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We attempt to combine neural networks with knowledge from 
speech science to build a speaker independent speech recogni­
tion system. This knowledge is utilized in designing the 
preprocessing, input coding, output coding, output supervision 
and architectural constraints. To handle the temporal aspect 
of speech we combine delays, copies of activations of hidden 
and output units at the input level, and Back-Propagation for 
Sequences (BPS), a learning algorithm for networks with local 
self-loops. This strategy is demonstrated in several experi­
ments, in particular a nasal discrimination task for which the 
application of a speech theory hypothesis dramatically im­
proved generalization. 

1 INTRODUCTION 

The strategy put forward in this research effort is to combine the flexibility 
and learning abilities of neural networks with as much knowledge from speech 
science as possible in order to build a speaker independent automatic speech 
recognition system. This knowledge is utilized in each of the steps in the con­
struction of an automated speech recognition system: preprocessing, input 
coding, output coding, output supervision, architectural design. In particular 
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for preprocessing we explored the advantages of various possible ways of pro­
cessing the speech signal, such as comparing an ear model VS. Fast Fourier 
Transform (FFT) , or compressing the frame sequence in such a way as to 
conserve an approximately constant rate of change. To handle the temporal 
aspect of speech we propose to combine various algorithms depending of the 
demands of the task, including an algorithm for a type of recurrent network 
which includes only self-loops and is local in space and time (BPS). This stra­
tegy is demonstrated in several experiments, in particular a nasal discrimina­
tion task for which the application of a speech theory hypothesis drastically 
improved generalization. 

2 Application of Speech Knowledge 

2.1 Preprocessing 

Our previous work has shown us that the choice of preprocessing significantly 
influences the performance of a neural network recognizer. (e.g., Bengio & 
De Mori 1988) Different types of preprocessing processes and acoustic 
features can be utilized at the input of a neural network. We used several 
acoustic features (such as counts of zero crossings), filters derived from the 
FFT, energy levels (of both the signal and its derivative) and ratios (Gori, 
Bengio & De Mori 1989), as well as an ear model and synchrony detector. 

Ear model VS. FFT 

We performed experiments in speaker-independent recognition of 10 english 
vowels on isolated words that compared the use of an ear model with an FFT 
as preprocessing. The FFT was done using a mel scale and the same number 
of filters (40) as for the ear model. The ear model was derived from the one 
proposed by Seneff (1985). Recognition was performed with a neural network 
with one hidden layer of 20 units. We obtained 87% recognition with the FFT 
preprocessing VS. 96% recognition with the ear model (plus synchrony detec­
tor to extract spectral regularity from the instantaneous output of the ear 
model) (Bengio, Cosi, De Mori 1989). This was an example of the successful 
application of knowledge about human audition to the automatic recognition 
of speech with machines. 

Compression in time resulting in constant rate of change 

The motivation for this processing step is the following. The rate of change of 
the speech signal, (as well as the output of networks performing 
acoustic~phonetic mappings) varies a lot. It would be nice to have more tem­
poral precision in parts of the signal where there is a lot of variation (bursts, 
fast transitions) and less temporal precision in more stable parts of the signal 
(e.g., vowels, silence). 

Given a sequence of vectors (parameters, which can be acoustic parameters, 
such as spectral coefficients, as well as outputs from neural networks) we 
transform it by compressing it in time in order to obtain a shorter sequence 
where frames refer to segments of varying length of the original sequence. 
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Very simple Algorithm that maps sequence X(t) -+ sequence yet) where X and 
Yare vectors: 

{ Accumul ate and average X(t), X(t+1) ... X(t+n) in yes) as 
long as the sum of the Distance(X(t),X(t+1)) + + 
Distance(X(t+n-1),X(t+n)) is less than a threshold. 

When this threshold is reached, 
t+-t+n+1; 
s+-s+l; } 

The advantages of this system are the following: 1) more temporal precision 
where needed, 2) reduction of the dimensionality of the problem, 3) constant 
rate of change of the resulting signal so that when using input windows in a 
neural net, the windows may have less frames, 4) better generalization since 
several realizations of the same word spoken at different rates of speech tend 
to be reduced to more similar sequences. 

Initial results when this system is used to compress spectral parameters (24 
mel-scaled FFf filters + energy) computed every 5 ms were interesting. The 
task was the classification of phonemes into 14 classes. The size of the data­
base was reduced by 30% • The size of the window was reduced (4 frames in­
stead of 8), hence the network size was reduced as well. Half the size of the 
window was necessary in order to obtain similar performance on the training 
set. Generalization on the test set was slightly better (from 38% to 33% clas­
sification error by frame). The idea to use a measure of rate of change to 
process speech is not new (Atal, 1983) but we believe that it might be particu­
larly useful when the recognition device is a neural network with an input of 
several frames of acoustic parameters. 

2.2 Input coding 

Our previous work has shown us that information should be as easily accessi­
ble as possible to the network. For example, compression of the spectral in­
formation into cepstrum coefficients (with first few coefficients having very 
large variance) resulted in poorer performance with respect to experiments 
done with the spectrum itself. The recognition was performed with a neural 
network where units compute the sigmoid of the weighted sum of their inputs. 
The task was the broad classification of phonemes in 4 classes. The error on 
the test set increased from 15% to 20% when using cepstral rather than spec­
tral coefficients. 

Another example concerns the recognition experiments for which there is a 
lot of variance in the quantities presented in the input. A grid representation 
with coarse coding improved learning time as well as generalization (since the 
problem became more separable and thus the network needed less hidden un­
its). (Bengio, De Mori, 1988). 

2.3 Output coding 

We have chosen an output coding scheme based on phonetic features defined 
by the way speech is produced. This is generally more difficult to learn but 
results in better generalization, especially with respect to new sounds that had 



Speaker Independent Speech Recognition 221 

not been seen by the network during the training. We have demonstrated this 
with experiments on vowel recognition in which the networks were trained to 
recognized the place and the manner of articulation (Bengio, Cosi, De Mori 
89). In addition the resulting representation is more compact than when using 
one output for each phoneme. However, this representation remains mean­
ingful i.e. each output can be attributed a meaning almost independently of 
the values of the other outputs. 

In general, an explicit representation is preferred to an arbitrary and compact 
one (such as a compact binary coding of the classes). Otherwise, the network 
must perform an additional step of encoding. This can be costly in terms of 
the size of the networks, and generally also in terms of generalization (given 
the need for a larger number of weights). 

2.4 Output supervision 

When using a network with some recurrences it is not necessary that supervi­
sion be provided at every frame for every output (particularly for transition 
periods which are difficult to label). Instead the supervision should be provid­
ed to the network when the speech signal clearly corresponds to the categories 
one is trying to learn. We have used this approach when performing the 
discrimination between Ibl and Idl with the BPS (Back Propagation for Se­
quences) algorithm (self-loop only, c.!. section 3.3). 

Giving additional information to the network through more supervision (with 
extra output units) improved learning time and generalization (c.! . . section 4). 

2.5 Architectural design 

Hypothesis about the nature of the processing to be performed by the network 
based on speech science knowledge enables to put constraints on the architec­
ture. These constraints result in a network that generalizes better than a fully 
connected network. This strategy is most useful when the speech recognition 
task has been modularized in the appropriate way so that the same architec­
tural constraints do not have to apply to all of the subtasks. Here are several 
examples of application of modularization. We initially explored modulariza­
tion by acoustic context (different networks are triggered when various acous­
tic contexts are detected)(Bengio, Cardin, De Mori, Merlo 89) We also imple­
mented modularisation by independent articulatory features (vertical and hor­
izontal place of articulation) (in Bengio, Cosi, De Mori, 89). Another type of 
modularization, by subsets of phonemes, was explored by several researchers, 
in particular Alex Waibel (Waibel 88). 

3 Temporal aspect of the speech recognition task 

Both of the algorithms presented in the following subsections assume that one 
is lising the Least Mean Square Error criterion, but both can be easily modi­
fied for any type of error criterion. We used and sometimes combined the fol­
lowing techniques: 
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3.1 Delays 

If the speech signal is preprocessed in such a way as to obtain a frame of 
acoustic parameters for every interval of time, one can use delays from the in­
put units representing these acoustic parameters to implement an input win­
dow on the input sequence, as in NETtalk, or using this strategy at every level 
as in TDNNs (Waibel 88). Even when we use a recurrent network, a small 
number of delays on the outgoing links of the input units might be useful. It 
enables the network to make a direct comparison between successive frames. 

3.2 BPS (Back Propagation for Sequences) 

This is a learning algorithm that we have introduced for networks that have a 
certain constrained type of recurrence (local self-loops). It permits to com­
pute the gradient of the error with respect to all weights. This algorithm has 
the same order of space and time requirements as backpropagation for feed­
forward networks. Experiments with the Ibl vs. Idl speaker independent 
discrimination yielded 3.45% error on the test set for the BPS network as op­
posed to 6.9% error for a feedforward network (Gori, Bengio, De Mori 89). 

BPS equations: 

feedforward pass: 

edynamic units: these have a local self-loop and their input must directly 
come from the input layer. 

Xi(t+ 1) = Wii Xi(t) + I;j Wij f(Xj(t» 

8Xi(t+ 1)18Wij == Wii 8Xi(t)/8Wij + f(Xj(t» for i!=j 

8Xi(t)18Wii == Wii 8Xi(t)18Wii + Xi(t) for i==j 

estatic units, i.e., without feedback, follow usual Back-Propagation (BP) equa­
tions (Rumelhart et al. 1986): 

Xi(t+ 1) = ~j Wij f(Xj(t») 

8Xi(t+ 1)18Wij == f(Xj(t» 

Backpropagation pass, after every frame: as usual but using above definition 
of 8Xi(t)18Wii instead of the usual f(Xj(t». 

This algorithm has a time complexity O(L . Nw)(as static BP) It needs space 
o (Nu) , where L is the length of a sequence, Nw is the number of weights and 
Nu is the number of units. Note that it is local in time (it is causal, no back­
propagation in time) and in space (only information coming from direct neigh­
bors is needed). 

3.3 Discrete Recurrent Net without Constraints 

This is how we compute the gradient in an unconstrained discrete recurrent 
net. The derivation is similar to the one of Pearlmutter (1989). It is another 
way to view the computation of the gradient for recurrent networks, called 
time unfolding, which was presented by (Rumelhart et al. 1986). Here the un­
its have a memory of their past activations during the forward pass (from 
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frame 1 to L) and a "memory" of the future BEIBXi during the backward pass 
(from frame L down to frame 1). 

Forward phase: consider the possibility of an arbitrary number of connections 
from unit i to unit j, each having a different delay d. 

Xi(t) = ~j,d Wijd f(Xi(t-d») + I(i,t) 

Here, the basic idea is to compute BEIBWijd by computing BE/BXi(t): 

BE/8Wijd = ~t 8E/8Xi(t) 8Xi(t)/BWijd 

where 8Xi(t)18Wijd = f(Xj(t-d» as usual. In the backward phase we backpro­
pagate 8E/8Xi(t) recursively from the last time frame=L down to frame 1: 

BE/8Xi(t) = :Ek,d Wkid 8E/8Xk(t+d) f(Xj(t») 
+(if i is an output unit)(f(Xi(t»)-Yi*(t») f(Xi(t)) 

where Yi*(t) is the target output for unit i at time t. In this equation the first 
term represents back propagation from future times and downstream units, 
while the second one comes from direct external supervision. This algorithm 
works for any connectivity of the recurrent network with delays. Its time com­
plexity is O(L . Nw) (as static BP). However the space requirements are O(L . 
Nu). The algorithm is local in space but not in time; however, we found that 
restriction not to be very important in speech recognition, where we consider 
at most a few hundred frames of left context (one sentence). 

4 Nasal experiment 

As an example of the application of the above described strategy we have per­
formed the following experiment with the discrimination of nasals Iml and Inl 
in a fIXed context. The speech material consisted of 294 tokens from 70 train­
ing speakers (male and female with various accents) and 38 tokens from 10 
test speakers. The speech signal is preprocessed with an ear model followed 
by a generalized synchrony detector yielding 40 spectral parameters every 10 
ms. Early experiments with a simple output coding {vowel, ffi, n}, a window 
of two consecutive frames as input, and a two-layer fully connected architec­
ture with 10 hidden units gave poor results: 15% error on the test set. A 
speech theory hypothesis claiming that the most critical discriminatory infor­
mation for the nasals is available during the transition between the vowel and 
the nasal inspired us to try the following output coding: {vowel, transition to 
m, transition to n, nasal}. Since the transition was more important we chose 
as input a window of 4 frames at times t, t-10ms, t-3Oms and t-70ms. To 
reduce the connectivity the architecture included a constrained first hidden 
layer of 40 units where each unit was meant to correspond to one of the 40 
spectral frequencies of the preprocessing stage. Each such hidden unit associ­
ated with filter bank F was connected (when possible) to input units 
corresponding to 

frequency banks (F-2,F-1,F,F+1,F+2) 

and times (t,t-10ms,t-30ms,t-70ms). 
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Experiments with this feedforward delay network (160 inputs-40 hidden--10 
hidden-4 outputs) showed that, indeed the strongest clues about the identity 
of the nasal seemed to be available during the transition and for a very short 
time, just before the steady part of the nasal started. In order to extract that 
critical information from the stream of outputs of this network, a second net­
work was trained on the outputs of the first one to provide clearly the discrim­
ination of the nasal during the whole of the nasal. That higher level network 
used the BPS algorithm to learn about the temporal nature of the task and 
keep the detected critical information during the length of the nasal. Recogni­
tion performance reached a plateau of 1.14% errors on the training set. Gen­
eralization was very good with only 2.63% error on the test set. 

5 Future experiments 

One of the advantages of using phonetic features instead of phonemes to 
describe the speech is that they could help to learn more robustly about the 
influence of context. If one uses a phonemic representation and tries to 
characterize the influence of the past phoneme on the current phoneme, one 
faces the problem of poor statistical sampling of many of the corresponding 
diphones (in a realistic database). On the other hand, if speech is character­
ized by several independent dimensions such as horizontal and vertical place 
of articulation and voicing, then the number of possible contexts to consider 
for each value of one of the dimensions is much more limited. Hence the set 
of examples characterizing those contexts is much richer. 

We now present some observations on continuous speech based on our initial 
work with the TIMIT database in which we try learning articulatory features. 
Although we have obtained good results for the recognition of articulatory 
features (horizontal and vertical place of articulation) for isolated words, ini­
tial results with continuous speech are less encouraging. Indeed, whereas the 
measured place of articulation (by the networks) for phonemes in isolated 
speech corresponds well to expectations (as defined by acousticians who phy­
sically measured these features for isolated short words), this is not the case 
for continuous speech. In the latter case, phonemes have a much shorter 
duration so that the articulatory features are most of the time in transition, 
and the place of articulation generally does not reach the expected target 
values (although it always moves in the right direction ). This is probably due 
to the inertia of the production system and to coarticulation effects. In order 
to attack that problem we intend to perform the following experiments. We 
could use the subset of the database for which the phoneme duration is suffi­
ciently long to learn an approximation of the articulatory features. We could 
then improve that approximation in order to be able to learn about the trajec­
tories of these features found in the transitions from one phoneme to the 
next. This could be done by using a two stage network (similar to the encoder 
network) with a bottleneck in the middle. The first stage of the network pro­
duces phonetic features and receives supervision only on the steady parts of 
the speech. The second stage of the network (which would be a recurrent net­
work) has as input the trajectory of the approximation of the phonetic 
features and produces as output the previous, current and next phoneme. As 
an additional constraint, we propose to use self-loops with various time con­
stants on the units of the bottleneck. Units that represent fast varying de scrip-
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tors of speech will have a short time constant, while units that we want to 
have represent information about the past acoustic context will have a slightly 
longer time constant and units that could represent very long time range infor­
mation - such as information about the speaker or the recording conditions -
will receive a very long time constant. 

This paper has proposed a general strategy for setting up a speaker indepen­
dent speech recognition system with neural networks using as much speech 
knowledge as possible. We explored several aspects of this problem including 
preprocessing, input coding, output coding, output supervision, architectural 
design, algorithms for recurrent networks, and have described several initial 
experimental results to support these ideas. 
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