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Several speaker recognition algorithms failed to get the best results because of the wildly varying datasets and feature sets for
classification. Gender information helps reduce this effort since categorizing the classes based on gender may help lessen the
impact of gender variability on the retrieved features. This study attempted to construct a perfect classification model for
language-independent gender identification utilizing the Common Voice dataset (Mozilla). Most previous studies are doing
manual extracting characteristics and feeding them into a machine learning model for categorization. Deep neural networks
(DNN) were the most effective strategy in our research. Nonetheless, the main goal was to take advantage of the wealth of
information included in voice data without requiring significant manual intervention. We trained the deep learning network to
choose essential information from speech spectrograms for the classification layer, performing gender detection. The pretrained
ResNet 50 fine-tuned gender data successfully achieved an accuracy of 98.57% better than the traditional ML approaches and
the previous works reported with the same dataset. Furthermore, the model performs well on additional datasets,
demonstrating the approach’s generalization capacity.

1. Introduction

Neural networks are state-of-the-art in various classification
tasks, including video and audio segmentation. Determining
the speaker’s identity from an audio clip of their speech is a
classification problem of this sort. Nevertheless, the quantity
of data necessary to produce acceptable results is one of the

most critical trade-offs in neural network training. Gender is
a component that results in an average physiological differ-
ence. It may increase the identification system’s accuracy
because males and females have diverse emotional expres-
sions and voice processes. Integrating gender data in the
development and testing processes makes the data more
trustworthy. The neural network obtains another element
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for identifying the task-specific voice qualities for the two
genders [1]. Gender categorization by the audio signal is cru-
cial for various applications, involving targeted answers and
advertising by voice assistants, population statistics via age
group analysis, and automated profiling of an individual
using speech data to help in a criminal probe. Additionally,
for a model with a gender-specific search space, even a small
quantity of data will significantly contribute to various audio
systems, such as automated voice recognition, speaker iden-
tification, and content-based multimedia indexing.

A collection of features is utilized to determine the gen-
der of a sound. The Mel-scaled power spectrogram (Mel),
Mel-frequency cepstral coefficients (MFCCs), power spec-
trogram chroma (Chroma), spectral contrast (Contrast),
and tonal centroid are among the most often used features
for speech gender detection (Tonnetz). Machine learning
(ML) approaches are used to build a high-quality system
for distinguishing voice gender using the retrieved attributes.
Each classification approach, in specific, generates a collec-
tion of hypothesis models and chooses the most optimum
one. This model identifies the unknown voice label by
acquiring the audio attributes and classifying the voice
gender.

As the feature extraction stage has progressed to the
point that many academics now see it as feature engineering,
intending to develop robust feature vectors that accurately
characterize structures in methods relevant to the job at
hand. The primary goal of feature engineering is to create
features that cluster patterns belonging to the same class
together in the feature space while keeping them as far apart
as possible from other categories. But autonomous represen-
tation learning has attracted increased interest to study deep
learning methodologies more readily and extensively. The
classification scheme is constructed with deep learning so
that the encoder acquires the optimal attributes for describ-
ing patterns throughout the training phase. Additionally,
because of specialized deep architectures, such as CNN, the
input structures are sometimes depicted as a picture. CNN
is a specialized architecture for handling the image classifica-
tion task, among other things. This has prompted academics
working with CNNs to create ways for transforming an
audio input to a time-frequency image. Hence, another
approach tackles the gender categorization issue arose by
using the auditory spectrograms as inputs to our system. It
sounds spectrograms are visual representations of audio.
Spectrograms are very comprehensive and precise represen-
tations of speech that have been extensively employed in
auditory categorization applications [2–4]. Deep neural net-
works (DNNs) trained on extracted features are very effec-
tive in removing data and have been successfully used in
applications such as speech recognition [3, 5] and picture
identification [5–7]. CNN’s can effectively leverage the
invariance inherent in spectrograms for convolutional and
pooling operations [8].

The purpose of this article is to analyze deep learning
techniques to typical machine learning models trained on
handcrafted features to determine if deeply learned attri-
butes are adequate for gender categorization tasks. Deep
neural networks (DNNs) and convolutional neural networks

are the most accurate classifiers and feature extractors for
speech gender detection, according to experimental data
(CNN) classification. When used for audio categorization,
[9] demonstrated the performance of prominent CNN
architectures like AlexNet, VGG, Inception, and ResNet.
Their method required decomposing the audio time series
using a short-time Fourier transform to generate a
spectrogram utilized to enter the CNN. The issue with many
of these models is that they are huge and have many learn-
able parameters. Therefore, we concentrated on a database
with just a few thousand samples since it seems improbable
that these vast networks could be trained with our sparse
data. Transfer learning is one way to circumvent this. This
is accomplished by employing a pretrained network, freezing
the values of most levels, and retraining just the last few
layers using our audio data for training. This is one of the
directions we took with this job. The performance achieved
by fine-tuning various pretrained CNNs (ResNet 34 and
ResNet50 on ImageNet) is optimal for our gender audio cat-
egorization issues.

The following are the significant contributions made to
the community:

(1) Presented the study of impacts of a set of hand-
crafted voice qualities as possible appropriate fea-
tures for gender classification algorithms

(2) The work contributes to our understanding of the
extent to which picking voice signal features aided
in the development of machine learning models

(3) Compared the performance of various classical
machine learning models and DNN trained on
handcrafted voice features

(4) Performance study of fine-tuning the pretrained
ResNet34 and ResNet50 on audio spectrograms.
The purpose of this study was to determine whether
spectrograms give sufficient detail for accurate gen-
der audio classification

(5) Presented the research on the effectiveness of speech
classifiers on various corpus datasets
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Figure 1: Statistics of voice samples in different genders.
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The rest of the paper is organized as follows: Section 2
describes the previous works in the domain; Section 3 details
about the methodology, which consists of dataset, prepro-
cessing techniques, feature extraction, model architecture,
and evaluation metrics; Section 4 describes the results and
Section 5 with discussion; and Section 6 with conclusions
followed by a list of relevant references.

2. Literature Review

Numerous studies have been undertaken to determine the
effectiveness of voice classifiers to increase the precision of
programs being used. [10] recognized the speaker’s gender
on the TIDIGITS database with an accuracy rate of 98.65%
using two-level classifiers (pitch frequency and GMM classi-
fier). [11] analyzed voices from the Ivie corpus using four
classifiers: GMM, multilayer perceptron (MLP), vector
quantization (VQ), and learning vector quantization
(LVQ). They had a reliability percentage of 96.4%. [12] inte-
grated the acoustic voice levels determined by five distinct
approaches into a single score level. The findings were
attained using the gender dataset with an 81.7% success rate
for the gender category. [13] developed a method to recog-
nize speakers cantered on a fusion score of seven subsystems
employing the MFCC, PLP, and prosodic feature vectors on

three distinct classifiers: GMM, SVM, and GMM-SV-based
SVM. The categorization rate of success for gender identifi-
cation is 90.4% when utilizing the aGender dataset. [14] used
two classifiers to a private dataset to determine gender voice:
SVM and decision tree (DT) using the MFCC feature. The
total accuracy of gender categorization using MFCC-SVM
and MFCC-DT was 93.16% and 91.45%, correspondingly.
[15] developed a method to increase the MFCC features
and then modify the weighting between the DNN tiers.
These enhanced MFCC attributes are assessed using DNN
and I-Vector classifiers, which achieve an overall accuracy
rate of 58.98% and 56.13%, accordingly. [16] examined two
arrangement approaches (DNN and SVM) for robust sound
classifications utilizing single and combination feature vec-
tors. The findings indicated that the DNN strategy outper-
formed the noise approach because of its robustness and
poor sensitivity to sound.

[17] predicted age and gender using deep neural net-
works. Lately, raw waveform processing in speech has
become a trend in the speech field, and it has been shown
that employing raw audio waveforms improves voice recog-
nition effectiveness [18]. When raw audio-based neural net-
works are used, voice activity identification [19] and speaker
verification [20] have also shown considerable performance
gains. [19] attempts to decipher and explain how CNNs
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Figure 2: Waveform for the female voice.
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Figure 3: Waveform for the male voice.
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categorize audio information. CNN’s are learned using both
spectrogram and raw audio inputs, and a layer-wise rele-
vance propagation (LRP) technique is employed to examine
how the systems choose features and make choices. They
demonstrated the distinct patches on the input signal that
strongly connect to each output label. The paper’s findings
show that spectrogram inputs result in greater accuracy than
raw auditory data.

In certain works, they employed gender recognition as a
factor. [1] used speech recordings to build an emotion recog-
nition model. The suggested approach includes an R-CNN
and a gender information block. The suggested approach
improves accuracy by 5.6%, 7.3%, and 1.5% in Mandarin,
English, and German, respectively, compared to existing
highest accuracy algorithms. [21] also illustrates the impor-
tance of gender and linguistic variables in vocal expression
classification. They found that higher energy emotions like
anger, joy, and surprise were easier to discern in male voices
speaking a harsh language like German. Disgust and Fear
were easier to discern in female voices in each language.
They also found that when analyzing emotion across gender
and language, signal amplitude, and energy are critical.

3. Materials and Methods

3.1. Dataset. Familiar Voice is a corpus of speech data [20]
read by users on the Common Voice website (http://voice
.mozilla.org/) based on text from various public domain
sources, including user-submitted blog posts, old books,
movies, and other publicly available speech corpora. Its main

goal is to develop and test automated speech recognition
(ASR) software. There are 8,64,448 MP3 audio files in the
data collection. A .tsv file including the filename, sentence,
accent, age, gender, locale, upvotes, and downvotes was also
included in the dataset. The audio clips were saved using the
same name in the associated.tsv file. The.tsv file was filtered
by deleting any missing attributes in gender, age, and accents
and choosing the rows with column “downvotes” of 0. Fur-
thermore, the gender options were limited to “male” and
“female.” As a result, the total dataset is limited to 3,94,818
rows with labels for and age (from diverse geographic areas,
each with its own linguistic dialects and accents.

We only took a subset of the created dataset for the cur-
rent work. The number of audio files in the female and male
categories was nearly equal to avoid bias (Figure 1). We sep-
arated the .tsv file into two columns for further processing:
filename and gender. There were 6995 male audio files and
5662 female audio files in the filtered audio collection. The
WAV format converted all audio files for frequency spec-
trum analysis [22]. Figures 2 and 3 show the time-domain
representation of the female and male audio waveforms,
respectively. The chromagram of the male and female audio
categories is depicted in Figures 4 and 5, which shows how
the pitches for twelve different pitch classes change between
the gender groups.

4. Feature Extraction

4.1. Fourier Transforms. Audio signals can be complicated
combinations of several sound components. First, it is
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Figure 4: Chromagram for the female voice.
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Figure 6: (a) Original time domain signal. (b) Chromogram. (c) Mel spectrogram. (d) MFC coefficients.
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Figure 7: (a) Spectral contrast. (b) Tonal centroids (Tonnetz).

Table 1: Hyperparameters of the ML models.

Models Hyperparameters

K neighbor classifier K = 3

SVC (kernel = ‘linear’) C = 0:025

Decision tree classifier Max depth = 5

Random forest classifier Max depth = 5, n estimators = 10, max features = 1
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Feature array
Normalisation

FCN (100 nodes)

FCN (200 nodes)

FCN (100 nodes)

FCN (1 node)

ReLU

ReLU

ReLU

Dropout layer (0.5)

Dropout layer (0.5)

Dropout layer (0.5)

Sigmoid

Male/Female

Figure 8: Deep neural network architecture.

Table 2: ResNet 34 and ResNet 50 detailed architecture.

Layer name Output size 34 layers 50 layers

Conv 1 112 × 112 7 × 7, 64, stride 2

Conv 2.x 56 × 56
3 × 3 max pool, stride 2

3 × 3, 64 3 × 3, 64½ � × 3 1 × 1, 64 3 × 3, 64 1 × 1, 256½ � × 3

Conv 3.x 28 × 28 3 × 3,128 3 × 3,128½ � × 4 1 × 1,128 3 × 3,128 1 × 1, 512½ � × 4

Conv 4.x 14 × 14 [3×3,256 3×3,256]×6 1 × 1,256 3 × 3,256 1 × 1, 1024½ � × 6

Conv 5.x 7 × 7 3 × 3,512 3 × 3,512½ � × 3 1 × 1,512 3 × 3,512 1 × 1, 2048½ � × 3

FLOPs 1 × 1 Average pool, 1000-d fc, softmax 3:6 × 109 3:8 × 109

Table 3: The classification performance on the test set for different models.

Features Model Accuracy (%)

MFCC, Mel spectrogram, Chroma STFT, Tonnetz, special contrast

Designed DNN 95.97

MLP 95.81

K neighbor classifier 95.10

Random forest classifier 94.23

SVC RBF kernel 93.92

SVC 91.63

Ada boost classifier 90.13

Decision tree classifier 88.70

Quadratic discriminant analysis 77.33

Gaussian NB 72.27

Table 4: The classification performance of DNN on the test dataset.

Features Accuracy (%) F1 score (%) Precision (%) Recall (%)

MFCC, Mel spectrogram, Chroma STFT, Tonnetz, special contrast 95.97 95.91 96.03 95.82
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decomposed into building components that can be proc-
essed more efficiently to understand a signal better. When
these building blocks are exponential functions, the proce-
dure is known as Fourier analysis. The Fourier transform
[23] converts a time-dependent signal to a frequency-
dependent role, revealing the original signal’s frequency
spectrum. The Fourier transform gives the signal’s frequen-
cies as well as their magnitudes. The inverse Fourier trans-
form converts the frequency-domain representation of a
given signal into the original signal.

4.2. Fast Fourier Transform (FFT). The fast Fourier trans-
form (FFT) is a mathematical procedure frequently used to
estimate the discrete Fourier transform of any sequence
(DFT). We have a series of amplitudes sampled from a con-
tinuous audio stream in this scenario. Using the FFT tech-
nique, each frame of those N samples is converted from a
time-domain discrete signal to a frequency-domain signal
[24]. The FFT is considered an effective computing imple-
mentation of the DFT method, which is specified on a set
of N samples fxng as follows:

Xk = 〠
N−1

n=0
xne

− j2πkn
Nð Þ k = 0, 1, 2,⋯,N − 1: ð1Þ

4.3. Chroma-STFT (Short-Time Fourier Transform). An
octave is defined as the distance of 12 pitches in our scale.
Tone height and Chroma are two components of a pitch.
The tone height is the octave number, and the Chroma is

the pitch spelling. A pitch class is the collection of all pitches
with the same Chroma. We combine all spectral information
for one pitch class with Chroma features into a single coeffi-
cient. The Chroma value of audio is essentially a representa-
tion of the intensity of the twelve unique pitch classes
(semitones or Chroma) used in music analysis. They can
be used to distinguish between audio signal’s pitch class pro-
files. Chroma STFT, as illustrated in Figure 6(b), generates a
chromagram from a waveform or power spectrogram. It
computed Chroma features via a short-term Fourier trans-
formation. STFT encodes information about the pitch and
signal structure classification. It depicts the spike with high
values (as indicated by the graph’s color bar) in low values
(dark regions).

4.4. Mel Spectrogram. A spectrogram is a visual representa-
tion of a signal’s frequency spectrum. The Mel scale [25] is
a mathematical representation of how the human ear works,
demonstrating that people do not perceive frequencies on a
linear scale. Humans are more sensitive to differences at
lower frequencies than at higher frequencies. In mathemati-
cal terms, the Mel scale is the outcome of a nonlinear
transformation of the frequency scale [26]. The term “Mel-
frequency scale” refers to a scale that is defined as

mel = 2595 ∗ log10
1 + fð Þ
700

� �
, ð2Þ

where f is the signal values in hertz. mel is the signal
values in the Mel scale.

The term “Mel spectrogram” refers to a spectrogram that
has been converted to the Mel scale. For example, Mel spec-
trogram returns a power spectrogram coefficient that has
been Mel scaled. Mel spectrogram object is shown in
Figure 6(c).
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Figure 9: Accuracy and loss graphs for DNN.

Table 5: Comparison of the performance of two ResNet
architectures.

Model Accuracy F1 score Recall Precision

ResNet34 97.94 98.18 98.32 98.04

ResNet50 98.57 98.74 99.02 98.47
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4.5. MFCC. MFCC accurately portrays the vocal tract, a fil-
tered shape of a human voice, and a short-time power
spectrum envelope. MFCC is nothing but the coefficients
that make up the Mel-frequency cepstrum) as shown in
Figure 6(d). Generally, the first 13 coefficients of MFCC
(the lower dimensions) are considered features because they
reflect the spectral envelope. And the higher dimensions that
have been deleted express the spectral subtleties. For distinct
phonemes, envelopes are sufficient to convey the distinction,
allowing us to distinguish phonemes using MFCC. It is a sig-
nificant feature in various study fields that utilize audio sig-
nals [27].

4.6. Spectral Contrast. The spectral contrast of an audio sig-
nal is the energy of frequency at each timestamp. It is not
easy to measure energy as most audio files contain a chang-
ing frequency. However, spectrum contrast helps to measure
energy fluctuation. Spectral contrast is estimated based on
[28], where it considers the spectral peak, the spectral valley,
and the difference in frequency between each subband. The
spectral contrast is depicted in Figure 7(a), which uses the re-
lative spectral distribution rather than the average spectral
envelope to represent it. High contrast signals are clear and
narrow-band, while low contrast signals are broad-band
noise.

4.7. Tonnetz Features. Tonnetz computes tonal centroid
information from musical audio streams. It followed the
methodology by [10]. Figure 7(b) shows Tonnetz centroids.

4.8. Model Development

4.8.1. Traditional Machine Learning. The traditional
machine learning model’s hyperparameters are specified in
Table 1.

4.8.2. Deep Neural Network (DNN). Five layers form the
planned neural network (Figure 8). The retrieved feature
vector had a length of 192. Before feeding the whole
feature vector into the neural network design, it was normal-

ized. The label vector was binary because our objective was
to categorize the audio stream into male or female. The first
fully connected layer (FCN) is configured to accept a 192-
dimensional feature vector. The nonlinear ReLU function
was used as an activation, followed by a dropout layer. Drop-
out is a strategy for preventing overfitting in deep neural
networks [29], and we provided a dropout rate of 0.5 while
designing the network. The design of the second and third
hidden levels was identical. The output layer is composed
of a single node, and the activation function was Sigmoid
due to its superior performance in binary classification.

4.9. Residual Network (ResNet). ResNet [7] is an exceptional
architecture composed of residual layers. Additionally,
ResNet is unique in that it uses global average pooling layers
at the network’s end rather than the more conventional set
of fully connected layers. These architectural advancements
result in a model that is eight times more detailed than
VGGNet while remaining significantly smaller. This study
examines ResNet30 (a 34-layer residual network) and
ResNet50 (54-layer residual network) (Table 2). Both CNN’s
utilized spectrograms created from the audio wave file as
input.

4.10. Training. The test and validation datasets together
make up 10% of the total data. The DNN architecture is built
using the Keras framework, supported by TensorFlow and
written in Python. For the ResNet34 and ResNet 50 network
training, we used the FAST AI library built on top of
PyTorch. All other processing and analysis were performed
on the DNN and ResnNets using NumPy, OpenCV, Scikit-
learn, and other open-source tools. The training was
conducted on a 32GB NVIDIA Quadro P1000 GPU. The
movement began with a 0.001 learning rate. We used the
Adam algorithm as an optimizer [30]. The training could
last up to 50 epochs with a batch size of 64. However, if
the validation loss does not decrease continuously over a
long period, early stopping will occur. It is applied to the test
dataset to validate the trained model’s performance.
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Figure 10: Loss graphs: (a) ResNet34 and (b) ResNet50.
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4.11. Performance Evaluation. The scikit-learn handles the
performance evaluation part. They employ metrics based
on the “Confusion Matrix” to assess the binary classification
model’s performance. Some of the important values that
contribute to the performance evaluation were as follows:

(i) False positive (FP): when data is negative yet the
model predicts positive

(ii) False negative (FN): positive data predicted by a
model as negative

(iii) True positive (TP): when both the data and the
model anticipate positive

These values were evaluated considering the problem as
a binary classification problem: 0 (negative) and 1 (positive).
Here, we considered the ‘male’ category as positive and
‘female’ category as negative.

The model performance metrics like accuracy (Equation
(3)), recall (Equation (4)), precision (Equation (5)), and F1
score (Equation (6)) were derived from the TP, FP, and FN
values.

Accuracy = TP + TN
TP + TN + FP + FN

, ð3Þ

Recall = TP
TP + FN

, ð4Þ

Precision =
TP

TP + FP
, ð5Þ
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Figure 11: (a) Validation accuracy. (b) Error rate of Resnet34 and ResNet50.
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Figure 12: Classification accuracy of female and male classes for different models on the Mozilla dataset.

Table 6: Comparison of the performance of developed ResNet50
on SVD and RAVDESS datasets.

Dataset Accuracy F1 score Recall Precision

SVD 72.74 77.79 95.48 65.63

RAVDESS 91.5 90.89 97.91 84.81
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F1 score =
2 ∗ Precision ∗ Recall
Precision + Recall

: ð6Þ

5. Results

The research goal was to design a system that could accu-
rately identify a person’s gender using their voice. A set of
experiments were conducted in order to determine the most
appropriate classifier for gender classification. Choosing a
classifier for the gender detection problem in multimedia
applications is based on identifying genders in data. Other
aspects, like the amount of time required for training and
classification, can also impact the decision, especially given
a large amount of data to be analyzed. We also aimed at
identifying whether all the handcrafted features are neces-
sary to develop a highly accurate model. For this reason,
we conducted many sets of contrast tests to see whether deep
features recovered by CNN or traditional handmade features
performed better on the gender dataset. The amounts of
speech samples allotted to male and female classes were pur-
posefully kept equal in the dataset.

5.1. Classification Based on Manually Extracted Features. A
total of 12 chromatograms, 128 Mel spectrograms, 40
MFCCs, and 12 special contrast and Tonnetz features were
retrieved from the Mozilla Voice dataset. Afterward, we used
the retrieved features to train machine learning algorithms.
Additionally, we designed a DNN suitable for classifying
the genders from the extracted features of audio data. The

test accuracy is observed and analyzed for these trained
models. The experimental results are summarized in
Table 3. The DNN shows the best accuracy out of all the
models trained. Table 4 provides a detailed performance
analysis of the DNN on the test dataset. The accuracy and
loss plots are also shown in Figure 9.

5.2. Classification Using CNN Models. We have carried out
another experiment to observe the effectiveness of the pre-
trained CNN models. The models were trained on spectro-
gram images other than handcrafted features from the
audio dataset. ResNet34 and ResNet50 models are initialized
with pretrained weights and fine-tuned on features extracted
from the spectrograms of each audio file. The ImageNet pre-
trained models were trained for 50 epochs. The learning rate
was 0.001. These two comparatively complex models are of
larger size, and the training time for every epoch is much
longer. Table 5 displayed the performance of the two models
based on the precision, recall, F1 score, and accuracy. The
transfer learning performs better than the DNN in terms
of all performance metrics. This confirmed our expectation
that the lower level features learned by the convolution
layers from image data can also be applied to the audio data.

Figure 10 shows the train and validation loss graphs of
ResNet34 and ResNet 50 models. The more convergence is
visible in the ResNet50. Figure 11 also shows the comparison
of validation accuracy and error rate for these two models.
The results demonstrate that the pretrained ResNet50 out-
performs ResNet34. The effectiveness of each gender identi-
fication is shown in Figure 12. Male and female prediction
scores are almost similar.

The study on the features suggests that the even MEL
spectrogram images contain discriminating information for
the gender classification. Even though the ResNet50 model
is complex and took more training time, it shows impressive
increment in the accuracy compared to other models trained
on handcrafted features. Overall the architecture with more
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Figure 13: The class wise accuracy of the ResNet 50 on SVD and RAVDESS datasets.

Table 7: Comparison of performance of the proposed model with
the other works.

Work Accuracy (%) Recall (%) Precision (%) F1 score (%)

[42] 94.32

[41] 96.4 96.4 96.4 96.4

[43] 97.8

Ours 98.57 99.02 98.47 98.74
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convolutional layers obtained better results than all the
handcrafted approaches in the given dataset.

5.3. Performance on Other Datasets. Based on the results of
the aforementioned experiments, it is clear that ResNet50
is the most appropriate model for gender categorization on
the Mozilla dataset. Although the model should be capable
of performing well on test samples drawn from the same
parent dataset that was used for training, it should also be
capable of performing well on additional datasets gathered
in a variety of contexts. For this reason, we conducted per-
formance study on two separate datasets; Saarbruecken
Voice Database (SVD) [31] and Ryerson Audio-Visual
Database of Emotional Speech and Song (RAVDESS) [32].
We conducted a performance analysis on these two different
datasets in order to better understand the generalization
potential of the ResNet50 model that we constructed. The
findings of the experiment are depicted in Table 6 and
Figure 13.

6. Discussion

Paralinguistic analysis, which includes tasks such as age and
gender detection, is a rapidly increasing research topic.
Speech is a time-varying signal generated by the vocal tract,
and the form of the vocal tracts varies significantly between
males and females. Thus, automatic gender identification
using voice has a broad range of applications. The age and
gender of the speaker may be used by the interactive voice
response system (IVR) to refer the speaker to an appropriate
consultant [33] or to play background music suited for the
speaker’s gender/age group [34]. The variance in pitch
across genders is relatively large, making it difficult to cate-
gorize the voice into different classes (e.g., emotions and
pathologies) [1]. Hence, when used in conjunction with
speaker identification, precise gender classification consider-
ably lowers uncertainty in such classification. By narrowing
the search space to a class of a particular gender, the classi-
fication algorithm will become increasingly accurate and
reduce the mutual influence of each other. Compared to
gender-neutral systems, automatic speech recognition
(ASR) systems using gender-specific models get more excel-
lent recognition rates [35].

We chose the Common Voice corpus for multilingual
speech research for a variety of reasons, not the least of
which being its immense size. We predicted that the results
from this dataset would be more applicable to a wide variety
of real-world applications, as it comprises a greater variety of
languages and the amount of data per language varies from
extremely tiny to relatively large [20].

The first set of classification studies concerns the classifi-
cation of two gender audio classes using extracted features.
As [36] shown, we used five frequency domain features to
compare the performance of classical machine learning
and the newly designed DNN model. The findings indicated
that the proposed DNN achieved the highest accuracy
(Table 3) and that the model converges to an optimal weight
value for the gender classification problem (Figure 9).

In the second set of experiments, we trained CNNs using
voice spectrograms since the human ear similarly perceives
sounds in terms of varying frequencies across time [37].
Additionally, a two-dimensional representation of the
speech signal serves as an appropriate input for CNNmodels
for speech analysis [38]. This experiment is aimed at deter-
mining whether the deep learning method is appropriate
for gender classification. If CNN effectively identifies the
gender classes, we can bypass the bottleneck associated with
manual feature extraction. According to Table 3, the pre-
trained ResNet50 exhibits the highest accuracy, F1 score,
recall, and precision. Additionally, the study implies that
pretrained knowledge is crucial in the network’s first stages.
This is because pretrained models treat spectrograms identi-
cally to images. Also, the network’s fully connected layers
suffer the most change, as they are task-specific [39].

When standard speech features are compared to the
deep feature extracted in this study, the latter performs
nearly 2% better at gender recognition than the former. As
a result, the deep feature extracted in this study is more
appropriate for gender representation than the manually
extracted features. Additionally, when the number of layers
is large, the recognition accuracy is high (Table 3). However,
as the number of layers increases, the amount of calculation
increases slightly and the duration of classification recogni-
tion increases [40]. As a result, we need a trade-off between
accuracy and model size. Because the primary objective of
this project is accuracy, ResNet50 clearly outperforms other
custom and traditional models. However, if we are training
models or implementing them on resource-constrained plat-
forms with a tolerance for accuracy loss, our model choices
may be different.

6.1. Comparative Analysis. There were numerous attempts
on the Mozilla Common Voice dataset to classify gender.
The audio samples were transformed into 20 statistical fea-
tures by [41]. They trained some machine learning models
and discovered that CatBoost outperforms all other predic-
tive models with a test accuracy of 96.4%. [42] used a neural
network to test the efficiency of the MFCC and Mel spectro-
grams. They discovered that using a combination of MFCC
and Mel spectrograms, the proposed model yielded
94.32%. Following up on their previous work, the same
authors [43] propose a 1-D convolutional neural network
(CNN) model to recognize gender using several features
taken from speech signals such as MFCC, Mel spectrogram,
and Chroma. By merging the MFCC, Mel, and Chroma fea-
ture sets, the 1-D CNN model achieved a higher accuracy of
97.8%. However, our proposed model surpasses these earlier
investigations (Table 7).

7. Conclusions

Recognizing the gender of the human Voice has been
regarded as a difficult task due to its importance in various
applications. For this study, we used Mozilla’s “Common
Voice” database, an open-source, multilanguage collection
of voices with information about the speaker’s gender. This
article examines gender detection from Voice using various
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machine learning methods. The study discovered that fine-
tuning simple pretrained ImageNet models trained on audio
spectrograms result in state-of-the-art performance on the
MOZILLA dataset, as well as acceptable performance on
the SVD and RAVDESS datasets. We see that pretrained
models retain much of their past knowledge, particularly in
the early layers during fine-tuning. Only the network’s inter-
mediate layers are significantly altered to adapt the model to
the audio categorization challenge. Additionally, we discov-
ered that CNN models learnt deep features from energy dis-
tributions in spectrograms outperformed handmade feature
extraction methods. Gender discrimination results are also
rather good, with an accuracy of 98.57%, which is close to
the best documented in the literature.

Data Availability

The dataset used in this study is available at https://
commonvoice.mozilla.org/en/datasets
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