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Speaker Identification Based on the Use
of Robust Cepstral Features Obtained

from Pole-Zero Transfer Functions
Mihailo S. Zilovic, Ravi P. Ramachandran, Member, IEEE, and Richard J. Mammone, Senior Member, IEEE

Abstract—A common problem in speaker identification systems
is that a mismatch in the training and testing conditions sacrifices
much performance. We attempt to alleviate this problem by
proposing new features that show less variation when speech
is corrupted by convolutional noise (channel) and/or additive
noise. The conventional feature used is the linear predictive
(LP) cepstrum that is derived from an all-pole transfer function
which, in turn, achieves a good approximation to the spectral
envelope of the speech. Recently, a new cepstral feature based
on a pole-zero function (called the adaptive component weighted
or ACW cepstrum) was introduced. We propose four additional
new cepstral features based on pole-zero transfer functions. One
is an alternative way of doing adaptive component weighting
and is called the ACW2 cepstrum. Two others (known as the
PFL1 cepstrum and the PFL2 cepstrum) are based on a pole-zero
postfilter used in speech enhancement. Finally, an autoregressive
moving-average (ARMA) analysis of speech results in a pole-zero
transfer function describing the spectral envelope. The cepstrum
of this transfer function is the feature. Experiments involving a
closed set, text-independent and vector quantizer based speaker
identification system are done to compare the various features.
The TIMIT and King databases are used. The ACW and PFL1
features are the preferred features, since they do as well or
better than the LP cepstrum for all the test conditions. The
corresponding spectra show a clear emphasis of the formants
and no spectral tilt. To enhance robustness, it is important to
emphasize the formants. An accurate description of the spectral
envelope is not required.

Index Terms— Cepstrum, channel, linear prediction, noise,
pole-zero transfer function, speaker identification.

I. INTRODUCTION

S
PEAKER recognition is the task of identifying a speaker

by his or her voice. Systems performing speaker recog-

nition operate in different modes. A closed set mode is the

situation of identifying a particular speaker as one in a finite

set of reference speakers [1]. In an open set system, a speaker

is either identified as belonging to a finite set or is deemed

not to be a member of the set [1]. For speaker verification, the

claim of a speaker to be one in a finite set is either accepted
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or rejected [2]. Speaker recognition can either be done as a

text-dependent or text-independent task. The difference is that

in the former case, the speaker is constrained as to what must

be said while in the latter case, no constraints are imposed.

The overall system that we consider will have three com-

ponents:

1) linear predictive (LP) analysis for parameterizing the

spectral envelope;

2) feature extraction for ensuring speaker discrimination;

3) classifier for making a decision.

The input to the system will be a speech signal pos-

sibly corrupted by noise and possibly influenced by other

environmental conditions (like channel effects). The output

will be a decision regarding the identity of the speaker. A

robust system performs the recognition task successfully even

when the speech is corrupted by noise and/or communication

channel effects. The ideal situation is to achieve a high

performance in terms of recognition accuracy given any type

of speech material. The concentration of the work will be on

the development of robust LP derived features in a closed

set, text-independent mode. Note that existing methods will

be used for the first and third components of the system.

After LP analysis of speech [3] is carried out, various

equivalent representations of the LP parameters exist. A com-

parison of these parameters in terms of speaker recognition

accuracy revealed that the LP cepstrum is the best when

training and testing is done on clean speech [4]. The problem

with the LP cepstrum is that a mismatch in training and testing

conditions sacrifices much performance, thereby diminishing

the robustness. The LP cepstrum is derived from an all-pole

transfer function that describes the spectral envelope of the

speech. This in particular gives information about the formants

that is crucial for speaker recognition to be successful. Our

attempt in finding more robust features is to first transform

the all-pole transfer function derived from LP analysis into

a pole-zero transfer function that gives more emphasis to

the formants. The cepstrum of the pole-zero transfer function

is the feature. Various new approaches that convert an all-

pole function into a pole-zero function are formulated and

compared. The question of why a two-step route that goes from

the speech to a pole-zero transfer function emerges. We also

consider a pole-zero model obtained by a direct autoregressive

moving average (ARMA) analysis of the speech as the first

component of the system. However, as revealed later, the

performance obtained by an ARMA approach is inferior to

1063–6676/98$10.00  1998 IEEE
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that of using a pole-zero transfer function derived after LP

analysis.

II. PARAMETERIZATION OF SPECTRAL ENVELOPE

The first component of the system transforms the speech

signal into a compact representation of its spectral envelope.

A linear predictive (LP) analysis [3] is used for this purpose.

An LP analysis of a speech signal, based on the model that a

speech sample is a weighted linear combination of previous

samples, results in a set of weights . The fundamental

equation governing this model is

(1)

where is the speech signal and is the error or

LP residual. These weights correspond to the direct form

coefficients of a nonrecursive filter

(2)

where for represent the zeros of . Passing

the speech signal through the filter results in the LP

residual that is free of near-sample redundancies. The

determination of the LP coefficients is usually based on

minimizing the weighted mean squared-error over a seg-

ment of speech consisting of samples. In the minimization

of using the autocorrelation approach [3], the coefficients

are found by solving a system of linear equations. More-

over, is guaranteed to be minimum phase. The magnitude

spectrum of describes the spectral envelope of the

speech. Since is completely specified by its poles ,

the LP analysis is based on an all-pole model.

An ARMA analysis leads to a transfer function

that approximates the spectral envelope. We use Shanks

method [5] to determine the coefficients of and .

In this approach, a minimum phase is first determined

by LP analysis and is equal to . The impulse response

of is , which is truncated to samples as the

segment of speech being analyzed consists of samples. The

error is where is the finite impulse

response of . Upon minimization of the mean-square

error, the coefficients of are found by solving a system

of linear equations. Although is not guaranteed to be

minimum phase, this property can be forced by reflecting the

zeros of outside the unit circle to lie inside. The order of

is determined empirically so as to achieve an acceptable

approximation of the spectral envelope.

III. FEATURE EXTRACTION

The first component either gives an all-pole or pole-zero

transfer function. The feature extractor generally performs a

transformation of the function and then computes the cepstrum

as the feature vector. Suppose a pole-zero transfer function

(a) (d)

(b) (e)

(c) (f)

Fig. 1. Various spectra when speech is corrupted by additive white Gaussian
noise (SNR of 20 dB). Clean speech, solid line; noisy speech, dotted line. (a)
Magnitude response of LP filter. (b) Magnitude response of ACW transfer
function. (c) Magnitude response of ACW2 transfer function. (d) Magnitude
response of postfilter Hpf (z) (� = 1, � = 0:9). (e) magnitude response of
postfilter Hpf (z) (� = 1, � = 0:75). (f) Spectral envelope of postfiltered
speech T (z) (� = 1, � = 0:9).

is given by

(3)

If is minimum phase, the cepstrum can be obtained

either by a computationally efficient recursion based on the

polynomial coefficients or by considering the polynomial roots

and as given [6] by

(4)

for .

The first feature we consider is the conventional LP cep-

strum of the all-pole LP filter . This serves as a

benchmark to which we compare our proposed features. For

the next four features, the all-pole LP transfer function

is transformed into a pole-zero function. It is known that

the mean-square difference between two cepstral vectors is

directly related to the mean-square difference in the magnitude

spectra of the transfer functions from which the cepstral vec-

tors were derived from [6]. The magnitude spectra of

obtained from clean and corrupted speech shows a degree of

dissimilarity even around the formant regions [see Figs. 1(a),

2(a), and 3(a)]. This is manifested as a clear difference in



262 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 6, NO. 3, MAY 1998

(a) (d)

(b) (e)

(c) (f)

Fig. 2. Various spectra when speech is passed through the IRS filter. Clean
speech, solid line; corrupted speech, dotted line. (a) Magnitude response of
LP filter. (b) Magnitude response of ACW transfer function. (c) Magnitude
response of ACW2 transfer function. (d) Magnitude response of postfilter
Hpf (z) (� = 1, � = 0:9). (e) Magnitude response of postfilter Hpf (z)
(� = 1, � = 0:75). (f) Spectral envelope of postfiltered speech T (z) (� = 1,
� = 0:9).

the cepstral vectors which causes a performance degradation.

Our objective is to transform the all-pole transfer function

into a pole-zero transfer function such that the difference in

the magnitude spectra decreases when noise is added to the

speech and/or the speech is passed through a channel. We use

a recently introduced approach [7] for comparison purposes

and formulate three novel approaches.

The existing approach as developed in [7] is to first perform

a partial fraction expansion of to get

(5)

The experiments in [7] reveal that the residues show

considerable variations especially for nonformant poles when

the speech is degraded. Therefore, the variations in were

removed by forcing for every . Hence, the transfer

function is a pole-zero type of the form

(6)

(a) (d)

(b) (e)

(c) (f)

Fig. 3. Various spectra when speech is passed through the CMV filter. Clean
speech, solid line; corrupted speech, dotted line. (a) Magnitude response of
LP filter. (b) Magnitude response of ACW transfer function. (c) Magnitude
response of ACW2 transfer function. (d) Magnitude response of postfilter
Hpf (z) (� = 1, � = 0:9). (e) Magnitude response of postfilter Hpf (z)
(� = 1, � = 0:75). (f) Spectral envelope of postfiltered speech T (z) (� = 1,
� = 0:9).

It has been shown in [8] that is the derivative of

with respect to and hence, the coefficients are easily found

from as for to . The mismatch

in the magnitude spectra of for clean and corrupted

speech is reduced over that of [see Figs. 1(b), 2(b),

and 3(b)]. The numerator polynomial is guaranteed to

be minimum phase [8]. The cepstrum of is used as

the feature vector and can be obtained by an efficient recursion

based on the polynomial coefficients. This method is known as

adaptive component weighting (ACW) and is primarily used

for mitigating channel effects [7].

Our first new approach is an alternative to the ACW

method. From the perspective of system analysis, the LP

filter can be viewed as the cascade connection of

first order filters having a transfer function .

Connecting these first-order sections in parallel results in

the overall pole-zero transfer function for the ACW method

[see (6)]. Using a similar reasoning, can be interpreted

as a cascade connection of second-order sections (pairs of

first-order sections). The parallel combination of these

second-order sections gives rise to another overall pole-zero

transfer function. We refer to this as the ACW2 approach.

For the initial cascade connection, the question of which first-

order sections to pair up emerges. We choose to pair up the

first order sections specified by the complex conjugate poles of

. Any remaining real poles are also paired up. Suppose

that among the poles , there are complex poles and

real poles. The complex poles are arranged as , , , ,
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, , where is the complex conjugate of . The

remaining real poles are arranged as , , , , .

In this case, the pole-zero transfer function is given as

(7)

In practice, we have observed that if real poles are present,

there are only two of them for the case when assuming

8 kHz sampled speech. Therefore, the optimal real pole pairing

is not a practical issue. The motivation of pairing up complex

conjugate pairs is based on the fact that the impulse response

of a second-order section specified by a complex conjugate

pole pair is a damped sinusoid. This provides for a more

natural pole-zero model of the speech signal, representing

it as a superposition of amplitude modulated sinusoids. We

conjecture that is minimum phase since no instance of

a nonminimum phase was found in practice. In a real

system, any roots of outside the unit circle should be

reflected inside. Again, the cepstrum of is used as

the feature vector.

The other family of pole-zero transfer functions that we

formulate is based on the concept of a postfilter that was

introduced in [9] to enhance noisy speech. The philosophy

in developing a postfilter relies on the fact that more noise

can be perceptually tolerated in the formant regions (spectral

peaks) than in the spectral valleys. The postfilter is obtained

from and its transfer function is given by

(8)

The spectrum of emphasizes the formant peaks. The

spectral envelope of the postfiltered speech is determined as

the magnitude response of

(9)

If is minimum phase, both and are guar-

anteed to be minimum phase. The cepstrum of both the

pole-zero transfer functions and are used as

the feature vectors. The cepstrum of can be shown

to be equivalent to weighting the LP cepstrum by a factor

. The cepstrum of can be shown to be equivalent

to weighting the LP cepstrum by a factor . Other

different ways of weighting the LP cepstrum (like frequency

weighting, inverse variance weighting and bandpass weight-

ing) have been considered in [10]–[12]. The weightings we

propose have an interpretation in terms of transfer functions.

Also, like the weightings in [10], [11], the lower indexed

cepstral coefficients are deemphasized. We will examine the

effect of these weightings on the spectrum and on the speaker

identification performance.

Fig. 1 shows the magnitude responses of the various transfer

functions for a frame of clean speech and for the same frame of

Fig. 4. Block diagram of VQ based speaker identification system.

speech corrupted by additive white Gaussian noise. The signal

to noise ratio (SNR) is 20 dB. There is a certain mismatch

in the spectra of as mentioned earlier and revealed in

Fig. 1(a). We attempt to alleviate this mismatch by introducing

the various pole-zero transfer functions. As can be seen in

Fig. 1(b) and (c), the mismatch in the magnitude spectrum

for the ACW and ACW2 methods is reduced over that of

. It should be pointed out that the ACW2 spectrum

shows very sharp peak values. Also, the amplitudes of the

valleys are more equal for the ACW spectrum than the ACW2

spectrum. In analyzing the magnitude response of as

shown in Fig. 1(d) and (e), note the similarity between it and

the ACW spectrum. The formant amplitudes are emphasized

without causing any spectral tilt. The response of the postfilter

is sensitive to changes in and . A decrease of causes

formant bandwidth broadening while a change in affects the

spectral tilt. By comparing Fig. 1(d) and (e), it can be seen that

as decreases, the spectral tilt becomes more apparent. The

spectrum of the postfiltered speech [see Fig. 1(f)] shows some

spectral tilt but reflects the spectral envelope of the enhanced

speech, which is desired to be more like that of clean speech.

The formant peaks are amplified and the valleys are depressed.

Fig. 2 shows the magnitude responses of the LP filter and

of the pole-zero transfer functions when speech is passed

through the intermediate reference mask (IRS) channel. A

similar figure (Fig. 3) shows the responses when speech is

passed through the continental mid voice (CMV) channel [13],

[14]. Both the IRS and CMV channels are representative of

telephone channels. Again, it is observed that the pole-zero

transfer functions lower the spectral mismatch over that of the

all-pole LP filter.

IV. VECTOR QUANTIZER CLASSIFIER

A vector quantizer (VQ) classifier [15], [16] is used to

render a decision as to the identity of a speaker. Note that we

are not restricted to this type of classifier for the features we

propose. A VQ classifier is used since it is known to perform

very well and will make our results extremely reliable. The

system is shown in Fig. 4. For each speaker, a training set

of feature vectors is used to design a VQ codebook based on
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the Linde–Buzo–Gray (LBG) algorithm [17]. There will be

codebooks, one pertaining to each of the speakers.

To test the system, a test utterance from one of the

speakers is converted to a set of test feature vectors. Consider

a particular test feature vector. This is quantized by each of the

codebooks. The quantized vector is that which is closest

according to some distance measure to the test feature vector.

We use the squared Euclidean distance as the measure. Hence,

different distances are recorded, one for each codebook.

This process is repeated for every test feature vector. The

distances are accumulated over the entire set of feature vectors.

The codebook that renders the smallest accumulated distance

identifies the speaker. When many utterances are tested, the

success rate is the number of utterances for which the speaker

is identified correctly divided by the total number of utterances

tested.

The VQ codebooks will be trained for one particular con-

dition, namely, for clean speech. Different test conditions

corresponding to clean and corrupted speech will be used to

provide a definitive and quantitative evaluation of robustness.

If a feature is robust, a mismatch between the testing and train-

ing conditions should cause slight degradation in performance

or success rate.

V. EXPERIMENTAL PROTOCOL AND RESULTS

The experimental approach is described below. Prior to any

analysis, the speech is preemphasized by using a nonrecursive

filter . For the LP analysis, the autocorrelation

method [3] is used to get a 12th-order LP polynomial . For

the ARMA analysis using Shanks method [5], the denominator

polynomial is the LP polynomial. A sixth-order numerator

polynomial is then computed. Both types of analyses are

done over frames of 30 ms duration. The overlap between

frames is 20 ms. The all-pole function is converted

into the conventional LP cepstrum of dimension 12. For the

other four features described above, the all-pole function is

first transformed into a pole-zero transfer function. The 12-

dimensional (12-D) cepstrum of the pole-zero function is

the feature vector. Similarly, the pole-zero transfer function

derived from an ARMA analysis is converted into a 12-D

cepstrum, which we denote as the ARMA cepstrum. The

feature vectors are computed only in voiced frames. The

voiced frames are selected based on energy thresholding and

by the presence of at least three LP poles in an annular

region close to the unit circle (formant poles). The latter

concept of considering LP poles for frame selection was

introduced in [7]. The VQ classifier [15], [16] (as described

earlier) is trained using the 12-D feature vectors. A separate

classifier is used for each feature. The distance measure

is the squared Euclidean distance. The codebooks for each

speaker are designed using the LBG algorithm [17]. The

test speech material corresponds to various conditions. The

performance of the features under mismatched training and

testing conditions is a good indicator of robustness. The

performance measure is the speaker identification success rate.

Two data bases are used in the experiments. For the TIMIT

data base that comprises only clean speech, 20 speakers

TABLE I
IDENTIFICATION SUCCESS RATE AS A PERCENT FOR CLEAN

SPEECH (TIMIT DATA BASE). THE THREE SUCCESS RATES

CORRESPOND TO CODEBOOK SIZES OF 16, 32, AND 64

from the New England dialect are considered. The speech

is downsampled from 16 to 8 kHz. For each speaker, there

are ten sentences. The first five are used for training the VQ

classifier. Therefore, the classifier is trained on clean speech

only. The remaining five sentences are individually used for

testing. One of the test conditions corresponds to clean speech

for which there are 100 test utterances over which the speaker

identification success rate is computed. Various other test

conditions are simulated by adding different types of noise

and passing the speech through different channels. For each

channel test condition, there are again 100 test utterances. For

each of the noise conditions, the ability to use different seeds

to generate random noise permits 300 trials.

The King data base consisting of 26 San Diego and 25

Nutley speakers is also used. The speech is recorded over

long distance telephone lines and sampled at 8 kHz. There are

ten recording sessions, each having one utterance per speaker.

The data is divided such that there is a big mismatch in the

conditions between sessions 1 to 5 and sessions 6 to 10. This

mismatch is due to a change in the recording equipment, which

translates to a significantly changed environment [18]–[20].

Training is done on session 1. Testing “within the great divide”

corresponds to the utterances in sessions 2 to 5 in which there

is some mismatch with session 1. Testing “across the great

divide” corresponds to the utterances in sessions 6 to 10, which

in turn provide a big mismatch. Additional results are obtained

as follows. Training is done on session 2 while the remaining

nine sessions are used for testing. For the experiments, the

total number of test utterances “within the great divide” is

208 for the San Diego portion and 200 for the Nutley portion.

The total number of test utterances “across the great divide” is

260 for the San Diego portion and 250 for the Nutley portion.

A. Testing on Clean Speech

The first experiment involves the testing of clean speech,

which is performed by using the TIMIT data base. Table I

shows the results. The performance does not always mono-

tonically increase as the codebook size gets bigger. Therefore,

merely using a large codebook size does not benefit in terms

of performance and imposes a cost in terms of memory and

search complexity. In the limit as the codebook size equals

the number of vectors in the training set, a nearest neighbor

classifier is obtained. Experiments have shown that the nearest

neighbor classifier is inferior to the VQ technique using modest

size codebooks [21]. This is because overlearning of the

training data has taken place. For a codebook size of 32 (which

is practically very feasible), the cepstrum and the ACW2
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TABLE II
IDENTIFICATION SUCCESS RATE AS A PERCENT FOR SPEECH DEGRADED BY

ADDITIVE WHITE GAUSSIAN NOISE (TIMIT DATA BASE). THE THREE

SUCCESS RATES CORRESPOND TO CODEBOOK SIZES OF 16, 32, AND 64

TABLE III
IDENTIFICATION SUCCESS RATE AS A PERCENT FOR SPEECH DEGRADED BY

COLORED NOISE (TIMIT DATA BASE). THE THREE SUCCESS

RATES CORRESPOND TO CODEBOOK SIZES OF 16, 32, AND 64

features show the best performance. However, the difference

in performance among all the features (except the ARMA

cepstrum) is very slight. The ARMA cepstrum definitely shows

a much lower performance.

B. Testing on Noisy Speech

In this experiment, the test speech is degraded by different

types of noise. First, consider additive white Gaussian noise

(AWGN). Table II shows the results for various SNR values.

As the SNR decreases, the mismatch between the training and

test conditions becomes more glaring and the performance

for all the features decreases. When the SNR is 30 dB, the

ARMA cepstrum clearly shows the worst performance. The

performance of the various other features is about the same

with the ACW2 having a slight edge. For the lower SNR

values, the disparity between the performance of the ARMA

cepstrum and of the other features becomes less. The PFL1

features is the best for an SNR of 20 dB.

The test speech is now corrupted by colored noise that is

generated by passing white Gaussian noise through a recursive

linear predictive filter computed from a frame of speech

corresponding to a sustained vowel. Table III shows the results

for various SNR values. Due to the inferior performance of the

ARMA cepstrum for clean speech and white noise, we do not

find it necessary to consider it for the colored noise condition.

Again, as the SNR decreases, the performance for all the

features decreases. For an SNR of 30 dB, the performance

of all the features is similar. For the lower SNR values, the

PFL2 feature is the best particularly for a codebook size of 64.

Consider the case when the test speech is corrupted by

babble noise. Table IV shows the results for various SNR

values. Again, the ARMA cepstrum is not considered. For

SNR values of 30 dB and 20 dB, all the features show a

similar performance. When the SNR is 10 dB, the ACW

and PFL1 features are the best for a small codebook size

TABLE IV
IDENTIFICATION SUCCESS RATE AS A PERCENT FOR SPEECH DEGRADED

BY BABBLE NOISE (TIMIT DATA BASE). THE THREE SUCCESS

RATES CORRESPOND TO CODEBOOK SIZES OF 16, 32, AND 64

TABLE V
IDENTIFICATION SUCCESS RATE AS A PERCENT FOR SPEECH INFLUENCED BY

DIFFERENT CHANNELS (TIMIT DATA BASE). THE THREE SUCCESS

RATES CORRESPOND TO CODEBOOK SIZES OF 16, 32, AND 64

of 16. When the codebook size is 32, the PFL1 is the best

feature. An increase in the codebook size to 64 shows a nearly

equivalent performance among the ACW, ACW2, PFL1, and

PFL2 features. The PFL1 is the generally preferred feature.

For speech degraded by any type of noise (that we consider)

at a relatively high SNR of 30 dB, the features show a

similar performance. As the SNR decreases, differences in

performance among the features begin to emerge. The new fea-

tures do as well or better than the conventional LP cepstrum.

However, the best feature depends on the type of noise.

C. Testing on Speech Subjected to Channel Effects

In this section, we present the results for test speech

subjected to different types of channel effects. When clean

speech is influenced by a channel, an additive component

manifests itself on the cepstrum of the clean speech. It has

been shown that removing the mean of the cepstrum attempts

to deemphasize this additive cepstral component and improves

performance [4]. Since all the features we consider are cepstral

type features, we show the results when mean removal is done.

For the LP cepstrum, a better method of mean removal known

as pole filtered mean removal has been recently proposed [22].

Note that we do not consider pole filtered mean removal in

this paper.

For the TIMIT data base, the test speech is obtained

by passing each utterance through three types of channels,

namely, 1) the intermediate reference mask (IRS) channel, 2)

the continental mid voice (CMV) channel [13], [14], and 3)

the continental poor voice (CPV) channel [13], [14]. All three

are representative of telephone channels. Table V depicts the

results. The cepstral features based on the pole-zero transfer

functions are almost always better than the conventional

LP cepstrum. The improvement over the conventional LP

cepstrum depends on the type of channel. For the CPV

channel, the PFL1 feature is better than the LP cepstrum by a

factor of at least 12% depending on the codebook size.
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TABLE VI
IDENTIFICATION SUCCESS RATE AS A PERCENT FOR THE SAN DIEGO

PORTION OF THE KING DATA BASE. THE THREE SUCCESS

RATES CORRESPOND TO CODEBOOK SIZES OF 16, 32, AND 64

Tables VI and VII depict the results for the San Diego and

Nutley portions of the King data base, respectively. We first

discuss the results in Table VI for the San Diego portion and

relate them to two issues, namely, mean removal and frame

selection based on LP poles. Energy thresholding is always

performed. First, consider testing “within the great divide.”

Due to the relatively lower mismatch between the training

and testing conditions, all of the features show a similar

performance. However, the ACW and PFL1 features depict

a slightly better performance. When frame selection based on

LP poles is done, mean removal improves performance by

14% to 18% for all the features. An experiment was done

to compare the performance of the conventional LP cepstrum

with and without frame selection based on LP poles. When

no mean removal is done, the improvement due to frame

selection is 3% to 4% depending on the codebook size. With

mean removal, the improvement due to frame selection is 3%

to 8%. Frame selection does enhance robustness. In [7], a

baseline performance (LP cepstrum without frame selection)

was compared to the ACW feature in which frame selection

was done. If we do the same comparison of the baseline

performance with the features based on pole-zero transfer

functions, a more glaring disparity is seen particularly with

mean removal. Now, consider testing “across the great divide.”

For codebook sizes of 16 and 32, the ACW, PFL1, and

PFL2 features are better than the LP cepstrum. Moreover, the

PFL1 is clearly the best and the ACW is the second best.

The superiority of the ACW and PFL1 features is maintained

for a codebook size of 64. When frame selection is done,

mean removal improves performance by 23 to 45% for all

the features. With mean removal and no frame selection, the

performance of the LP cepstrum is between 9% to 14% less

than with frame selection. This again shows the enhancement

of robustness due to frame selection. As in [7], a comparison of

the LP cepstrum without frame selection to the other features

with frame selection reveals a more glaring difference. Finally,

note that we try to emulate a more practical scenario by using

less training data than what is used in [18].

Now, consider the results in Table VII for the Nutley portion

of the King data base. The identification success rates are

consistently lower than for the San Diego portion since the

Nutley portion is more noisy [18]–[20]. This disparity in the

results for the two portions has also been recorded in [18]–[20].

The ACW and PFL1 features depict the best performance

for both “within” and “across the great divide.” When frame

selection based on LP poles is done, mean removal improves

performance by 3% to 9% for all the features.

TABLE VII
IDENTIFICATION SUCCESS RATE AS A PERCENT FOR THE NUTLEY

PORTION OF THE KING DATA BASE. THE THREE SUCCESS

RATES CORRESPOND TO CODEBOOK SIZES OF 16, 32, AND 64

VI. SUMMARY AND CONCLUSIONS

In this paper, various new cepstral features based on pole-

zero transfer functions are examined with respect to robustness

to noise and channel effects. The benchmark is the conven-

tional LP cepstrum based on the all-pole LP transfer function.

This all-pole function is converted in different ways into pole-

zero transfer functions from which the cepstral feature is

obtained. Two of the pole-zero functions, namely, the ACW

and ACW2 are based on a partial fraction expansion of the LP

all-pole function. A subsequent normalization of the residues

is the key to enhancing robustness. The ACW spectrum

emphasizes the formants. Another two pole-zero functions

(PFL1 and PFL2) are based on the concept of a postfilter

which was initially configured for speech enhancement. The

PFL1 and PFL2 cepstra are equivalent to applying a weight to

the conventional LP cepstrum. Like the ACW spectrum, the

PFL1 spectrum emphasizes the formants. Another method of

getting a pole-zero transfer function is to consider an ARMA

analysis of speech.

Experiments are conducted using both the TIMIT and

King data bases. A vector quantizer classifier is used. The

performance under mismatched training and testing conditions

is a good measure of robustness. There is some variation in

the relative robustness of the features for different conditions.

However, the ACW, PFL1, and PFL2 cepstrum perform as

well as or better than the LP cepstrum for all the test

conditions. For specific cases, the ACW and PFL1 cepstrum

is clearly better than the LP cepstrum. These cases are:

1) speech corrupted by additive white Gaussian noise (SNR

of 20 dB) with a codebook size of 16;

2) speech corrupted by babble noise (SNR of 10 dB) with

a codebook size of 16;

3) speech influenced by the CPV channel;

4) when testing is done “across the great divide” for the

San Diego portion of King (codebook sizes of 32 and

64);

5) for the Nutley portion of the King data base.

In view of this, the ACW cepstrum and the PFL1 cepstrum

are the preferred features. Note that both the ACW spectrum

and the PFL1 spectrum show similar characteristics in that

the formants are emphasized and there is no spectral tilt. This

implies that for robust speaker identification, the formants are

extremely important. Moreover, an accurate representation of

the entire spectral envelope either by LP analysis or by ARMA

analysis is not the best way of providing robustness. The

overall spectral envelope changes when speech is corrupted by



ZILOVIC et al.: SPEAKER IDENTIFICATION BASED ON THE USE OF ROBUST CEPSTRAL FEATURES 267

a channel and/or noise. However, the formants by themselves

are more intact.
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