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I.�  INTRODUCTION 

Law enforcement agencies have been concerned about 
different biometric techniques to confirm the identity of an 
individual [1]. Different biometric characteristics can be used 
for forensic identification such as fingerprint patterns, face 
characteristics, hand geometry, signature dynamics and voice 
patterns [1]. Choosing a method depends on its reliability in a 
particular application and the available data. 

In some criminal cases, available evidence might be in the 
form of recorded conversations. Speech patterns can include 
important information for law enforcement personnel [2]. For 
example, a person’s speech pattern can provide information 
about his/her age, gender, dialect, emotional or psychological 
state and membership of a particular social or regional group. 
Therefore, speech can be used for speaker identification which 
is highly demanded in many cases such as kidnapping, 
threatening calls and false alarms [2]. 

In this research, we focus on speaker gender detection and 
age estimation. Since perceptions of gender and age have a 
significant mutual impact on each other, these two 
characteristics are studied together in many publications [3�4]. 
Computerized speech�based age estimation is difficult from 
different points of view. First, usually there exists a difference 
between the age of a speaker as perceived, namely the 
perceptual age, and their actual age, namely the chronological 
age. Second, developing a robust age recognition system 
requires a labeled, wide age�range and balanced database. 

Third, voice patterns are affected by many parameters, such as 
weight, height and emotional condition, i.e. there is a 
significant intra�speaker variability that is not related to or 
only correlated with age. 

The problem of age group recognition has been addressed 
previouosly [3�6]. For example, Bocklet and his colleagues 
introduced a method based on a GMM mean supervector and a 
Support Vector Machine (SVM) to classify speakers into 
seven age�gender categories [3]. They used Mel Frequency 
Cepstral Coefficients (MFFCs) as features in their recognizer. 
Although this method was attractive from several aspects, it 
demands working with very large dimensions if the number of 
Gaussians in GMM be high. In [7], the GMM universal 
background model is merged with the SVM classifier and the 
problem of high dimensional supervectors is tackled by using 
Gaussian mixture weight supervectors, which have a lower 
dimension compared to mean or variance supervectors. Zhang 
et. al. reported age and gender recognition results with the use 
of an unsupervised Non�negative Matrix Factorization (NMF) 
over Gaussian mixture weight supervectors in [8]. In their 
approach, the acoustic features consist of Mel Spectra with 
mean normalization and Vocal Tract Length Normalization 
(VTLN) [9], augmented with their first and second order time 
derivatives. Although their method could recognize the gender 
of speakers with high accuracy, it is not very successful for 
age estimation. They also conclude that adding VTLN 
decreases the accuracy of gender detection but it helps in age 
recognition.  

In this paper, we introduce a new gender detection and age 
estimation approach. To develop this method, after 
determining an acoustic model for all speakers of the database, 
Gaussian mixture weights are extracted and concatenated to 
form a supervector for each speaker. Then, a hybrid 
architecture of WSNMF and GRNN is developed using the 
acquired supervectors of the training data set. The obtained 
hybrid method is applied to detect the gender of test set 
speakers and to estimate their age.  

This paper is organized as follows. Section 2 introduces 
WSNMF and GRNN. In section 3, the proposed approach is 
elaborated. The evaluation results are illustrated in section 4. 
The paper finishes with a conclusion in section 5. 

This work is supported by the European Commission as a Marie�Curie 
ITN�project (FP7�PEOPLE�ITN�2008), namely Bayesian Biometrics for 

Forensics (BBfor2), under Grant Agreement number 238803. 



II.� BACKGROUND 

In this section, the applied mathematical tools including 
WSNMF and GRNN are briefly introduced. 

A.� WSNMF 

NMF is a popular machine learning algorithm [10], which 
is successfully applied a.o. to word recognition [11], sound 
source separation [12] and spam filtering [13]. During the last 
decade, different extensions of NMF such as Supervised NMF 
(SNMF) [14] and Weighted NMF (WNMF) [15] have been 
developed to solve real world problems. In this paper, the idea 
of WNMF is merged with SNMF and results in WSNMF. 

1)� SNMF 
The problem addressed by SNMF is defined as follows. 

Assume that we are given a training data set S
tr1

= {(x1, y1), . . ., 
(xn, yn), . . . , (xN, yN)}, where xn denotes a vector of observed 
characteristics of the data item and yn denotes a label vector, 
i.e. a vector containing one in the i�th row if xn belongs to the 
i�th class and zeros eslewhere. A vector can be member of 
multiple classes, i.e. yn can have multiple non�zero elements. 
The goal is to approximate a classifier function (g), such that 
for an unseen observation x

tst
, ŷ=g(x

tst
) is as close as possible 

to the true label. 

If all elements of S
tr1

 are non�negative, this problem can be 
solved by SNMF directly. First, training data is used to form a 
general matrix V

tr
 as follows. 

[ ]
[ ]









=

=

=

tr

B

tr

Str

N

tr

B

N

tr

S

V

V
V

xxV

yyV

�

�

1

1

 
(1) 

Then, the non�negative matrix V
tr
, which is of size M×N, is 

decomposed into two new non�negative matrices, namely W
tr
 

and H
tr
 of size M×Z and Z×N respectively. 
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This factorization can be performed by minimizing the 
following extended Kullbeck�Leibler divergence. 
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The last term penalizes large entries in H
tr
, so ρ controls 

the sparsity of H
tr
. It can be shown that the above�mentioned 

function is non�increasing under the following multiplicative 
updating rules. 
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where BA �  and 
[ ]
[ ]B

A
 are the element�wise product and 

division of matrixes A and B respectively, 1M×N  is a matrix of 
size M×N with all elements equal to 1 and the sign 

T
 is the 

transpose operator. 
Calculation of W

tr
 by factorizing the V

tr
 is called training 

the SNMF. As can be seen in the following relation, W
tr
 which 

was obtained from the training phase, is used to determine the 
class of unseen patterns, x

tst
: 

( )tsttr

B

tst

KL
H

tr

S

tst HWxDWxgy
tst

minarg)(ˆ ==  (5) 

Notice that ŷ returns a fuzzy class membership that requires 
a decision criterion, such as thresholding or selecting the 
maximum entry.  

2)� WSNMF 
To adjust the importance of different elements of V

tr
, 

weighted NMF is introduced by Ho and his colleagues [15]. In 
this research, we adopt this idea to emphasize on Vs

tr
 in the 

factorization process. In this method, the updating rules are as 
follows. 
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where L is a matrix with the same size of V
tr
, which is 

determined as follows. 
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where 1S×N  and 1B×N are two matrices with the same size of 
Vs

tr
and VB

tr 
respectively and all of their elements are equal to 

one. β is a factor determining importance of the supervision 
information. A reasonable value for this factor, which is also 
used in this paper, is 
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B.� GRNN 

A GRNN is used in conjunction with WSNMF to estimate 
the age of the speakers. A GRNN is a universal function 
approximator and was introduced in [16]. It is an approach 
with a one�pass learning algorithm such that for a given 
training data set S

tr2
= {(a1 , b1), . . ., (ak , bk), . . . , (aK , bK)}, 

the regression function is 
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where σ is the standard deviation of the Gaussian kernel 
functions assumed around each sample. It is also called 
“smoothing parameter”. 

A GRNN has different advantages over other neural 
networks (NNs), which is the reason of applying it in this 
research: 

•� a GRNN does not require iterative learning algorithms. 
Instead, it has a one pass and fast learning. Standard 
supervised neural network architectures such as multilayer 
perceptrons and radial basis functions infer a 
parameterized model (the weights forming the parameters) 
from the available training data. These networks use the 
back�propagation algorithm for training, which may take a 
large number of iterations to converge, while global 
convergence cannot be assured. 

•� a GRNN requires only a fraction of the training samples 
that a back propagation based neural network would need. 
In other words, a GRNN can be effectively applied in the 
case of sparse data. 

III.� THE PROPOSED APPROACH 

In this section, the proposed approach for gender 
recognition and age estimation is elaborated. To introduce this 
method, first the procedure of forming a supervector for a 
speaker is explained. Then, the proposed scheme in the 
training and testing phases is elucidated in details.  

A.� Feature selection, acoustic model and supervectors 

The acoustic features consist of MEL spectra with mean 
normalization and vocal tract length normalization [17], 
augmented with their first and second order time derivatives. 
These features are then mapped to a 36 dimensional acoustic 
space by means of a discriminative linear transformation and 
are decorrelated [18]. The acoustic model uses a shared pool 
of 49740 Gaussians to model the observations in 3873 cross�
word context�dependent tied triphone HMM states, each 
modeled with a Gaussian mixture (10). All acoustic units –
context�dependent variants of one of the 46 phones, silence, 
garbage and speaker noise– have a 3�state left�to�right 
topology. 

The speaker dependent mixture weights for each speaker 
of the training data set result from a re�estimation of the 
speaker independent weights based on a forced alignment of 
the training data for that speaker using a speaker�independent 
acoustic model. Subsequently, the Gaussian mixture weights 
are extracted and concatenated to form a supervector for each 
speaker.  

For the n
th

 speaker consider the s
th

 Gaussian mixture with 
the following state probability density function (PDF).  
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where Ot is the acoustic vector at time t, wj
s
 is the mixture 

weight for the j
th

 component of the s
th

 mixture, Q is a Gaussian 
probability density function with mean µj

s
 and covariance 

matrix ∑j
s
 and Js is the total number of Gaussians in the s

th
 

mixture. The supervector of Gaussian mixture weights can 
now be formed based on a Estimate�Maximize retraining of 
the mixture weights on data of speaker n only: 

1
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where χn is the supervector of n
th

 speaker, S is the total number 

of mixtures, N
s
 is the number of frames observed in the s

th
 

mixture during Viterbi alignment and Q is the total number of 

weights in the s
th

 mixture. Note that each element of λ
s
 is also 

equal to the sum over the training data of the posterior 

probabilities of the Gaussians or ∑=
t

q

S
tq ),()( γλ .  

B.� Training phase 

Speakers of the database are divided into two disjoint 
subsets namely training and testing data sets. The training 



patterns are also divided into primary training patterns, which 
are used for training the WSNMF, and secondary training 
patterns, which are used for training the GRNN. 

�

1)� Primary training 
The general architecture of the proposed method in the 

primary training phase is illustrated in figure 1. As can be seen 
in this figure, first, the above�mentioned supervector forming 
procedure is applied to form a supervector for each speaker in 
the primary training data set. Then, an age�gender category 
label is formed for each supervector. Each label is a vector 
with dimension equal to the total number of considered age�
gender categories (in this case six). The label of the n

th
 speaker, 

un, which belongs to the d
th

 category, is formed such that the 
d

th
 element of label vector is equal to 1 and the other elements 

are equal to zero. For example, if a speaker belongs to the 
second category, its label vector is u=[0 1 0 0 0 0]

T
. 

After calculating all N supervectors of the primary data set 
and labeling them by their age�gender category, we obtain 

S
tr1

= {(χ1
tr1

, u1
 tr1

), . . . , (χn
tr1

, un
 tr1

 ), . . . , (χN
tr1

, uN
 tr1

)}. This 
data set is used to train the introduced WSNMF.�Cost function 
(3) is also minimized under the following constraint, which 
normalizes the columns of W

tr
 to keep the sum of modeled 

probabilities equal to one after factorization. 

  columns and , states allfor )(1 zs

szQm

mz

trW∑
∈

=  
(12) 

where Qsz is the set of elements of the z
th

 columns of W
tr
 which 

correspond to the s
th

 state.  

2)� Secondary training  
The architecture of the proposed method in the secondary 

training phase is shown in Figure 2. 

During this phase, the procedure of obtaining the GMM 
weights supervector is repeated for each single speaker of the 
secondary training data set. Then, the resulting supervector for 

the k
th

 speaker of the secondary training data set, χk
tr2

, is fed 
into the NMF trained in the primary phase to estimate its age�
gender label ûk

tr2
=g(γk

tr2
) according to equation (5). In the 

training phase, the exact chronological age of each speaker is 

known. Consequently, for the k
th

 estimated age�gender label, 
the speaker age Ak

 tr2 
is known. Therefore, after estimating the 

age�gender label of all M speakers in the secondary training 
data set, a secondary set of input�output pairs can be formed 
such that S

tr2
= {(û1

tr2
, A1

 tr2
), . . . , (ûk

tr2
, Ak

 tr2
), . . . , (ûK

tr2
, AK

 

tr2
)}. This set of input�output pairs is used for training the 

GRNN. We use 10�fold crossvalidation to tune the smoothing 
parameter of the GRNN Gaussians. 

C.� Testing phase 

Figure 3 indicates the architecture of proposed method in 
the testing phase. As can be interpreted from this figure, the 
procedure of obtaining the supervector of the GMM weights is 
repeated for each single speaker of test data set. Then, the 
NMF trained in the primary training phase estimates the age�
gender label of each supervector. The estimated label clearly 
shows the gender and age group of a speaker. To estimate the 
age of a speaker, the estimated age�gender label is fed into the 
GRNN trained in the secondary training phase. The output of 
the GRNN is the estimated age of the speaker. 

IV.� EVALUATION AND RESULTS 

The efficiency of proposed method is assessed on a Dutch 
corpus. In this section, this corpus is first introduced. Then, 
evaluation results of the proposed method are presented.  

A.� Corpora 

Speech patterns of 555 speakers from the N�best 
evaluation corpus [19] were used. The corpus contains live 
and read commentaries, news, interviews, and reports 
broadcast in Belgium. Table 1 shows the number of speakers 
in six different age�gender categories namely Young Male 
(YM), Young Female (YF), Middle Male (MM), Middle 
Female (MF), Senior Male (SM), Senior Female (SF).   

To evaluate the proposed method, 5�fold cross�validation 
method is used. Therefore, first all 555 speakers in the 
database are divided into 5 disjoint folds so that each fold 
contain 111 speakers. Then, five independent experiments are 

Figure 1.  Block diagram of proposed method in primary training phase 
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Figure 2.  Block diagram of proposed method in secondary training phase 
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run so that in each experiment four folds are used as training 
data set and the rest one fold is used as testing data set. In each 
of five experiments, 344 out of 444 speakers of the training 
data set are used as the primary training data set and the rest 
are used as the secondary training data set. 

 

TABLE I. � THE NUMBER OF SPEAKERS IN DIFFERENT AGE�GENDER 

CATEGORIES 

+��
��	��

���
�
,!� ,#� !!� !#� �!� �#�

Age 18�35 18�35 36�45 36�45 46�81 46�81 

Number of 

Speakers 
85 53 160 41 191 25 

 

B.� Test results 

In all experiments, the number of latent vectors (Z) is 37 
and sparsity parameter (ρ) is 1000.  

The gender detection accuracy of the proposed method 
over all five experiments is 96%. Table 2 shows the average of 
age�group recognition accuracy over all performed 
experiments. The second row lists the prior class probability, 
or “chance levels”. Hence, the WSNMF method performs 
better than guessing. 

TABLE II. � AGE GROUP RECOGNITION ACCURACY IN % 

-�
�+��
��	�� ,� !� ��

Prior 25 36 39 

Recognition Accuracy 38 40 65 

Table 3 indicates the relative confusion matrix of proposed 
method in recognizing six age�gender categories.   

TABLE III. � THE RELATIVE CONFUSION MATRIX OF PROPOSED 

METHOD IN RECOGNIZING SIX AGE�GENDER CATEGORIES. 

+.�

AC  
,!� ,#� !!� !#� �!� �#�

YM 13 03 58 0 26 0 

YF 02 77 04 11 057 0 

MM 06 01 44 01 47 0 

MF 0 54 02 24 17 02 

SM 03 01 19 0 76 0 

SF 0 2 08 28 28 16 

The age estimation accuracy is measured by the mean 
absolute error, which is calculated as follows. 

N
MAE

N

i

ii∑
=

−
= 1

ω̂ω
 

(13) 

where 
i

ω  and 
i

ω̂ are the real age and estimated age of i
th

 

speaker respectively.  

The MAE of the proposed method over all five experiments 
is equal to 7.48 years. The MAE of taking the average age of all 
speakers as the estimated age is equal to 8.88 years. This shows 
that estimating the speaker’s age using the proposed approach 
is 15% better than taking the average true age. 

V.� CONCLUSIONS 

In this paper, a novel hybrid method based on WSNMF and 
GRNN has been proposed to detect the gender of speakers and 
estimate their age. In this method, Gaussian mixture weight 
supervectors of the primary training set are used to train a 
WSNMF which is applied for recognizing the age�gender 
category of any unseen speakers. To estimate the age of 
speakers, a GRNN trained on a secondary training set is 
inserted in conjunction with trained WSNMF. Evaluation on a 
Dutch database shows that the MAE of age estimation using the 
proposed hybrid method is 7.48 years. It was also shown that 
the proposed approach can detect the speaker’s gender with 
96% accuracy. 
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