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Today, more and more people have bene�ted from the speaker recognition. However, the accuracy of speaker recognition o	en
drops o
 rapidly because of the low-quality speech and noise. �is paper proposed a new speaker recognition model based on
wavelet packet entropy (WPE), i-vector, and cosine distance scoring (CDS). In the proposed model, WPE transforms the speeches
into short-term spectrum feature vectors (short vectors) and resists the noise. I-vector is generated from those short vectors and
characterizes speech to improve the recognition accuracy. CDS fast compares with the di
erence between two i-vectors to give out
the recognition result. �e proposed model is evaluated by TIMIT speech database. �e results of the experiments show that the
proposed model can obtain good performance in clear and noisy environment and be insensitive to the low-quality speech, but the
time cost of the model is high. To reduce the time cost, the parallel computation is used.

1. Introduction

Speaker recognition refers to recognizing the unknown per-
sons from their voices. With the use of speech as a biometric
in access system, more and more ordinary persons have ben-
e�ted from this technology [1]. An example is the automatic
speech-based access system. Compared with the conven-
tional password-based system, this system ismore suitable for
old people whose eyes cannot see clearly and �gures are
clumsy.

With the development of phone-based service, the speech
used for recognition is usually recorded by phone. However,
the quality of phone speech is low for recognition because the
sampling rate of the phone speech is only 8KHz. Moreover,
the ambient noise and channel noise cannot be completely
removed. �erefore, it is necessary to �nd a speaker recogni-
tion model that is not sensitive to those factors such as noise
and low-quality speech.

In a speaker recognition model, the speech is �rstly
transformed into one or many feature vectors that represent
unique information for a particular speaker irrespective of
the speech content [2].�emost widely used feature vector is
the short vector, because it is easy to compute and yield good

performance [3]. Usually, the short vector is extracted by
Mel frequency cepstral coe
cient (MFCC) method [4]. �is
method can represent the speech spectrum in compacted
form, but the extracted short vector represents only the static
information of the speech. To represent the dynamic infor-
mation, the Fused MFCC (FMFCC) method [5] is proposed.
�is method calculates not only the cepstral coe
cients but
also the delta derivatives, so the short vector extracted by this
method can represent both the static and dynamic informa-
tion.

Both of the two methods use discrete Fourier transform
(DFT) to obtain the frequency spectrum. DFT decomposes
the signal into a global frequency domain. If a part of
frequency is destroyed by noise, the whole spectrum will be
strongly interfered [6]. In other words, theDFT-based extrac-
tion methods, such as MFCC and FMFCC, are insensitive to
the noise. Wavelet packet transform (WPT) [7] is other type
of tool used to obtain the frequency spectrum. Compared
with the DFT, WPT decomposes the speech into many small
frequency bands that are independent of each other. Because
of those independent bands, the ill e
ect of noise cannot be
transmitted over the whole spectrum. In other words, WPT
has antinoise ability. Based on WPT, wavelet packet entropy
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(WPE) [8] method is proposed to extract the short vector.
References [8–11] have shown that the short vector extracted
by WPE is insensitive to noise.

I-vector is another type of feature vector. It is a robust way
to represent a speech using a single high-dimension vector
and it is generated by the short vectors. I-vector considers
both of the speaker-dependent and background information,
so it usually leads to good accuracy. References [12–14] have
used it to enhance the performance of speaker recognition
model. Specially, [15] uses the i-vector to improve the dis-
crimination of the low-quality speech. Usually, the i-vector
is generated from the short vectors extracted by the MFCC
or FMFCCmethods, but we employ theWPE to extract those
short vectors, because theWPEcan resist the ill e
ect of noise.

Once the speeches are transformed into the feature
vectors, a classi�er is used to recognize the identity of speaker
based on those feature vectors. Gaussian mixture model
(GMM) is a conventional classi�er. Because it is fast and
simple, GMM has been widely used for speaker recognition
[4, 16]. However, if the dimension of the feature vector is
high, the curse of dimensionwill destroy this classi�er.Unfor-
tunately, i-vector is high-dimensional vector compared with
the short vector. Cosine distance scoring (CDS) is another
type of classi�er used for the speaker recognition [17]. �is
classi�er uses a kernel function to deal with the problem of
high-dimension vector, so it is suitable for the i-vector. In this
paper, we employ the CDS for speaker classi�cation.

�e main work of this paper is to propose a new speaker
recognition model by using the wavelet packet entropy
(WPE), i-vector, and cosine distance scoring (CDS). WPE is
used to extract the short vectors from speeches, because it
is robust against the noise. I-vector is generated from those
short vectors. It is used to characterize the speeches used for
recognition to improve the discrimination of the low-quality
speech. CDS is very suitable for high-dimension vector such
as i-vector, because it uses a kernel function to deal with the
curse of dimension. To improve the discrimination of the i-
vector, linear discriminant analysis (LDA) and the covariance
normalization (WCNN) are added to the CDS. Our proposed
model is evaluated by TIMIT database. �e result of the
experiments show that the proposed model can deal with the
low-quality speech problem and resist the ill e
ect of noise.
However, the time cost of the new model is high, because
extractingWPE is time-consuming.�is paper calculates the
WPE in a parallel way to reduce the time cost.

�e rest of this paper is organized as follows. In Section 2,
we describe the conventional speaker recognition model. In
Section 3, the speaker recognition model based on i-vector
is described. We propose a new speaker recognition model
in Section 4, and the performance of the proposed model is
reported in Section 5. Finally, we give out a conclusion in
Section 6.

2. The Conventional Speaker
Recognition Model

Conventional speaker recognition model can be divided
into two parts such as short vector extraction and speaker

classi�cation. �e short vector extraction transforms the
speech into the short vectors and the speaker classi�cation
uses a classi�er to give out the recognition result based on the
short vectors.

2.1. Short Vector Extraction. Mel frequency cepstral coef-
�cient (MFCC) method is the conventional short vector
extraction algorithm. �is method �rstly decomposes the
speech into 20–30ms speech frames. For each frame, the
cepstral coe
cient can be calculated as follows [18]:

(1) Take DFT of the frame to obtain the frequency
spectrum.

(2) Map the power of the spectrum onto Mel scale using
the Mel �lter bank.

(3) Calculate the logarithm value of the power spectrum
mapped on the Mel scale.

(4) Take DCT of logarithmic power spectrum to obtain
the cepstral coe
cient.

Usually, the lower 13-14 coe
cients are used to form the short
vector. Fused MFCC (FMFCC) method is the extension of
MFCC. Compared with MFCC, it further calculates the delta
derivatives to represent the dynamic information of speech.
�e derivatives are de�ned as follows [5]:

�� =
∑2�=1 � (���−� + ���+�)

2 ∑2�=1 �2
,

��� =
∑2�=1 � (��−� + ��+�)

2 ∑2�=1 �2
;

� = 1, 2, 3, . . . ,

(1)

where ��� is the �th cepstral coe
cient obtained by theMFCC
method and � is the o
set. �� is the �th delta coe
cient
and ��� is the �th delta-delta coe
cient. If the short vector

extracted byMFCC is denoted as [��1, ��2, ��3, . . . , ���]�, then
the short vector extracted by FMFCC is denoted as [��1, ��2,
��3, . . . , ���; �1, �2, . . . , ��; ��1, ��2, . . . , ���]�.

2.2. Speaker Classi	cation. Gaussian mixture model (GMM)
is a conventional classi�er. It is de�ned as

� (x) =
�
∑
�=1


�� (x;��,Σ�) , (2)

where x is a short vector extracted from an unknown speech.
�(x;��,Σ�) is the �th Gaussian function in GMM, where
��,Σ� are its mean vector and variance matrix, respectively.

� is the combination weight of the Gaussian function and

satis�es∑��=1 
� = 1.� is the mixture number of the GMM.
All of the parameters, such as weights, mean vectors, and
variancematrices, are estimated by the famous EM algorithm
[19] using the speech samples of a known speaker. In other
words, �(x) represents the characteristic of the known
speaker’s voice, so we use �(x) to recognize the author of
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Figure 1: �e structure of the speaker recognition using i-vector.

the unknown speeches. Assume that an unknown speech is
denoted by Y = {y1, y2, . . . , y�}, where y� represents the
�th short vector extracted from Y. Also, assume that the
parameters of �(x) are estimated using the speech samples
of a known speaker �. �e result of recognition is de�ned as

� = 1
�
�
∑
�=1

log [� (y�)] + �, (3)

where � > 0 is the decision threshold and should be adjusted
beforehand to obtain the best recognition performance. If
� ≤ 0, then the GMMdecides that the author of the unknown
speech is not the known speaker �; if the � > 0, then theGMM
decides that the unknown speech is spoken by the speaker �.

3. The Speaker Recognition Model
Using I-Vector

�e speaker recognition model using i-vector can be decom-
posed into three parts such as short vector extraction, i-
vector extraction, and speaker classi�cation. Figure 1 shows
the structure of the model.

�ere are three types of speeches used for this model.
Background speeches contains thousands of speeches spoken
by lots of people, the known speeches are the speech samples
of known speakers, and the unknown speeches are spoken by
the speaker to be recognized. In the short vector extraction,
all of the speeches are transformed into the short vectors by
a feature extraction method. In the i-vector extraction, the
background short vectors are used to train the background
model. �e background model is usually represented by a
GMMwith 2048 mixtures, and all covariance matrices of the
GMM are assumed the same for easy computation. Based
on the background model, the known and unknown short
vectors are used to extract the known and unknown i-vectors,
respectively. Note that one i-vector refers to only one speech.
In the speaker classi�cation, a classi�er is used to match the

known i-vector with the unknown i-vector and give out the
recognition result.

4. The Proposed Speaker Recognition Model

�e accuracy of recognition system usually drops o
 rapidly
because of the low-quality speech and noise. To deal with
the problem, we propose a new speaker recognition model
based on wavelet packet entropy (WPE), i-vector, and cosine
distance scoring (CDS). In Section 4.1, we describe the WPE
method and use it to extract the short vector. Section 4.2
describes how to extract the i-vector using the above short
vectors. Finally, the details of CDS are described in Sec-
tion 4.3.

4.1. Short Vector Extraction. �is paper uses WPE to extract
the short vector. �e WPE is based on the wavelet packet
transform (WPT) [20], so the WPT is �rstly described. WPT
is a local signal processing approach that is used to obtain
the frequency spectrum. It decomposes the speech intomany
local frequency bands at multiple levels and obtains the
frequency spectrum based on the bands. For the discrete
signal such as digital speech, WPT is usually implemented by
the famousMallat fast algorithm [21]. In the algorithm,WPT
is realized by a low-pass �lter and a high-pass �lter, which are
generated by the mother wavelet and the corresponding scale
function, respectively. �rough the two �lters, the speech
is iteratively decomposed into a low-frequency and a high-
frequency components. We can use a full binary tree to
describe the process of WPT. �e three structures are shown
in Figure 2.

In Figure 2, root is the speech to be analyzed. Each
nonroot node represents a component. �e le	 child is the
low-frequency component of its parent and the right child is
the high-frequency component of its parent. �e le	 branch
and the right branch are the low-pass and high-pass �ltering
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Figure 2: �e wavelet packet transform at 2 levels.
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Figure 3: �e �ow chart of wavelet packet entropy.

processes followed by 2 : 1 downsampling, respectively. �e
�ltering processes are de�ned as

W
2	

+1 (�) = W

	

 ∗ h (2�) ,

W
2	+1

+1 (�) = W

	

 ∗ g (2�) ;

0 ≤ � ≤ 2
, 0 ≤ � ≤ �, 0 ≤ � ≤ �
,

(4)

where h and g are the low-pass and high-pass �lter, respec-
tively. �
 is the length of the frequency component at level
�. ∗ is the convolution operation. � is the total number
of the decomposition levels. Because the WPT satis�es the
conservation of energy, each leaf node denotes the spectrum
of the frequency bands obtained byWPT. Based on theWPT,
the wavelet packet entropy (WPE) method is proposed to
extract the short vector and we add a normalization step into
themethod to reduce the ill e
ect of the volume in this paper.
�e �ow chart ofWPEused in this paper is shown in Figure 3.

Assume that there is a digital speech signal that has �nite
energy and length. It is �rstly decomposed into 20ms frames,
and then each frame is normalized. �e normalization
process is de�ned as

� [�] = � [�] − �
� ; � = 1, 2, 3, . . . , �, (5)

where � is a signal frame and � is its length. � is the

mean value of the frame and � is its standard variance. � is
the normalized frame. A	er the normalization process, the
WPT decomposes the frame at 4 levels using (4). �erefore,
we �nally obtain 16 frequency bands, and the frequency

spectrums in those bands are denoted as �04 , �14 , . . . , �154 ,
respectively. For each spectrum, the Shannon entropy is
calculated. �e Shannon entropy is denoted as

�	 = −
�
∑
�=1

�	,� log (�	,�) ; � = 0, 2, 3, . . . , 7 (6)

with

�	,� =
     �
	
4 (�)     
2

!	
,

!	 =
�
∑
�=1

     �
	
4 (�)     
2 ,

(7)

where !	 is the energy of the �th spectrum. �	,� is the energy
distribution of the �th spectrum. � is the length of each
frequency spectrum. Finally, all of Shannon entropies of all
spectrums are calculated and are collected to form a feature

vector that is denoted as [�0, �1, . . . , �7]�.

4.2. I-Vector Extraction. I-vector is a robust feature vector
that represents a speech using a single high-dimension vector.
Because it considers the background information, i-vector
usually improves the accuracy of recognition [22]. Assume
that there is a set of speeches. �ose speeches are supplied
by di
erent speakers and the all speeches are transformed
into the short vectors. In the i-vector theory, the speaker- and
channel-dependent feature vector is assumed as

m = m + Tw (U) , (8)

where m is the speaker- and channel-dependent feature
vector.m is the background factor. Usually, it is generated by
stacking the mean vectors of a background model. Assume
that the mean vectors of the background model are denoted

by ��1 ,��2 , . . . ,���, where each mean vector is a row vector.

m is denoted by [�1,�2, . . . ,��]�. T is named the total
variability matrix and represents a space that contains the
speaker- and channel-dependent information. w(U) is a
random vector having standard normal distribution �(0, 1).
�e i-vector is the expectation of the w(U). U is a set of
speeches and all of speeches are transformed into the short
vectors. Assume that a background model is given, and Σ is
initialized by covariance matrix of the background model. T
and w(U) are initialized randomly. T and w(U) are estimated
by an iteratively process described as follows:
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(1) E-step: for each speech in the set U, calculate the
parameters of the posterior distribution ofw(U)using
the current estimates of T, Σ, andm.

(2) M-step: updateT andΣ by a linear regression inwhich
w(U)s play the role of explanatory variables.

(3) Iterate until the expectation of the w(U) is stable.
�e details of the estimation processes of T and w(U) are
described in [23].

4.3. Speaker Classi	cation. Cosine distance scoring (CDS)
is used as the classi�er in our proposed model. It uses
a kernel function to deal with the curse of dimension,
so CDS is very suitable for the i-vector. To describe this
classi�er easily, we take a two-classi�cation task, for example.
Assume that there are two speakers denoted as �1 and �2.
�e two speakers, respectively, speak �1 and �2 speeches.
All speeches are represented by i-vectors and are denoted by

"1 = {x11, x12, . . . , x1�1} and "2 = {x21, x22, . . . , x2�2}, where x
�



is i-vector representing the �th speech sample of the speaker
si. We also assume there is an unknown speech represented
by i-vector y. �e purpose of the classi�er is to match the
unknown i-vector with the known i-vectors and determine
which one speaks the unknown speech. the result of the
recognition is de�ned as

#� (y) = 1
��

��
∑
�=1

$ (x��, y) + �; � = 1, 2, (9)

where Ni is the total number of speeches supported by the
speaker si. � is the decision threshold. If Di(y) ≤ 0, the
unknown speeches are not spoken by the known speaker si;
if Di(y) > 0, then author of the unknown speeches is the
speaker si. $(⋅, ⋅) is the cosine kernel and is de�ned as

$ (x, y) = xy�

√xx�√yy�
, (10)

where x is the known i-vector and y is the unknown i-
vector. Usually, the linear discriminant analysis (LDA) and
within class covariance normalization (WCCN) are used to
implement the discrimination of the i-vector. �erefore, the
kernel function is rewritten as

$ (x, y) =
(A�x)W−1 (A�y)

√(A�x)W−1 (A�x)√(A�y)W−1 (A�y)
, (11)

where A is the LDA projection matrix and W is WCCN
matrix. A and W are estimated by using all of the i-vectors
and the details of LAD and WCCN are described in [24].

5. Experiment and Results

In this section, we report the outcome of our experiments.
In Section 5.1, we describe the experimental dataset. In
Section 5.2, we carry on an experiment to select the optimal
mother wavelet for the WPE algorithm. In Section 5.3, we
evaluate the recognition accuracy of our model. In Sec-
tion 5.4, we evaluate the performance of the proposedmodel.
Finally, the time cost of the model is count in Section 5.5.

5.1. Experimental Dataset. �e results of our experiments
are performed on the TIMIT speech database [25]. �is
database contains 630 speakers (192 females and 438 males)
who come from 8 di
erent English dialect regions. Each
speaker supplies ten speech samples that are sampled at
16 KHz and last 5 seconds. All female speeches are used
to obtain background models that represent the common
characteristic of the female voice. Also, all male speeches are
used to generate another background model characterizing
the male voice. 384 speakers (192 females and 192 males) are
randomly selected and their speeches are used as the known
and unknown speeches. �e test results presented in our
experiments are collected on a computer with 2.5GHz Intel
Core i5 CPU and 8GM of memory and the experimental
platform is MATLAB R2012b.

5.2. Optimal Mother Wavelet. A good mother wavelet can
improve the performance of the WPE algorithm.�e perfor-
mance of a mother wavelet is based on two important ele-
ments such as the support size and the number of vanishing
moments. If a mother wavelet has large number of vanish
moments, the WPE would ignore much of unimportant
information; if the mother wavelet has small support size,
theWPEwould accurately locate important information [26].
�erefore, an optimal mother wavelet should have a large
number of vanishing moments and a small support size.
In this view, the Daubechies and Symlet wavelets are good
wavelets, because they have the largest number of vanishing
moments for a given support size. Moreover, those wavelets
are orthogonal and are suitable for the Mallat fast algorithm.

In is paper, we use the Energy-to-Shannon Entropy Ratio
(ESER) to evaluate those Daubechies and Symlet wavelets
to �nd out the best one. ESER is a way to analyze the
performance of mother wavelet and has been employed to
select the best mother wavelet in [27]. �e ESER is de�ned
as

� = *
- , (12)

where - is the Shannon entropy of the spectrum obtained by
WPT and * was the energy of the spectrum.�e high energy
means the spectrum obtained by WPT contained much
enough information of the speech. �e low entropy means
that the information in the spectrum is stable. �erefore,
the optimal mother wavelet should maximize the energy and
meanwhile minimize the entropy.

In this experiment, 8 Daubechies and 8 Symlet wavelets,
which are, respectively, denoted as db1–8 and sym1–8, are
employed to decompose speeches that are randomly selected
from the TIMIT database. We run the experiment 100 times
and record the average WSER of those mother wavelets in
Table 1.

In Table 1, We �nd that db4 and sym6 obtain the highest
ESER. In other words, the db4 and sysm6 are the best
mother wavelets for the speech data. Reference [28] suggests
that the sym6 can improve the performance of the speaker
recognitionmodel.However, the Symletwavelets produce the
complex coe
cients whose imaginary parts are redundant
for the real signal such as digital speech, so we abandon the
sym6 and choose the db4.
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Table 1: �e average WSER of the mother wavelets.

Mother wavelet ESER

db1 888.37

db2 890.32

db3 897.44

db4 908.49

db5 901.41

db6 896.53

db7 891.69

db8 890.84

sym1 888.35

sym2 890.36

sym3 894.93

sym4 899.75

sym5 903.82

sym6 908.59

sym7 902.44

sym8 898.37

5.3. �e Accuracy of Speaker Recognition Model in Clear
Environment. �is experiment evaluates the accuracy of the
speaker recognition model. We randomly select 384 speakers
(192 females and 192males). For each speaker, half of speeches
are used as the unknown speech and the other half of speeches
are used as the known speeches. For each speaker, the speaker
recognition model matches the his/her unknown speeches
with all of the known speeches of the 384 speakers and
determines who speaks the unknown speeches. If the result
is right, the model obtains one score; if the result is wrong,
the model gets zero score. Finally, we count the score and
calculate the mean accuracy that is de�ned as

accuray = score

384 × 100%. (13)

In this experiment, we use four types of speaker recog-
nition models for comparison. �e �rst one is the MFCC-
GMM model [4]. �is model uses MFCC method to extract
14D short vectors and uses the GMM with 8 mixtures to
recognize speaker based on those short vectors. �e second
one is FMFCC-GMMmodel [16]. �is model is very similar
to the MFCC-GMM model, but it uses the FMFCC method
to extract the 52D short vectors. �e third one is the WPE-
GMM model [10]. �is model �rstly uses WPE to transform
the speeches into 16D short vectors and then uses GMM
for speaker classi�cation. �e last one was the WPE-I-CDS
model proposed in this paper. Compared with WPE-GMM
model, ourmodel uses the 16D short vectors to generate 400D
i-vector and uses CDS to recognize speaker based on the i-
vector. We carry on each experiment in this section 25 times
to obtain the mean accuracy.�emean accuracy of the above
4 models is shown in Figure 4.

In Figure 4, we �nd that MFCC-GMM obtains the lowest
accuracy of 88.46%. �e result of [4] shows the MFCC-
GMM model can obtain accuracy of higher than 90%. �is
is because we use the GMM with 8 mixtures as the classi�er,
but [4] uses the GMMwith 32mixtures as the classi�er. Large
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Figure 4: �e mean accuracy of 4 models in clean environment.

mixture number can improve the performance of the GMM,
but it also causes the very high computational expense.WPE-
I-CDS obtain the highest accuracy of 94.36%.�is interprets
the achievements of i-vector theory. On the other hand,
when the 8KHz speeches (low-quality speeches) are used,
all accuracy of speaker recognition models is decreased. �e
accuracy of MFCC-GMM, FMFCC-GMM, andWPE-GMM
decrease by about 6%. Comparatively, the accuracy of WPE-
I-CDS decreases by about 1%. �is is because the i-vector
considers the i-vector to improve the accuracy of the speaker
recognition model, and the CDS used the LDA and WCCN
to improve the discrimination of the i-vector. Reference [29]
also reports that the combination of the i-vector and the CDS
can enhance the performance of speaker recognition model
used for low-quality speeches such as phone speeches.

5.4. �e Accuracy of Speaker Recognition Model in Noisy
Environment. It is hard to �nd a clean speech in the real
applications, because the noise in the transmission channel
and environment cannot be controlled. In this experiment,
we add 30 dB, 20 dB, and 10 dB Gaussian white noise into
the speeches to simulate the noisy speeches. All noises are
generated by the MATLAB’s Gaussian white noise function.

For comparison, this experiment employed three i-vector
basedmodels such asMFCC-I-CDS [30], FMFCC-I-CD [31],
and our WPE-I-CDS. �e two models are very similar to
our proposed model, but they use the MFCC and FMFCC
to extract the short vectors, respectively. �e accuracy of the
3 models in noisy environment is shown in Figure 5.

In Figure 5, the three models obtained high accuracy
in clean environment. �is also shows that the i-vector can
improve the recognition accuracy e
ectively. However, when
weuse the noisy speeches to test the 3models, their accuracies
decrease. When 30 dB noise is added to the speeches, the
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accuracy of the three models decreases by about 4%. �is
shows that all of the models can resist weak noise. However,
when we enhance the power of noise, the accuracy ofMFCC-
I-CDS and FMFCC-I-CDS drops o
 rapidly. In particular,
when the noise increases into 10 dB, the accuracy of the above
two models decreases by more than 30%. Comparatively, the
WPE-I-CDS’s accuracy decreases by less than 12%. �ose
show that the WPE-I-CDS is robust in noisy environment
compared with MFCC-I-CDS and FMFCC-I-CDS. �is is
because the WPE uses the WPT to obtain the frequency
spectrum but MFCC and FMFCC use the DFT to do that.
�e WPT decomposes the speech into many local frequency
bands that can limit the ill e
ect of noise, but the DFT
decomposes the speech into a global frequency domain that
is sensitive to the noise.

5.5. �e Performance of the Speaker Recognition Model.
Usually, the speaker recognition model is used in the access
control system.�erefore, a good speaker recognition model
should have ability to accept the login of the correct people
and meanwhile to reject the access of the imposter, as a
gatekeeper does. In this experiment, we use the receiver
operating characteristic (ROC) curve to evaluate the ability of
ourmodel.�eROC curve shows the true positive rate (TPR)
as a function of the false positive rate (FPR) for di
erent
values of the decision threshold and has been employed in
[2].

In this experiment, we randomly select 384 speakers (192
males and 192 females) to calculate the ROC curve. Half of
those speakers are used as the correct people and another
half of the speakers are used as the imposters. We �rstly
use the speeches of the correct people to test the speaker
recognition model to calculate the TPR, and then we use the
speeches of the imposters to attack the speaker recognition

MFCC-GMM
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WPE-I-CDS
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Figure 6: �e ROC curves of TPR versus FPR.

model to calculate the FPR. �e 4 models, such as MFCC-
GMM, FMFCC-GMM, WPE-GMM, and our WPE-I-CDS,
are used for comparison. To plot the ROC curve, we adjusted
the decision thresholds to obtain di
erent ROC points. �e
ROC curves of those 4 models were shown in Figure 6.

Low FPR shows that the speaker recognition model can
e
ectively resist the attack coming from the imposters, and
high TPR shows that the speaker recognition model can
accurately accept the correct speakers’ login. In other words,
a speaker recognition model can be useful if its TPR is high
for a low FPR. In Figure 6, when FPR is higher than 0.45, all
models obtain the high TPR, but WPE-I-CDS obtain higher
TPR than other 3 models for a given FPR that is less than 4.5.
�is shows that theWPE-I-CDS can more e
ectively achieve
the access control task than other models.

5.6. Time Cost. �is section tests the time cost of the
fast MFCC-GMM, the conventional MFCC-I-CDS, and our
WPE-I-CDS. We used 200 5-second-long speeches to test
each model and calculated the average time cost. �e result
of this experiment was shown in Table 2.

In Table 2,MFCC-GMMdoes not employ the i-vector for
speech representation, so it does not cost time to extract the
i-vector. Comparatively, the WPE-I-CDS should cost time to
extract the i-vector. �e WPE-I-CDS cost the most time to
extract the short vector compared with the MFCC-GMM.
�is is because the WPT used by WPE is more complex
than the DFT used by the MFCC. On the other hand, the
parameters of GMM should be estimated beforehand, as
MFCC-GMM cost time to train the classi�er. CDS needs not
cost time to estimate the parameters, but it should cost time to
estimate the matrices of the LDA andWCNN in the training
classi�er step. In all, the i-vector can improve the recognition
accuracy at cost of increasing the time consumption and
calculating the WPE costs too much time compared with
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Table 2: �e time cost of the di
erent speaker recognition models.

Speaker recognition model
Feature extraction (s/speech) Speaker classi�cation (s/speech)

Short vector extraction I-vector extraction Training classi�er Recognition

MFCC-GMM 0.46 — 1.92 0.64

MFCC-I-CDS 0.45 2.37 1.81 0.73

WPE-I-CDS 2.81 2.24 1.82 0.75

WPE-I-CDS
(parallel computation)

0.78 2.23 1.82 0.74

calculating the MFCC.�erefore, it is very important to �nd
way to reduce the time cost of the WPE.

Parallel computation is an e
ective way to reduce the
time cost, because the loops in the linear computation can
be �nished at once using a parallel algorithm. For example,
a signal, whose length is �, is decomposed by WPT at
� levels. In the conventional linear algorithm of WPT, we
have to run a �ltering process whose time complexity was
/(log�) � × � times for each decomposition level, so
the total time cost of WPT is /(�� log�). If we used �
independent computational cores to implant theWPTusing a
parallel algorithm, the time complexity ofWPT can reduce to
/(� log�). �is paper uses 16 independent computational
cores to implement the WPE parallel algorithm, and the last
line of Table 2 shows that the time cost of WPE is reduced
very much.

6. Conclusions

With the development of the computer technique, the speaker
recognition has been widely used for speech-based access
system. In the real environment, the quality of the speech
may be low and noise in the transformation channel cannot
be controlled. �erefore, it is necessary to �nd a speaker
recognition model that is not sensitive to those factors such
as noise and low-quality speech.

�is paper proposes a new speaker recognition model
by employing wavelet packet entropy (WPE), i-vector, and
CDS, and we name themodelWPE-I-CDS.WPE used a local
analysis tool namedWPT rather than the DFT to decompose
the signal. Because WPT decomposes the signal into many
independent frequency bands that limit the ill e
ect of noise,
theWPE is robust in the noisy environment. I-vector is a type
of robust feature vector. Because it considers the background
information, i-vector can improve the accuracy of recogni-
tion. CDS uses a kernel function to deal with the curse of
dimension, so it is suitable for the high-dimension feature
vector such as i-vector. �e result of the experiments in this
paper shows that the proposed speaker recognition models
can improve the performance of recognition compared with
the conventional models such as MFCC-GMM, FMFCC-
GMM, and WPE-GMM in clean environment. Moreover,
theWPE-I-CDS obtains higher accuracy than other i-vector-
based models such as MFCC-I-CDS and FMFCC-I-CDS in
noisy environment. However, the time cost of the proposed
model is very higher. To reduce the time cost, we employ
the parallel algorithm to implement the WPE and i-vector
extraction methods.

In the future, we will combine audio and visual feature to
improve the performance of the speaker recognition system.
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