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Speaker and Session Variability in GMM-Based
Speaker Verification

Patrick Kenny, Gilles Boulianne, Pierre Ouellet, and Pierre Dumouchel

Abstract—We present a corpus-based approach to speaker veri-
fication in which maximum-likelihood II criteria are used to train
a large-scale generative model of speaker and session variability
which we call joint factor analysis. Enrolling a target speaker con-
sists in calculating the posterior distribution of the hidden vari-
ables in the factor analysis model and verification tests are con-
ducted using a new type of likelihood II ratio statistic. Using the
NIST 1999 and 2000 speaker recognition evaluation data sets, we
show that the effectiveness of this approach depends on the avail-
ability of a training corpus which is well matched with the evalu-
ation set used for testing. Experiments on the NIST 1999 evalua-
tion set using a mismatched corpus to train factor analysis models
did not result in any improvement over standard methods, but we
found that, even with this type of mismatch, feature warping per-
forms extremely well in conjunction with the factor analysis model,
and this enabled us to obtain very good results (equal error rates
of about 6.2%).

Index Terms—Factor analysis, Gaussian mixture, speaker veri-
fication.

I. INTRODUCTION

SIMPLY stated, the basic problem in speaker verification is
to decide whether two utterances have been uttered by the

same speaker or by different speakers. Put another way, one
has to decide whether the differences between the two utter-
ances are better accounted for by inter-speaker variability or by
inter-session variability, that is, the variability exhibited by a
given speaker from one recording session to another. This type
of variability is usually attributed to channel effects, although
this is not strictly accurate since intra-speaker variation (the
speaker’s health or emotional state for example) and phonetic
variation are also involved.

In state-of-the-art methods of speaker verification, speaker
variability is assumed to be of primary importance, but it
has long been recognized that session variability is a serious
problem. In face recognition, it has been found that models of
intra-person variability (which capture differences in posture
and illumination in different images of the same subject) are
capable of good performance even when inter-person vari-
ability is not modeled at all [1]. This suggests that a systematic
model of session variability could prove to be useful in speaker
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verification, particularly if it is integrated with an effective
model of speaker variability. As a first attempt at this problem,
we proposed a model of session variability in [2] which we
referred to as eigenchannel maximum a posteriori probability
(MAP). In [3], we showed how this model can be integrated
with standard models of speaker variability, namely classical
MAP [4] and eigenvoice MAP [5], to produce a model of
speaker and session variability which we refer to as joint factor
analysis. In this article, we will present an overview of the
factor analysis model as it was originally formulated in [3],
and we will explore how it can be applied to text-independent
speaker verification. We have explored various simplifications
and refinements of the factor analysis model in subsequent
work [6]–[10].

Our original motivation in developing the factor analysis
model was to use model adaptation techniques developed for
speech recognition to perform channel adaptation of speaker
models in speaker recognition. Two difficulties arise here. First,
very little data may be available for channel adaptation. For
example, in all but the most recent NIST speaker recognition
evaluations (SREs), test utterance durations in the core condi-
tion range from 15 to 45 s. Second, model adaptation techniques
developed for speech recognition conflate inter-speaker and
channel variability so that, although they are usually thought
of as performing speaker adaptation, they may be performing
channel adaptation in some situations and speaker adaptation
in others. In order to be effective for speaker recognition,
model adaptation techniques must be capable of adapting
speaker models to the channel effects in a test utterance without
adapting them to the speaker in the test utterance.

We have attempted to deal with these problems by modi-
fying the eigenvoice and extended MAP (EMAP) approaches
to model adaptation that have been developed in speech recog-
nition specifically in order to deal with situations where very
small amounts of adaptation data are available (as in online
speaker adaptation [11]). These methods have not been widely
used in speaker recognition so we will give a brief description of
them here. Applied to the problem of estimating speaker-depen-
dent Gaussian mixture models (GMMs), EMAP requires speci-
fying a prior probability distribution on the GMM mean vectors.
Equivalently, it requires specifying a prior distribution on GMM
supervectors, where a GMM supervector is defined by concate-
nating the mean vectors associated with the individual Gaus-
sians in the GMM. This supervector distribution is assumed to
be Gaussian; let us denote the mean supervector by and the
supervector covariance matrix by . Given adaptation data for a
speaker, the posterior distribution for the speaker’s supervector
can be calculated using and as in [5]. Because their role is
to specify the prior distribution of the parameter that we want
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to estimate (namely the speaker’s supervector), and are
known as hyperparameters. Of course, these hyperparameters
also need to be estimated, and this can be done by maximizing
a likelihood function whose arguments are the hyperparameters
[5]. This approach to hyperparameter estimation has come to be
known as maximum likelihood II in the general machine learning
literature [12].

Classical MAP corresponds to the special case where is
taken to be diagonal and estimated empirically. The advantage
of EMAP over classical MAP is that it takes account of the cor-
relations between different Gaussians in a speaker model. Thus,
whereas classical MAP only adapts the Gaussians which are ob-
served in the adaptation data, EMAP adapts all of the Gaussians
even in situations where only a small fraction of them are ob-
served.

Eigenvoice methods are based on the assumption that the su-
pervector covariance matrix is full but of low rank so that
speaker supervectors are constrained to lie in a linear manifold
of low dimension which is known as the speaker space. This
type of constraint facilitates very rapid speaker adaptation since
only a small number of free parameters need to be estimated,
namely the coordinates of a speaker’s supervector relative to a
basis of the speaker space. (The eigenvectors of which cor-
respond to nonzero eigenvalues—the “eigenvoices”—constitute
such a basis.) We will refer to these free parameters as speaker
factors.

Combining the eigenvoice assumption with EMAP gives
eigenvoice MAP [5]. This type of model adaptation can
be modified to tackle the problem of channel adaptation of
speaker models for speaker recognition by assuming that the
channel-dependent supervectors for different recordings of each
speaker have a Gaussian distribution centered on the speaker’s
supervector. If the covariance matrices of these speaker-depen-
dent distributions are tied across all speakers and denotes the
common value, then can be estimated by the same methods
as the supervector covariance matrix in eigenvoice MAP.
This is the basic idea in eigenchannel MAP [2]. Our experience
has been that the eigenvalues of (like those of ) decay
rapidly, so can be taken to be of low rank in practice. This
makes it possible to perform channel adaptation of speaker
models on very short test utterances. Since the supervectors
which account for inter-session variation all lie in the range of

, it is natural to think of the range of as the channel space
and to define channel factors analogously to speaker factors.

The development of eigenchannel MAP in [2] was incom-
plete because it addressed the first of the following questions
but not the second.

1) How is it possible to adapt a speaker model to the channel
effects in a test utterance without performing speaker adap-
tation?

2) How is it possible to estimate a speaker model in a way
which is immune to the channel effects in the speaker’s
enrollment data?

In order to provide an answer to the second question, it seems
to be necessary to integrate eigenchannel MAP with a model
of inter-speaker variability. The simplest possibility is to use
the prior in eigenvoice MAP for this purpose; this is the basic
idea underlying the factor analysis model. Thus, we assume

that each speaker- and channel-dependent supervector can be
decomposed into a sum of two supervectors, one of which lies
in the speaker space and the other in the channel space. Given
an enrollment recording for a speaker, we can disentangle the
speaker and channel effects in the corresponding speaker- and
channel-dependent supervector by calculating the joint poste-
rior distribution of the speaker and channel factors. Suppressing
the contribution of the channel factors to the supervector gives
(in theory, at least) an estimate of the speaker’s supervector
which is immune to the channel effects in the enrollment
recording and hence an answer to the second question above. In
formulating the factor analysis model, we actually took this idea
one step further by incorporating the prior for classical MAP as
well as the prior for eigenvoice MAP in order to compensate for
the rank deficiency problem in eigenvoice MAP [5]. Posterior
calculations and maximum-likelihood II training algorithms for
the joint factor analysis model are worked out in detail in [3].

Note that the factor analysis model is quite similar in spirit
to feature mapping. In [13], the basic assumption is that
each speaker- and channel-dependent supervector is a sum
of a speaker-dependent supervector and a channel-dependent
supervector. The major difference is that the factor analysis
model treats the channel space as a continuum, whereas in
[13], channel effects are quantized so that there is a discrete set
of channel supervectors (one for electret handsets, another for
carbon, and so forth). For this approach, the second question
above presents no particular difficulty since it can be tackled
by applying the appropriate type of channel compensation in
enrollment as well as in testing [13].

In undertaking the present work, our aim was to conduct
speaker verification experiments on one or more of the NIST
speaker recognition evaluation sets using a new type of like-
lihood II ratio statistic derived from the joint factor analysis
model. This entails as a first step fitting the joint factor analysis
model (using the maximum-likelihood II criterion) to a large
training corpus in which there are several recordings of each
speaker, such as the corpora distributed by the Linguistic Data
Consortium (LDC). In order to do this type of experiment prop-
erly, the training corpus and evaluation set need to be disjoint
but reasonably well matched with respect to both speaker and
channel characteristics. Here, we ran into a difficulty which we
had not anticipated, namely that the NIST evaluation sets had
been collected in such a way as to make it practically impos-
sible to fulfill this requirement prior to 2005 (as we will explain).
On the other hand, for both the 2004 and 2005 evaluations, the
evaluation data was drawn from a common source, namely the
Mixer collection, which was designed specifically to stimulate
research in channel modeling for speaker recognition [14]. It
became possible to experiment properly with the factor anal-
ysis model in 2005 because, for purposes of testing on the 2005
evaluation data, the 2004 evaluation data can serve as a training
corpus. So, although the current work was done in 2004, we de-
cided not to submit it for publication until we were in a position
to produce results on the 2005 data set (in the companion paper
[7]).

Our main concern in this paper was to see if a large-scale
factor analysis model of speaker and session variability (having
up to 500 speaker factors and 100 channel factors and hence sev-
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eral hundred times as many free parameters as in the standard
GMM/universal background model (UBM) approach to speaker
verification) could be successfully trained on corpora containing
hundreds of hours of data using the maximum-likelihood II pre-
scriptions in [3]. Second, we wanted to see if a likelihood II ratio
statistic derived from such a model could be used successfully in
speaker verification. We adopted this approach to constructing
a likelihood ratio statistic because it enabled us to tackle the
problem of channel compensation in a much more sophisticated
way than eigenchannel MAP: first, it takes account of channel
effects in a target speaker’s enrollment data as well as in a test
utterance (by integrating over all possible values of the channel
factors in each case, rather than by using point estimates); and
second, it takes account of the uncertainty of the target speaker’s
location in the supervector space that results from the fact that
the enrollment data is of limited duration (by integrating over
the posterior distribution of the speaker factors, where the pos-
terior distribution is calculated from the speaker’s enrollment
data).

We report the results of experiments on the NIST 1999
and 2000 evaluation sets in this paper. We investigated some
methods to mitigate the mismatch problem, even though these
methods violate the NIST evaluation protocol. The main idea
here was to try to adapt a joint factor analysis model to a given
target speaker population using the enrollment data (but not
the test data) for the target speakers. To facilitate this, we also
estimated universal background models on the enrollment data
in our experiments on the 1999 evaluation set (but not in the
case of the 2000 evaluation set). For these reasons, our results
are not strictly comparable with those reported by other authors
on these evaluation sets. (However, note that the results on the
NIST 2005 evaluation set in [7] were obtained without any
violations of the NIST protocol.) As it turns out, the gains
in performance obtained by this type of adaptation from one
speaker population to another were very minor. On the other
hand, we found that substantial improvements (30% reductions
in error rates) could be obtained by using feature warping [15],
[16] in conjunction with the joint factor analysis model, and this
result convinced us to continue to develop the model despite
the obstacles we had encountered with it initially.

The paper is organized as follows. In Section II, we describe
the factor analysis model and the likelihood II function using the
same notation as in [3]. We briefly describe the maximum-like-
lihood II procedures for estimating the hyperparameters from
training corpora and for adapting them from one speaker popu-
lation to another, and we explain how enrolling a target speaker
reduces to calculating the posterior distribution of the hidden
variables in the factor analysis model. In Section III, we explain
how to construct the likelihood II ratio statistic that we used for
our speaker verification experiments. Section IV explains how
we chose the training corpora and evaluation sets for our experi-
ments (and why this was problematic prior to 2005). Sections V
and VI describe how we conducted our experiments, and we
conclude with a discussion of the results in Section VII.

II. FACTOR ANALYSIS

The factor analysis model combines the priors underlying
classical MAP, eigenvoice MAP, and eigenchannel MAP, so we

begin by reviewing these and showing how a single prior can
be constructed which embraces all of them. We assume a fixed
GMM structure containing a total of mixture components. Let

be the dimension of the acoustic feature vectors.

A. Speaker and Channel Factors

Our basic assumption is that a speaker- and channel-depen-
dent supervector can be decomposed into a sum of two super-
vectors, one of which depends on the speaker and the other on
the channel, and that speaker supervectors and channel super-
vectors are statistically independent and normally distributed.
The dimensions of the covariance matrices of these distributions
are enormous , so we have to explain how we pro-
pose to model these covariance matrices.

Let be the speaker supervector for a speaker , and
let denote the speaker- and channel-independent supervector.
(The simplest way to estimate is to take the supervector from
a UBM.) In classical MAP, it is assumed that, for a randomly
chosen speaker, , is normally distributed with mean
and a diagonal covariance matrix . It is convenient to describe
this prior in terms of hidden variables as follows:

(1)

where is a hidden vector distributed according to the stan-
dard normal density . (It is easily seen that, under this
assumption, the expectation of is and its covariance is

.)
Provided that is nonsingular, MAP speaker adaptation using

this prior distribution is guaranteed to be asymptotically equiv-
alent to maximum-likelihood estimation of speaker models as
the amount of adaptation data increases. However, there does
not seem to be any principled reason for assuming that the co-
variance matrix is diagonal. Treating mixture components in a
speaker model as being statistically independent has the disad-
vantage that MAP adaptation can only update mixture compo-
nents which are observed in the adaptation data. Thus, if the
number of mixture components is large, classical MAP tends
to saturate slowly in the sense that large amounts of enrollment
data are needed to use it to full advantage.

Eigenvoice MAP assumes instead that there is a rectangular
matrix of dimensions where such that, for
a randomly chosen speaker

(2)

where is a hidden vector having a standard normal
distribution. Since the dimension of is much smaller
than that of , eigenvoice MAP tends to saturate much
more quickly than classical MAP, but this approach to speaker
adaptation suffers from the drawback that, in estimating from
a given training corpus, it is necessary to assume that is less
than or equal to the number of training speakers [5], so that a
large number of training speakers may be needed to estimate
properly. Thus, in practice there is no guarantee that eigenvoice
MAP adaptation will exhibit correct asymptotic behavior as the
quantity of enrollment data for a speaker increases. No matter
how much enrollment data is made available, the eigenvoice
MAP estimate of the speaker’s supervector is constrained to lie
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in the subspace spanned by the training speakers’ supervectors
even if the “true” speaker supervector lies elsewhere.

The strengths and weaknesses of classical MAP and eigen-
voice MAP complement each other. (Eigenvoice MAP is prefer-
able if small amounts of data are available for speaker adaptation
and classical MAP if large amounts are available.) An obvious
strategy to combine the two is to assume a decomposition of the
form

(3)

where and are assumed to be independent and to have
standard normal distributions. In other words, is assumed
to be normally distributed with mean and covariance matrix

. This is a factor analysis model in the sense of [17].
The components of are common speaker factors, and the
components of are special speaker factors; and are
factor loading matrices. The speaker space is the affine space
defined by translating the range of by . If , then all
speaker supervectors are contained in the speaker space; in the
general case the term serves as a residual which
compensates for the fact that this type of subspace constraint
may not be realistic. This type of prior distribution has been used
as a basis for speaker adaptation in both speech recognition [18]
and speaker recognition [19].

In order to incorporate channel effects, suppose we are given
recordings of a speaker . For each recording

, let denote the corresponding speaker- and channel-de-
pendent supervector. We assume as in [2] that the difference
between and can be accounted for by a vector of
common channel factors having a standard normal distri-
bution. That is, we assume that there is a rectangular matrix of
low rank (the loading matrix for the channel factors) such that

(4)

for each recording . Note that the speaker
factors and the channel factors play different roles, in that the
speaker factors are assumed to have the same values for all
recordings of the speaker, whereas the channel factors vary from
one recording to another.

Thus, we are assuming that channel supervectors are con-
tained in a low-dimensional subspace of the supervector space,
namely the range of , which we refer to as the channel space.
The rationale for this assumption is that it has invariably been
our experience that the eigenvalues of decay rapidly so there
is little loss in accuracy in assuming that is of low rank. Given
a random symmetric positive definite matrix, there is no reason
why its eigenvalues should decay rapidly to zero, yet this phe-
nomenon is frequently observed in physics and engineering. A
plausible explanation for this is that, since the eigenvectors pro-
duced in the Karhunen–Loève expansion of a physical signal are
orthogonal, the energies in the directions of these eigenvectors
are additive. The average energy in each of these directions is
just the corresponding eigenvalue, so since the total energy of
the signal is finite, the sum of the eigenvalues must converge. In
order for this series to converge, the eigenvalues have to tend to
zero rapidly.

Thus, the hypothesis that the covariance matrix for channel
compensation supervectors is of low rank (or, equivalently,
that the channel space is of low dimension) is a plausible one.
Indeed, it has been our experience that incorporating special
channel factors [analogous to the diagonal term in (3)], which
would result in a covariance matrix of full rank, hurts perfor-
mance in speaker verification. If the channel covariance matrix
were really of full rank, then it would be possible to make one
speaker sound like any other by varying the channel condi-
tions. This would be very bad news for speaker recognition!
Of course, there are grounds for questioning the assumption
that the channel compensation supervectors are normally dis-
tributed in the channel space. The success of the method of
feature mapping [13] suggests that the correct distribution may
be multimodal rather than unimodal, so that a Gaussian mixture
may be the most appropriate way to model it. This question is
addressed in [9].

Thus, in its current form, the joint factor analysis model is
specified as follows. If is the number of channel factors and

the number of speaker factors, the model is specified by a
quintuple of the form ( , , , , ), where is , is

, is , and and are diagonal
matrices. To explain the role of , fix a mixture component
and let be the corresponding block of . For each speaker

and recording , let denote the subvector of
corresponding to the given mixture component. We assume that,
for all speakers and recordings , observations drawn from
mixture component are distributed with mean and co-
variance matrix .

In the case and , the factor analysis model re-
duces to the prior for eigenvoice MAP. In the case where
and , we obtain the prior for classical MAP.1 If we as-
sume that has a point distribution instead of the Gaussian
distribution specified by (1) and that this point distribution is
different for different speakers, we obtain the prior for eigen-
channel MAP.

The special speaker factors are included in the model in
order to ensure that it inherits the asymptotic behavior of clas-
sical MAP, but they are costly in terms of computational com-
plexity. The reason for this is that, although the increase in the
number of free parameters is relatively modest since (unlike
and ) is assumed to be diagonal, introducing greatly in-
creases the number of hidden variables. It is also a major source
of complication in [3]; for example, factor analysis models do
not form a conjugate family unless . We will use the term
principal components analysis (PCA) to refer to the case where

. The model is quite simple in this case since the basic
assumption is that each speaker- and channel-dependent super-
vector is a sum of two supervectors, one of which is contained
in the speaker space and the other in the channel space. This de-
composition is actually unique since the range of and the
range of , being low-dimensional subspaces of a very high

1If is assumed to be related by an equation of the form

where is a “relevance factor” [4], then the classical MAP estimation formulas
are easily seen to be a special case of Proposition 2 in [5] (if is replaced by

). Thus, although its role is rarely spelled out explicitly, the diagonal matrix
is the key to the success of the GMM/UBM approach to speaker verification.
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Fig. 1. In the PCA case, a speaker- and channel-dependent supervector can
be written as a sum of two supervectors, one of which lies in the speaker
space and the other lies in the channel space (in accordance with the par-
allelogram rule). In the general case, speaker supervectors are distributed in the
neighborhood of the speaker space.

dimensional space, (typically) only intersect at the origin. (The
representation in Fig. 1 is slightly misleading because it sug-
gests that the intersection of the speaker and channel spaces is
of positive dimension.)

B. Factor Analysis Likelihood II Function

Suppose that we are given a hyperparameter set and a set
of recordings for a speaker indexed by . For
each recording , assume that each observation vector has been
aligned with a mixture component as in a Viterbi alignment and
let denote the collection of labeled frames for the th
recording. Let be the vector obtained by concatenating the
collections of labeled frames for all of the
speaker’s recordings; these are the observable variables for the
factor analysis model. Let be the vector obtained by con-
catenating the hidden variables .
(As in [3], we use under bars when referring to collections of
recordings rather than to an individual recording.)

If were given, we could write down and cal-
culate the (Gaussian) likelihood of for each recording

, so the calculation of the likelihood of would be
straightforward. Let us denote this conditional likelihood by

. Since the values of the hidden variables are
not given, calculating the likelihood of requires evaluating
the integral

(5)

where is the standard Gaussian kernel

We denote the value of this integral by . A closed-
form expression for this integral is given in Theorem 3 in [3] in
terms of the Viterbi statistics of the various utterances.2

2For a given sequence of observation vectors , the first- and
second-order Viterbi statistics for each mixture component are defined as

where the sums extend over all observations aligned with the given mixture
component.

It is quite common in speaker recognition to use Viterbi-
type approximations (particularly if the number of Gaussians
in the UBM is large), but strictly speaking, this is not really
satisfactory—the correct procedure would be to sum over all
possible alignments of observations with mixture components.
However, summing over all possible alignments in evaluating
the factor analysis likelihood function would be computation-
ally intractable. In the case where and , the problem
can be solved by dynamic programming [20], [21], but this ap-
proach is not computationally feasible in the general case (un-
less the number of speaker factors and channel factors are con-
strained to be unrealistically small). We dealt with this problem
in our implementation by substituting Baum–Welch statistics
for Viterbi statistics in evaluating (5). (We used the same ex-
pedient in [5].)

C. Speaker-Independent Hyperparameter Estimation

If we are given a training corpus in which each speaker is
recorded in multiple sessions, the hyperparameters can be es-
timated by EM algorithms which guarantee that the total like-
lihood of the training data increases from one iteration to the
next. (The total likelihood of the training data is ,
where ranges over the speakers in the training corpus. This is
a likelihood II function since its arguments are the hyperparam-
eters .) We refer to these as speaker-independent hyperparam-
eter estimation algorithms (or simply as training algorithms)
since they consist in fitting (3) to the entire collection of speakers
in the training data rather than to an individual speaker. These
algorithms are described in [3, Ths. 4, 5, and 7].

One estimation algorithm, which we will refer to simply as
maximum-likelihood estimation, can be derived by extending
Proposition 3 in [5] to handle the hyperparameters and in
addition to and . Another algorithm can be derived by using
the divergence minimization approach to hyperparameter esti-
mation introduced in [22]. This seems to converge much more
rapidly, but it has the property that it keeps the orientation of the
speaker and channel spaces fixed so that it can only be used after
maximum-likelihood estimation has already been carried out.
Minimum divergence estimation seems to produce better eigen-
value estimates than maximum-likelihood estimation. This is to
be expected, since the only freedom it has is to rotate the eigen-
vectors in the speaker and channel spaces and scale the eigen-
values.

Admittedly, the literature on eigenvoice methods is unclear as
to whether very precise estimates of the eigenvalues are needed
in practice. Evidence presented in [11] suggests that, in ex-
treme situations where utterances are very short or the number
of eigenvoices is large, precise estimates may be helpful, but in
most implementations of eigenvoice methods other than [11],
[5], the eigenvalues are ignored altogether in speaker adaptation.
(This is tantamount to treating all of the nonzero eigenvalues as
infinite in eigenvoice MAP.) The most widely used procedure to
estimate eigenvoices and eigenvalues relies on maximum-like-
lihood linear regression (MLLR) or classical MAP (rather than
maximum-likelihood estimation) to produce supervectors for
the speakers in the training corpus. This tends to produce noisy
estimates of the eigenvalues so that it is not always clear which
eigenvalues should be treated as being effectively zero. Thus,
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some authors have concluded that eigenvalue-based dimension-
ality reduction is better avoided altogether [23]; however, note
that this is only feasible if the number of speakers in a training
corpus is quite limited. In eigenchannel MAP on the other hand,
dimensionality reduction cannot be avoided, so careful estima-
tion of the eigenvalues certainly seems to be desirable.

D. Adapting From One Speaker Population to Another

The effectiveness of the speaker-independent hyperparameter
estimation algorithms in estimating a joint factor analysis model
depends critically on the availability of a training corpus in
which there are multiple recordings of each speaker—it seems
very unlikely that speaker and session effects can ever be broken
out using a training corpus in which there is just one recording
for each speaker, such as the enrollment data provided by NIST
for one of the restricted data SREs. So in order to test our model
on, say, the NIST 1999 SRE data, we need an ancillary training
corpus such as the union of Switchboard II, Phases 1 and 2, to
train the joint factor analysis model. Thus, in practice there may
be a mismatch between the training speaker population and the
target speaker population.

This raises an issue which seems to be of basic importance for
the factor analysis model, namely whether the speaker and ses-
sion components of the model can be successfully estimated on
different training corpora. [3, Ths. 8 and 9] present two hyper-
parameter estimation algorithms which attempt to address this
problem: one using the maximum-likelihood approach and the
other using the minimum divergence approach. We will present
the results of experiments with both of these algorithms in this
paper. In these experiments, we first estimate a full set of hyper-
parameters , , , , and on the ancillary training corpus
and then, holding and fixed, re-estimate , , and on
the enrollment data (but not the test data) for the target speakers
(Fig. 2). In other words, we keep the hyperparameters associated
with channel space fixed and re-estimate only the hyperparam-
eters associated with the speaker space. It turns out to be im-
portant to use the divergence minimization rather than the max-
imum-likelihood approach in this situation. That is, it is neces-
sary to keep the orientation of the speaker space fixed as well as
that of the channel space, rather than change it to fit the target
speaker population (in order to avoid over training on the limited
amount of enrollment data in a NIST evaluation set). Although
this type of adaptation to the target speaker population violates
the NIST evaluation protocol, we decided to explore it because
of its intrinsic scientific interest.

E. Speaker-Dependent Hyperparameter Estimation

In order to construct the likelihood ratio statistic that we used
in our speaker verification experiments, we also need a speaker-
dependent hyperparameter estimation algorithm. Recall that in
the factor analysis model, we have hyperparameters , , and

whose role is to model the distribution of speaker supervec-
tors. The idea in speaker-dependent hyperparameter estimation
is that if we are given some enrollment data for a particular
speaker , we can use this data to calculate the posterior distri-
bution of the hidden variables and which specify the
speaker’s supervector , and use the hyperparameters ,

, and to model the posterior distribution of instead of

Fig. 2. A data set such as the enrollment data provided by NIST for one of the
restricted data evaluations is not adequate to train a factor analysis model. We
estimate the speaker-independent hyperparameters on a much larger ancillary
training corpus that contains multiple recordings for each speaker (such as one or
more of the Switchboard corpora). In most of our experiments, this is followed
by adapting the hyperparameters that model inter-speaker variability (namely,

, and ) to the target speaker population; we assume that channel effects are
invariant so we keep fixed.

Fig. 3. For a target speaker , the speaker-dependent hyperparameters ,
, and model the posterior distribution of the speaker’s supervector,

. This posterior is calculated using the speaker-independent hyperparam-
eters and the speaker’s enrollment data.

modeling the distribution of speakers in the population at large
(Fig. 3). This is broadly analogous to the way speaker models are
derived by MAP adaptation from a universal background model
in the GMM/UBM approach. In our experiments, the procedure
for enrolling a target speaker consists in carrying out this type
of speaker-dependent hyperparameter estimation.

Thus, we assume that, for a given speaker and recording

(6)

That is, we make the hyperparameters , , and speaker-de-
pendent, but we continue to treat and as speaker-indepen-
dent. (The rationale here is that channel effects should not vary
from one speaker to another.)

In order to estimate the speaker-dependent hyperparameters
, , and , we find the distribution of the form

(where, as usual, and have standard normal
distributions) which is closest to the posterior distribution of

in the sense that the Kullback–Leibler divergence is min-
imized. Thus, is an estimate of the speaker’s supervector
when channel effects are abstracted and and measure
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the uncertainty in this estimate. This enrollment procedure is
just the minimum divergence estimation algorithm applied to a
single speaker in the case where and are held fixed. Note
that minimum divergence rather than maximum likelihood is the
right criterion to use here since, in enrolling a speaker, we want
to impose the constraint that the estimate of the speaker’s super-
vector lies in the speaker space. Details are given in [3, Th. 10].
For each target speaker , we will denote the speaker-dependent
hyperparameter set ( , , , , ) by .

III. LIKELIHOOD RATIO STATISTICS

The likelihood II function described in Section II-B can be
used to construct likelihood ratio statistics for speaker verifica-
tion in various ways. We will describe two of these statistics,
which we call the batch and sequential likelihood ratios, in this
section. Both of these statistics are similar to the Bayes factors
in [20], [21], and [24] in that they make allowances for the fact
that a target speaker’s location in supervector space is uncertain
(due to limited enrollment data), but, unlike these Bayes factors,
they incorporate mechanisms to compensate for channel effects
in the target speakers’ enrollment data and in test utterances.

We assume that we are given a collection of one or more en-
rollment utterances for a target speaker and a test utterance
and that we wish to test the hypothesis that the speaker in the
test utterance is against the null hypothesis that the speaker in
the test utterance is somebody else.

The batch likelihood ratio is most easily described in the
case where there is just one enrollment recording (the so-called
speaker comparison problem), but the extension to multiple en-
rollment recordings is straightforward. Under the alternative hy-
pothesis, the speaker factors for the enrollment and test record-
ings are the same and the joint likelihood of the pair of record-
ings is given by evaluating the integral (5) with .
Under the null hypothesis, the two recordings are statistically
independent; the likelihood of each recording is given by evalu-
ating the integral (5) with in each case, and the joint
likelihood of the two recordings is just the product of these two
integrals. Thus, the two hypotheses give rise to different ways of
evaluating the joint likelihood of the enrollment and test record-
ings. The batch likelihood ratio is just the quotient of the two
values, and the larger the ratio, the stronger the evidence in favor
of the alternative hypothesis. Note that there is no notion of a
target speaker model in this construction. All that is needed is
to understand how to evaluate the integral (5), but this compu-
tation can be prohibitively expensive if the number of speaker
factors is large. (A large number of speaker factors is desirable
for discriminating between speakers.)

The sequential likelihood ratio statistic is constructed in
a more traditional way. Using enrollment recordings for the
target speaker , we estimate a speaker-dependent version of the
factor analysis model (Section II-E) which models the posterior
distribution of the speaker-dependent supervector for the given
speaker. This gives us two ways of evaluating the likelihood
of the test utterance, namely with the speaker-independent hy-
perparameters and the speaker-dependent hyperparameters

, and hence another way of constructing a likelihood ratio
statistic for deciding between the two hypotheses. If denotes
the collection of labeled observations in the test utterance

(each observation being labeled by the corresponding mixture
component), this statistic is given in the log domain by

(7)

where the numerator and the denominator are evaluated as in
(5) (with in each case). We refer to this as the se-
quential log likelihood ratio because it lends itself naturally to
progressive speaker adaptation if the speaker-dependent hyper-
parameter estimation algorithm is applied recursively. (That is,
whenever a new recording for a given speaker becomes avail-
able, we update the speaker-dependent hyperparameters ,

, and by using the current estimates of these hyperpa-
rameters rather than the speaker-independent hyperparameters
as the starting point for speaker-dependent estimation.) It is well
known that progressive speaker adaptation can improve the per-
formance of speaker recognition systems dramatically and re-
cent NIST SREs have permitted this avenue to be explored. (We
have taken up this question in [10].)

It can be shown that the two likelihood ratios are identical in
the case where , but in the general case, the sequential
likelihood ratio is only an approximation to the batch likelihood
ratio. The reason for this is that the family of joint factor anal-
ysis models is not a conjugate family unless the condition
is satisfied (see the discussion preceding [3, Th. 10]). For the
same reason, the results of applying the speaker-dependent hy-
perparameter estimation algorithm recursively in evaluating the
sequential likelihood ratio (i.e., progressive speaker adaptation)
are exactly correct only if .

However, it is preferable to use the sequential likelihood ratio
in practice, because it is easy to find computationally tractable
approximations for evaluating it; accordingly, this is the only
likelihood ratio that we used in the experiments reported here.
To understand the computational issues, consider first the nu-
merator of (7). By [3, Th. 3], the computation needed to evaluate
the numerator essentially boils down to calculating the Cholesky
decomposition of a matrix of dimension

constructed from and . (Recall that is a
matrix and is a matrix.) Reducing the rank of to
manageable proportions by discarding the minor eigenvalues of

alleviates the computational burden. Since cap-
tures the uncertainty in the values of the speaker factors after
enrollment, most of the eigenvalues of are small if the
amount of enrollment data for the speaker is reasonably large.
Even so, this calculation is still computationally demanding so
that we were led to use cruder approximations in our subsequent
work [7], [8]. We are not in a position to say whether these ap-
proximations are deleterious in situations where the amount of
enrollment data is not “reasonably large” (as in the 10-s enroll-
ment conditions in the NIST SREs). Although our methods per-
form well under this condition, we have found that the uncer-
tainty concerning the location of a target speaker in supervector
space is very large in this situation—typically about 50% of the
variance of the speaker population as a whole. Thus, is may be
necessary to explore other approximations in the future.

We are confronted by the same problem in evaluating the de-
nominator of (7) as in evaluating the numerator, but this can be
avoided altogether by using t-norm score normalization [25].
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The idea here is to enroll a collection of t-norm speakers and, at
verification time, to calculate the log likelihood ratio (7) for each
t-norm speaker in addition to the target speaker . Let and
be the mean and standard deviation of the log likelihood ratios
for the t-norm speakers. The normalization consists in standard-
izing (7) by subtracting and dividing by . It is clear that the
denominator in (7) drops out of this calculation.

IV. TRAINING CORPORA AND EVALUATION SETS

In order to experiment with the factor analysis model in
speaker recognition, we need a large training corpus in which
each speaker is recorded under a suitable variety of channel
conditions for estimating the speaker-independent hyperpa-
rameters , and an evaluation set such as NIST provides in
the annual SREs. These evaluation sets consist of enrollment
data for each of the target speakers and test data which is used
to measure speaker verification performance.3 Naturally, the
training corpus and the evaluation set should be disjoint but well
matched with respect to both speaker and channel characteris-
tics. Unfortunately, because of the way the NIST evaluation sets
were collected in previous years, it was impossible to use them
as testbeds for experimenting with factor analysis modeling
prior to 2005 without violating this requirement.

An egregious example of what can go wrong if the training
corpus is not chosen carefully can be found in [26]. This was our
first attempt at implementing the factor analysis model (using a
small number of speaker factors and channel factors). We did
a series of experiments to address some basic questions such
as: which of the two likelihood ratio statistics constructed with
the likelihood II function is the more effective? Is t-norm effec-
tive? How many Gaussians should be used? Is a gender-depen-
dent joint factor analysis more effective than a gender-indepen-
dent joint factor analysis? Is silence detection necessary? These
experiments were conducted using the LDC release of Switch-
board Cellular Part I as the training corpus and the NIST 2001
SRE cellular data for testing [27]. The results were extraordi-
narily good, but we discovered after the fact that the NIST 2001
cellular evaluation data which was described in [27] as “drawn
from the Switchboard-II Corpus, Phase 4” was actually entirely
contained in Switchboard Cellular Part I. Thus, our preliminary
experiments were flawed, and we were forced to abandon this
testbed.

Since 2004, the NIST evaluation sets have all been drawn
from the Mixer collection, which was designed specifically to
stimulate research in channel modeling [14]. In particular, the
evaluation sets for 2004 and 2005 were drawn from the same
source (without recycling). Thus, by using the 2004 evaluation
data as a training corpus (or part thereof), it is possible to ex-
periment properly with the factor analysis model on the 2005

3A note on terminology: In the general speaker recognition literature, the
terms training and enrollment are used almost interchangeably. In the context of
this paper and [7], we use the word training solely to refer to speaker-indepen-
dent hyperparameter estimation (as described in Section II-C), just as one speaks
of training UBMs in the GMM/UBM approach. The terms enrollment and adap-
tation also tend to be used interchangeably in the GMM/UBM approach (since
in that situation, a target speaker model is derived from the UBM by classical
MAP adaptation). In this paper, we use the term adaptation to refer solely to
adapting speaker-independent hyperparameters from one population to another
(as described in Section II-D). We use the term enrollment to refer to speaker
dependent hyperparameter estimation (as described in Section II-E).

evaluation set—”properly” in the sense that the training corpus
and evaluation set are well matched. The results reported in the
companion paper [7] were all obtained on the 2005 evaluation
set.

However, prior to 2004 (when the present work was done),
each of the NIST evaluation sets was drawn from a different
Switchboard corpus (except in cases where data was recycled
from one year to the next). Each Switchboard corpus was de-
signed to cover a particular dialect of American English or a
particular type of transmission channel (e.g., GSM or CDMA).
Thus, it was impossible at that time to experiment with the factor
analysis model using a NIST evaluation set as a testbed and one
or more of the Switchboard corpora for training without encoun-
tering a mismatch between training and evaluation conditions.
For example, using the NIST 2002 or 2003 SRE data for testing
and Switchboard Cellular Part I for training would not be appro-
priate since the test data consists principally of CDMA transmis-
sions, and there would be essentially no CDMA transmissions
in the training data. (Switchboard Cellular Part I consists mostly
of GSM transmissions.)

So we decided that we would just have to live with the mis-
match problem until the 2005 evaluation set was made available.
For our first experiments in this paper, we chose the Switch-
board II, Phases 1 and 2 corpora, for training factor analysis
models and the 1999 evaluation data (which is extracted from
the Switchboard II, Phase 3 corpus) for testing. The Switch-
board II corpora consist of land line data with roughly equal
proportions of “same number” and “different number” calls, so
there should be no mismatch where channel characteristics are
concerned. However, there is a mismatch between the training
and target speaker populations because the training speakers
are from the American Midwest and Northeast and the target
speakers from the South. We found that, under these conditions,
speaker verification with the sequential likelihood ratio statistic
yielded results which are as good as (but no better than) the
best results that have been attained with standard GMM like-
lihood ratios and handset detection using unwarped cepstral co-
efficients as acoustic features.

Our efforts to improve on these results by adapting the joint
factor analysis model to the target speaker population using the
strategy outlined in Section II-D were largely unrewarded, but
we did find that much better performance could be achieved by
using Switchboard II, Phase 3 as the training corpus. Of course,
this is an unfair experiment because, in this case, the evaluation
set is contained in the training corpus. However, it suggested that
it would be useful to design an experiment with a well-matched
training corpus and evaluation set.

We used the NIST 2000 evaluation data for this purpose. The
2000 SRE data set is unusually large since it involves a thousand
target speakers. These speakers were drawn from both Phase 1
and Phase 2 of Switchboard II, and the test utterances were all
extracted from different number calls. We constructed the eval-
uation set for our experiment on this data set by discarding every
second target speaker in the 2000 evaluation, and we constructed
a training corpus using speakers in Switchboard II, Phases 1 and
2, which were not included in our evaluation set. We found that
the joint factor analysis model performed well in this situation,
which led us to conclude that the mismatch problem was indeed
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of critical importance. Nonetheless, we were eventually able to
achieve very good results on the NIST 1999 data by using fea-
ture warping in conjunction with factor analysis modeling (error
rate reductions of about 30%).

V. IMPLEMENTATION ISSUES

Using large numbers of speaker and/or channel factors creates
problems in speaker-independent estimation of the hyperparam-
eters. The principal computational bottleneck here is in calcu-
lating the posterior distribution of the hidden variables (that is,

for each training speaker ). If the number of
recordings of the speaker is large (the ideal situation) and there
are large numbers of speaker factors and channel factors, then
this calculation may not be practically feasible unless .
(Recall that we use the term PCA to refer to this case.) In our pre-
liminary experiments on the NIST 2001 cellular evaluation data
using the Switchboard Cellular Part I corpus for training [26],
we did not encounter any difficulties in this case because we
used only 40 speaker factors and 40 channel factors, but for most
of our experiments on the NIST 1999 and NIST 2000 test data,
we did have to impose the restriction .4 Calculating the
posterior distribution of the hidden variables is only problematic
in training the joint factor analysis model on large training sets;
there is no difficulty in introducing in adapting the speaker-in-
dependent hyperparameters from the training speaker popula-
tion to a NIST target speaker population (since the enrollment
data for each target speaker consists of just one or two record-
ings).

As we explained in Section II-B and Section III, evaluating
the likelihood II ratio statistic for a given test utterance and a
given set of hypothesized target speakers requires extracting
the first- and second-order statistics from the test data using
a Viterbi or Baum–Welch alignment. We used Baum–Welch
alignments and gender-dependent UBMs for this purpose. An
obvious advantage of using only UBMs for alignment is that a
given test utterance only needs be aligned once (rather than once
for each hypothesized speaker as required by the usual GMM
approach). Thus, the number of Gaussians in the UBM is not
really a major computational issue for us.

As for signal processing, speech data was sampled at 8 kHz
and 12 liftered mel frequency cepstral coefficients and an en-
ergy parameter were calculated at a frame rate of 10 ms. The
acoustic feature vector consisted of these 13 parameters together
with their first derivatives. For most of our experiments, we did
not perform cepstral mean subtraction or normalize the energy
feature. Although it is contrary to tradition in speaker recogni-
tion, there are several reasons for not doing mean normaliza-
tion in the early phases of investigation: there is no difficulty
in capturing linear channel effects with channel factors; there
is evidence that cepstral mean subtraction reduces speaker vari-
ability as well as channel variability (albeit to a lesser extent)
[28] so that it may be an impediment to discriminating between
speakers; and an early experiment in combining eigenvoice and

4Even with this restriction, training can still be time consuming. For example,
we found that training a PCA model with 300 speaker factors and 100 channel
factors on a Switchboard database takes almost one half real time per EM itera-
tion on a 2.4-GHz Xeon CPU. We have since found a satisfactory approximation
which enables the training procedure to be speeded up substantially [6].

eigenchannel modeling indicated that cepstral mean subtraction
could be deleterious [2]. Since we wanted to be able to compare
our results on the 1999 and 2000 evaluation sets with those pub-
lished by other authors, we did not use feature warping except
in our final experiments (where it proved to be extremely effec-
tive).

Silences were excised from the NIST 1999 and NIST 2000
enrollment and test data so we used a silence detector to pre-
pare the training data for our experiments on these evaluation
sets. Traditionally, NIST defines a “primary condition” for the
annual evaluations. In 1999 and 2000, the primary conditions
were defined in such a way that only the electret portions of
the test sets were used in the evaluations. We did not impose the
primary condition restrictions in our experiments since we were
interested to see how the joint factor analysis model would per-
form on a mixture of electret and carbon data. In particular, we
did not use handset detection (except to break down some of our
results).

VI. EXPERIMENTS

In this section, we will first report results obtained on the
NIST 1999 evaluation data (which is extracted from Switch-
board II, Phase 3) by training PCA models (i.e., ) on
Switchboard II, Phases 1 and 2. As we mentioned in Section IV,
the training corpus and evaluation set for these experiments are
mismatched.

In order to see how well a PCA model is capable of per-
forming if the training corpus and evaluation set are well
matched, we carried out experiments on a subset of the NIST
2000 evaluation data (which was extracted from both Phases 1
and 2 of Switchboard II) where we used a subset of the NIST
2000 target speaker population for testing and a disjoint set of
speakers from Switchboard II, Phases 1 and 2 for training.

For our final experiment with feature warping, we used the
1999 evaluation set.

A. Data

For each target speaker in the 1999 evaluation set, the enroll-
ment data consisted of about one minute of speech from each
of two different conversations conducted over the same phone
line. We used one of the two enrollment recordings for each of
the target speakers (5 h of data in the female case, 4 h in the
male case) to train two gender-dependent UBMs each having
2048 Gaussians. (This violates the NIST protocol.) We used the
Switchboard II, Phases 1 and 2 corpora, to construct two training
sets (one male and one female) for training PCA models. We ex-
cluded all speakers who were included in the 1999 evaluation.5
This left 625 female training speakers and 528 male. In our first
set of experiments on the 1999 data (described in Section VI-C),
we restricted ourselves to a subset of the available training data
for computational reasons (128 h after excising silences in the
female case, 94 h in the male case). However, we used all of the
available training data for our second set of experiments (de-
scribed in Section VI-E), namely 230 h in the female case and
180 h in the male case.

5Care is needed in making this determination because some speakers have
aliases. This situation arises when two sets of enrollment data, one carbon and
one electret, are supplied for a speaker.
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In order to design the training corpus and evaluation set for
our experiment using the NIST 2000 evaluation data, we began
by excluding every second target speaker as well as all speakers
who were not in the Switchboard II, Phases 1 and 2 corpora.
This gave us a set of 453 target speakers (203 male and 250
female). We selected a disjoint set consisting of 341 male and
385 female speakers from Switchboard II, Phases 1 and 2, for
training. For each training speaker we used up to 20 conversa-
tion sides, giving 121 h of training data in the female case and
96 h in the male case. Finally, we constructed our evaluation set
from the NIST 2000 evaluation data by excluding trials which
involved speakers other than our 453 target speakers or test ut-
terances which had been extracted from one of the conversation
sides that we used in training. This left us with 27 438 verifi-
cation trials (13 516 male and 13 922 female) involving 5207
test utterances. Of these, 24% were recorded with carbon button
handsets (compared with 23% of 6052 test utterances in the test
set as a whole).6 Thus, the results we will report on our evalua-
tion set can be compared with results obtained by other authors
on the NIST 2000 evaluation set as a whole (that is, without the
primary condition restriction).

B. Toy Experiment

The most promising strategy for dealing with the mismatch
between the training and target speaker populations in our ex-
periments on the 1999 evaluation set seems to be to use a large
number of speaker factors in the hope of generating a speaker
space which is large enough to accommodate the target speakers
as well as the training speakers. (This is borne out by experi-
ments reported in [7].) However, if we use a large number of
speaker factors, then computational considerations force us to
take in training the factor analysis model (as we men-
tioned in Section V) and to make an approximation in evaluating
the sequential likelihood ratio statistic (7) (as we mentioned in
Section III). In order to see if our model was capable in principle
of performing well under these conditions, we performed an ex-
periment on the female subset of the 1999 evaluation data where
we trained a PCA model on the female portion of Switchboard
II, Phase 3. (This is a “toy” experiment since the evaluation data
is a subset of the training corpus in this situation.)

In estimating the hyperparameters, we limited ourselves to
ten conversation sides per speaker (this gave us 63 h of female
training data after excising silences) and we estimated a PCA
model with 300 common speaker factors and 50 channel factors
using the maximum-likelihood training algorithm. In testing, we
used the sequential likelihood ratio statistic and t-norm score
normalization with 50 t-norm speakers per test utterance. In
order to evaluate the likelihood ratio statistic (7), we reduced
the rank of from 300 to 50 for each target speaker . Under
these conditions, we obtained a DCF (that is, the value of the
NIST detection cost function) of 0.016 and an equal error rate
(EER) of 4.8% on the female portion of the evaluation set. This
indicates that a PCA model together with the approximation
used in evaluating the sequential likelihood ratio statistic can
indeed perform very well, at least if the training corpus and eval-
uation set are perfectly matched. However, it turns out that, as in

6Handset detection was performed automatically, so these figures may not be
accurate.

TABLE I
BREAKDOWN OF RESULTS OF THE TOY EXPERIMENT ON THE FEMALE
PORTION OF THE 1999 EVALUATION SET OBTAINED BY TRAINING ON
SWITCHBOARD II, PHASE 3. SNST SAME NUMBER, SAME TYPE
(ELECTRET OR CARBON); DNST DIFFERENT NUMBER, SAME

TYPE; DNDT DIFFERENT NUMBER, DIFFERENT TYPE

the case of conventional GMM systems, the performance on dif-
ferent number trials is much poorer than on same number trials.
This is apparent from Table I, where we have broken down the
results in the same way as in [4].

C. Results on the 1999 Evaluation Set

In our first (non-toy) experiments on the 1999 evaluation
set, we used 500 common speaker factors, 50 channel factors
and we did not use feature warping. As in the toy experiment,
we reduced the rank of to 50 for each target speaker
in evaluating the likelihood ratio statistic (7), and we used 50
t-norm speakers for each test utterance. We first performed a
series of experiments on the female portion of the evaluation set
using the female training corpus extracted from Switchboard
II, Phases 1 and 2 (as described in Section IV) to train PCA
models. Our aim was to investigate the effectiveness of the
two types of hyperparameter estimation algorithm (maximum
likelihood and minimum divergence) in training the PCA
models and in adapting speaker independent hyperparameters
to the target speaker population (see Sections II-C and II-D). As
we mentioned in Section V, it is only in adapting the speaker
independent hyperparameters to the target speaker population
that we relax the condition . Thus, most of our results
were obtained with PCA models rather than factor analysis
(FA) models.

These results are summarized in Lines 1–5 of Table II. Line 1
gives the results obtained with maximum-likelihood training of
the PCA model without any adaptation to the target speaker
population. These results are reasonably good, but not nearly
as good as in our toy experiment, which suggests that the mis-
match between the training and target speaker populations may
be a problem. The performance (as measured by the DCF) with
minimum divergence training (Line 4) and with minimum di-
vergence adaptation (Lines 3 and 5) was essentially the same as
in Line 1.

All of these results were obtained by imposing the condition
. For the experiment reported in Line 6, we took the

adapted PCA model from Line 5 and turned it into a joint factor
analysis model simply by setting

(8)

as [4] would suggest. (As we mentioned, in the classical MAP
case the “relevance factors” in [4] are the diagonal entries of

.) This turned out to be a good choice; using the minimum
divergence adaptation algorithm mentioned in Section II-D to
adapt a joint factor analysis model initialized in this way to
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TABLE II
RESULTS ON THE FEMALE PORTION OF THE 1999 EVALUATION SET OBTAINED

USING MAXIMUM-LIKELIHOOD (ML) AND MINIMUM-DIVERGENCE (MD)
ALGORITHMS FOR TRAINING SPEAKER-INDEPENDENT HYPERPARAMETERS

AND ADAPTING THEM TO THE TARGET SPEAKER POPULATION. PCA
PRINCIPAL COMPONENTS ANALYSIS, FA JOINT FACTOR ANALYSIS, —
INDICATES THAT NO ADAPTATION TO THE TARGET SPEAKER POPULATION

WAS PERFORMED. FEATURE WARPING WAS NOT USED

the target speaker population gave essentially the same results
(Line 7).

Comparing the results in Lines 6 and 7 with those in Line 5
shows that joint factor analysis can outperform principal com-
ponents analysis, that is, the diagonal term in (3) can in-
deed play a useful role even if the number of common speaker
factors is very large. The approach taken in Line 7 has the ad-
vantage that relevance factors do not have to be estimated em-
pirically, but comparing Line 6 with Line 7, Line 4 with Line 5,
and Line 1 with Line 3 shows that our attempts to mitigate the
mismatch problem by adapting to the target speaker population
using the approach indicated in Section II-D were unsuccessful.

Furthermore, the results in Line 2 show that adapting
to the target speaker population can actually be harmful if
maximum-likelihood estimation is used in place of min-
imum-divergence estimation for this purpose (as we mentioned
in Section II-D). The reason for this is clear: minimum-diver-
gence adaptation preserves the orientation of the speaker space
found in training, whereas maximum-likelihood adaptation
forgets this information and re-orients the speaker space to fit
the target speaker population. Since the amount of enrollment
data for the target speakers is relatively small (compared to the
training corpus), maximum-likelihood adaptation suffers from
over-fitting whereas minimum divergence adaptation does not.

We replicated the experiment in Line 7 on the male portion of
the 1999 evaluation set, obtaining a DCF of 0.029 and an EER of
10.2%. Pooling male and female trials gave worse results than
keeping them separate, namely a DCF of 0.033 and an EER of
10.9%, so it appears that using common thresholds for male and
female trials is suboptimal for the joint factor analysis model.
It is quite likely that this is due to the disparity in the sizes of
the male and female training sets. (There are generally more
females than males in the Switchboard corpora.)

For comparison, results on the 1999 evaluation set without
the primary condition restriction are reported in [4] where an
EER of 10% was obtained.

D. Results on the 2000 Evaluation Set

We used the NIST 2000 evaluation data to design some ex-
periments to see how well the joint factor analysis model could
perform in situations where the training corpus is well matched
with the evaluation set. As we have already explained, we used

a subset of the NIST 2000 evaluation data for testing and a dis-
joint subset of Switchboard II, Phases 1 and 2, for training in
these experiments. They were carried out in the same way as
those on the 1999 evaluation set except that we did not use the
enrollment data in estimating the UBMs.

We used the entire training corpus to estimate gender-depen-
dent UBMs with 2048 Gaussians and gender-dependent PCA
models with 300 speaker factors and 100 channel factors. We
reduced the rank of to 100 for each target speaker in eval-
uating the likelihood ratio statistic (7), and we used 50 t-norm
speakers for each test utterance. On the female portion of our
evaluation set, the PCA model gave a DCF of 0.030 and an EER
of 8.1%. These results can be compared with the results reported
in Line 5 of Table II.

The experiment reported in Line 7 of Table II showed that
it was possible to compensate to some extent for the mismatch
between the training and target speaker populations in the ex-
periments on the 1999 data by converting a PCA model to a
joint factor analysis model. By using the same strategy here, we
were able to obtain a DCF of 0.028 and an EER of 7.5% on the
female portion of our test set. So this strategy is effective even
if there is no evident mismatch although, as one would expect,
the improvement in this case is smaller. Replicating this exper-
iment on the male portion of our evaluation set, we obtained a
DCF of 0.027 and an EER of 6.4%. Pooling the results (using
a gender-independent decision threshold) gave a DCF of 0.028
and an EER of 7.2%.

There are few published results to compare these figures with,
but it is generally recognized that, although it consists entirely
of different number trials, the 2000 evaluation set is of about
the same degree of difficulty as the 1999 evaluation set and that
DCFs of roughly 0.037 and EERs of about 10% can be achieved
by the methods in [4]. For our purposes, the important thing to
note is that we obtained much better results on the 2000 test data
than on the 1999 test data, and this difference can be attributed
to using a training corpus which is well matched with the eval-
uation set.

E. Effect of Feature Warping

Since we failed to obtain good results on the 1999 evaluation
data by compensating for the mismatch problem, we decided to
try another technique. In all of the experiments reported so far,
we used unnormalized cepstral coefficients as acoustic features.
It turns out, however, that using feature warping [15], [16] gives
much better results. We replicated the experiment on the female
portion of the 1999 evaluation set which gave us our best re-
sults (Line 7 of Table II) using feature warping, reducing the
number of common speaker factors from 500 to 300 and using
all of the training data available in the Switchboard II, Phases
1 and 2 corpora. Under these conditions, we obtained greatly
improved results, namely a DCF of 0.021 and an EER of 6.2%.
The corresponding detection error tradeoff (DET) curves curves
are shown in Fig. 4.

The results in the male case are similar, namely a DCF of
0.020 and an EER of 5.9%. To our knowledge, these results are
a good deal better than any that have been reported on the 1999
evaluation set (but recall that we have departed from the NIST
evaluation protocol in some respects).
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Fig. 4. DET curves illustrating the effectiveness of feature warping in con-
junction with the joint factor analysis model. Female portion of the NIST 1999
evaluation set, carbon data as well as electret. Without feature warping: DCF
0.030, EER 9.2 (upper curve). With feature warping: DCF 0.021,
EER 6.2 (lower curve).

VII. DISCUSSION

In this paper, we have shown how large-scale factor anal-
ysis models of speaker and channel variability can be trained on
large corpora using the maximum-likelihood and minimum-di-
vergence algorithms described in [3] which optimize a likeli-
hood II objective function, that is, a likelihood function whose
arguments are hyperparameters. We have also shown how to
construct a new type of likelihood II ratio statistic for speaker
verification using such factor analysis models and how this ap-
proach overcomes the major limitation of eigenchannel MAP
by taking account of channel effects at enrollment time as well
as at verification time.

Our first results on the NIST 1999 evaluation set (obtained
without feature warping) were worse than the results of the toy
experiment in Section VI-B might lead one to expect. This sug-
gested that the dialectical mismatch between the training and
target speaker populations might be to blame. That there is some
truth to this supposition is clear from the much better results we
obtained in our experiments on the NIST 2000 evaluation data
which were conducted with a well-matched training corpus and
evaluation set. We attempted to mitigate the mismatch problem
by using the adaptation techniques described in Section II-D,
but our efforts in this direction were largely unsuccessful. Thus,
the factor analysis model seems to require a training set which
is well matched with the application domain in which it is ex-
pected to function and there does not seem to be any easy way
of getting around this obstacle.

As we explained in Section IV, we have only been in a posi-
tion to experiment with the factor analysis model using properly
matched training corpora and evaluation sets since 2005. The re-
sults reported in the companion paper [7] were obtained on the

NIST 2005 evaluation set (strictly in accordance with the NIST
protocol). These results include back-to-back comparisons of a
simplified version of the likelihood II approach developed here
with eigenchannel MAP and they clearly show that the likeli-
hood II approach is far superior. We found that the likelihood
II approach had to be simplified because the computational de-
mands of strictly adhering to the likelihood II principle made
it difficult for us to turn around large numbers of experiments.
After this work was completed, we showed how training factor
analysis models could be speeded up by decoupling the speaker
and channel components of the model [6], and how the CPU
time needed for verification trials could be greatly reduced by
using an approximation to the likelihood II statistic which can
be evaluated without having to perform a Cholesky decomposi-
tion [7], [26].

The most interesting result to emerge from the experiments
in this paper is the very strong synergy between the joint factor
analysis model and feature warping. This method of feature nor-
malization consists in sliding an analysis window (typically of
length 3 s) over the signal and mapping the distribution of each
cepstral coefficient in the window onto a standard normal dis-
tribution. The technique is currently used in most, but by no
means all, state-of-the-art text-independent speaker recognition
systems, although the reasons for its effectiveness do not seem to
be fully understood. The most comprehensive reference on the
subject is Pelecanos’ unpublished thesis [16]. The arguments
and empirical evidence presented there in favor of normalizing
the first- and second-order moments of the cepstral distributions
in this manner seem to be incontrovertible but it is less clear why
normalizing all of the moments in this way should be an effec-
tive strategy for dealing with channel effects in speaker recog-
nition. The theoretical arguments advanced by Pelecanos only
pertain to the case of additive white noise, but the results using
this technique on real data, namely the NIST 1999 evaluation
set, were very impressive.

The surprising thing about our results on the same evaluation
set is that feature warping in conjunction with factor analysis
actually gave us a much larger gain in performance (30% re-
ductions in error rates as measured both by DCF and EER) than
Pelecanos and others have obtained by using feature warping
in conjunction with the GMM/UBM approach. We suspect that
the reason for this is that the joint factor analysis model depends
on Gaussian assumptions at the level of supervectors, and the
short term Gaussianization performed in feature warping rein-
forces these assumptions. However, in order to test this hypoth-
esis, it would be necessary to relax the Gaussian assumptions
that we used to model supervector distributions (by using inde-
pendent components analysis rather than principal components
analysis or factor analysis, for example). This seems to be a dif-
ficult problem which would only be worth tackling if additional
evidence could be found to suggest that it might be of practical
importance.
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