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Abstract 
With the advent of Wireless Application Protocol (WAP) and 
2.5/3G communication systems, the mobile device has 
become a window to the Internet. A natural interface to this 
mobile device is through speech. To address this need, a new 
European Telecommunications Standards Institute (ETSI) 
standard front-end has evolved for Distributed Speech 
Recognition (DSR). The goal of the ETSI DSR front-end is to 
standardize client-server speech recognition applications with 
a common feature set and quantization method. Although 
originally evolved as a speech recognition standard, we 
propose it is also a method of standardizing distributed 
speaker recognition authentication. To this end, we perform 
experiments using the DSR parameterization for a speaker 
recognition application.  Results indicate excellent 
preservation of speaker identity in the DSR standard. This 
testing shows that DSR brings the potential for a promising 
new era of portable authentication for applications in 
personalization and security. 

1. Introduction 

Biometrics [1] is a maturing field with outstanding potential in 
many modern authentication systems. Biometrics simplifies 
the interface to the human user by eliminating the need for 
passwords and personal identification numbers (PIN). They 
are cumbersome at best because of various practices currently 
in use. By their nature, passwords and PINs are difficult to 
remember, must be changed frequently, and are subject to 
“cracking”. Biometrics solves these problems by the use of 
various distinguishing characteristics of individuals. 
Authentication methods commonly used are voice, 
fingerprints, hand geometry, iris structure, facial 
characteristics, etc. Access is controlled through a verification 
process that determines whether a claimant’s characteristics 
match those of the claimed identity. 

Biometrics solutions for networked environments must 
address three criteria: 1) the security must be as good as, or 
better than, the existing password system, 2) the authentication 
mechanism must be accepted by the end users, and 3) the 
biometric solution must be inexpensive to implement. The 
final criterion comprises several considerations. The 
verification transaction rate must be scalable, and not tax the 
existing servers. The user models must have a sufficiently 
small memory footprint to allow for efficient storage and 
transmission across the network. Lastly, the barriers to entry 
must be minimized. It is unreasonable to expect a customer to 
incur the cost of retina scanners for mobile devices. 

The concept of Distributed Speech Recognition (DSR) is 

powerful. DSR separates the structural and computational 
components of recognition into two parts – front end 
processing on the client system and the speech recognition 
engine on the back-end. This separation of tasks enables a 
flexible architecture with great potential. 

There are several advantages of the DSR structure. First, a 
standard front-end increases accuracy by minimizing 
mismatch. Currently, a variety of vocoders exist for wireless 
systems. The proliferation of different coding methods 
introduces different artifacts for different vocoders causing 
mismatch problems for speech recognizers based directly on 
the coded speech. Second, DSR is based on a data network. 
Because of the new standards in WAP, DSR fits naturally into 
the wireless Internet architecture. Third, DSR is attractive 
since it focuses on speech recognition alone. That is, standards 
in this area are produced to work well with modern speech 
recognition systems. Also, standards are implemented to 
minimize the impact of bit errors over standard 
communication channels. Finally, DSR is attractive because of 
the limited processing power of modern cell phones. DSR puts 
the main burden of computation and upgradability on the 
server side. This feature avoids costly and difficult attempts to 
squeeze speech recognition code into a small platform. 

Our goal in this paper is to explore the potential of using the 
ETSI DSR front-end for speaker recognition. The benefits are 
numerous. One of the main difficulties in speaker recognition 
is the cross-channel problem; i.e., enrolling on speech from 
one channel (e.g., vocoders and communication channel) and 
then testing on speech from another channel with different 
characteristics has the potential to cause severe degradation in 
performance. To be acceptable as a standard for security, 
speaker recognition must guarantee a reasonable level of 
accuracy. DSR circumvents this problem by avoiding the 
telephone system. The speech is coded at the input source and 
the features are transmitted across a data channel. A second 
advantage of DSR for speaker recognition is that, as in the 
speech recognition case, it avoids the need for multiple 
designs and strategies for different vocoders. Also, we can 
reduce computational load if we need to perform only 
verification and not send voice content. A third advantage of 
DSR is that it is integrated in the data network. Thus, it is easy 
to envision integrating authentication with Internet security. 

The choice of the polynomial classifier, as opposed to other 
classifiers such as hidden Markov models (HMM) and neural 
networks, is based on our earlier work [2]. We have shown the 
utility of this particular solution for applications that dictate 
low-computational complexity and minimal memory 
resources. The CipherVOX system, [2], is based on a client-
server approach where high transaction rates are desired. 
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Since the DSR standard is based on a similar concept, we 
draw upon our experience in implementing this system. 

The outline of this paper is as follows. In Section 2, we 
introduce the ETSI DSR standard front-end. We give basic 
design criteria and the data format. In Section 3, we show the 
structure of the classification system used for speaker 
recognition. Section 4 has experiments showing the effect of 
the ETSI DSR front-end on speaker recognition on the YOHO 
database.  

2. ETSI DSR standard front-end 

To enable widespread applications using DSR in the market 
place, a standard for the front-end is needed to ensure 
compatibility between the terminal and the remote recognizer. 
The Aurora DSR Working Group within ETSI has been 
actively developing this standard over the last two years. The 
first DSR standard was published by ETSI in February 2000. 
This standard and some aspects of its performance are 
described as follows. 

The overall DSR system is illustrated in Figure 1. The mel-
cepstrum was chosen as the feature set for the first standard 
because of its widespread use throughout the speech 

recognition industry. Figure 2 shows a block diagram of the 
processing stages for the DSR front-end. At the terminal the 
speech signal is sampled and parameterized using a mel-
cepstrum algorithm to generate 12 cepstral coefficients 
together with C0 and a log energy parameter. These are then 
compressed using a split vector quantizer to obtain a lower 
data rate for transmission. To be suitable for today’s wireless 
networks a data rate of 4800 b/s was chosen as the 
requirement. The compressed parameters are formatted into a 
defined bit stream for transmission. 

It is anticipated that the DSR bit stream will be used as a 
payload in other higher-level protocols when deployed in 
specific systems supporting DSR applications. Thus the 
standard does not cover the areas of data transmission or any 
higher-level application protocols that may run over them. In 
this respect it is similar to speech codec standards where the 
codec is specified separately to the systems that use it.  

The defined bit stream is sent over a wireless or wire line 
transmission link to the remote server where parameters 
received with transmission errors are detected and the front-
end parameters are decompressed to reconstitute the DSR mel-
cepstrum features. These are passed to the recognition decoder 
residing on the central server. The recognizer back-end is not 
part of the standard. 

Since the data channels used for the transport of the DSR bit 
stream may be subject to errors (transparent data channels), 
special attention has been given to make the whole system 
robust to the types of burst errors that occur on wireless 
channels. To achieve this, error detection bits are added in the 
terminal DSR encoder as part of the bit stream and a special 
error mitigation algorithm is used at the decoder. 

When developing the standard the following requirements 
were met: 
• Mel-Cepstrum feature set consisting of 12 cepstral 

coefficients logE and C0 
• Data transmission rate of 4800 b/s 
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Figure 1: Block Diagram of DSR System 
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Figure 2: DSR front-end. 



 

 

• Low computational and memory requirements for 
implementation in the mobile terminals 

• Low latency 
• Robustness to transmission errors 

Full details of the algorithms and architecture are given in the 
paper [3] and the standards document [4] (accessible from the 
ETSI standards web site). 

3. Classifier structure 

The basic structure of our classifier, on the server DSR back-
end, is shown in Figure 3. The feature vectors, x1…xM, 
produced from the DSR front-end and transmitted across the 
channel, are presented to the classifier. A discriminant 
function [5] is applied to each feature vector, xk, using a 
speaker model, w, producing a scalar output, f(xk,w), 
representing the frame score. The final score for the speaker 
model is then computed as the average of the individual frame 
scores, 
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Comparing the final score to a threshold, T, performs the 
accept/reject decision for the system. If s < T, then the claim is 
rejected; otherwise the claim is accepted. 

Our pattern classifier uses a polynomial discriminant function 
[6], 

 )(),( xpwwx tf = . (2) 

The polynomial discriminant function is composed of two 
parts. The first part, w, is the speaker model. The second part, 
p(x), is a polynomial basis vector constructed from input 
feature vector x. This basis vector is the monomial terms up to 
degree K of the input features. For example, for a two 
dimensional feature vector, x=[x1 x2]

t, and K=2, we have 
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Thus, the polynomial discriminant function output is a linear 
combination of the polynomial basis elements. 

For a server-based application, a high transaction rate is 
desired. For speaker recognition applications, the server load 
is typically determined by the complexity of the discriminant 
function evaluation. For the polynomial classifier, this 
evaluation can be simplified as follows. Since w does not 

depend on the frame index, the computational complexity is 
reduced as illustrated in equation (4). 
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Thus, only a single vector, p , representing the input speech 

is generated from the feature vectors transmitted across the 
network. A single transaction equates to computing an inner 
product between a speaker model and this vector. The number 
of floating point operations (FLOPS) is 

 12 model −N , (5) 

where Nmodel is the length of w. Thus for 12 features and a 3rd 
order (K=3) polynomial expansion, w is of length 455, 
resulting in only 909 flops per transaction, and a model size of 
1820 bytes for a floating point representation. 

A method of training the classifier is given in [7]. 

4. Experiments 

We evaluated the performance of the ETSI DSR front-end on 
YOHO. The YOHO database is a publicly available speaker 
verification database. It is a natural choice since it is live 
microphone speech collected with no telephone line distortion 
(other than band-limiting); also, several comparisons are 
available in the literature [8]. The YOHO database consists of 
138 speakers enrolled in 4 separate sessions. Each session has 
24 enrollment phrases of the form “23-45-56” (3 doublets). 
For verification, there are 10 sessions consisting of 4 phrases 
of the same form. Additional details of the YOHO database 
are available in [8]. 

For verification, we used the classification system and testing 
methodology described in [7]. A polynomial of degree 3 was 
constructed from the 12 input mel-cepstral features from the 
DSR front-end; this results in a model size of 455 coefficients. 
Endpointing was performed on a per utterance basis using the 
DSR front-end's log energy parameter. All four enrollment 
sessions in the YOHO database were used for training the 
classifier. Verification was performed using one-phrase tests 
for a total of 40 tests per speaker. Performance is gauged in 
terms of the average equal error rate (EER) across all 
speakers. 
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Figure 3: Classifier structure. 

Table 1: Performance of the CipherVOX engine for 
YOHO and the DSR Standard. The numeric quantity for 
each entry is the average EER in % for a one-phrase test. 

           Verify 
Enroll 

Un-
quantized 

Error
-Free  

EP1 EP2 EP3 

Unquantized 1.18 - - - - 

Error-Free - 1.22 1.22 1.26 1.67 

EP1 - 1.22 1.22 1.26 1.67 

EP2 - 1.22 1.22 1.27 1.66 

EP3 - 1.26 1.26 1.30 1.70 



 

 

We tested the ETSI standard in several configurations. First, 
as a baseline, we found the average EER for the unquantized 
parameter set; this situation would never occur in practice, but 
it is needed to show the degradation from quantization. 
Second, we tested the ETSI standard across several GSM 
channels: EP1, EP2, and EP3. These channels show the effects 
of bit errors on enrollment and verification. 

Table 1 shows the results of using the ETSI DSR front-end 
standard with the configuration described. We note several 
items of interest. First, the results show that the loss of 
accuracy when going from the unquantized situation to the 
quantized error-free situation is negligible; the average EER 
increases only from 1.18% to 1.22%. This shows that the 
speaker identity is well maintained by the front-end. Second, 
the results show that the channel degradation has only modest 
effect on the EER. As in reference [3], the worst situation is 
seen for EP3. As mentioned in [3], EP3 is an unusual channel 
situation and represents an extreme. Thus, our increase from 
1.22% to 1.70% average EER is quite encouraging; we would 
probably not notice this kind of increase in a typical 
application scenario. 

5. Conclusions 

We have tested the performance of speaker recognition using 
the new ETSI DSR front-end. Although originally designed 
for speech recognition applications, we have demonstrated 
that the standard works well for speaker recognition 
applications. This attribute opens the exciting potential for the 
use of the ETSI standard as a new robust method for 
authentication through wireless and wire line devices attached 
to the Internet. 
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