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ABSTRACT

In speech recognition, speaker-dependence of a speech
recognition system comes from speaker-dependence of the
speech feature, and the variation of vocal tract shape is
the major source of inter-speaker variations of the speech
feature, though there are some other sources which also
contribute. In this paper, we address the approaches of
speaker normalization which aim at normalizing speaker's
vocal tract length based on Frequency WarPing (FWP).
The FWP is implemented in the front-end preprocessing
of our speech recognition system. We investigate the for-
mant-based and ML-based FWP in linear and nonlinear
warping modes, and compare them in detail. All exper-
imental results are based on our JANUS3 large vocabu-
lary continuous speech recognition system and the Spanish
Spontaneous Scheduling Task database (SSST).

1. INTRODUCTION

In speech recognition, we are mainly facing three major
challenges: (1) speaker-dependence of the speech signal,
which leads to speaker-dependence of the speech recognizer;
(2) co-articulation of the speech units for acoustic models,
which leads to context-dependence of the speech recognizer;
(3) environmental noise, which leads to the problem of ro-
bustness of speech recognizer in practical use. Almost all
kinds of speech feature are extracted from the speech signal
or waveform. The reason of speaker-dependence of speech
signal is very complicated. It is not only related to the phys-
iological di�erences of speakers, such as vocal tract shape
and fundamental pitch, but also related to the linguistic
di�erences, such as accent, dialect and stress, etc., or even
the physical and mental conditions of speakers [1]. But it
is generally agreed that one of the major source of inter-
speaker variance is the vocal tract shape, especially the vo-
cal tract length (VTL) [2, 3]. Therefore, many researchers
have been working on the VTL normalization via FWP in
order to compensate for the speaker variation. The ear-
lier researches were focused on the identi�cation of isolated
vowel [1, 2, 3]. In the recent researches, the FWP was inves-
tigated in continuous speech recognition system [4, 5]. In
[4], a linear FWP was investigated, and the warping factors
were obtained by grid search based on Maximum-Likelihood
(ML) criterion. We refer this method as ML-based FWP.
The advantage of the ML-based FWP is that it guaran-
tees to �nd the warping factor which is optimal in the ML

criterion. The weakness of this method is that it is rela-
tively expansive in computation. In [5], a parametric ap-
proach for FWP was proposed. We refer this method as
formant-based FWP. The idea is the same as in [2, 3], i.e.,
the warping factors were obtained from formant estimation.
But they investigated the method in large vocabulary con-
tinuous speech recognition system. The advantage of the
formant-based FWP is that it is not very expansive in com-
putation. The weakness of the method is that the warping
factor is obtained only based on formant, so that it has no
relationship with the ML-score and hence can not guarantee
that the FWP can increase the ML-score. In this paper, we
investigate the formant-based and ML-based FWP method
for speaker normalization. In the formant-based FWP, in-
stead of just using the third formant, we also investigate
to use the �rst and second formant in our experiments. We
experiment linear and nonlinear FWP in the formant-based
and ML-based method, and evaluate the methods based on
our JANUS3 large vocabulary continuous speech recogni-
tion system.

2. FREQUENCY WARPING

2.1. Preprocessing

The spectrum of the recorded speech signal X(!) is as-
sumed to be transmitted via some kind of channel and to
be obtained via some kind of receiving device. In the trans-
mitting and receiving process, the clean speech signal S(!)
is disturbed by the channel distortions and some additive
noise N(!). Most of the channel distortion H(!) can be as-
sumed to be multiplicative in the frequency domain leading
to equation (1).

X(!) = H(!)S(!) +N(!) (1)

Here we assume thatX(!) has been segmented with a Ham-
ming window, so that H(!) and N(!) also include the ef-
fect of pre-emphasis and Hamming window. In the typical
front-end processing of speech recognition systems, X(!) is
passed through a �lterbank with triangular shaped �lters
spaced according to the Melscale [6, 7]. Hence the signal
passing through such a �lterbank can be formulated as:

Y (i) =

!=!ihX
!=!il

Ti(!)X(!) 0 � i � N � 1 (2)

Where N is the number of �lters, and !il and !ih are the
lower and upper bound of the i-th �lter Ti(!). After pass-



ing through the Melscale �lterbank, the logarithm of Y (i) is
transformed with the DCT, so that the �nalM -dimensional
feature vector is a set of Melscaled Frequency Cepstral Co-
e�cients (MFCC):

Z(i) =

N�1X
n=0

cos(
in�

N
) log Y (n) 0 � i �M � 1 (3)

Because of the logarithm in the Y -space, the multiplica-
tion of H(!)S(!) in equation (1) becomes additive in the
Z-space, i.e., feature-space (ignore N(!)). This is the rea-
son why many researchers use a�ne transformation (rotate
and/or shift Z) in the feature-space to do speaker normal-
ization (such as mean subtraction) and adaptation (such as
MLLR). Suppose that FWP is performed in the X-space in
equation (1), and the warping function is !0 = '(!), then
equation (2) becomes

Y
0(i) =

!=!ihX
!=!il

Ti(!)X('(!)) 0 � i � N � 1 (4)

Comparing equation (4) to equation (2), it is clear that
in most cases, the above FWP is equivalent to a nonlin-
ear transformation in the Y -space, even in the case of lin-
ear warping, for which we assume '(!) = �! (with con-
stant �). Hence it is also a nonlinear transformation in the
Z-space. From this point of view, considering that FWP
aims to reduce the e�ect of frequency shift of, for example,
formant positions, but not the linear channel distortions
caused by the vocal tract and other speaker characteristics,
it should be used together with the other a�ne-transform-
based speaker normalization or adaptation methods.

2.2. Front-end Implementation

According to the Fourier transformation, F (a!) $

1=af(t=a), the FWP (compress or stretch in frequency axis)
is equivalent to resample the waveform in time axis. Where
a is the warping factor. Considering that our recognition
system is synchronous in frame and all other features are
extracted based on the spectrum, the FWP is implemented
right after the short time spectral analysis stage in the front-
end preprocessing of the system. The spectrum is warped
in frequency axis frame by frame. Figure 1 is the block di-
agram of the JANUS front-end preprocessing. Where xt is

warping factors

#

xt �! FFT �! FWP �! PLP �! zn

Figure 1. Diagram of FWP front-end

the input speech signal and zn the output PLP feature vec-
tor. FWP represents Frequency Warping, and PLP means
Perceptual Linear Predictive [7]. The feature we are us-
ing in the experiments is the same as in [8], except here
we insert a FWP step between FFT and PLP processing.
The �nal feature is a 13-order Perceptual Linear Predictive
(PLP) feature plus a power coe�cient. We combine it with
its delta and delta delta to form a 42 dimensional feature
vector and reduce the dimension from 42 to 28 using an

LDA transformation. We use the following piecewise warp-
ing functions in both formant-based and ML-based FWP.
Linear FWP:

f
0 =

�
��1
s f if f < F

bf + c if f � F

Nonlinear FWP:

f
0 =

�
�
�(3f=2FN )
s f if f < F

bf + c if f � F

Where �s = Fs=F is the warping factor of speaker S, Fs
is the average formant frequency of speaker S and F is the
average formant frequency over all speakers in the training
set. FN is the bandwidth. b and c are constants which can
be calculated according to the equations of �sF = bF + c

and bFN + c = FN . F is used as a threshold which aims
at compensating for the bandwidth mismatch after warp.
Therefore, if the frequency axis is compressed from f = 0
to f = F , it will be stretched from f = F to f = FN in
order to have f 0 = f at the upper boundary of bandwidth.
If F is set to FN , then the warping is equal to those in [5].

2.3. Training Procedure

For the formant-based FWP, we use the Waves+ software to
estimate formants (up to the third formant) of each speaker
in the training set. The median value of each formant of
each speaker and the median value of each formant over all
speakers in the training set are calculated, then the warp-
ing factors �s for every speaker are obtained. In training,
we load in the warping factors and use them to warp the
power spectrum (as showed in �gure 1), and do the itera-
tive training with the warped feature. For the ML-based
FWP, the training principle is to �nd the warping factor
which maximums the likelihood [4]. We use the following
procedure for training:

1. Set the initial warping factor �s = 1:0 for all speakers

2. Do Viterbi training based on current warping factors

3. Find the best warping factor in a limited grid, that is,
��s = argmax�P (Xs('(f)) j �;Ws), ls � �s � hs.
Where Xs is the feature vector sequence of speaker S,
and Ws is the corresponding transcription. ls and hs
are the lower and upper bound of the grid search area.
They are de�ned as ls = �s � � and hs = �s + �.
Where �s is the current warping factor.

4. Set �s = ��s , go to step 2.

The above procedure stops if there is not signi�cant di�er-
ence in the warping factors between two consecutive train-
ing iterations.

2.4. Testing Procedure

For the ML-based FWP, we use a decoding procedure which
is a little bit di�erent from [4]. The input utterance is
�rst decoded and aligned with the decoding output hy-
pothesis without FWP, then the feature is warped with all
possible grid points, and the ML-score is calculated with
those warped features on the voiced phonemes in the path
of alignment. In that case, we do not need to do forced-
alignment for all warping factors. Our experimental result



shows that the error rate is almost the same as the test pro-
cedure in [4], but reduce the decoding computation. Obvi-
ously, compared to the regular test procedure, the FWP test
needs to do an extra decoding and forced-alignment plus
the calculation of ML score for every warping factor. For
the formant-based FWP, we estimate the formants for each
testing speaker in the testing set with all available testing
utterances of the speaker In the test, the warping factor is
used to warp the feature directly so that no warping factor
search is needed as for the ML-based method.

3. EXPERIMENTS

All experiments are based on our new JANUS speech recog-
nition system. Compared to the JANUS-II system in [8],
the new system uses polyphone, instead of triphone context
in the acoustic model and clusters the models based on a
decision-tree. We already used the formant-based FWP on
the Switchboard database and reached about 5% relative er-
ror reduction. The ML-based FWP was successfully used on
the GSST (German SST) before and reduced the error rate
by about 12% [9]. In the following sections we report results
obtained on the SSST database comparing both methods.
Compared to the database in [8], we increased about 4500
cross-talk utterances in the training set, and keep the same
Devset. Thus there are 10650 utterances (5785 from 68 fe-
male speakers and 4865 from 72 male speakers), which is
about 12 hours data, for training. The test vocabulary con-
sists of 4606 words, and the language model is a class-based
language model.

3.1. Distributions of the warping factors

In this section, we present the distributions (histogram
statistics) of the warping factors obtained from the formant-
based and ML-based FWP in the training set.

0

5

10

15

20

25

0.76 0.8 0.84 0.88 0.92 0.96 1 1.04 1.08 1.12 1.16 1.2 1.24

Female
Male

Figure 2. Histogram of F1 warping factors
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Figure 3. Histogram of F2 warping factors
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Figure 4. Histogram of F3 warping factors
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Figure 5. Histogram of ML warping factors

From the distribution �gures, we �nd that the warping
factors of female speakers are dominant in the area of �s �
1:0, and the males are dominant in the area of �s � 1:0.
This coinsides with the fact that most of female's formant
frequency is higher than man's. it also illustrates that the
ML-based searching method can, in some extent, catch the
formant variations, though it has no relation with formant
estimation. But we can also �nd that the male and female
factors in Figure 2 to 4 are not clearly separated as in 5, and
they are mainly falling in the area around 1:0 and have a
smaller variation (especially for the factors from the second
and third formant).

3.2. Recognition results

In this section, we present the recognition results on the
push-to-talk test set.

Modes baseline F1 F2 F3 ML

Linear 21.8% 20.5% 21.9% 21.6% 19.8%

Nonlinear 21.8% 21.5% 22.7% 21.6% 21.0%

Table 1. Word error rate of di�erent FWPs

Table 1 contains the word error rate of the formant-
based and ML-based FWP. Where F1, F2 and F3 means
the formant-based FWP (�rst, second and third formant),
and ML means ML-based FWP. It shows that (1) the lin-
ear FWP is always better than their nonlinear partner; (2)
the ML-based FWP is better than the formant-based FWP.
Among the formant-based FWP, we can see that F1 gave us
the best result. These results are not consistent with that
we used to observe from the Switchboard data, with which
we observed that the nonlinear warp is better than linear
warp. We also tested the cross-talk test set and observed
that (1) ML-based FWP do improve the performance, but



not as much as it does on the push-to-talk test set; (2) the
nonlinear FWP is still worse than the linear FWP; (3) the
formant-based FWP does not improve (actually they hurt
a little) the performance. From the results we can conclude
that the e�ectiveness of FWP depends on the database, be-
cause the warping factor depends on the context, not just
the speakers.

Speaker Baseline F1 F2 F3 ML

Meba 10.4% 9.9% 7.4% 9.9% 6.5%

Mfmm 20.5% 20.5% 23.5% 21.6% 21.6%

Mofc 11.8% 14.2% 12.8% 12.3% 11.8%

Macc 27.1% 26.0% 28.4% 27.0% 27.9%

Mrnn 31.5% 30.0% 32.1% 32.3% 27.8%

Fcba 14.0% 14.0% 16.3% 15.6% 12.1%

Fnba 15.5% 15.6% 16.5% 15.9% 14.3%

Fmcs 25.0% 21.0% 22.0% 22.9% 21.2%

Fmgl 25.0% 26.4% 26.9% 25.5% 25.5%

average 21.8% 20.5% 21.9% 21.6% 19.8%

Table 2. Word error rate for each speaker

Table 2 shows word error rate of each speaker in the test
set. They were obtained based on the linear FWP. Where
the �rst character (M/F) in speaker name represents gen-
der. We can see that: (1) for some speakers, the FWP could
not reduce their word error rate, such as Mfmm and Fmgl;
(2) no warping method is consistently better than the oth-
ers for all speakers, though the ML-based one is better on
average; (3) it seems that the amount of error reduction
is not relating to the baseline error rate. For example, for
some speakers who already have a relatively low baseline er-
ror rate, such as Meba and Fcba, the FWP can still reduce
the error rate. But for some speakers who have relatively
high error rate, such as Mfmm and Fmgl, the FWP could
not reduce their error rates. It means that FWP could not
reduce the variations for some of the speakers. We think
one of the reason might be the warping functions, linear or
exponential, does not reect the relationship between for-
mants and VTL, because of the context-dependence of such
relationship [10]. Another reason for the ML-based FWP
might be that the warping factor, is only optimal for the
models which appear in the alignment path, i.e., increas-
ing their ML-score, it could increase more ML-score for the
other models too. For the formant-based FWP, it is un-
certainty if the inferior performance of is because of the
formant estimation accuracy. Because Formats are context
dependent, it should be better if formants are estimated
based on the same context over all speakers. We calculated
the average male and female VTL with the formulate in [2],
and obtained 16.45cm for male (15.47cm for female) which
is near the standard value (17cm) [10]. We found that F3 is
the best one for estimating VTL. This might be that vowel-
dependence of the F3 is not as strong as the �rst two. But
we can see, from the histogram of warping factors, that the
third Format does not reect much di�erence among the
speakers, though the average VTL value seems reasonable.

4. CONCLUSION

In this paper, we investigated the formant-based and
ML-based FWP with linear and nonlinear warping func-

tions, and reported our experimental results based on the
JANUS3 large vocabulary continuous speech recognition
system and the SSST database. The ML-based FWP is
better than formant-based FWP. We obtained about 10%
error reduction with the ML-based FWP.
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