: (1) converting the smart contract
source code into code fragments and (2) labeling the smart contract with vulnerabilities.
We describe this process in detail below.

(1) Converting smart contract source code into code fragments.

Lexical analysis of Solidity source code. The main purpose is to convert symbolic
representations in Solidity language, such as keywords and operators, to the corresponding
tokens. Table 1 shows several examples of token representations.

Table 1. The typical Solidity symbol corresponds to the token representation.

Symbolic Representation Token

function FUN
contract CON

for FOR
if IF

else ELSE
number NUM
constant CONS
variable VAR

Determine the key points for different vulnerabilities and segment the smart contract
code around the key points. After lexical analysis of the Solidity source code, the source
code files need to be fine-grained. We extract the relevant code fragments around a key
point and combine them, dividing the entire source code into logically executable code
fragments. A code fragment consists of several lines of code that have data dependencies
or control dependencies on each other. In this case, the original contract fragment line is
represented by a sequence of multiple tokens containing keywords, operations with built-in

Sensors 2022, 22, 4621 10 of 32

normalization variables, etc. For the six types of vulnerabilities that we are concerned about,
we highlight the key points that correspond to them. These keywords are obtained from the
official platform of Ethereum. In Table 2, we introduce the correspondence with the example
of reentry vulnerability and its key points. One of the features of Ethereum smart contracts
is the ability to call and use code from other external contracts. These contracts typically
manipulate Ether, often sending Ether to various external user addresses. This operation
of invoking external contracts or sending Ether to external addresses requires contracts
to submit external calls. These external calls can be hijacked by an attacker, for example,
through a fallback function that forces the contract to execute further code, including a call
to itself. This way, the code can be repeated in the contract. In the transfer and call process
of smart contracts, users who want their contracts to receive Ether must use fallback (). In
addition, call.value () is widely used in the transfer process since it is a transfer function
without gas restrictions. These two links give malicious contracts the conditions to launch
reentry attacks, so they are used as key points corresponding to reentry vulnerabilities.
The rules for determining the key points corresponding to several other vulnerabilities are
similar. The reason why we determine key points for different types of vulnerabilities is
that training and the learning of large sections of contract source code for vulnerability
detection of smart contracts will lead to problems of inadequate feature learning and large
training costs caused by redundant information, so we slice and reorganize the original
contract code around vulnerability-related keywords to form small pieces of executable
code containing key information for model learning and training. Finally, depending on the
key points of the different vulnerabilities, we use a program slicing algorithm to transform
the original smart contract into a smart contract fragment.

Table 2. The key points corresponding to different vulnerabilities.

Vulnerability Key Points

Reentrancy fallback (), call.value ()
Timestamp dependence block.number

Infinite loop for, while loop
Integer overflow integer variables

Integer underflow integer variables

Callstack depth attack .call (), transfer () and the return
values of instructions

(2) Labeling smart contracts.

The input of the model should contain the smart contract and the corresponding
vulnerability label. Considering the large number of smart contracts to be labeled, it
is difficult to label vulnerabilities manually, so we use existing security audit tools for
vulnerability labeling. Different tools have different criteria for identifying and detecting
vulnerabilities. To ensure the accuracy of vulnerability signatures, we chose Oyente,
Mythril, and Securify as references for labeling vulnerabilities in smart contracts. In
order to balance the conservative and strict detection rules between the different tools,
we established the following vulnerability labeling rules. For each smart contract, if at
least two tools indicate the existence of a vulnerability, we label the smart contract as “1”;
otherwise, it is “0”. Figure 3 represent the vulnerable smart contracts detected by Oyente,
Mythril, and Securify, respectively. We finally label the vulnerabilities in smart contracts in
regions D, E, F, and G as “1” and the rest of the smart contracts as “0”. The labeled dataset
can be represented as D = {(x1, y1), (x2, y2), . . . , (xn, yn)}; each instance point consists of
an instance with a label, where x1 ∈ R, yi ∈ {0, 1}.

Sensors 2022, 22, 4621 11 of 32

Sensors 2022, 22, x FOR PEER REVIEW 11 of 32

E, F, and G as “1” and the rest of the smart contracts as “0”. The labeled dataset can be
represented as 𝐷 = {(𝑥 , 𝑦), (𝑥 , 𝑦), … , (𝑥 , 𝑦)}; each instance point consists of an in-
stance with a label, where 𝑥 ∈ ℝ, 𝑦 ∈ {0,1}.

Figure 3. Guidelines for labeling vulnerabilities.

3.3. Code Embedding Layer
The code embedding layer converts the contract code into a vector representation

that can be used as input to the neural network. We describe this process in detail below.
(1) Preprocessing data, such as removing blank lines, comments, and special characters,

while retaining brackets, operators, etc. The source code is divided into small, logi-
cally executable pieces of code by extracting the relevant code pieces around a key
point and combining them.

(2) Splitting code segments with lexical analysis. Keywords, operators, and delimiters in
the code are converted to their corresponding tokens, preserving the semantic order
to convert the code segment into a list of tokens.

(3) Representing the list of tokens as a vector. There are many traditional word vector
representations, such as TF-IDF [53,54], One-Hot [55–57], etc. They cannot represent
word-to-word information. In this paper, Word Embedding [58] is used to model
word vectors by converting contract fragment tokens into vectors via Word2Vec. The
network maps tokens to integers and then converts them into fixed dimensional vec-
tors.
In Figure 4, we illustrate this process with a sample piece of reentrant code. Step ①

in Figure 4 is a complete section of the source code of the smart contract associated with
reentry vulnerability. Step ② represents the code segment where the smart contract
source code is preprocessed with data. In this phase, we remove irrelevant information,
such as blank lines and comments. At the same time, lines of code related to reentrant
vulnerabilities are retained. In step ③, we use line 5 of the code in step ② as an example
to split the code and convert it to a token sequence. This is achieved by replacing the user-
defined function name with “FUNC1” and the user-defined variable with “VAR1”. If
more different user-defined functions and variables exist, the corresponding conversions
are “FUNC2, FUNC3, …, FUNCn”, “VAR2, VAR3, VARn”. Step ④ transforms the list
represented in tokens into a vector representation using Word2Vec as the input to our
model.

Figure 3. Guidelines for labeling vulnerabilities.

3.3. Code Embedding Layer

The code embedding layer converts the contract code into a vector representation that
can be used as input to the neural network. We describe this process in detail below.

(1) Preprocessing data, such as removing blank lines, comments, and special characters,
while retaining brackets, operators, etc. The source code is divided into small, logically
executable pieces of code by extracting the relevant code pieces around a key point
and combining them.

(2) Splitting code segments with lexical analysis. Keywords, operators, and delimiters in
the code are converted to their corresponding tokens, preserving the semantic order
to convert the code segment into a list of tokens.

(3) Representing the list of tokens as a vector. There are many traditional word vector
representations, such as TF-IDF [53,54], One-Hot [55–57], etc. They cannot represent
word-to-word information. In this paper, Word Embedding [58] is used to model word
vectors by converting contract fragment tokens into vectors via Word2Vec. The net-
work maps tokens to integers and then converts them into fixed dimensional vectors.

In Figure 4, we illustrate this process with a sample piece of reentrant code. Step 1© in
Figure 4 is a complete section of the source code of the smart contract associated with reentry
vulnerability. Step 2© represents the code segment where the smart contract source code
is preprocessed with data. In this phase, we remove irrelevant information, such as blank
lines and comments. At the same time, lines of code related to reentrant vulnerabilities
are retained. In step 3©, we use line 5 of the code in step 2© as an example to split the
code and convert it to a token sequence. This is achieved by replacing the user-defined
function name with “FUNC1” and the user-defined variable with “VAR1”. If more different
user-defined functions and variables exist, the corresponding conversions are “FUNC2,
FUNC3, . . . , FUNCn”, “VAR2, VAR3, . . . , VARn”. Step 4© transforms the list represented
in tokens into a vector representation using Word2Vec as the input to our model.

Sensors 2022, 22, 4621 12 of 32Sensors 2022, 22, x FOR PEER REVIEW 12 of 32

Figure 4. The code embedding process. ①–④ represent the process of representing the original
smart contract code into vectors.

3.4. Feature Extraction Layer
3.4.1. Serial-Parallel Convolutional Layer

Although the convolution layer can significantly reduce the number of connections
in the network, the number of neurons in the feature mapping group is not significantly
reduced. If the classifier is connected directly after the convolution layer, the input dimen-
sion of the classifier is still very high, and it is easy to overfit. To solve this problem, a
pooling layer needs to be added after the convolutional layer to reduce the feature dimen-
sionality and avoid overfitting. The pooling layer will serve to reduce the number of fea-
tures when performing feature selection, and reducing the number of parameters may
cause the loss of key information at the same time. We propose a string-parallel convolu-
tional neural network structure (SPCNN). Our SPCNN structure is designed to reduce the
impact of the loss of key information, such as local position information, and the damage
to the sequence structure caused by the convolutional pooling operation. Additionally, in
the process of extracting features, the features within each contract and the relational fea-
tures between individual contracts are extracted to be adequate.

SPCNN consists of multiple layers of convolution, and the convolution method used
is a one-dimensional wide convolution. A padding of 0 values is used to keep the length
of the sequence at the output unchanged after convolution. We denote the dimension of
the word vector by 𝑑, and 𝑠 is the size of the sliding window. The convolution kernel is
denoted as 𝐾 ∈ ℝ × , where 𝑑 denotes the length of the convolution kernel, and 𝑠 de-
notes the width of the convolution kernel. The 𝑘 word vectors falling into 𝐾 can be de-
noted as 𝑥 , 𝑥 , 𝑥 , … 𝑥 , which can be represented as a matrix 𝑋 ∈ ℝ × .

Figure 4. The code embedding process. 1©– 4© represent the process of representing the original smart
contract code into vectors.

3.4. Feature Extraction Layer
3.4.1. Serial-Parallel Convolutional Layer

Although the convolution layer can significantly reduce the number of connections in
the network, the number of neurons in the feature mapping group is not significantly re-
duced. If the classifier is connected directly after the convolution layer, the input dimension
of the classifier is still very high, and it is easy to overfit. To solve this problem, a pooling
layer needs to be added after the convolutional layer to reduce the feature dimensionality
and avoid overfitting. The pooling layer will serve to reduce the number of features when
performing feature selection, and reducing the number of parameters may cause the loss
of key information at the same time. We propose a string-parallel convolutional neural
network structure (SPCNN). Our SPCNN structure is designed to reduce the impact of the
loss of key information, such as local position information, and the damage to the sequence
structure caused by the convolutional pooling operation. Additionally, in the process of
extracting features, the features within each contract and the relational features between
individual contracts are extracted to be adequate.

SPCNN consists of multiple layers of convolution, and the convolution method used
is a one-dimensional wide convolution. A padding of 0 values is used to keep the length
of the sequence at the output unchanged after convolution. We denote the dimension of
the word vector by d, and s is the size of the sliding window. The convolution kernel is
denoted as K ∈ Rs×d, where d denotes the length of the convolution kernel, and s denotes

Sensors 2022, 22, 4621 13 of 32

the width of the convolution kernel. The k word vectors falling into K can be denoted as
xi, xi+1, xi+2, . . . xi+k−1, which can be represented as a matrix Xi ∈ Rs×d.

Xi = [xi, xi+1, xi+2, . . . , xi+k−1] (1)

The next step is to perform a convolution operation on all of the word vectors above.
The multidimensional convolution matrix X is operated by the convolution kernel K ∈ Rs×d

to generate a new feature map H ∈ Rn−k+1. Each feature is denoted by hi, f denotes the
nonlinear activation function, bc ∈ R represents the bias matrix, and i ∈ n− k + 1.

hi = f (K·Xi:i+k,i:s + bc) (2)

H = {h1, h2, h3, . . . , hn−k+1} (3)

Maximum pooling of the feature map, i.e., obtaining only the maximum eigenvalue of
each dimension within the pooling window, is performed.

pj = ∑n+k−1
i=1 max(hi) (4)

The SPCNN uses multiple convolution kernels to form feature maps, and for n feature
maps after convolution and maximum pooling, the result is:

Pj =
[
p1j, p2j, p3j, . . . , pnj

]
(5)

After a theoretical introduction to our proposed SPCNN, the practical structure of the
SPCNN is further described next. The hierarchical structure of the SPCNN consists of five
parts. The hierarchical structure of the SPCNN is given in Figure 5.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 32

Figure 5. Hierarchy of the SPCNN.

3.4.2. Time Sequence Modeling Layer
Based on the internal structure of the GRU, we can calculate the hidden state ℎ of a

single GRU according to the following equation, where ℎ denotes the state of the data
after a reset gate, and 𝑧 denotes the state after an update gate. 𝑟 = 𝜎(𝑥 𝑊 + ℎ 𝑊 + 𝑏) (6)𝑧 = 𝜎(𝑥 𝑊 + ℎ 𝑊 + 𝑏) (7)ℎ = tanh(𝑥 𝑊 + (𝑟 ⊙ ℎ)𝑊 + 𝑏) (8)ℎ = 𝑧 ⊙ ℎ + (1 − 𝑧) ⊙ ℎ (9)

BiGRU is a bidirectional implementation of the GRU network. We denote ℎ⃗ as the
forward propagated hidden state value and ℎ⃖ as the backward propagated hidden state
value, and then the hidden value of the output at moment 𝑡 can be expressed by Equation
(12). 𝐹 denotes the final feature representation when using BiGRU for time sequence
feature extraction. ℎ⃗ = 𝐺𝑅𝑈(𝑥 , ℎ ⃗) (10)ℎ⃖ = 𝐺𝑅𝑈(𝑥 , ℎ⃖) (11)ℎ = 𝑤 ℎ⃗ + 𝑣 ℎ⃖ + 𝑏 (12)𝐹 = ℎ , ℎ , ℎ ,….ℎ (13)𝑤 and 𝑣 are the weights between the hidden layers in different directions at mo-
ment 𝑡. To highlight the importance of the impact of different keywords on the reentrancy
vulnerability, a self-attention mechanism is introduced after the BiGRU layer of the model
to assign weights to different words. The input of the attention mechanism layer is ℎ ,
which is the hidden vector of the output processed by the BiGRU neural network layer in
the previous layer.

First, we input the hidden layer vector to the fully connected layer (with weight 𝑊
and bias 𝑏) to obtain 𝑢 , which is stated in Equation (14). 𝑢 = tanh (𝑊ℎ + 𝑏) (14)

Figure 5. Hierarchy of the SPCNN.

(1) Input layer: the input data are smart contract data that have been lexically analyzed
and vectorized.

(2) Convolution layer 1: Two sizes of convolution kernels (i.e., m1 × n1, m2 × n2) are
used to convolve the input data separately. Smart contracts have two scales: intra-
contractual and inter-contractual. The m1 × n1 convolution kernel convolves only
on the intra-contract scale so that the internal features of each smart contract can be
extracted without destroying inter-contractual information. The m2 × n2 convolution

Sensors 2022, 22, 4621 14 of 32

kernel performs simultaneous convolution within and between contracts, allowing
correlation features to be extracted between individual contracts. The number of
convolution kernels in the layer is i, the convolution step size is l1 in all directions, the
activation function is a linear correction unit (ReLu), and the padding parameter is
SAME. Concatenate layer 1 splices the features obtained from the two convolutional
channels in the corresponding rows, keeping the output sequence of the layer.

(3) Convolutional layer 2: Two sizes of convolution kernels (i.e., m3 × n3 and m4 × n4)
are each used to convolve the output of splicing layer 1. The number of convolution
kernels in the layer is j, the convolution step is l2 in all directions, the activation
function is also ReLu, and the padding parameter is SAME. Concatenate layer 2
splices the features obtained from the two convolutional channels according to their
correspondence, while the output sequence retained by splicing layer 1 is spliced with
the output sequence of splicing layer 2.

(4) Two fully connected layers: The number of neurons in fully connected layer 1 is 300.
Since the model in this paper performs a binary classification task for smart contract
vulnerability detection, there are 2 neurons in fully connected layer 2. In addition, a
dropout operation is added between the two fully connected layers to prevent the
overfitting of the network.

(5) Output layer: The convolved feature matrix is output and used as input to the BiGRU
neural network.

3.4.2. Time Sequence Modeling Layer

Based on the internal structure of the GRU, we can calculate the hidden state ht of a
single GRU according to the following equation, where ht denotes the state of the data after
a reset gate, and zt denotes the state after an update gate.

rt = σ(xtWxr + ht−1Whr + br) (6)

zt = σ(xtWxz + ht−1Whz + bz) (7)

h̃t = tanh(xtWxh + (rt � ht−1)Whh + bh) (8)

ht = zt � ht−1 + (1− zt)� h̃t (9)

BiGRU is a bidirectional implementation of the GRU network. We denote
→
ht as

the forward propagated hidden state value and
←
ht as the backward propagated hidden

state value, and then the hidden value of the output at moment t can be expressed by
Equation (12). FBiGRU denotes the final feature representation when using BiGRU for time
sequence feature extraction.

→
ht = GRU(xt,

→
ht−1) (10)

←
ht = GRU(xt,

←
ht−1) (11)

ht = wt
→
ht + vt

←
ht + bt (12)

FBiGRU = (h1, h2, h3,...,ht) (13)

wt and vt are the weights between the hidden layers in different directions at moment
t. To highlight the importance of the impact of different keywords on the reentrancy
vulnerability, a self-attention mechanism is introduced after the BiGRU layer of the model
to assign weights to different words. The input of the attention mechanism layer is ht,
which is the hidden vector of the output processed by the BiGRU neural network layer in
the previous layer.

Sensors 2022, 22, 4621 15 of 32

First, we input the hidden layer vector to the fully connected layer (with weight W
and bias b) to obtain ut, which is stated in Equation (14).

ut = tan h(Wht + b) (14)

Then, we use this vector to calculate the calibration vector αt (weights normalized by
the attention mechanism), which is stated in Equation (15).

αt =
exp

(
uTu

)
∑t(exp(utu))

(15)

ut in the above equation is the average optimal vector corresponding to the current
time step t, which is different for each time step. This vector is obtained by training. The
output of the attention mechanism layer is expressed in Equation (16).

st = ∑t
i=1 αthi (16)

3.5. Classification Optimization Layer

Our ensemble approach is as follows: the feature samples extracted by the deep
learning model are split and given initial equal weights, and the existing model is given
higher weights by adaptively changing the distribution of the training samples, so training
samples with errors in the previous classification model receive more attention in the
subsequent one to compensate for the shortcomings of the existing model. By changing the
weight distribution of the training data in each iteration, the data play different roles in the
learning of each weak classifier, so different data play their own roles, and the classification
error rate of the base classifier constructed after each iteration decreases steadily with the
increase in the number of iterations, which improves the robustness of the model. Under
our integrated classification framework, a variety of regression classification models can be
used to build weak learners with great flexibility.

In our model, we construct a set of candidate classifiers. The classifiers in our candidate
classifier set are Softmax, AM-softmax, and SVM. We would like to state that there can be
multiple single classifiers in the candidate classifier set, and in addition to the classifiers
involved in our study, Naive Bayes, KNN, etc., can be a member of the candidate classifier
set. Introducing a fairness mechanism for selecting weak classifiers in the integrated
classifier, we determine the kind of base classifier by comparing the classification accuracy
of single classifiers in the classifier set through one test experiment. The selection of
weak classifiers directly determines the performance of base classifiers, and integrated
classification algorithms often lack selection criteria for weak classifiers. In order to improve
the stability and interference resistance of the model, we add a step of a weak classifier
selection process before integration. This method integrates the diversity of classifiers,
the accuracy of sub-classifiers, and the accuracy of combined classifiers when searching
and selecting weak classifiers, so the classifiers as a whole and locally have high fitness
and improve the generalization ability and interference resistance of the model. After
determining the base classifier, we use that base classifier for ensemble learning.

In contrast to traditional single classifiers (e.g., Softmax, Decision Trees, Parsimonious
Bayes, SVM, etc.), our model uses an integrated classifier in the classification phase, which
we call the Ensemble Classifier. We select one classifier from the candidate classifier set as
the base classifier. The weights are first updated by continuously learning and optimizing
a series of weak classifiers (base classifiers) in the set. These weak classifiers are then
combined in a sequential linear weighting fashion to form a strong classifier. This is an
incremental process whereby the ith base classifier is based on the i − 1th classifier by
gradually adding “expert predictions”. The Ensemble Classifier learns a series of weak
classifiers by varying the weight distribution of the training data.

In the classification stage, the training data after feature extraction by the neural
network is represented as E = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where x1 ∈ R, yi ∈ {0, 1}.

Sensors 2022, 22, 4621 16 of 32

First, a single classifier is used as a candidate base classifier for the Ensemble Classifier.
Second, the set of classifiers and the weight distribution of the training data are initialized.
Finally, the single classifier with the smallest classification error is selected as the base
classifier.

For the selection mechanism of the base classifier, we define the following. Given a
single classifier Ci and Cj, let the number of samples in the sample set where Ci and Cj
are correctly classified at the same time be a, the number of samples where Ci is correctly
and Cj is incorrectly classified be b, the number of samples where Cj is correctly and
Ci is incorrectly classified be c, and the number of samples where both classifiers are
incorrectly classified be d. Then, the output correlation coefficient of the two classifiers is
ρij =

ad−bc√
(a+b)(c+d)(a+c)(b+d)

. The larger the mean value of ρi, the larger the value of Ci taken

as the base classifier.
Figure 6 shows the learning process of the integrated classifier. The output is a

global classification model consisting of multiple basic classification models, each with
a certain weight that is used to indicate the confidence of that basic classification model.
The final classification result is generated by voting based on the predicted results of the
multiple basic classification models multiplied by the weights. The integration steps after
determining the base classifier from the candidate classifier set are as follows.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 32

Figure 6. Structure diagram of the Ensemble Classifier.

In our integration algorithm (Algorithm 1), the weights of samples misclassified by
the previous round of weak classifiers need to be increased. At the same time, the weights
of correctly classified samples are reduced. We take a weighted majority voting approach,
increasing the weights of weak classifiers with small classification error rates so that they
play a larger role in the voting. Conversely, we reduce the weights of weak classifiers with
large classification error rates so that they play a smaller role in voting.

Algorithm 1 Integration Algorithm to Implement Ensemble Classifier
Input: 𝐸: Training data for classification.
Initialization: 𝑊 : the weights of the training data. 𝑚 = 1,2, … , 𝑀. 𝑎 = 0.
Output: 𝐺(𝑥): Ensemble Classifier
1: for 𝑖 0 and 𝑖< 𝑀 do
2: Calculate 𝑒 by Equation (19)
3: 𝑎 ← 𝑒
4: if 𝑒 ≤ 𝑎 then
5: 𝑎 ← 𝑒
6: Base ← 𝐺 (𝑥)
7: Calculate the weight of the Base 𝑊 by Equation (21)
8: 𝑖 + +
9: end for
10: Calculate 𝑓(𝑥) by Equation (24)
11: Calculate 𝐺(𝑥) by Equation (25)
12: return 𝐺(𝑥)

Figure 6. Structure diagram of the Ensemble Classifier.

Step 1: Initialize the weight distribution of the training data E.

W1 = (w11, w12, . . . w1i, . . . , w1n), w1i =
1
n

, i = 1, 2, . . . , n (17)

Step 2: Select the base classifier and update weights.

Sensors 2022, 22, 4621 17 of 32

Step 2.1: Train the model using training data with a weight distribution Wm to obtain
the base classifier, where m = 1, 2, . . . , M.

Gm(x) : X → {0, 1} (18)

Step 2.2: Calculate the classification error of Gm(x) on the training dataset.

em = ∑n
i=1 P(Gm(xi) 6= yi) = ∑n

i=1 wmi I(Gm(xi) 6= yi) (19)

Step 2.3: Calculate the coefficients of Gm(x).

αm =
1
2

log
1− em

em
(20)

Step 2.4: Update the weight distribution of the training data.

Wm+1 = (wm+1,1, wm+1,2, . . . wm+1,i, . . . , wm+1,n) (21)

wm+1,i =
wm,i

Zm
exp (−αmyiGm(xi)), i = 1, 2, . . . , n (22)

Zm = ∑n
i=1 wm,i exp(−αmyiGm(xi)) (23)

Step 3: Construct linear combinations of base classifiers.

f (x) = ∑M
m=1 αmGm(x) (24)

Step 4: The final Ensemble Classifier is obtained as follows.

G(x) = sign(f (x)) = sign(∑M
m=1 αmGm(x)) (25)

In our integration algorithm (Algorithm 1), the weights of samples misclassified by
the previous round of weak classifiers need to be increased. At the same time, the weights
of correctly classified samples are reduced. We take a weighted majority voting approach,
increasing the weights of weak classifiers with small classification error rates so that they
play a larger role in the voting. Conversely, we reduce the weights of weak classifiers with
large classification error rates so that they play a smaller role in voting.

Algorithm 1 Integration Algorithm to Implement Ensemble Classifier

Input: E: Training data for classification.
Initialization: Wm: the weights of the training data. m = 1, 2, . . . , M. a = 0.
Output: G(x) : Ensemble Classifier
1: for i ≥ 0 and i< M do
2: Calculate ei by Equation (19)
3: a ← ei
4: if ei ≤ a then
5: a ← ei
6: Base← Gi(x)
7: Calculate the weight of the Base Wi+1 by Equation (21)
8: i ++
9: end for
10: Calculate f (x) by Equation (24)
11: Calculate G(x) by Equation (25)
12: return G(x)

Softmax is one of the most common classifiers in deep learning. Although the Softmax
classifier is easy to use and effective, it fails to guide the network to learn distinguishing
features. In order to efficiently learn features that are compact within classes and discrete

Sensors 2022, 22, 4621 18 of 32

between classes, Wang et al. proposed a Softmax (AM-Softmax) classifier with additional
edge cosine distances [59].

Fso f tmax(X) =
eWT

k X

∑n0
j=1 eWT

j X
=

e‖Wk‖‖X cos θk

∑n0
j=1 e‖Wj‖‖X‖ cos θj

(26)

FAM-So f tmax(X) =
es(cos θk−dm)

es(cos θj−dm) + ∑n0
j=1,j 6=k es cos θj

(27)

In the above equation, X denotes the input vector of the fully connected layer, WT
j

is the fully connected layer weight of the jth output node, is the output value of the
corresponding output node when the classification result is k, k ∈ {1, 2, . . . , n0}, s is the
scale scaling factor, and dm is the additional edge cosine distance.

4. Experiments and Results

In order to conduct modular comparison experiments, we built a modular serial
combination framework during experiments. We call it the SCR Detection Framework.
It contains 15 serial combinations of CNN and RNN models, including SPCBIG-EC. By
running the SCR detection framework, it can automatically select the best-performing
model in a selective series of combinations. The structure is shown in Figure 7 below.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 32

Softmax is one of the most common classifiers in deep learning. Although the Soft-
max classifier is easy to use and effective, it fails to guide the network to learn distinguish-
ing features. In order to efficiently learn features that are compact within classes and dis-
crete between classes, Wang et al. proposed a Softmax (AM-Softmax) classifier with addi-
tional edge cosine distances [59]. 𝐹 (𝑋) = ∑ = ‖ ‖∑ ‖ ‖ (26)

𝐹 (𝑋) = ()() ∑ , (27)

In the above equation, 𝑋 denotes the input vector of the fully connected layer, 𝑊
is the fully connected layer weight of the 𝑗th output node, 𝑊 𝑋 is the output value of
the corresponding output node when the classification result is 𝑘, 𝑘 ∈ {1,2, … , 𝑛 }, 𝑠 is
the scale scaling factor, and 𝑑 is the additional edge cosine distance.

4. Experiments and Results
In order to conduct modular comparison experiments, we built a modular serial com-

bination framework during experiments. We call it the SCR Detection Framework. It con-
tains 15 serial combinations of CNN and RNN models, including SPCBIG-EC. By running
the SCR detection framework, it can automatically select the best-performing model in a
selective series of combinations. The structure is shown in Figure 7 below.

Figure 7. The SCR Detection Framework.

Our experiments were designed to answer the following four Research Questions
(RQs):
• RQ1: Can our SPCBIG-EC model detect multiple kinds of smart contract vulnerabil-

ities, and what is the performance of vulnerability detection?
To answer this question, we conducted experiments using the SPCBIG-EC model for
the CESC dataset that we constructed. The CESC dataset contains six typical vulner-
abilities. We used CESC for multi-task vulnerability detection.

• RQ2: Did the serial combination of SPCNN and BiGRU in the feature extraction
phase make our model more effective? By how much?

Figure 7. The SCR Detection Framework.

Our experiments were designed to answer the following four Research Questions (RQs):

• RQ1: Can our SPCBIG-EC model detect multiple kinds of smart contract vulnerabili-
ties, and what is the performance of vulnerability detection? To answer this question,
we conducted experiments using the SPCBIG-EC model for the CESC dataset that we
constructed. The CESC dataset contains six typical vulnerabilities. We used CESC for
multi-task vulnerability detection.

• RQ2: Did the serial combination of SPCNN and BiGRU in the feature extraction phase
make our model more effective? By how much? To answer this question, two sets
of experiments were carried out. (a) First, we compared the reentrancy, timestamp
dependency, and infinite loop vulnerability detection performance of the SPCNN
model, BiGRU model, and SPCBIG-EC model in the CESC dataset. (b) Then, we

Sensors 2022, 22, 4621 19 of 32

performed hybrid vulnerability testing for UCESC using our framework to test the
performance evaluation results for all combined patterns.

• RQ3: Can our proposed SPCNN for the vulnerability feature extraction phase of the
CNN module make our model more effective? By how much? To answer this question,
we used the SCR Detection Framework to evaluate the performance of three models,
CNN-BiGRU, SCNN-BiGRU, and SPCBIG-EC, for three typical vulnerabilities.

• RQ4: How effective is our model when compared with state-of-the-art methods? To
answer this question, we compared SPCBIG-EC with state-of-the-art smart contract
vulnerability detection methods. Firstly, a comparison was made with existing auto-
mated security auditing tools, namely, Oyenete [25], Mythril [26], Smartcheck [27], and
Securify [28]. Secondly, we compared it with deep learning-based vulnerability de-
tection methods, namely, DeeSCV [38], Eth2Vec [33], DR-GCN, TMP, GCE, AME [35],
and AFS [36].

4.1. Dataset

We collected existing smart contracts on Ethereum and constructed two smart contract
datasets, represented as CESC and UCESC.

We collected the source code of Solidity smart contracts from the official Ethereum
website, with a total of 203,716 smart contracts. It contains 47,398 real and unique sol
files consisting of contract code for six possible vulnerability types, namely, reentrancy
vulnerability, timestamp dependency, infinite loop, callstack depth attack vulnerability,
integer overflow, and integer underflow. The number of sol files containing vulnerabilities
is 35,151, and the number of files without vulnerabilities is 12,247. The data show a large
difference between the number of contracts that contain vulnerabilities and those that do not.
Such a heavily imbalanced dataset would lead to overfitting during training. We needed
to balance the dataset before vulnerability detection and classification, balancing positive
and negative examples while ensuring an even distribution of each type of vulnerability.
Therefore, after obtaining these smart contracts, further sampling and processing were
required to collate a dataset that could be used for experiments. We used the synthetic
minority oversampling technique (SMOTE) [60,61] to extend the number of minority classes
to be close to the number of majority classes. SMOTE is an oversampling technique that
interpolates between a small number of classes to generate additional classes. Figure 8
shows the composition of the CESC dataset. The CESC dataset consists of six categorical
datasets, the composition of which is shown in Figure 8. We would like to clarify that the
reason we distinguished the dataset into UCESC and CESC is that the CESC required for our
experiments was obtained after preprocessing UCESC, which is the original smart contract
code that has not been preprocessed, and it consists of smart contract code containing
six typical vulnerabilities that are not sorted. The UCESC dataset underwent a series of
preprocessing efforts, such as data cleaning and tagging lists, to form a CESC dataset that
can be used by our model for vulnerability detection. We also conducted direct vulnerability
detection experiments on the UCESC dataset to verify the necessity of data cleaning for this
study and to demonstrate the efficiency of our proposed structure for different datasets.

Sensors 2022, 22, 4621 20 of 32
Sensors 2022, 22, x FOR PEER REVIEW 20 of 32

Figure 8. Composition of the CESC dataset.

4.2. Experimental Settings
The experimental model was built on a computer with Intel Core (TM) i7-10875H

CPU, NVIDIA GeForce GTX 2060 GPU, and 16 GB RAM.
The whole experiment was divided into a training phase and a testing phase. Our

goal in the training phase was to optimize the model parameters by learning the loopholes
to obtain a trained model. The testing phase of our work used the test data as input to the
trained model, which outputs the prediction results of vulnerability detection. The pre-
diction results were compared with the real tags to measure the performance of our
model. In this paper, we use widely used metrics, including accuracy (ACC), true positive
rate or recall (TPR), false positive rate (FPR), precision (PRE), and F1-score (F1). We calcu-
lated these values by the following mathematical representations. 𝐴𝐶𝐶 = (28)𝑇𝑃𝑅 = (29)𝐹𝑃𝑅 = (30)𝑃𝑅𝐸 = (31)𝐹1 = ∗ ∗ (32)

The concepts represented by the letters involved in the formulas are as follows. True
positive (TP): the number of samples in which true reentrancy is detected; false positive
(FP): the number of samples in which false reentrancy is detected; false negative (FN): the
number of true reentrant samples not detected; true negative (TN): the number of false
reentrant samples not detected.

In the SCR Detection Framework, we constructed neural network models that com-
bine multiple types of CNN and RNN serial structures as feature extraction modules. We
provided three CNN structures, namely, CNN, SCNN, and SPCNN, and five RNN struc-
tures, namely, vanilla RNN, GRU, LSTM, BLSTM, and BiGRU.

Figure 8. Composition of the CESC dataset.

4.2. Experimental Settings

The experimental model was built on a computer with Intel Core (TM) i7-10875H CPU,
NVIDIA GeForce GTX 2060 GPU, and 16 GB RAM.

The whole experiment was divided into a training phase and a testing phase. Our
goal in the training phase was to optimize the model parameters by learning the loopholes
to obtain a trained model. The testing phase of our work used the test data as input to
the trained model, which outputs the prediction results of vulnerability detection. The
prediction results were compared with the real tags to measure the performance of our
model. In this paper, we use widely used metrics, including accuracy (ACC), true positive
rate or recall (TPR), false positive rate (FPR), precision (PRE), and F1-score (F1). We
calculated these values by the following mathematical representations.

ACC =
TP + TN

TP + TN + FP + FN
(28)

TPR =
TP

TP + FN
(29)

FPR =
FP

FP + TN
(30)

PRE =
TP

TP + FP
(31)

F1 =
2× PRE× TPR

PRE + TPR
(32)

The concepts represented by the letters involved in the formulas are as follows. True
positive (TP): the number of samples in which true reentrancy is detected; false positive
(FP): the number of samples in which false reentrancy is detected; false negative (FN): the
number of true reentrant samples not detected; true negative (TN): the number of false
reentrant samples not detected.

In the SCR Detection Framework, we constructed neural network models that combine
multiple types of CNN and RNN serial structures as feature extraction modules. We pro-
vided three CNN structures, namely, CNN, SCNN, and SPCNN, and five RNN structures,
namely, vanilla RNN, GRU, LSTM, BLSTM, and BiGRU.

4.3. Experimental Results

(1) Results for Answering RQ1: To determine whether our model can detect multiple
types of vulnerabilities, we evaluated the performance of our model on the CESC dataset.
The effectiveness is reported in Table 3.

Sensors 2022, 22, 4621 21 of 32

Table 3. The key points corresponding to different vulnerabilities.

Dataset Vulnerability

Models
Selected
by Our

Framework

ACC
(%)

TPR
(%)

FPR
(%)

PRE
(%)

F1
(%)

CESC

Reentrancy SPCBIG-EC 96.66 98.04 5.71 94.55 96.74

Timestamp SPCBIG-EC 91.11 96.84 14.64 86.93 91.62

Infinite loop SPCBIG-EC 94.87 93.16 3.41 96.46 95.00

Callstack depth attack SPCBIG-EC 90.02 86.32 7.24 92.25 89.14

Integer overflow SPCBIG-EC 85.11 97.10 16.90 83.80 85.42

Integer underflow SPCBIG-EC 86.47 89.24 16.29 84.57 86.83

In this set of experiments, we conducted vulnerability detection experiments on six
separate datasets from the CESC dataset. According to Table 3, our model can detect these
six vulnerabilities to some extent. SPCBIG-EC showed better detection performance when
targeting reentrancy, timestamp, infinite loop, and callstack depth attack vulnerabilities.
Their accuracy rates are almost all above 90%. In addition, the detection accuracy for
reentrancy vulnerability is 96.66%, and the F1-score is 96.74%. For both integer overflow
and integer underflow vulnerabilities, the evaluation metrics are around 85%. One possible
reason is that reentrancy, timestamp, infinite loop, and callstack depth attack have more
salient syntactic or semantic features compared to samples of integer overflow vulner-
abilities. SPCBIG-EC also demonstrated good detection performance when performing
detection tasks on UCESC datasets containing hybrid vulnerabilities. As the UCESC dataset
contains multiple vulnerabilities, its ability to learn vulnerability features decreases when
simultaneous feature extraction is performed for multiple vulnerabilities. As a result, the
accuracy and F1-scores only reach about 85%.

In summary, the experiments show that SPCBIG-EC can automatically learn semantic
and syntactic information by processing and analyzing the source code of smart contracts.
Therefore, many different types of vulnerabilities can be detected efficiently. Moreover, our
model exhibited good performance in most vulnerability detection tasks. Figure 9 shows
the acc-loss plots of our model for different vulnerabilities during the training process. The
stability of our model during the training of smart contracts for vulnerability detection can
be seen from the accuracy-loss images obtained from the tests during training.

(2) Results for Answering RQ2: To answer the question of whether adopting a serial
combination structure of SPCNN and BiGRU in the feature extraction phase makes the
SPCBIG-EC model more effective, we conducted experiments from two perspectives.

We compared the performance of vulnerability detection using the SPCNN model, the
BiGRU model, and the SPCBIG-EC model to further illustrate the effectiveness of the serial
structures based on CNN and RNN.

As shown in Table 4, for the three typical vulnerabilities, our serial structure out-
performed CNN or RNN alone in terms of detection performance. (a) In reentrancy
vulnerability detection, the evaluation metrics of the models were both improved by about
10% after serializing the CNN with the RNN for feature extraction. Furthermore, SPCBIG-
EC achieved the highest accuracy rate of 96.66% with the highest F1-score of 96.74%. (b) In
timestamp dependency vulnerability detection, accuracy improved by around 10%, and
the F1-score increased by up to 15%. (c) There was a 15% improvement in accuracy and up
to 20% improvement in the F1-score in infinite loop vulnerability detection.

Sensors 2022, 22, 4621 22 of 32Sensors 2022, 22, x FOR PEER REVIEW 22 of 32

Figure 9. Plots of Acc-Loss.

(2) Results for Answering RQ2: To answer the question of whether adopting a serial
combination structure of SPCNN and BiGRU in the feature extraction phase makes the
SPCBIG-EC model more effective, we conducted experiments from two perspectives.

We compared the performance of vulnerability detection using the SPCNN model,
the BiGRU model, and the SPCBIG-EC model to further illustrate the effectiveness of the
serial structures based on CNN and RNN.

As shown in Table 4, for the three typical vulnerabilities, our serial structure outper-
formed CNN or RNN alone in terms of detection performance. (a) In reentrancy vulnera-
bility detection, the evaluation metrics of the models were both improved by about 10%
after serializing the CNN with the RNN for feature extraction. Furthermore, SPCBIG-EC
achieved the highest accuracy rate of 96.66% with the highest F1-score of 96.74%. (b) In
timestamp dependency vulnerability detection, accuracy improved by around 10%, and
the F1-score increased by up to 15%. (c) There was a 15% improvement in accuracy and
up to 20% improvement in the F1-score in infinite loop vulnerability detection.

The experimental results show that the vulnerability detection capability of the
model is greatly improved by concatenating CNN with RNN. The results demonstrate
that serially connecting CNNs to RNNs is more conducive to feature extraction and can
improve the effectiveness of our model.

Table 4. Performance comparison of a single model and serial hybrid model.

Metrics
Model ACC (%) TPR (%) FPR (%) PRE (%) F1 (%)

Reentrancy
BiGRU 85.38 86.57 11.42 85.23 85.55
SPCNN 87.14 87.12 12.23 85.45 86.77

SPCBIG-EC 96.66 98.04 5.71 94.55 96.74
Timestamp BiGRU 82.45 83.82 13.28 71.29 76.82

Figure 9. Plots of Acc-Loss.

Table 4. Performance comparison of a single model and serial hybrid model.

Model
Metrics

ACC (%) TPR (%) FPR (%) PRE (%) F1 (%)

Reentrancy

BiGRU 85.38 86.57 11.42 85.23 85.55

SPCNN 87.14 87.12 12.23 85.45 86.77

SPCBIG-EC 96.66 98.04 5.71 94.55 96.74

Timestamp

BiGRU 82.45 83.82 13.28 71.29 76.82

SPCNN 83.48 82.56 12.84 75.27 79.19

SPCBIG-EC 91.11 96.84 14.64 86.93 91.62

Infinite loop

BiGRU 80.11 83.54 21.45 73.98 76.27

SPCNN 79.79 85.14 11.84 75.17 78.86

SPCBIG-EC 94.87 93.16 3.41 96.46 95.00

The experimental results show that the vulnerability detection capability of the model
is greatly improved by concatenating CNN with RNN. The results demonstrate that serially
connecting CNNs to RNNs is more conducive to feature extraction and can improve the
effectiveness of our model.

We performed hybrid vulnerability detection on UCESC. The performance of all
combined models was evaluated using the SCR Detection Framework. Table 5 shows the
results of the experiment.

Sensors 2022, 22, 4621 23 of 32

Table 5. The results of the detection of hybrid vulnerabilities with the SCR Detection Framework.

Serial Neural Network

Metrics ACC
(%) TPR (%) FPR (%) PRE (%) F1 (%)

CNN-RNN 75.25 62.56 12.06 83.84 71.65

CNN-LSTM 79.77 79.90 20.35 79.70 79.80

CNN-GRU 80.52 71.11 10.05 87.61 78.50

CNN-BLSTM 80.65 76.63 15.32 83.33 79.85

CNN-BiGRU 81.41 81.91 19.09 81.10 81.50

SCNN-RNN 79.02 72.36 14.32 83.47 77.52

SCNN-LSTM 78.64 82.16 24.87 76.76 79.37

SCNN-GRU 81.40 73.11 10.30 87.65 79.72

SCNN-BLSTM 82.41 72.11 10.29 90.82 80.39

SCNN-BiGRU 82.92 80.90 15.07 84.30 82.56

SPCNN-RNN 79.27 87.69 29.14 75.05 80.88

SPCNN-LSTM 80.15 80.00 19.50 80.30 80.10

SPCNN-GRU 82.03 81.66 17.58 82.28 81.97

SPCNN-BLSTM 82.66 81.16 15.82 83.68 82.40

SPCBIG-EC 85.89 85.00 9.23 91.41 85.71

From the results data in Table 5, we can see that the detection performance of the
convolutional layer with the SPCNN structure is better than that of CNN and SCNN,
with the guarantee of a consistent recurrent neural network. Furthermore, among these
15 combined models, SPCBIG-EC shows stronger vulnerability detection ability. In this
experiment, we conducted a comparison of our own structures for vulnerability detection
on the same dataset to determine the best model structure, and the experimental results
show that the SPCNN structure has a strong advantage over CNN and SCNN; our proposed
SPCNN has a factual basis for improving vulnerability detection performance, and our
model also shows the strongest vulnerability detection capability among these 15 structures.

(3) Results for Answering RQ3: To answer whether our proposed SPCNN structure
can make our model more effective, we computed experimental data statistics with three
vulnerabilities as examples. We chose the BiGRU model in the RNN module to detect the
performance of the structure by changing the type of CNN.

Table 6 shows the quantitative results, and we have the following observations. (a) In
reentrancy vulnerability detection, SPCBIG-EC has an accuracy and F1-score of 96%, much
higher than those of CNN-BiGRU and SCNN-BiGRU. The various indicators improved by
around 10%. The difference in performance between CNN-BiGRU and SCNN-BiGRU is not
significant, and the accuracy and F1-score of SCNN-BiGRU are slightly better than those of
CNN-BiGRU. (b) In timestamp vulnerability detection, SPCBIG-EC achieved an accuracy
and F1-score of around 91%, slightly higher than those of BiGRU and SPCNN. Although
the advantages are not obvious, good vulnerability detection was achieved. (c) In infinite
loop vulnerability detection, SPCBIG-EC achieved an accuracy of 94.87% and an F1-score
of 95%, much higher those than CNN-BiGRU and SCNN-BiGRU. These metrics are in the
range of 5–15% improvement compared to CNN-BiGRU and SCNN-BiGRU metrics.

Sensors 2022, 22, 4621 24 of 32

Table 6. The results of the detection of hybrid vulnerabilities with the SCR Detection Framework.

Model
Metrics

ACC (%) TPR (%) FPR (%) PRE (%) F1 (%)

Reentrancy

CNN-BiGRU 84.76 76.19 6.67 91.95 83.33

SCNN-BiGRU 86.19 93.33 20.95 81.67 87.11

SPCBIG-EC 96.66 98.04 5.71 94.55 96.74

Timestamp

CNN-BiGRU 87.61 92.72 23.42 80.73 88.83

SPCNN-BiGRU 90.47 91.77 10.83 89.5 90.62

SPCBIG-EC 91.11 96.84 14.64 86.93 91.62

Infinite loop

CNN-BiGRU 80.77 72.65 11.11 86.73 79.0

SPCNN-BiGRU 89.74 88.03 8.55 91.15 89.57

SPCBIG-EC 94.87 93.16 3.41 96.46 95.00

The experiments showed that the results of vulnerability detection vary greatly when
different CNNs are chosen for sequence structure. The results demonstrate that SPCNN
can improve the effectiveness of our model, especially the overall effectiveness of the
accuracy and F1-score. In addition, we found that the detection performance of reentrancy
and infinite loop vulnerabilities improved to a greater extent than that of timestamp
vulnerabilities. The possible reason is that the reentrancy and infinite loop samples have a
richer data flow and control flow relationship, so feature extraction with SPCNN leads to a
greater improvement in the final detection results.

We further present a case study in Figure 10, where the withdraw function is a
real-world smart contract function that has a reentrancy vulnerability. We use the reen-
trancy vulnerability as an example and present the labels of the detection results of the
CNN-BiGRU and SPCBIG-EC models. A vulnerability contract was located, and SPCNN
detected the vulnerability, while CNN did not detect the vulnerability. We reduced the
contract represented by tokens to the smart contract source code. We found that CNN
failed to locate the vulnerability in this contract. The vulnerability in this code is in “re-
quire(msg.sender.call.value(_weiToWithdraw)())”. This line will send the extractor the specified
number of Ether. Based on this experimental phenomenon, we found that CNN does not
adequately learn and extract the logic of changing state variables in the contract code. In
contrast, the SPCNN learns sufficiently, based on semantic analysis and feature extraction,
that it is logically appropriate for the contract to change the state variables before Ethereum
is invoked externally. This case study further validates the superiority of the SPCNN
structure for grammar analysis and feature extraction.

(4) Results for Answering RQ4: To assess the value of our model, we selected state-
of-the-art methods for comparison. Firstly, a comparison was made with tools such as
Oyenete [25], Mythril [26], Smartcheck [27], and Securify [28] for reentrancy and timestamp
dependency vulnerabilities. Secondly, we compared it with deep learning-based vulnera-
bility detection methods, namely, Eth2Vec [33], DR-GCN, TMP, GCE, AME [35], AFS [36],
and DeeSCV [38]. These methods are described in detail in Section 2.

To highlight the need for research on smart contract vulnerability detection methods
based on deep learning techniques, we compared the performance of traditional smart con-
tract vulnerability detection tools with our approach. Table 7 shows the quantitative results,
and we have the following observations. Among the four traditional methods without the
deep learning phase, (a) Securify received the highest F1-score in reentrancy vulnerability
detection, with a value of 52.79%. (b) In the timestamp dependency vulnerability, Mythril
obtained the highest F1-score with a value of 42.48%, which is quite low in practice. This
stems from the fact that these methods detect these two kinds of vulnerabilities by crudely
checking whether the statements contain call.value/block.timestamp or not.

Sensors 2022, 22, 4621 25 of 32Sensors 2022, 22, x FOR PEER REVIEW 25 of 32

Figure 10. Case study on the interpretability of our method. The “1” and “0” in the graph indicate
the result of vulnerability detection. A “1” indicates that a vulnerability exists in the detected con-
tract, and a “0” indicates that it does not exist.

(4) Results for Answering RQ4: To assess the value of our model, we selected state-
of-the-art methods for comparison. Firstly, a comparison was made with tools such as
Oyenete [25], Mythril [26], Smartcheck [27], and Securify [28] for reentrancy and
timestamp dependency vulnerabilities. Secondly, we compared it with deep learning-
based vulnerability detection methods, namely, Eth2Vec [33], DR-GCN, TMP, GCE, AME
[35], AFS [36], and DeeSCV [38]. These methods are described in detail in Section 2.

To highlight the need for research on smart contract vulnerability detection methods
based on deep learning techniques, we compared the performance of traditional smart
contract vulnerability detection tools with our approach. Table 7 shows the quantitative
results, and we have the following observations. Among the four traditional methods
without the deep learning phase, (a) Securify received the highest F1-score in reentrancy
vulnerability detection, with a value of 52.79%. (b) In the timestamp dependency vulner-
ability, Mythril obtained the highest F1-score with a value of 42.48%, which is quite low
in practice. This stems from the fact that these methods detect these two kinds of vulner-
abilities by crudely checking whether the statements contain call.value/block.timestamp or
not.

Table 7. Comparison results with advanced security audit tools.

Methods
Reentrancy Timestamp

ACC (%) TPR (%) PRE (%) F1 (%) ACC (%) TPR (%) PRE (%) F1 (%)
Oyenete 71.50 50.84 51.72 51.28 60.54 31.94 48.94 38.66
Mythril 60.00 39.21 68.96 50.00 64.87 34.53 58.54 42.48
Smartcheck 52.00 24.32 31.03 27.27 61.08 29.17 50.00 36.84
Securify 53.50 37.41 89.66 52.79 - - - -
SPCBIG-EC 96.66 98.04 94.55 96.74 91.11 96.84 86.93 91.62

To verify the efficiency of our approach, we compared the performance with existing
advanced smart contract vulnerability detection methods based on deep learning tech-
niques, and Table 8 shows the resulting data. Figure 11 shows the visualization of our
approach compared to existing advanced deep learning-based methods. We analyzed the
data from the experimental results. (a) In reentrancy vulnerability detection, AME reached

Figure 10. Case study on the interpretability of our method. The “1” and “0” in the graph indicate the
result of vulnerability detection. A “1” indicates that a vulnerability exists in the detected contract,
and a “0” indicates that it does not exist.

Table 7. Comparison results with advanced security audit tools.

Methods
Reentrancy Timestamp

ACC (%) TPR (%) PRE (%) F1 (%) ACC (%) TPR (%) PRE (%) F1 (%)

Oyenete 71.50 50.84 51.72 51.28 60.54 31.94 48.94 38.66
Mythril 60.00 39.21 68.96 50.00 64.87 34.53 58.54 42.48
Smartcheck 52.00 24.32 31.03 27.27 61.08 29.17 50.00 36.84
Securify 53.50 37.41 89.66 52.79 - - - -
SPCBIG-EC 96.66 98.04 94.55 96.74 91.11 96.84 86.93 91.62

To verify the efficiency of our approach, we compared the performance with existing
advanced smart contract vulnerability detection methods based on deep learning tech-
niques, and Table 8 shows the resulting data. Figure 11 shows the visualization of our
approach compared to existing advanced deep learning-based methods. We analyzed
the data from the experimental results. (a) In reentrancy vulnerability detection, AME
reached the highest F1-score with a value of 87.94%, and Eth2Vec obtained an F1-score of
61.5%, the lowest value of all methods; (b) For timestamp dependency, CGE reached the
highest F1-score with a value of 87.75%, and DR-GCN obtained an F1-score of 74.91%, the
lowest value of all methods; (c) In the infinite loop vulnerability, CGE achieved the highest
F1-score with a value of 82.13%, and DR-GCN obtained an F1-score of 66.32%, the lowest
value of all methods.

In contrast, our method is considerably superior to the state-of-the-art methods de-
scribed above. Our method obtained a 96.66% F1-score in detecting reentrancy vulnera-
bilities, a 91.62% F1-score in timestamp dependency, and a 95% F1-score in infinite loop
vulnerabilities. These pieces of evidence reveal the great potential of applying our model
to smart contract vulnerability detection.

Sensors 2022, 22, 4621 26 of 32

Table 8. Comparison results with existing advanced deep learning-based methods.

Methods

Reentrancy Timestamp Infinite Loop

ACC
(%)

TPR
(%)

PRE
(%)

F1
(%)

ACC
(%)

TPR
(%)

PRE
(%)

F1
(%)

ACC
(%)

TPR
(%)

PRE
(%)

F1
(%)

GR-GCN 81.47 80.89 72.36 76.39 78.68 78.91 71.29 74.91 68.34 67.82 64.89 66.32
TMP 84.48 82.63 74.06 78.11 83.45 83.82 75.05 79.19 74.61 74.32 73.89 74.10
CGE 89.15 87.62 85.24 86.41 89.02 88.10 87.41 87.75 83.21 82.29 81.97 82.13
AME 90.19 89.69 86.25 87.94 86.52 86.23 82.07 84.10 80.32 79.08 78.69 78.88

Eth2Vec 85.50 74.32 86.60 61.50 - - - - - - - -
AFS 93.07 94.60 90.00 93.21 - - - - - - - -

DeeSCV 93.02 83.46 90.70 86.87 80.50 74.86 85.53 79.93 - - - -
SPCBIG-EC 96.66 98.04 94.55 96.74 91.11 96.84 86.93 91.62 94.87 93.16 96.46 86.93

Sensors 2022, 22, x FOR PEER REVIEW 26 of 32

the highest F1-score with a value of 87.94%, and Eth2Vec obtained an F1-score of 61.5%,
the lowest value of all methods; (b) For timestamp dependency, CGE reached the highest
F1-score with a value of 87.75%, and DR-GCN obtained an F1-score of 74.91%, the lowest
value of all methods; (c) In the infinite loop vulnerability, CGE achieved the highest F1-
score with a value of 82.13%, and DR-GCN obtained an F1-score of 66.32%, the lowest
value of all methods.

Table 8. Comparison results with existing advanced deep learning-based methods.

Methods
Reentrancy Timestamp Infinite Loop

ACC
(%)

TPR
(%)

PRE
(%)

F1
(%)

ACC
(%)

TPR
(%)

PRE
(%)

F1
(%)

ACC
(%)

TPR
(%)

PRE
(%)

F1
(%)

GR-GCN 81.47 80.89 72.36 76.39 78.68 78.91 71.29 74.91 68.34 67.82 64.89 66.32
TMP 84.48 82.63 74.06 78.11 83.45 83.82 75.05 79.19 74.61 74.32 73.89 74.10
CGE 89.15 87.62 85.24 86.41 89.02 88.10 87.41 87.75 83.21 82.29 81.97 82.13
AME 90.19 89.69 86.25 87.94 86.52 86.23 82.07 84.10 80.32 79.08 78.69 78.88

Eth2Vec 85.50 74.32 86.60 61.50 - - - - - - - -
AFS 93.07 94.60 90.00 93.21 - - - - - - - -

DeeSCV 93.02 83.46 90.70 86.87 80.50 74.86 85.53 79.93 - - - -
SPCBIG-

EC 96.66 98.04 94.55 96.74 91.11 96.84 86.93 91.62 94.87 93.16 96.46 86.93

In contrast, our method is considerably superior to the state-of-the-art methods de-
scribed above. Our method obtained a 96.66% F1-score in detecting reentrancy vulnera-
bilities, a 91.62% F1-score in timestamp dependency, and a 95% F1-score in infinite loop
vulnerabilities. These pieces of evidence reveal the great potential of applying our model
to smart contract vulnerability detection.

Figure 11. Visualization of images compared to existing deep learning-based methods. Figure 11. Visualization of images compared to existing deep learning-based methods.

We used multiple tools to perform different types of vulnerability detection on thou-
sands of real-world copies. We selected several typical traditional smart contract vulnera-
bility detection tools to compare the detection time with our method in order to further
illustrate the shortcomings of the traditional method and the urgent need to improve it. At
the same time, to verify the efficiency of our method, we compared the vulnerability detec-
tion time with CGE, the vulnerability detection method based on deep learning techniques
with the highest comprehensive performance except for our method in Table 8. Statistically,
as shown in Figure 12, our model detected an average of 9.8 s for one smart contract.
Meanwhile, Mythril averaged 60 s, Oyente averaged about 30 s, Securify averaged about
20 s, and CGE averaged about 12.4 s. This demonstrates the efficiency of our SPCBIG-EC.

Sensors 2022, 22, 4621 27 of 32

Sensors 2022, 22, x FOR PEER REVIEW 27 of 32

We used multiple tools to perform different types of vulnerability detection on thou-
sands of real-world copies. We selected several typical traditional smart contract vulner-
ability detection tools to compare the detection time with our method in order to further
illustrate the shortcomings of the traditional method and the urgent need to improve it.
At the same time, to verify the efficiency of our method, we compared the vulnerability
detection time with CGE, the vulnerability detection method based on deep learning tech-
niques with the highest comprehensive performance except for our method in Table 8.
Statistically, as shown in Figure 12, our model detected an average of 9.8 s for one smart
contract. Meanwhile, Mythril averaged 60 s, Oyente averaged about 30 s, Securify aver-
aged about 20 s, and CGE averaged about 12.4 s. This demonstrates the efficiency of our
SPCBIG-EC.

Figure 12. The comparison in detection time.

5. Analysis of Results and Outlook for Future Work
From the above experimental results, it can be concluded that our model shows good

performance when targeting a single vulnerability. This conclusion can be drawn from
Tables 3 and 8. We also find that the types of vulnerabilities where our model performs
outstandingly are reentrancy vulnerabilities, timestamp-dependent vulnerabilities, and
infinite loop vulnerabilities; especially for reentrant vulnerabilities, we achieved almost
97% detection accuracy and F1-score. On the other hand, when we used our model for
hybrid vulnerability detection, we found that our performance metrics only reached
85.89%. The possible reason is that the low accuracy of our model for detecting the three
remaining types of vulnerabilities in our study led to low performance metrics when per-
forming hybrid vulnerability detection. To test this hypothesis and to consider the effect
of the dataset on the experimental results under equivalent conditions, we performed a
comparison of vulnerability detection under equivalent conditions by using the dataset
obtained from [39]. The experimental results are shown in Table 9.

Table 9. Comparison of hybrid vulnerabilities under different datasets.

Model Dataset ACC
(%)

TPR
(%)

FPR
(%)

PRE
(%)

F1
(%)

SPCBIG-EC
UCESC 85.89 85.00 9.23 91.41 85.71

SCVDIE-Ensemble [39] 91.80 95.25 11.67 90.00 92.10

Figure 12. The comparison in detection time.

5. Analysis of Results and Outlook for Future Work

From the above experimental results, it can be concluded that our model shows good
performance when targeting a single vulnerability. This conclusion can be drawn from
Tables 3 and 8. We also find that the types of vulnerabilities where our model performs
outstandingly are reentrancy vulnerabilities, timestamp-dependent vulnerabilities, and
infinite loop vulnerabilities; especially for reentrant vulnerabilities, we achieved almost 97%
detection accuracy and F1-score. On the other hand, when we used our model for hybrid
vulnerability detection, we found that our performance metrics only reached 85.89%. The
possible reason is that the low accuracy of our model for detecting the three remaining types
of vulnerabilities in our study led to low performance metrics when performing hybrid
vulnerability detection. To test this hypothesis and to consider the effect of the dataset
on the experimental results under equivalent conditions, we performed a comparison of
vulnerability detection under equivalent conditions by using the dataset obtained from [39].
The experimental results are shown in Table 9.

Table 9. Comparison of hybrid vulnerabilities under different datasets.

Model Dataset ACC
(%)

TPR
(%)

FPR
(%)

PRE
(%)

F1
(%)

SPCBIG-EC
UCESC 85.89 85.00 9.23 91.41 85.71

SCVDIE-Ensemble [39] 91.80 95.25 11.67 90.00 92.10

Figure 13 shows the accuracy-loss images when using our model for hybrid vulnera-
bility detection on the dataset of [39]. The experimental results data show that the detection
results of the same model are different on different datasets. We used the dataset of [39]
for hybrid vulnerability detection experiments, and the comparison shows that our model
improved the accuracy and F1-score by 6% and the recall by 10% on their dataset. Our
hybrid vulnerability detection performance improved to over 90%, outperforming most
existing methods. The possible reason for our hybrid vulnerability detection performance
not reaching higher values is the bias of our model in its ability to detect different vul-
nerabilities. We found experimentally that our model obtained poor evaluation metrics
for integer overflow vulnerability detection, a conclusion that can be drawn from Table 3.
We want to show that our model focuses on targeted vulnerability detection for several
single vulnerability characteristics, and that our approach has advantages over existing
state-of-the-art approaches for single vulnerability detection for reentry vulnerabilities,
timestamp-dependent vulnerabilities, and infinite loop vulnerabilities. Since the dataset
of [39] is not divided into different types of vulnerability categories, we cannot compare

Sensors 2022, 22, 4621 28 of 32

the performance of a single vulnerability detection with them in an equivalent situation.
We acknowledge that their study has a strong detection capability for mixed vulnerabilities.
However, our advantage is that we have stronger detection performance for vulnerabilities
that have more salient syntactic or semantic features, such as smart contract reentrancy
vulnerabilities. The superior detection performance of our model for these types of vul-
nerabilities is due to the model’s unique string-parallel convolutional structure (SPCNN)
and integrated classification algorithm. We use the smart contract reentry vulnerability as
an example to illustrate. Considering the correlation characteristics of inter-invocation be-
tween smart contracts, the smart contract vulnerability features are extracted and identified
by using a string-parallel convolutional structure with parallel dual convolutional kernels,
and the internal features of smart contracts and the correlation features between multiple
smart contracts are fully extracted.

Sensors 2022, 22, x FOR PEER REVIEW 28 of 32

Figure 13 shows the accuracy-loss images when using our model for hybrid vulner-
ability detection on the dataset of [39]. The experimental results data show that the detec-
tion results of the same model are different on different datasets. We used the dataset of
[39] for hybrid vulnerability detection experiments, and the comparison shows that our
model improved the accuracy and F1-score by 6% and the recall by 10% on their dataset.
Our hybrid vulnerability detection performance improved to over 90%, outperforming
most existing methods. The possible reason for our hybrid vulnerability detection perfor-
mance not reaching higher values is the bias of our model in its ability to detect different
vulnerabilities. We found experimentally that our model obtained poor evaluation met-
rics for integer overflow vulnerability detection, a conclusion that can be drawn from Ta-
ble 3. We want to show that our model focuses on targeted vulnerability detection for
several single vulnerability characteristics, and that our approach has advantages over
existing state-of-the-art approaches for single vulnerability detection for reentry vulnera-
bilities, timestamp-dependent vulnerabilities, and infinite loop vulnerabilities. Since the
dataset of [39] is not divided into different types of vulnerability categories, we cannot
compare the performance of a single vulnerability detection with them in an equivalent
situation. We acknowledge that their study has a strong detection capability for mixed
vulnerabilities. However, our advantage is that we have stronger detection performance
for vulnerabilities that have more salient syntactic or semantic features, such as smart con-
tract reentrancy vulnerabilities. The superior detection performance of our model for
these types of vulnerabilities is due to the model’s unique string-parallel convolutional
structure (SPCNN) and integrated classification algorithm. We use the smart contract
reentry vulnerability as an example to illustrate. Considering the correlation characteris-
tics of inter-invocation between smart contracts, the smart contract vulnerability features
are extracted and identified by using a string-parallel convolutional structure with paral-
lel dual convolutional kernels, and the internal features of smart contracts and the corre-
lation features between multiple smart contracts are fully extracted.

Figure 13. Plots of Acc-Loss during hybrid vulnerability detection.

The experimental comparison of the replacement dataset and the related experiments
in Section 4 lead us to the following conclusions. The strength of our model is its strong
detection capability against smart contract reentrancy vulnerabilities, which stems from
our unique cascading model structure and integrated classification algorithm. In addition,
our model has strong detection capability against timestamp dependency vulnerabilities,
infinite loop vulnerabilities, and callstack depth attack vulnerabilities, which is better than
most similar detection models. In contrast, our model is weak in identifying integer over-
flow vulnerabilities, which is the reason why our detection ability is lower than that of
[39] when performing hybrid vulnerability detection.

Figure 13. Plots of Acc-Loss during hybrid vulnerability detection.

The experimental comparison of the replacement dataset and the related experiments
in Section 4 lead us to the following conclusions. The strength of our model is its strong
detection capability against smart contract reentrancy vulnerabilities, which stems from
our unique cascading model structure and integrated classification algorithm. In addition,
our model has strong detection capability against timestamp dependency vulnerabilities,
infinite loop vulnerabilities, and callstack depth attack vulnerabilities, which is better
than most similar detection models. In contrast, our model is weak in identifying integer
overflow vulnerabilities, which is the reason why our detection ability is lower than that
of [39] when performing hybrid vulnerability detection.

The possible reasons why our model is less sensitive to integer overflow vulnerabilities
are as follows. The integer overflow vulnerability is mainly due to the integer type of
Solidity, the programming language of smart contracts. Both uint8 and uint256 can only
store integers within a certain range, and when the result of the operation exceeds that range,
an overflow or underflow problem will occur, which makes certain judgment mechanisms
in the contract fail and poses a potential threat to the security of the entire contract. Most of
the integer overflow vulnerability attacks bypass the detection statements in the contract
by carefully constructing parameters to achieve an over-transfer. We believe that our model
lacks experience in analyzing the parameters at the stage where the user makes the transfer.
In our future research, we will continue to optimize our model to make our approach more
capable of analyzing and identifying multiple vulnerabilities such as integer overflows.

Through this research, we realized that future research on deep learning-based smart
contract vulnerability detection should be strengthened in the following aspects. (1) Build-
ing a unified and standardized smart contract vulnerability dataset. A breakthrough in
deep learning-based smart contract vulnerability detection methods must rely on a unified
and comprehensive smart contract vulnerability dataset. Currently, the existing deep learn-
ing methods (e.g., ReChecker, TMP, and AME) can only support a small number of contract
vulnerability detection types because the dataset is poor and non-standardized. Therefore,

Sensors 2022, 22, 4621 29 of 32

only a unified and standardized vulnerability dataset covering all types of vulnerabilities
can enable deep learning models to have a better effect and thus better promote research in
this area. (2) Establish a unified, scalable deep learning model. With the number of smart
contracts, the corresponding type of security vulnerability has become more and more
complicated and unpredictable. At present, the vulnerabilities in smart contracts based on
deep learning can still establish a model on the type of vulnerabilities found, and whether
it can quickly adapt to a new vulnerability type is yet to be studied.

6. Conclusions

The devices in the IoT ecosystem are the points of contact with the physical world.
IoT devices link to the cloud through some communication media. The data collected by
the sensor reaches the cloud through the core network for processing [62]. IoT devices are
more deeply embedded in the privacy of people’s lives, and their security issues cannot be
ignored. Smart contracts backed by blockchain technology have the potential to solve these
problems. While BoT technology is vigorously promoting the development of industrial
innovation, its security must also be guaranteed. Thus, it is urgent to propose a more
efficient approach to smart contract security detection. Our research focuses on six typical
vulnerabilities, namely, reentrancy vulnerability, timestamp dependency, infinite loop,
callstack depth attack vulnerability, integer overflow, and integer underflow. In addition,
we innovatively propose an SPCNN network structure suitable for serial combinatorial
models. This structure aims to extract low-level features and output them in parallel
with high-level features. It can fully integrate the multiple features of word vectors at
different levels. In order to fully extract the internal features of smart contracts and the
connection features between smart contracts, we use SPCNN with dual convolutional
kernels. Numerous experiments demonstrated the efficiency of the SPCBIG-EC model and
the applicability of the SPCNN to serial hybrid models. In addition, experimental data
show that our SPCBIG-EC model significantly outperforms 11 other advanced vulnerability
detection methods.

Author Contributions: Conceptualization, Y.L. and L.Z.; methodology, Y.L.; software, Y.L.; validation,
Y.L., L.Z. and H.C.; formal analysis, Y.L.; investigation, T.J. and W.W.; resources, L.Z.; data curation,
Z.J.; writing—original draft preparation, Y.L.; writing—review and editing, Y.L.; visualization, Y.L.;
supervision, C.Z. and Z.C.; project administration, L.Z.; funding acquisition, L.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program
of China (2021YFE0102100). National Natural Science Foundation of China under grant number
62172353; Future Network Scientific Research Fund Project No. FNSRFP-2021-YB-48; Science and
Technology Program of Yangzhou City No. YZU202003; and Six Talent Peaks Project in Jiangsu
Province No. XYDXX-108.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The experimental data and associated code used in this study have
been deposited in the GitHub repository (https://github.com/wobulijie10086/SPCBIG-EC/tree/
master/SPCBIG-EC, accessed on 30 March 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tawalbeh, L.; Muheidat, F.; Tawalbeh, M.; Quwaider, M. IoT Privacy and Security: Challenges and Solutions. Appl. Sci. 2020,

10, 4102. [CrossRef]
2. Christidis, K.; Devetsikiotis, M. Blockchains and Smart Contracts for the Internet of Things. IEEE Access 2016, 4, 2292–2303.

[CrossRef]
3. Zhang, Y.; Wen, J. The IoT electric business model: Using blockchain technology for the internet of things. Peer Netw. Appl. 2017,

10, 983–994. [CrossRef]

https://github.com/wobulijie10086/SPCBIG-EC/tree/master/SPCBIG-EC
https://github.com/wobulijie10086/SPCBIG-EC/tree/master/SPCBIG-EC
http://doi.org/10.3390/app10124102
http://doi.org/10.1109/ACCESS.2016.2566339
http://doi.org/10.1007/s12083-016-0456-1

Sensors 2022, 22, 4621 30 of 32

4. Ali, J.; Sofi, S.A. Ensuring Security and Transparency in Distributed Communication in IoT ecosystems using Blockchain
Technology: Protocols, Applications and Challenges. IJCDS 2022, 11, 20. [CrossRef]

5. Hassan, M.U.; Rehmani, M.H.; Chen, J. Privacy preservation in blockchain based IoT systems: Integration issues, prospects,
challenges, and future research directions. Future Gener. Comput. Syst. 2019, 97, 512–529. [CrossRef]

6. Sadawi, A.A.; Madani, B.; Saboor, S.; Ndiaye, M.; Abu-Lebdeh, G. A comprehensive hierarchical blockchain system for carbon
emission trading utilizing blockchain of things and smart contract. Technol. Forecast. Soc. Chang. 2021, 173, 121124. [CrossRef]

7. Wang, Q.; Wang, D.; Cheng, C.; He, D. Quantum2FA: Efficient Quantum-Resistant Two-Factor Authentication Scheme for Mobile
Devices. IEEE Trans. Dependable Secur. Comput. 2022. [CrossRef]

8. Jarecki, S.; Krawczyk, H.; Xu, J. OPAQUE: An Asymmetric PAKE Protocol Secure Against Pre-computation Attacks. In Advances
in Cryptology—Eurocrypt 2018; Nielsen, J.B., Rijmen, V., Eds.; Springer: Cham, Switzerland, 2018; pp. 456–486, ISBN 978-3-319-
78371-0.

9. Zhao, G.; Jiang, Q.; Huang, X.; Ma, X.; Tian, Y.; Ma, J. Secure and Usable Handshake Based Pairing for Wrist-Worn Smart Devices
on Different Users. Mob. Netw. Appl. 2021, 26, 2407–2422. [CrossRef]

10. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

11. Shrivastava, K.; Kumar, S.; Jain, D.K. An effective approach for emotion detection in multimedia text data using sequence based
convolutional neural network. Multimed. Tools Appl. 2019, 78, 29607–29639. [CrossRef]

12. Shen, Z.; Zhang, Y.; Lu, J.; Xu, J.; Xiao, G. A novel time series forecasting model with deep learning. Neurocomputing 2020,
396, 302–313. [CrossRef]

13. Xing, Y.; Lv, C.; Cao, D. Personalized Vehicle Trajectory Prediction Based on Joint Time-Series Modeling for Connected Vehicles.
IEEE Trans. Veh. Technol. 2020, 69, 1341–1352. [CrossRef]

14. Lehui, Z.; Ying, H. Overview of Integrated Equipment Fault Diagnosis Methods Based on Deep Learning. In Proceedings of the
2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China,
12–14 March 2021; pp. 599–608.

15. Hua, Y.; Guo, J.; Zhao, H. Deep Belief Networks and deep learning. In Proceedings of the 2015 International Conference on
Intelligent Computing and Internet of Things, Harbin, China, 17–18 January 2015; pp. 1–4. [CrossRef]

16. Liu, Y.; Zhang, Q.; Lv, Z. Real-Time Intelligent Automatic Transportation Safety Based on Big Data Management. IEEE Trans.
Intell. Transport. Syst. 2021. [CrossRef]

17. Wang, Y.; Tang, L.; He, T. Attention-Based CNN-BLSTM Networks for Joint Intent Detection and Slot Filling. In Chinese
Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data; Sun, M., Liu, T., Wang, X., Liu, Z.,
Liu, Y., Eds.; Springer: Cham, Switzerland, 2018; pp. 250–261. ISBN 978-3-030-01715-6.

18. Qian, P.; Liu, Z.; He, Q.; Zimmermann, R.; Wang, X. Towards Automated Reentrancy Detection for Smart Contracts Based on
Sequential Models. IEEE Access 2020, 8, 19685–19695. [CrossRef]

19. Liu, G.; Guo, J. Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing 2019,
337, 325–338. [CrossRef]

20. Amiet, N. Blockchain Vulnerabilities in Practice. Digit. Threat. 2021, 2, 1–7. [CrossRef]
21. Destefanis, G.; Marchesi, M.; Ortu, M.; Tonelli, R.; Bracciali, A.; Hierons, R. Smart contracts vulnerabilities: A call for blockchain

software engineering? In Proceedings of the 2018 International Workshop on Blockchain Oriented Software Engineering
(IWBOSE), Campobasso, Italy, 20 March 2018; pp. 19–25.

22. Sun, T.; Yu, W. A Formal Verification Framework for Security Issues of Blockchain Smart Contracts. Electronics 2020, 9, 255.
[CrossRef]

23. Mazorra, B.; Adan, V.; Daza, V. Do not Rug on me: Zero-Dimensional Scam Detection. arXiv 2022, arXiv:2201.07220.
24. Wang, S.; Ouyang, L.; Yuan, Y.; Ni, X.; Han, X.; Wang, F.-Y. Blockchain-Enabled Smart Contracts: Architecture, Applications, and

Future Trends. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2266–2277. [CrossRef]
25. Luu, L.; Chu, D.-H.; Olickel, H.; Saxena, P.; Hobor, A. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 254–269.
26. Hegedűs, P. Towards Analyzing the Complexity Landscape of Solidity Based Ethereum Smart Contracts. Technologies 2019, 7, 6.

[CrossRef]
27. Tikhomirov, S.; Voskresenskaya, E.; Ivanitskiy, I.; Takhaviev, R.; Marchenko, E.; Alexandrov, Y. SmartCheck. In Proceedings of

the 1st International Workshop on Emerging Trends in Software Engineering for Blockchain and ICSE ‘18: 40th International
Conference on Software Engineering, Gothenburg, Sweden, 27 May 2018; pp. 9–16.

28. Tsankov, P.; Dan, A.; Cohen, D.D.; Gervais, A.; Buenzli, F.; Vechev, M. Securify: Practical Security Analysis of Smart Contracts.
2018. Available online: http://arxiv.org/pdf/1806.01143v2 (accessed on 15 October 2018).

29. Song, J.; He, H.; Lv, Z.; Su, C.; Xu, G.; Wang, W. An Efficient Vulnerability Detection Model for Ethereum Smart Contracts. In
Network and System Security; Liu, J.K., Huang, X., Eds.; Springer: Cham, Switzerland, 2019; pp. 433–442. ISBN 978-3-030-36937-8.

30. Wang, W.; Song, J.; Xu, G.; Li, Y.; Wang, H.; Su, C. ContractWard: Automated Vulnerability Detection Models for Ethereum Smart
Contracts. IEEE Trans. Netw. Sci. Eng. 2021, 8, 1133–1144. [CrossRef]

31. Menglin, F.U.; Lifa, W.U.; Zheng, H.O.N.G.; Wenbo, F.E.N.G. Research on vulnerability mining technique for smart contracts.
J. Comput. Appl. 2019, 39, 1959.

http://doi.org/10.12785/ijcds/110101
http://doi.org/10.1016/j.future.2019.02.060
http://doi.org/10.1016/j.techfore.2021.121124
http://doi.org/10.1109/TDSC.2021.3129512
http://doi.org/10.1007/s11036-021-01781-x
http://doi.org/10.1145/3065386
http://doi.org/10.1007/s11042-019-07813-9
http://doi.org/10.1016/j.neucom.2018.12.084
http://doi.org/10.1109/TVT.2019.2960110
http://doi.org/10.1109/ICAIOT.2015.7111524
http://doi.org/10.1109/TITS.2021.3106388
http://doi.org/10.1109/ACCESS.2020.2969429
http://doi.org/10.1016/j.neucom.2019.01.078
http://doi.org/10.1145/3407230
http://doi.org/10.3390/electronics9020255
http://doi.org/10.1109/TSMC.2019.2895123
http://doi.org/10.3390/technologies7010006
http://arxiv.org/pdf/1806.01143v2
http://doi.org/10.1109/TNSE.2020.2968505

Sensors 2022, 22, 4621 31 of 32

32. Yu, X.; Zhao, H.; Hou, B.; Ying, Z.; Wu, B. DeeSCVHunter: A Deep Learning-Based Framework for Smart Contract Vulnera-
bility Detection. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China,
18–22 August 2021; pp. 1–8.

33. Ashizawa, N.; Yanai, N.; Cruz, J.P.; Okamura, S. Eth2Vec: Learning Contract-Wide Code Representations for Vulnerability
Detection on Ethereum Smart Contracts. In Proceedings of the 3rd ACM International Symposium on Blockchain and Secure
Critical Infrastructure and ASIA CCS’21: ACM Asia Conference on Computer and Communications Security, Hong Kong, China,
7 June 2021; pp. 47–59.

34. Huang, J.; Zhou, K.; Xiong, A.; Li, D. Smart Contract Vulnerability Detection Model Based on Multi-Task Learning. Sensors 2022,
22, 1829. [CrossRef] [PubMed]

35. Liu, Z.; Qian, P.; Wang, X.; Zhu, L.; He, Q.; Ji, S. Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion. arXiv 2021, arXiv:2106.09282.

36. Wang, B.; Chu, H.; Zhang, P.; Dong, H. Smart Contract Vulnerability Detection Using Code Representation Fusion. In Proceedings
of the 2021 28th Asia-Pacific Software Engineering Smart Contract Vulnerability Detection Using Code Representation Fusion,
Taipei, Taiwan, 6–9 December 2021; pp. 564–565.

37. Liao, J.W.; Tsai, T.T.; He, C.K.; Tien, C.W. Soliaudit: Smart contract vulnerability assessment based on machine learning and fuzz
testing. In Proceedings of the 2019 Sixth International Conference on Internet of Things: Systems, Management and Security
(IOTSMS), Granada, Spain, 22–25 October 2019.

38. Mi, F.; Wang, Z.; Zhao, C.; Guo, J.; Ahmed, F.; Khan, L. VSCL: Automating Vulnerability Detection in Smart Contracts with Deep
Learning. In Proceedings of the 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Sydney, Australia,
3–6 May 2021; pp. 1–9.

39. Zhang, L.; Wang, J.; Wang, W.; Jin, Z.; Zhao, C.; Cai, Z.; Chen, H. A Novel Smart Contract Vulnerability Detection Method Based
on Information Graph and Ensemble Learning. Sensors 2022, 22, 3581. [CrossRef]

40. Tetko, I.V.; Livingstone, D.J.; Luik, A.I. Neural network studies. 1. Comparison of overfitting and overtraining. J. Chem. Inf.
Comput. Sci. 1995, 35, 826–833. [CrossRef]

41. Liu, J.; Yang, Y.; Lv, S.; Wang, J.; Chen, H. Attention-based BiGRU-CNN for Chinese question classification. J. Ambient Intell.
Humaniz. Comput. 2019. [CrossRef]

42. Qiu, S.; Wang, D.; Xu, G.; Kumari, S. Practical and Provably Secure Three-Factor Authentication Protocol Based on Extended
Chaotic-Maps for Mobile Lightweight Devices. IEEE Trans. Dependable Secur. Comput. 2020, 19, 1338–1351. [CrossRef]

43. Jiang, Q.; Zhang, N.; Ni, J.; Ma, J.; Ma, X.; Choo, K.-K.R. Unified Biometric Privacy Preserving Three-Factor Authentication and
Key Agreement for Cloud-Assisted Autonomous Vehicles. IEEE Trans. Veh. Technol. 2020, 69, 9390–9401. [CrossRef]

44. Eberz, S.; Rasmussen, K.B.; Lenders, V.; Martinovic, I. Evaluating Behavioral Biometrics for Continuous Authentication. In
Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security and ASIA CCS’17: ACM Asia
Conference on Computer and Communications Security, Abu Dhabi, United Arab Emirates, 2–6 April 2017; pp. 386–399.

45. Sangaiah, A.K. Deep Learning and Parallel Computing Environment for Bioengineering Systems; Academic Press: Cambridge, MA,
USA, 2019, ISBN 0128172932.

46. Rong, X. Word2vec parameter learning explained. arXiv 2014, arXiv:1411.2738.
47. Goldberg, Y.; Levy, O. word2vec Explained: Deriving Mikolov et al.’s negative-sampling word-embedding method. arXiv 2014,

arXiv:1402.3722.
48. Lilleberg, J.; Zhu, Y.; Zhang, Y. Support vector machines and word2vec for text classification with semantic features. In

Proceedings of the 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), Beijing,
China, 6–8 July 2015.

49. Islam, M.S.; Sultana, S.; Roy, U.K.; Al Mahmud, J.; Jahidul, S. HARC-New Hybrid Method with Hierarchical Attention Based
Bidirectional Recurrent Neural Network with Dilated Convolutional Neural Network to Recognize Multilabel Emotions from
Text. J. Ilm. Tek. Elektro Komput. Dan Inform. 2021, 7, 142–153. [CrossRef]

50. Yu, Y.Q.; Fan, L.; Li, W.J. Ensemble additive margin softmax for speaker verification. In Proceedings of the ICASSP 2019-2019
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019.

51. Gao, B.; Pavel, L. On the properties of the softmax function with application in game theory and reinforcement learning. arXiv
2017, arXiv:1704.00805.

52. Bouchard, G. Efficient bounds for the softmax function, applications to inference in hybrid models. In Presentation at the Workshop
for Approximate Bayesian Inference in Continuous/Hybrid Systems at NIPS-07; Citeseer: Princeton, NJ, USA, 2007.

53. Zhang, W.; Yoshida, T.; Tang, X. A comparative study of TF * IDF, LSI and multi-words for text classification. Expert Syst. Appl.
2011, 38, 2758–2765. [CrossRef]

54. Liu, C.Z.; Sheng, Y.X.; Wei, Z.Q.; Yang, Y.Q. Research of text classification based on improved TF-IDF algorithm. In Pro-
ceedings of the 2018 IEEE International Conference of Intelligent Robotic and Control Engineering (IRCE), Lanzhou, China,
24–27 August 2018.

55. Pham, D.-H.; Le, A.-C. Exploiting multiple word embeddings and one-hot character vectors for aspect-based sentiment analysis.
Int. J. Approx. Reason. 2018, 103, 1–10. [CrossRef]

56. Ng, P. dna2vec: Consistent vector representations of variable-length k-mers. arXiv 2017, arXiv:1701.06279.

http://doi.org/10.3390/s22051829
http://www.ncbi.nlm.nih.gov/pubmed/35270976
http://doi.org/10.3390/s22093581
http://doi.org/10.1021/ci00027a006
http://doi.org/10.1007/s12652-019-01344-9
http://doi.org/10.1109/TDSC.2020.3022797
http://doi.org/10.1109/TVT.2020.2971254
http://doi.org/10.26555/jiteki.v7i1.20550
http://doi.org/10.1016/j.eswa.2010.08.066
http://doi.org/10.1016/j.ijar.2018.08.003

Sensors 2022, 22, 4621 32 of 32

57. Braud, C.; Denis, P. Comparing word representations for implicit discourse relation classification. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September 2015.

58. Zhang, M.; Li, Z.; Fu, G.; Zhang, M. Dependency-based word embeddings. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics, Baltimore, MD, USA, 22–27 June 2014; Volume 2.

59. Wang, F.; Cheng, J.; Liu, W.; Liu, H. Additive margin softmax for face verification. IEEE Signal Process. Lett. 2018, 25, 926–930.
[CrossRef]

60. Fernández, A.; Garcia, S.; Herrera, F.; Chawla, N.V. SMOTE for learning from imbalanced data: Progress and challenges, marking
the 15-year anniversary. J. Artif. Intell. Res. 2018, 61, 863–905. [CrossRef]

61. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

62. Xu, G.; Dong, J.; Ma, C.; Liu, J.; Cliff, U.G.O. A Certificateless Signcryption Mechanism Based on Blockchain for Edge Computing.
IEEE Internet Things J. 2022. [CrossRef]

http://doi.org/10.1109/LSP.2018.2822810
http://doi.org/10.1613/jair.1.11192
http://doi.org/10.1613/jair.953
http://doi.org/10.1109/JIOT.2022.3151359

	Introduction
	Related Work
	Smart Contract Security
	Existing Methods for Detecting Smart Contract Vulnerabilities

	Design of the Model
	SPCBIG-EC Model
	Dataset Processing
	Code Embedding Layer
	Feature Extraction Layer
	Serial-Parallel Convolutional Layer
	Time Sequence Modeling Layer

	Classification Optimization Layer

	Experiments and Results
	Dataset
	Experimental Settings
	Experimental Results

	Analysis of Results and Outlook for Future Work
	Conclusions
	References

