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Abstract—This paper presents the results of simulation and real
room studies for localization of a moving speaker using informa-
tion about the excitation source of speech production. The first step
in localization is the estimation of time-delay from speech collected
by a pair of microphones. Methods for time-delay estimation gen-
erally use spectral features that correspond mostly to the shape
of vocal tract during speech production. Spectral features are af-
fected by degradations due to noise and reverberation. This paper
proposes a method for localizing a speaker using features that arise
from the excitation source during speech production. Experiments
were conducted by simulating different noise and reverberation
conditions to compare the performance of the time-delay estima-
tion and source localization using the proposed method with the
results obtained using the spectrum-based generalized cross corre-
lation (GCC) methods. The results show that the proposed method
shows lower number of discrepancies in the estimated time-delays.
The bias, variance and the root mean square error (RMSE) of
the proposed method is consistently equal or less than the GCC
methods. The location of a moving speaker estimated using the
time-delays obtained by the proposed method are closer to the ac-
tual values, than those obtained by the GCC method.

Index Terms—Excitation source information, Hilbert envelope,
speaker localization, time-delay estimation.

I. INTRODUCTION AND PREVIOUS WORK

A
PPLICATIONS such as videoconferencing [1]–[3],

hands-free voice communication [4], [5], speech acqui-

sition in automobile environments [6], [7], speech recognition

[8], [9], acoustic surveillance and hearing-aid devices [10]

require the capture of high-quality speech from the speakers.

The speech signal received from a speaker in such acoustical

environments is corrupted both by additive noise and room

reverberation. One effective way of dealing with such situations

is to use a set of spatially distributed microphones for recording
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the speech. Some of the previously mentioned applications may

also require localizing and tracking the moving speaker. For

instance, to keep the speaker in focus in videoconferencing, the

speaker can be localized, and this information can be fed to a

video system for actuating the pan-tilt operations of a camera

[1]–[3]. Once the actual position of the speaker is known, the

microphone array can be steered electronically (beamformed)

for high-quality speech acquisition. Speaker Localization is

also useful in a multispeaker scenario in which speech from

a particular speaker may need to be enhanced with respect to

others, or with respect to noise sources.

The essential requirement for all the applications mentioned

previously is the ability of the microphone array to locate a

speaker accurately. Broadly three types of methods exist for lo-

calizing the speaker [11]: a) maximizing the steered response

power (SRP) of a beamformer, b) methods based on high-reso-

lution spectral estimation, and c) methods based on time differ-

ence of arrival (TDOA). In the steered beamformer approach,

the microphone array is electronically steered to various loca-

tions to search for a peak in the output power. A simple delay

and sum beamformer or more sophisticated beamformers which

apply filtering can be used. Due to its computational complexity

and lack of prior knowledge of the source and noise character-

istics, this method may not be practical for localizing speakers.

The second method, based on the high-resolution spectrum esti-

mation, uses the spatio-spectral correlation matrix derived from

the signals received at the microphones. The high-resolution

methods are designed for far field narrow-band stationary sig-

nals and, hence, it is difficult to apply them to wide-band speech.

The most commonly used method in practice is the TDOA-

based method. In this method, the signals received by several

microphones are processed to estimate the time-delays between

pairs of microphones. The estimated time-delays can be used to

derive the location of the speaker.

For effective speaker localization, it is essential to obtain a

good estimate of the time-delay even when the signals are cor-

rupted by noise and reverberation [12]. The time-delay may be

estimated by locating the peak in the cross correlation function

of the signals received by a pair of microphones. However, this

method is not robust to degradations in the signals. Knapp and

Carter [13] developed the maximum likelihood (ML) estimator

for determining the time-delay between signals received at two

spatially separated microphones when the noise is uncorrelated.

In this method, the estimated delay is the time lag which max-

imizes the cross correlation between filtered versions of the re-

ceived signals [13]. The cross correlation of the filtered versions
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of the signals is called the generalized cross correlation (GCC)

function. The GCC function is given by [13]

(1)

where and are the Fourier transforms of the mi-

crophone signals and , respectively, and is the

weight function. The effect of five different weight functions,

namely, the Roth Impulse Response, the smoothed coherence

transform (SCOT), the phase transform (PHAT), the Eckart filter

and the ML weighting were studied in [13].

The two most commonly used weight functions are ML and

PHAT. The ML weight function accentuates the signal passed

to the correlator at frequencies where the signal-to-noise ratio

(SNR) is high [13]. Brandstein et al. [14] proposed an approxi-

mate ML type weighting for speech applications. The approxi-

mate weight function is is given by

(2)

where and are the noise power spectra at the

two microphones, and are assumed to be known during the si-

lence interval [14]. We use this weight function in our simula-

tion studies. This ML weight function performs well when the

effect of room reverberation is low.

As the room reverberation increases, this method shows

degradations in performance [12]. Since the spectral charac-

teristics of the received signal are affected by the multipath

propagation or reverberation in a room, the GCC function is

made more robust by deemphasizing the frequency-dependent

weighting. The PHAT is one extreme case where the magnitude

spectrum is flattened. The PHAT weight function is

given by

(3)

By flattening the magnitude spectrum the resulting location of

the peak in the GCC function corresponds to the dominant delay.

However, the disadvantage of the PHAT weighting is that it

places equal emphasis on both low and high SNR regions and,

hence, works well only when the overall noise level is low.

Stéphanne and Champagne [15] proposed cepstral prefiltering

to reduce the effects of reverberation. Benesty [16] proposed a

novel method for time-delay estimation based on eigenvalue de-

composition of the covariance matrix.

The methods discussed previously are applicable to a general

sound source. Recently, methods have been suggested for

localization of speaker by modeling the production of speech

[17], [18]. Brandstein [18] proposed a method based on the

knowledge of the periodicity of voiced speech. This method

requires the estimation of pitch and, hence, the performance de-

pends on the robustness of pitch estimation method. Moreover,

the method uses the spectral weighting based on the estimated

pitch harmonics. Most of the speech-model-based methods

use spectral features which correspond approximately to the

characteristics of the vocal tract system during the production

of speech. The spectral features are affected by transmission

through medium, noise and room reverberation. Not many

attempts have been made to exploit the characteristics of the

excitation source during the production of speech. In this paper,

we show that features based on the excitation source in speech

production are robust to degradations such as noise and rever-

beration. We discuss methods to extract the excitation source

information from a speech signal, and show how to use this

information to estimate the time-delay. The proposed method

does not use the periodicity property of voiced speech. The

method exploits the excitation characteristics of voiced speech,

especially the characteristics around the glottal closure instants.

The paper is organized as follows. A method for estimation

of time-delay using the excitation source information is pro-

posed in Section II. The proposed method is compared with

GCC-PHAT, GCC-ML, and Brandstein’s methods using sim-

ulations, and are discussed in Section III. In Section IV, speaker

localization is described, and is compared with the results ob-

tained using the GCC-PHAT method. The paper concludes with

a summary of the present work, and a discussion on possible

extensions.

II. TIME-DELAY ESTIMATION USING EXCITATION

SOURCE INFORMATION

Speech is the result of excitation of a time-varying vocal tract

system with time-varying excitation [19]. The common and sig-

nificant mode of excitation of the vocal tract system is the vi-

bration of vocal folds, called glottal vibration, which to a first

approximation may be treated as consisting of a sequence of

impulses [20]. The characteristics of the dynamic vocal tract

system are represented by short-time spectral features. Since the

signal received at a microphone is affected by noise and the re-

sponse of room, the received signal contains information about

the vocal tract system corrupted by different levels of degrada-

tions at different microphones. However, it is interesting to note

that the relative locations of epochs or instants of significant ex-

citation in the production of speech are not affected by degrada-

tions [21]. The epochs in a voiced segment correspond to the in-

stants of glottal closure, and their locations along the time scale

do not change with the impulse response of the acoustical envi-

ronment. In unvoiced segments, also there may be epochs due

to strong bursts of excitation, even though they may not occur

at periodic intervals as in the voiced case. But their relative lo-

cations are unaffected by degradation.

The excitation source information can be extracted from the

speech signal using linear prediction (LP) analysis [22]. In LP

analysis, each sample is predicted as a linear combination of the

past samples, where is the order of prediction. If is the

speech signal sample at th instant, then its predicted value is

given by

(4)
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Fig. 1. (a) Speech waveform. (b) Tenth-order LP residual. (c) Hilbert envelope
of the LP residual for a segment of speech signal collected over a close-speaking
microphone (mic-0).

where are the LP coefficients. The error between the

speech sample and its predicted value is given by

(5)

The optimal values of the linear prediction coefficients (LPCs)

can be obtained by minimizing the squared error over an anal-

ysis frame of about 10–30 ms. These LPCs define the inverse

filter given by

(6)

Passing the speech signal through this inverse filter is equivalent

to using the optimal values of LPCs in (5) and, hence, the min-

imum error signal is the LP residual signal denoted by .

The LP residual mostly contains information about the exci-

tation source. The most important information about the exci-

tation source is the sequence of epochs in the case of voiced

speech.

Speech signals are collected using a microphone placed close

to the speaker, which here after will be termed as close-speaking

microphone (mic-0) and two other microphones (say, mic-1 and

mic-2), placed at a distance (distant microphones) in an office

room of dimension 5.67 4.53 2.68 m with an average rever-

beration time of about 0.2 s and noise level of about 40–50 dB.

All the signals are sampled at 8 kHz and stored as 16 bit num-

bers. The microphones signals are shown in Figs. 1(a), 2(a), and

3(a), respectively. The two distant microphones are placed at a

distance of about 2.75 m from the speaker. All the three signals

differ from one another. The low SNR of the signals collected

at the distant microphones can be seen from the amplitudes of

signals in Figs. 2(a) and 3(a) in relation to the signal in Fig. 1(a).

The tenth-order LP residuals derived from the speech signals of

mic-0, mic-1 and mic-2 are shown in Figs. 1(b), 2(b), and 3(b),

respectively. The LP residual signals in Figs. 2(b) and 3(b) also

reflect the low SNR characteristics of the signals at mic-1 and

mic-2.

Fig. 2. (a) Speech waveform. (b) Tenth-order LP residual. (c) Hilbert envelope
of the LP residual for a segment of speech signal collected over mic-1, which is
placed at a distance of about 2.75 m from the speaker.

Fig. 3. (a) Speech waveform. (b) Tenth-order LP residual. (c) Hilbert envelope
of the LP residual for a segment of speech signal collected over mic-2, which is
placed at a distance of about 2.75 m from the speaker.

The time-delay may be estimated by locating the peak in the

cross correlation function of signals received by two micro-

phones. Due to degradation caused by noise and room rever-

beration, the signal received at one microphone will not simply

be a delayed version of the other. If speech signals are directly

used for computing the cross correlation function, then the cor-

relation peak may not be prominent and distinct due to effects

of noise and reverberation on the spectra of speech signals. The

effects of noise and reverberation are somewhat reduced around

the epochs in the LP residual, where the residual error is large.

Note that the relative epoch locations are not affected by the

degradations. Therefore, it is possible to obtain a peak in the

cross correlation of LP residuals that corresponds mostly to the

correlated components around the epochs in LP residuals. Al-

though, due to inverse filtering, noise is enhanced in the high-

frequency region in the spectrum of LP residual, this will have

little effect on the peak in the cross correlation, since the noise

at the two microphones are not correlated.
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In each pitch period major excitation occurs at the epoch cor-

responding to the instant of glottal closure. Around each epoch

the prediction will be poor and, hence, the error is large in the

residual. However, the amplitudes of the residual signal around

each epoch depend on the phase of the signal [20]. This causes

random fluctuation in amplitudes, which may lead to ambiguity

in the location of the peak in the cross correlation function.

Therefore, instead of using the LP residual directly, the Hilbert

envelope of the LP residual can be used [20]. The Hilbert enve-

lope of the LP residual is defined as

(7)

where is the Hilbert transform of [23]. The Hilbert

transform is obtained by interchanging the real and imaginary

parts of the Discrete Fourier Transform (DFT) of , and then

taking the inverse DFT. A 1024 point DFT or higher is used

throughout this study for computing the Hilbert envelope. That

is, the residual signal block size is 1024 points or more for

computing Hilbert envelope. Figs. 1(c), 2(c), and 3(c) show the

Hilbert envelopes of the LP residuals for speech signals from

mic-0, mic-1 and mic-2, respectively. The ambiguity present

around epochs in the LP residual is reduced significantly in the

Hilbert envelope. The epoch locations are also clearly visible in

the Hilbert envelopes of the LP residuals.

The time-delay between speech signals at a pair of micro-

phones is estimated by computing the cross correlation of the

Hilbert envelopes of the LP residuals. For every frame (size in

the range 50 ms to 500 ms), the cross correlation function is

computed. The choice of frame size depends on the accuracy of

tracking. Smaller frame size will yield better tracking. But larger

frame size will yield accurate delay estimation. In any case, each

frame should contain at least a few (about 5) pitch periods to ob-

tain good estimate of time-delay. The displacement of the peak

with respect to the center of cross correlation function is the de-

sired time-delay.

To compare different methods we define the quantity

peak-to-sidelobe ratio (PSR) as the peak value divided by the

standard deviation of 40 samples around the peak, excluding 5

samples on either side of the peak [24]. The PSR measure gives

the strength of the main peak in relation to the values around

the peak. The choice of 40 samples is quite arbitrary. Fig. 4(a)

shows the cross correlation function between two 50 ms speech

segments from mic-1 and mic-2. The PSR values are also given

in the figure. The PSR value for speech signal is 5.52. Fig. 4(b)

shows the cross correlation function obtained by GCC with

PHAT weighting for the same two segments [13]. It can be seen

that the PSR is larger than for Fig. 4(a). The disadvantage of the

PHAT weighting is that it emphasizes the noise samples and,

hence, it works well only when the noise level is low. Fig. 4(c)

shows the cross correlation function for the tenth-order LP

residuals of the two speech segments. The plot looks similar

to that for the GCC case. Fig. 4(d) shows the cross correlation

function for the Hilbert envelopes of the LP residuals. The use

of the Hilbert envelopes produces a significantly high value of

PSR, compared to the PSR values of the three previous cases.

This is because, in the Hilbert envelopes of the LP residuals,

the high SNR portions correspond to the major excitations

Fig. 4. Cross correlation function for different cases for 50 ms voiced
speech segments from mic-1 and mic-2. (a) Speech signals. (b) GCC with
PHAT weighting. (c) Tenth-order LP residuals. (d) Hilbert envelopes of the
LP residuals. PSR is computed for the largest peak in each cross correlation
function.

Fig. 5. Cross correlation function for different cases for 50 ms unvoiced
speech segments from mic-1 and mic-2. (a) Speech signals. (b) GCC with
PHAT weighting. (c) Tenth-order LP residuals. (d) Hilbert envelopes of the
LP residuals. PSR is computed for the largest peak in each cross correlation
function.

(epochs) of the vocal tract system. The high-amplitude values

at the epochs in the signal dominate the computation of the

cross correlation function. Note that the time-delay is estimated

using only the main peak in the cross correlation function. The

other large peaks in Fig. 4(d) are due to the pitch period. Since

the PSR value computed from the Hilbert envelopes of the LP

residuals is high for a given voiced segment, we use the PSR

value for each frame to derive a normalized weight function in

order to compare the bias, variance and root mean square error

(RMSE) for each of the methods.

Fig. 5 shows the cross correlation functions for a 50 ms un-

voiced segment. Even for unvoiced segment the PSR value is
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Fig. 6. Top view of the simulated room used to evaluate the proposed
time-delay estimation method.

high when Hilbert envelope of LP residual is used. But the PSR

value depends on the strength of the bursts in the unvoiced seg-

ment. Note that the bursts need not be periodic. Hence, for un-

voiced segments also the Hilbert envelope is useful for obtaining

a correlated peak with PSR value higher than other methods.

III. COMPARISON WITH OTHER METHODS

In this section, time-delays estimated using the excitation

source information are compared with those obtained from

other methods. In particular, we compare the results by the

proposed method with the results from the GCC with PHAT

weighting [13], GCC with ML weighting [14], and Brandstein’s

pitch-based weighting [18] methods. The relative performance

of the proposed method is evaluated using a series of Monte

Carlo trials in a simulated rectangular room of dimension

5.6 4.5 2.6 m as illustrated in Fig. 6. The microphones

are assumed to have an omnidirectional pattern. The source is

placed at a distance of 2.0 m from the center of microphone

pair which are 1 m apart. Simulation studies are made for four

different source positions, each corresponding to a different

direction of arrival (DOA) as shown in Fig. 6. The DOA is

the angle between the line joining the source to the center of

the microphone pair, and the normal to the line joining the

two microphones at the center of the microphone pair. The

four positions of the source shown in Fig. 6 correspond to

DOAs of 15 , 30 , 60 , and 80 . The simulated walls are

plane reflective surfaces with frequency independent reflection

coefficients. The impulse response between any two points in

the room is generated using Allen and Berkley’s image method

[25]. The impulse response is convolved with the input signal

to simulate the effect of room reverberation.1 The simulation

studies are carried out for reverberation times varying from 0 to

0.3 s. The reflection coefficient for a given room dimension

and reverberation time are related by the Eyring’s formula

[26], where ,

1The nonphysical behavior of the Allen and Berkley’s image method at zero
frequency is avoided by using a low cutoff (1% of the sampling frequency) high-
pass filter [25].

Fig. 7. (a) Sample speech waveform with reverberation of 100 ms and SNR
30 dB. (b) Corresponding PSR weighting function for a framesize of 100 ms
with a shift of 10 ms. The PSR was computed for the proposed method.

and are the dimensions of the room, is reverberation time

in seconds and is speed of sound in air (342 m/s).

Speech recorded over a close-speaking microphone in noise

free conditions and sampled at 8 kHz is used in these studies.

The speech signal is convolved with the impulse response of

the room to derive the reverberant signal. The SNR of rever-

berant signal is then varied from 0 to 50 dB by adding zero

mean white Gaussian noise to the speech signal. The resulting

degraded speech signal is segmented into frames of 200 ms with

a shift of 50 ms. Each segment is multiplied with a Hanning

window [19]. The time-delay is estimated for each frame using

the proposed method, and by the GCC method with PHAT, ML,

and Brandstein’s pitch-based2 weighting.

The performance of the time-delay estimation method is eval-

uated by calculating the bias, variance and RMSE for different

room impulse responses and SNR values. In each of the simu-

lations, the actual time-delay can be calculated corresponding

to a given DOA. Often noise and some unvoiced segments give

large random error, and thus these segments contribute signifi-

cantly to the estimated bias, variance and RMSE. To reduce the

contribution due to these segments, the knowledge of the PSR

value of each frame is used. The PSR values are relatively high

in voiced regions, and low in some unvoiced and noise regions.

The PSR values computed by the proposed method are used for

deriving a weight function. A sample weight function is shown

in Fig. 7(b) for the speech waveform shown in Fig. 7(a). The

errors in the estimated time-delays by all the four methods are

weighted for computing the bias, variance and RMSE values.

The bias, variance and RMSE values given for different cases

are computed by averaging the results obtained from 100 dif-

ferent simulations.

Figs. 8–10 show the bias (in number of samples), variance (in

number of samples square) and RMSE (in number of samples),

respectively, for a DOA of 15 . The SNR and the reverberation

time, respectively, are varied from 0 to 50 dB and 0 to 0.3 s. For

very low SNR, the GCC-ML performs better than all the other

methods (see 0–10 dB regions in all the plots). The GCC-ML

weighting has been derived as the optimal estimator when the

noise is Gaussian. Since in our simulations we use the Gaussian

2For the Brandstein’s pitch-based method [18] we estimate the pitch directly
from the clean speech signal rather than the reverberant noisy signal. As a result
there will not be errors due to error in the pitch estimation.
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Fig. 8. Comparison of absolute bias (in number of samples) for the four
methods: GCC-PHAT, GCC-ML, Brandstein’s pitch-based, and the proposed
method. The DOA is 15 and the SNR is varied from 0 dB to 50 dB. Four
different reverberation times are considered. (a) Reverberation time = 0.0
s. (b) Reverberation time = 0.1 s. (c) Reverberation time = 0.2 s. (d)
Reverberation time = 0.3 s. The scale on y axis in each of the subplots is
different.

Fig. 9. Comparison of the error variance (in number of samples square) for
the four methods: GCC-PHAT, GCC-ML, Brandstein’s pitch based, and the
proposed method. The DOA is 15 and the SNR is varied from 0 dB to 50
dB. Four different reverberation times are considered. (a) Reverberation time =
0.0 s. (b) Reverberation time = 0.1 s. (c) Reverberation time = 0.2 s. (d)
Reverberation time = 0.3 s. The scale on y axis in each of the subplots is
different.

noise model, it is not surprising that GCC-ML performs the best.

For high SNR and low reverberation, GCC-ML, GCC-PHAT

and the Brandstein’s pitch-based method perform equally well.

The Brandstein’s pitch-based method performs slightly better

than the GCC-PHAT method, and the GCC-PHAT performs

better than the GCC-ML. The proposed method performs better

than all these three methods [see, 20–50 dB regions in Figs. 8, 9,

and 10(a), (b)]. For low SNR and high reverberation GCC-ML

seems to be performing better than GCC-PHAT (see, 0–10 dB

Fig. 10. Comparison of RMSE (in number of samples) for the four methods:
GCC-PHAT, GCC-ML, Brandstein’s pitch-based, and the proposed method.
The DOA is 15 and the SNR is varied from from 0 dB to 50 dB. Four
different reverberation times are considered. (a) Reverberation time = 0.0
s. (b) Reverberation time = 0.1 s. (c) Reverberation time = 0.2 s. (d)
Reverberation time = 0.3 s. Note that the scale on y axis in each of the
subplots is different.

regions in Figs. 8, 9, and 10(c), (d)]. For high SNR and high

reverberation the proposed method outperforms all the other

three methods (see, 10–50 dB regions in Figs. 8, 9, and 10(c),

(d)]. Thus, it can be concluded that the performance of the pro-

posed method is consistently equal to, or better than, the best

performing of the three methods.

One more metric, namely, percentage discrepancy is intro-

duced, which is defined as the percentage of trials for which

the absolute error in the estimated delay is greater than a given

threshold ( in the DOA). Fig. 11 shows percentage discrep-

ancies in the estimated delays for the proposed and the GCC

methods for the DOA corresponding to 15 . From Fig. 11(a), it

can be seen that all the three methods perform equally well for

the zero reverberation case. As the reverberation increases, the

GCC-PHAT method gives lower discrepancies compared to the

GCC-ML method for high SNR values. The proposed method

gives significantly fewer discrepancies for all the SNR values.

Similar trends in bias, variance, RMSE and percentage dis-

crepancies were observed for the experiments with DOAs 30

and 60 . For illustration, we have given the RMSE for the case

of reverberation time of 0.3 s in Fig. 12. Similar experiments

were conducted using colored noise obtained by bandpass fil-

tering the white noise. Figs. 13 and 14 show the RMSE and per-

centage discrepancies, respectively, for a DOA of 15 for col-

ored noise. In all these cases, the proposed method performs

better than other methods. For the bandpass filtered noise the

GCC-ML performs consistently worse than the other methods.

IV. LOCALIZATION OF SPEAKER IN A REAL ENVIRONMENT

Localization of speaker in an acoustical environment involves

two steps. The first step is estimation of time-delays between

pairs of microphones. The next step is to use these delays to

estimate the location of speaker.
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Fig. 11. Comparison of percentage discrepancies for the four methods:
GCC-PHAT, GCC-ML, Brandstein’s pitch-based, and the proposed method.
The DOA is 15 and the SNR is varied from 0 dB to 50 dB. Four different
reverberation times are considered. (a) Reverberation time = 0.0 s.
(b) Reverberation time = 0.1 s. (c) Reverberation time = 0.2 s. (d)
Reverberation time = 0.3 s.

Fig. 12. Comparison of RMSE (in number of samples) for the four methods:
GCC-PHAT, GCC-ML, Brandstein’s pitch-based, and the proposed method for
reverberation time 0.3 s corresponding to the DOA. (a) 30 . (b) 60 .

The speaker localization problem may be formulated as fol-

lows: Let there be pairs of microphones. Let and for

be the vectors representing spatial coordinates (

and ) of two microphones in the th pair. Let the source be lo-

cated at . The actual delay associated with a source at and the

th pair of microphones is given by

(8)

where is the speed of propagation of sound ( ms

at room temperature). The speed of sound in a given acoustical

medium is assumed to be constant. Let be the estimated time-

delay. If the estimated time-delay is corrupted by zero-mean

additive white Gaussian noise with known variance , then

is normally distributed with mean and variance

(9)

Fig. 13. Comparison of RMSE (in number of samples) for the four methods:
GCC-PHAT, GCC-ML, Brandstein’s pitch-based, and the proposed method.
The DOA is 15 and the SNR is varied from from 0 dB to 50 dB. Four
different reverberation times are considered. (a) Reverberation time = 0.0
s. (b) Reverberation time = 0.1 s. (c) Reverberation time = 0.2 s, and (d)
Reverberation time = 0.3 s. Colored noise was used for these results. Note that
the scale on y axis in each of the subplots is different.

Fig. 14. Comparison of percentage discrepancies for the four methods:
GCC-PHAT, GCC-ML, Brandstein’s pitch-based, and the proposed method.
The DOA is 15 and the SNR is varied from 0 dB to 50 dB. Four different
reverberation times are considered. (a) Reverberation time = 0.0 s.
(b) Reverberation time = 0.1 s. (c) Reverberation time = 0.2 s. (d)
Reverberation time = 0.3 s. Colored noise was used for these results. Note that
the scale on y axis in each of the subplots is different.

Assuming that each of the time-delays is independently cor-

rupted by a zero-mean additive white Gaussian noise, the like-

lihood function can be written as

(10)
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Fig. 15. (a) Picture showing the actual setup of the microphones. (b) Schematic of the room indicating the positions of the eight microphones selected for the
study. Microphones 3 and 4 are on the partition.

The ML location estimate is the position which maxi-

mizes the log likelihood ratio, or equivalently which minimizes

(11)

This does not have a closed-form solution for the source posi-

tion, since it is a nonlinear function of . Nonlinear optimization

methods are needed to solve this problem. In our experiments,

we used the Gauss–Newton nonlinear least square method to

minimize this function [27]. The initial guess was set at the

center of the room.

In order to study the effectiveness of the proposed method

for speaker localization in noisy and reverberant environment,

an 8 element microphone array is setup in an office room of

dimension 5.67 4.53 2.68 m. The reverberation time of the

room is approximately 0.2 s, and the noise level in the room was

about 40–50 dB. Fig. 15(a) shows the actual microphone setup

in the room, and Fig. 15(b) shows the schematic of room and

the positions of microphones.3

For all the experiments speaker was instructed to move in the

room reading a text at his normal level of speaking. In order

to validate the results, speaker was asked to move in a prede-

termined path with known coordinates. The actual path for his

movement was marked on the floor of room. The speaker moved

in such a way that he was always facing the microphones. In

each case, as the speaker moved, the localization error, defined

as the distance between the actual position of speaker and the

estimated position of speaker, was plotted. The delays were esti-

mated using the proposed method and the GCC-PHAT method.

Frame lengths of 200 ms and 500 ms, each with a shift of 50 ms

were used.

3The microphones are electret microphones. Data acquisition is done using
the Power DAQ board PD-MF-16-330/12L. The microphones are connected to
the board through a custom-built preamplifier. Signal from each channel is sam-
pled at 8 kHz sampling frequency.

Fig. 16. Three cases for which the methods were tested. (a) Case 1: Speaker
is stationary. (b) Case 2: Speaker moves from one end of the room toward the
microphones. (c) Case 3: Speaker moves from one end of the room toward the
microphones and from the microphones toward the other end of the room.

The following three cases were considered for study: 1) Sta-

tionary speaker. 2) Speaker moving from one end of room to-

ward the microphones. 3) Speaker moving from one end of room

toward the microphones, and then from the microphones toward

the other end of room. Fig. 16 shows all three cases.

Fig. 17 shows the estimated delays as a function of frame

number for one microphone pair (mic-1 and mic-4) for Case 2 in

Fig. 16, using the proposed and GCC-PHAT methods for frame

lengths of 200 ms and 500 ms, with a frame shift of 50 ms. It can

be seen that delay values vary in accordance with the movement

of speaker, though there are a few random delays. Also it can be

seen that the number of random delays are reduced as the frame

size is increased, giving a better estimate of delays. In partic-

ular, the number of random delays obtained using the proposed

method are less as compared to the GCC-PHAT method.
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Fig. 17. Estimated delay as a function of frame number for one microphone
pair (mic-1 and mic-4) using (a) proposed and (b) GCC methods using a frame
size of 200 ms, and (c) proposed and (d) GCC methods using a frame size of
500 ms, both with a frame shift of 50 ms for Case 2 [shown in Fig. 16(b)].

Fig. 18. Actual and the estimated locations (x; y, and z coordinates in cm) of
the speaker. (a) Proposed method. (b) GCC method. A frame size of 200 ms and
a frame shift of 50 ms were used for the Case 2 shown in Fig. 16(b). The actual
path is shown as solid line, and the estimated path is shown as dots.

Figs. 18 and 19 show the actual and the estimated co-

ordinates for Case 2 by proposed and GCC-PHAT methods, for

frame lengths of 200 ms and 500 ms, respectively. In these plots,

the actual path is shown using a solid line, and the estimated path

is shown using dots. It can be seen that the estimated path fol-

lows the actual path more closely for the proposed method than

for the GCC-PHAT method. Figs. 20 and 21 show the localiza-

tion error as a function of frame number using the proposed and

GCC-PHAT methods for Case 2 and Case 3. From these plots,

it can be observed that, for a given frame size, the localization

error is lower for the proposed method compared to the error ob-

tained by the GCC-PHAT method. The error is generally lower

Fig. 19. Actual and the estimated location (x; y, and z coordinates in cm) of
the speaker. (a) Proposed method. (b) GCC method. A frame size of 500 ms with
frame shift of 50 ms were considered for the Case 2 as shown in Fig. 16(b). The
actual path is shown as solid line and the estimated path is shown as dots.

Fig. 20. Localization error (in cm) as a function of frame number using the
proposed and GCC methods for frame size of (a) Frame size = 200 ms and
(b) Frame size = 500 ms with frame shift of 50 ms for the Case 2 as shown in
Fig. 16(b).

for frames where signal energy is high, and also a lower error is

obtained when larger frame sizes are used.

V. CONCLUSION

In this paper, a method for estimation of time-delays and

speaker localization using the information in the excitation

source of speech production was proposed. Comparison of the

results show that the delay and location parameters estimated

by the proposed method are closer to the actual values than the

parameters estimated from the spectral-based GCC method.

Generally all the correlation-based methods work better when

longer segments are used. The proposed method works even

with smaller segments. Since the proposed method is based on

the information in the source of excitation, the Hilbert envelope
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Fig. 21. Localization error (in cm) as a function of frame number using the
proposed and GCC methods for frame size of (a) frame size = 200 ms and
(b) frame size = 500 ms with frame shift of 50 ms for the Case 3 as shown in
Fig. 16(c).

of the LP residual of even four or five pitch periods may be

sufficient for estimating time-delays. In general, features of the

vocal tract system and features of the excitation source contain

significant information about a moving speaker. The potential

of vocal tract system features has already been established. In

this paper the usefulness of excitation source information is il-

lustrated. An effective way of combining these two approaches

may yield a robust method for localization and tracking a

moving speaker in an adverse acoustic environment.
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