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Abstract. Automatically identifying the person you are talking with using 

continuous audio sensing has the potential to enable many pervasive computing 

applications from memory assistance to annotating life logging data. However, 

a number of challenges, including energy efficiency and training data 

acquisition, must be addressed before unobtrusive audio sensing is practical on 

mobile devices. We built SpeakerSense, a speaker identification prototype that 

uses a heterogeneous multi-processor hardware architecture that splits 

computation between a low power processor and the phone's application 

processor to enable continuous background sensing with minimal power 

requirements. Using SpeakerSense, we benchmarked several system parameters 

(sampling rate, GMM complexity, smoothing window size, and amount of 

training data needed) to identify thresholds that balance computation cost with 

performance. We also investigated channel compensation methods that make it 

feasible to acquire training data from phone calls and an automatic 

segmentation method for training speaker models based on one-to-one 

conversations. 

Keywords: Continuous audio sensing, mobile phones, speaker identification, 

energy efficiency, heterogeneous multi-processor hardware. 

1   Introduction 

Forgetting the name of the person you are talking with can be an awkward and 

uncomfortable experience. Imagine being able to glance unobtrusively at a mobile 

device to see the name of the person who is speaking and perhaps a few other details 

about them. Several research projects, most notably SenseCam [2] have explored 

aiding people‘s memory using technology. However, these systems provide memory 

support retrospectively, by recording information (e.g., lifelogging) automatically and 

allowing the user to review events at a later time. With the advances in sensing and 

processing power, today‘s mobile phones offer the potential to provide memory 

assistance to the user in realtime when a memory problem occurs.  

Using audio sensing for memory assistance is particularly attractive because all 

phones have built-in microphones and audio data is less sensitive to the location and 

orientation of the phone as compared with other common sensors such as cameras and 
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accelerometers. In addition to memory assistance, identifying a co-located speaker 

has a number of other possible uses including allowing people to set ―person-based 

reminders‖ (e.g., ―remind me the next time I speak to John to ask him about his 

vacation‖), filtering social networking status feeds presented to a user based on the 

people they interact with face to face, or tagging life-logging data artifacts (e.g., 

photos) to facilitate retrieval at a later point. 

Several previous prototypes have studied capturing audio to support retrospective 

memory assistance [e.g., 1, 5, 17] and have explored speaker identification using 

additional sensors [12] or multiple phones [7]. However, two key challenges must be 

addressed before continuous audio sensing for speaker identification is practical:   

 Energy efficiency. To be useful for memory assistance and other scenarios, 

speaker identification must run continuously and unobtrusively in the 

background and be ready when needed. However, as we show in Section 4, 

although microphones use very little energy, on an off-the-shelf smart phone 

sampling audio data requires the phone‘s application processer to run and the 

~335mW power consumption of continuous recording will quickly drain a 

phone‘s battery. 

 Training data acquisition. Training data quality is a key factor in determining 

the performance of a speaker identification system. For most prototypes, 

researchers manually gather voice data, label them, and train a speaker model 

for each participant. Yet, in practice users are unlikely to be willing or able to 

manually train a system.  

In this paper, we present the design and implementation of SpeakerSense, a practical, 

energy efficient, and unobtrusive speaker identification system. SpeakerSense tackles 

the above challenges by using a heterogeneous multi-processor (HMP) based mobile 

phone architecture, a set of robust speaker identification methods, and a novel training 

data collection mechanism via phone calls.  

Our experiments show that using an HMP architecture to sample audio, detect 

high-quality voice data on a low-powered secondary processor and engage the 

speaker identification pipeline on a phone‘s processor only when necessary makes 

continuous audio sensing very efficient. Our system uses ~4.29mW when sensing in 

the background, and ~771mW on a phone when actively performing speaker 

identification. Using SpeakerSense, we also benchmarked several system parameters 

(sampling rate, GMM complexity, smoothing window size, and amount of training 

data needed) to identify thresholds that balance computation cost with performance. 

For example, our data show that 3 minutes of audio is a reasonable minimum for the 

amount of training data needed to train robust speaker models. 

To address the challenge of acquiring training data, we investigated several 

unobtrusive data acquisition methods including using phone calls, one-to-one 

conversations, and sharing models across phones. We identify the appropriate channel 

compensation methods that make it feasible to train speaker models using audio data 

from phones calls, and an automatic segmentation method that can be used for 

training based on one-to-one conversations. We also validate the feasibility of sharing 

speaker models trained on one phone with another phone. While work remains to 

develop SpeakerSense into a system that can be studied with people with memory 

deficits, our contributions address technical challenges for speaker identification on 

mobile phones and move continuous audio sensing another step closer to reality.  



2   Related Work 

In our project, we were inspired by the use of technology to help people with memory 

deficits. Kapur [4]‘s survey of memory aids describes the wide variety in common use 

which span both technological (e.g., reminders on watch alarms, mobile phones or 

pillboxes) and non-technological (e.g., wall calendars, notebooks) solutions, and 

highlights the potential for advances in technology on mobile phones, cameras and 

location detection devices to provide further memory assistance. Research using the 

SenseCam [e.g., 2, 5] has shown the potential of lifelogging to help people with 

memory impairments retrospectively review captured information to assist them in 

recalling events. Looking specifically at retrospective aids based on audio logging, 

Vemuri et al. developed iRemember [17], a memory retrieval prototype which 

recorded and transcribed everyday conversations so they could be later searched.  

In addition to supporting retrospection, the computing power available in 

smartphones makes it possible to provide assistance in realtime based on sensed 

events. The Personal Audio Loop (PAL) system [1] is a near-term audio-based 

memory aid that continuously records audio into a buffer; when users need assistance 

recalling something they recently heard (e.g., the name of the person they were just 

introduced to), the buffer can be played back on-demand. SoundSense [6] explores 

using audio beyond memory assistance, continuously sensing and classifying audio 

events to recognize general sound types heard by users (e.g., voice or music) and 

specific activities (e.g., walking, driving cars, riding elevators). These classifications 

enable a number of different applications including an audio daily diary and music 

detection service, which were both prototyped by the authors. 

SoundSense and other continuously sensing applications raise concerns about 

battery efficiency which have been identified and studied. A variety of duty-cycling 

schemes have been proposed to alleviate battery life issues by sampling intermittently 

[e.g., 8, 19]. We take a complementary hardware-based approach to enable low power 

continuous sensing by offloading the initial speech detection task to a low power co-

processor and using the main processor on the phone only when needed. 

Most related to our interest in on-the-go speaker identification, two systems, 

Darwin [7] and EmotionSense [12], have recently explored speaker identification 

using mobile phones. Similar to both of these systems, our goal is not to design new 

speaker identification algorithms. Instead we leverage well-established techniques 

such as the MFCCs feature set [20], pitch tracking [11], and GMM classifiers [e.g., 

13, 14], which have been proven effective for speaker identification. Our focus is on 

adapting these techniques to a mobile platform and addressing challenges that arise 

when using speaker identification on energy constrained mobile phones. 

EmotionSense is a platform for social psychology research that aims to continu-

ously sense the emotions of the mobile phone owner. EmotionSense includes a 

speaker recognition sub-system and silence detector that was used to select non-silent 

audio for the speaker recognition sub-system. Our work complements the Emotion-

Sense research by exploring different approaches to address challenges in continuous 

audio sensing. For example, EmotionSense gathers training data offline in an explicit 

setup phase, while we have focused on gathering training data during everyday use. 

To extend battery life, EmotionSense offloads computation to a remote server, while 

we explore using an on-board low power processor. Finally, EmotionSense uses 



Bluetooth identifiers from other phones to narrow down the number of possible 

speakers, while in SpeakerSense we focus on the case where the user‘s phone must 

work independently without relying on anyone else to be running the same program.  

Darwin [7] uses speaker identification as the example application to demonstrate a 

collaborative sensing platform that uses data collected across many phones to evolve 

classifiers, share them across multiple phones, and then collaboratively infer state 

(e.g., who is speaking). The authors demonstrate the potential for speaker 

identification using multiple phones in three experimental scenarios. Again our work 

is related but complementary; we focus on improving speaker recognition on a phone 

running independently, which does not need or assume many phones running the 

same system. Our research to improve speaker recognition on a single phone could 

contribute to overall improvements in Darwin-style collaborative approaches.  

3   SpeakerSense  

To unobtrusively identify the people a user interacts with face to face, SpeakerSense 

must run continuously on the phone, sampling and processing audio to detect human 

speech from other sounds, and attempt speaker identification when speech is detected. 

A naïve continuous speaker identification algorithm would place a heavy burden on 

the battery and computational resources of the phone, since the high audio sampling 

rate prevents the phone from going into the sleep mode, and the speaker identification 

process is itself computationally expensive. For example, based on our measurements, 

running speaker identification continuously on an HTC Touch Pro 2 (TP2) phone 

consumes ~771mW, which is considerably larger than the phone‘s idle power 

consumption (~11mW) when the phone is asleep and no application is running. In this 

section, we first introduce a heterogeneous multi-processor mobile phone architecture 

that can support low power continuous sensing, and then show how we can build a 

speaker identification system on it. 

3.1 SpeakerSense Architecture 

We designed SpeakerSense so that we can continuously run speaker identification 

without significantly impacting the phone‘s battery life. On current phones, individual 

sensor energy consumption is generally very low, but the process by which the data is 

read requires the phone‘s main processor to be active, which has high energy 

requirements. Furthermore, the high sampling frequencies (e.g 8~16KHz) required for 

continuous sensing do not allow enough time for the phone‘s main processor to sleep 

between sampling cycles, leading to a state of continual high-energy consumption. 

Recent work has shown that energy requirements for continuous background sensing 

can be significantly reduced using an HMP architecture, where sampling and 

processing of sensor data is offloaded to a low-power processor [10].  The power 

consumption of a modern low-power processor is similar to that of a typical sensor; 

and due to the simple architecture, a low power processor can make transitions 

between sleep and active modes very quickly. 



SpeakerSense uses an HMP architecture where the phone‘s main processor is 

augmented with a low power MSP430F5438 processor. This processor consumes 

15mW and 6µW when active (18MHz) and sleeping respectively, and has a 5µs 

wakeup time. We attach a typical mobile phone microphone (Knowles Acoustics 

model SPM0408HD5H) and an amplifier to this processor for sampling audio signals. 

To further reduce energy consumption, we use a hardware threshold detection circuit 

to detect the presence of sound, where a signal is activated when the audio level goes 

above 14% of the full audio scale.  

The low-power continuous audio sensing feature of the HMP allows SpeakerSense 

to leverage the fact that a phone‘s owner is likely engaged in conversations only a 

small fraction of the day. Thus, to reduce overall power and computing resource 

requirements, we designed SpeakerSense as a sequence of 4 stages that have 

increasing power requirements, and assigned each to the processor most appropriate 

for the energy consumption required (Figure 1). Each stage activates the higher power 

stage ―on demand.‖ Using the low-power processor, the Sound Detection stage first 

detects the presence of audio. Next, Speech Detection detects the presence of speech 

and wakes the phone when needed. On the phone, the Frame Admission stage 

identifies blocks of audio samples that contain high quality speech frames, which are 

sent to the Speaker Identification stage. We next describe the functional components 

of SpeakerSense.  

3.2 Sound and Speech Detection  

In SpeakerSense, the Sound and Speech detection stages run on a low-power 

processor. Sound Detection periodically examines the threshold detector output to 

determine the presence of a strong audio signal. If a strong audio signal is detected 

more than 50 out of 1000 times within a 0.5s period, the Sound Detection stage 

assumes the presence of a strong audio signal, and starts the Speech Detection stage 

on the microcontroller to detect the presence of voice. 

The Speech Detection stage samples the audio signal at 8kHz and divides it into 

frames. Each frame has 256 samples, corresponding to 32ms of data. For each frame, 

two lightweight time domain features that summarize the sound characteristics are 

extracted: zero crossing rate (ZCR) [15] and root mean square (RMS) [16]. ZCR, 

defined as the number of zero-crossings within a frame, is an approximation for the 

pitch of the voice. Non-speech frames have no inherent pitch, resulting in high ZCR 

values, while frames with speech, particularly with vowels, typically have low ZCR 

values. The equation for computing ZCR is:  

 

Fig. 1. The SpeakerSense architecture. 
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where s(i = 1 … N ) represents the samples in the frame and N is the length of the 

frame,(256 in this example). The value of sign(x) is +1 or -1 depending on whether (x 

> 0) or (x < 0). For example, if two consecutive samples have opposite signs, 

indicating a zero crossing, ZCR increases by 1. RMS represents the energy of the 

sound signal, and is defined as: 

     √
∑   

  
   

 
 

Since floating point calculations incur high processing overhead on most low 

power CPUs, we use a simple integer approximation as an alternative given by: 
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For every window of 64 frames (approximately 2 seconds of data), Speech 

Detection extracts window-based features and performs classification procedures. 

Human speech is characterized by rapidly changing fluctuations resulting from the 

interleaving of consonants and vowels, which other types of sound are less likely to 

exhibit [15]. Using the ZCR and RMS features for each frame, we calculate four 

window-level features to capture the sound patterns in a window: the mean of ZCR, 

the variances of ZCR RMS, and the Low Energy Frame Rate, which is defined as the 

number of frames within the window that have an RMS value less than 50% of the 

mean RMS for the entire window [16]. For efficiency, we approximate the variances 

of ZCR and RMS as follows:  
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Once the features are extracted, an offline-trained decision tree classifier decides 

whether the sound is human speech. If speech is detected, the Speech Detection stage 

wakes up the phone to run the final two stages that we describe next.  

3.3 Frame Admission and Speaker Identification on the Phone  

SpeakerSense runs frame admission and speaker identification on the phone.  

 

Frame admission. The role of the frame admission stage is to pick high quality 

speech frames from the sampled audio and discard low quality speech frames as well 

as silence frames that occur naturally from brief pauses in human speech. Human 

speech can be divided into voiced speech and unvoiced speech [15]. Voiced speech is 

defined as speech generated from vibrations of the vocal chords, and includes all the 

vowel sounds. In contrast, unvoiced speech does not involve the vocal chords, and 

generally includes the consonant sounds. Because there is more energy in voiced 

speech than in unvoiced speech, voiced speech tends to be more resilient to 

background noise. Thus to increase robustness within the phone context and to 

improve overall system efficiency, we use a frame admission policy in SpeakerSense 

that only forwards voiced speech for speaker analysis, skipping pauses (silence) and 

unvoiced frames.  



Frame admission is accomplished using thresholds on two metrics, ZCR, which we 

also use in the Speech Detection stage, and spectral entropy [3]. In the frequency 

domain, voiced frames have a series of strong peaks in the spectrum, corresponding to 

the pitch and formant of the voice, which results in low spectral entropy. On the other 

hand, the spectrum of unvoiced frames or non-speech frames is fairly flat, and yield 

relatively high spectrum entropy. Unlike standard speech processing systems, we do 

not adopt any commonly used energy features here, such as RMS [16], because the 

energy of the sampled audio is sensitive to the context of use (e.g., distance from the 

speaker, orientation of microphone etc.), while frequency-related features are 

relatively robust to environment conditions. 

 

Speaker Identification. The speaker identification stage is based on a Gaussian 

Mixture Model (GMM) classifier [13] with some modifications to improve robustness 

and computation efficiency for use on the mobile phone. We use as our feature vector 

pitch [11] and the Mel-frequency cepstral coefficients (MFCCs) [20] computed for 

each admitted frame. SpeakerSense computes 20-dimensional MFCCs, and then 

ignores the first coefficient, which represents the energy of the frame, and instead 

focuses on the spectral shape, represented by the 2
nd

 through 20
th

 coefficients. While 

most traditional speaker identification systems use frames that overlap by 50% in 

order to capture subtle changes in the voice, this approach leads to sections of frames 

being analyzed multiple times. Given the resource constraints of the phone, we use 

non-overlapping frames to reduce the amount of computation required. 

As is typical, we use a smoothing window, a fixed-length of successive frames, to 

improve system performance. In theory, a longer smoothing window increases the 

system performance. However, we have found that in practice, the smoothing window 

needs to be less than 10s, due to the latency introduced by the smoothing window and 

the uncertainty of turn-takings in conversations. The speaker identification algorithm 

attempts to identify a speaker by matching GMM speaker models to each smoothing 

window. Each speaker‘s GMM model estimates the log likelihood of the speaker, 

given every frame‘s feature vector. Assuming independence of frames, the speaker 

identified as the one talking during the window is the one whose speaker model gives 

the highest sum of log likelihood across the smoothing window. We train the GMM 

speaker models offline on a server. We use a universal background GMM to represent 

all unknown speakers [13]. To reduce the impact of noisy training data, the variance 

limiting technique [14] is applied with a standard expectation maximization (EM) 

algorithm [13] to train the GMM speaker models.   

  We have our low-powered processor attached to a prototype phone, so we 

decided to validate Frame Admission and Speech Detection on off-the-shelf phones 

for a better indication of feasibility and performance on currently available hardware. 

We implemented prototypes on an HTC Touch Pro 2 (TP2) and an Apple iPhone 3Gs. 

The HTC TP2 runs Microsoft Window Mobile 6.5; the iPhone 3Gs runs Apple iOS 

3.1.3. All signal processing and classification algorithms are implemented in 

approximately 1000 lines of C code to achieve high efficiency and portability 

between different platforms. Other system components (e.g., UI, communication, etc.) 

are written in the default languages for each phone, C# for the TP2 and Objective C 

for the iPhone 3Gs. The offline server side training code is implemented primarily in 

Matlab. 



In our implementation, the prototype pipeline is optimized for lower CPU usage at 

the cost of a larger memory usage. Whenever applicable, we pre-compute parameters 

offline, serialize them into configuration files, and load them into the memory when 

the application initializes. For example, in our prototype implementations, the GMM 

models directly use the pre-computed inverse and determinant of the covariance 

matrix as the model parameters rather than the covariance matrix itself. 

4   Evaluation 

We evaluated several aspects of SpeakerSense including efficiency and trade-offs 

between computational cost and performance for system parameters. We first describe 

our data collection methodology and then our experiments. 

4.1 Data collection 

For the evaluations we collected voice data from 17 speakers (10 males, 7 females) 

using the two mobile phones on which we implemented our prototype (TP2 and 

iPhone 3Gs). We were motivated to seek participants with a range of ages due to our 

interest in memory assistance applications where people would likely be interacting 

with family members of many different ages. The age distribution of our participants 

included four participants older than 45, four between 30-45, seven between 15 and 

30, and two under 15. The median age was 29 and mean was 34.  

For each speaker, we collected approximately 10 minutes of voice both locally and 

remotely though a phone call. The local recording was done by the two mobile phones 

simultaneously in both 8kHz 16bit mono and 16kHz 16bit mono formats. The phone 

call was recorded only in 8kHz, the phone channel standard. All the speech was 

collected in a normal office/home environment where the participant‘s voice was the 

dominant signal and there was modest background noise, such as air conditioning, 

desktop computer fan, or people talking remotely. All phones were placed within 1.5 

meters from the subject‘s head. For each of the adult participants, we also collected 5 

minutes of conversation with the researcher. This gave us a 15-person (eight male, 

seven female) one-to-one conversation database.  

To train the Sound and Speech Detection stages on the low-powered processor, we 

also collected common ambient noises found in office and home settings. These 

sounds included the rubbing sound made by a phone in a pocket, the sound of 

walking, keyboard typing, mouse clicking, printers, copy machines, different types of 

fan noise, air conditioners, flowing water, street traffic, vacuuming, and various types 

of music. This ambient noise dataset contained approximately 250 minutes of audio.  

4.2 Trade-offs between Computational Cost and Accuracy 

For continuous audio sensing and speaker identification on mobile phones there are a 

number of possible trade-offs for system parameters that affect computational cost 

and accuracy.  With SpeakerSense we investigated:  the sampling rate and length of 



the smoothing window, the amount of training data needed, and number of GMM 

components to use. 

 

Sampling rate and length of smoothing window. A higher sampling rate captures 

more high frequency characteristics of the speaker‘s voice, improving the speaker 

identification accuracy at the cost of computation overhead. In Figure 2, we compare 

two audio sampling rates, 8kHz and 16kHz with different smoothing lengths. In this 

experiment, we use 10-fold cross validation. For each of the 17 speakers, the original 

10-minute voice sample is partitioned into 10 subsets, nine of which are used for 

training and one for testing. The cross-validation process is repeated 10 times and 

then the average accuracy is calculated, with each of the 10 subsets used exactly once 

as the test data. 

 The benefit of a higher sampling rate is shown clearly in Figure 2. The accuracy on 

the 16kHz samples is consistently better than the 8kHz samples, although it doubles 

the amount of data to be processed. The performance difference between the two 

sampling rates is most apparent when the smoothing window is small, and the 

advantage of the higher sampling rate decreases as the length of the smoothing 

window increases. We therefore observe that the accuracy of speaker identification is 

less sensitive to sampling rate when longer smoothing windows are used. The choice 

of the window length dictates how fast the system responds to   changes in 

conversations (e.g., onset of the voice and speaker turn-taking). Considering the turn-

taking patterns of everyday conversation, we believe that 3s or 5s smoothing windows 

represent a good balance between delay and accuracy. Therefore for applications that 

require quick response and high accuracy, for example realtime memory assistance, a 

higher sampling rate with smaller smoothing window setup would be preferred. In 

contrast, for applications that are insensitive to latency or require higher efficiency, 

such as life logging, an 8kHz sampling rate with longer smoothing window would be 

more appropriate.  

 

Amount of training data. Intuitively, identification accuracy increases as the amount 

of training data increases, because the speaker model can likely encode more 

information. However, collecting properly labeled training data is generally expensive 

and cumbersome (we discuss ways to minimize this burden in Section 5). In this 

experiment, we investigate the minimum amount of data needed for reliable 

performance. Figure 3 shows the accuracy results for the 8kHz and 16kHz dataset 

respectively. The training data samples were sequentially taken from our voice 

datasets for training. For both datasets, the accuracy for 1, 3, 5, and 10 second 

smoothing windows are given for training data up to 360 seconds. 

 

Fig. 2. SpeakerSense accuracy based on sampling rate and length of the smoothing windows.  



We can make several observations based on the results. First, there is a sharp 

increase of accuracy between 30s to 60s of training data and then accuracy levels off 

above 120s for 8kHz and 180s for 16kHz. These values are likely lower bounds on 

the amount of training data necessary to adequately model the speakers in our mobile 

phone setting. Second, the performance of smaller smoothing windows shows the 

fastest improvement. Longer smoothing windows are less sensitive to the increase of 

training data. Lastly, the 16 kHz system seems to benefit from more training data as 

accuracy increases up through 180 seconds. The reason may be that the training phase 

needs to model a wider frequency range, so it benefits from more data to learn from. 

Our experiments suggest for both 8 kHz and 16 kHz, 180 seconds (3 minutes) is a 

good minimum amount of training data.  

 

The number of GMM mixture components. There is no well-established way to 

determine the optimal number of GMM components to model a speaker adequately. 

Using too few components results in an oversimplified speaker model, that is not 

sufficient to encode the characteristics of a speaker‘s voice. On the other hand, using 

too many components leads to a complicated speaker model with a large number of 

parameters, which requires a large amount of data and computation to train and makes 

the classification on the phone costly. Our goal is to choose the minimum number of 

components necessary to adequately model the speakers. Shown in Figure 4, we 

investigated 5 different model complexities: 4, 8, 16, 32, and 64 component GMMs 

with 1, 3, and 5 second smoothing windows. We used 180 seconds of training data 

based on evaluation of the amount of training data necessary. 

  

Fig. 3. Accuracy vs. amount of training data for the 8kHz (left) and 16kHz (right) datasets. 

 

  

Fig. 4. Accuracy vs. number of GMM components for 8kHz (left) and 16kHz (right) datasets. 

 



With more GMM components, identification accuracy improves as expected. The 

accuracy for shorter smoothing windows has bigger performance gains. The greatest 

increase in performance occurs for all smoothing window sizes when the number of 

GMM components grows from 4 to 16. Above 32 GMM components, the accuracy 

gain levels off. Since the computation cost of identifying the speaker is proportional 

to the number of GMM component, we believe 32 components is a good choice to 

balance accuracy and efficiency. 

4.3 Efficiency of SpeakerSense 

We now evaluate the processing overhead and power consumption of SpeakerSense 

as well as the accuracy of speech detection on the MSP430 low-powered processor. 

 

SpeakerSense Processing Overhead.  On the low-powered processor, Sound and 

Speech Detection consume very little processing resources. Sound Detection runs as a 

periodic task with a 1.5µs processing time every 500µs, using only 0.3% of the 

processing cycles. The Speech Detection stage takes 90.9ms to process 2s of audio 

data, resulting in only 4.4% processor utilization.  

On the phone, we evaluated the processing overhead of Frame Admission and 

Speaker Identification using the speaker models of the 17 participants. In the 

experiments, we ran 18 GMMs in parallel (17 speakers plus 1 universal speaker 

model for unknown speakers) to perform speaker identification. All experiments 

sample at 16kHz, 16-bit, mono audio from the phone‘s built-in microphone. Based on 

the experiments described in the previous sub-section, we use a 32-component GMM 

and a 3s smoothing window. 

The TP2 uses 24.8ms to process a 32ms frame of voice data when the full pipeline 

is engaged (i.e., processing voiced frames). The iPhone 3Gs, which has a slightly 

faster processor, takes 21.7ms to process a frame. Using the profiling tool provided in 

the iPhone SDK, we benchmarked the resource usage of different processing stages, 

shown in Table 1. The memory usage stays at about 8.25 MB, including the user 

interface that displays the current speaker, since we preload all the models and pre-

allocate the memory required for processing. We can see that when the pipeline is 

fully engaged, SpeakerSense uses less than 50% of the CPU, which leaves enough 

resources for other applications to run concurrently. 

In summary, we see the full advantage of using a HMP architecture. The Sound 

and Speech detection stages, which likely dominate the execution time in typical 

usages, consume very little processor resources on the low-power processor. Frame 

Admission and Speaker Identification on the phone, which run only when active 

conversations are detected, require more resources, but still leave computing resource 

for other concurrent applications. 

Table 1. CPU usage for Speaker Identification on the iPhone 3Gs prototype. 

Pipeline Stage: Idle Silence Feature Extraction Speaker Model Evaluation 

CPU Usage: <1% <3% 5.6% ~ 11.3% 35.1% ~ 44.9% 

 



 

SpeakerSense Power Consumption.  Energy life is a scarce resource on mobile 

phones so the power consumption of SpeakerSense must be small for continuous 

speaker identification to be practical. First, we measured the power consumption of 

Sound and Speech detection stages on the low-power processor. We found that the 

Sound Detection stage consumes 0.73mW on average, which is an order of magnitude 

smaller than the 11mW idle power consumption of TP2. So, when the environment is 

quiet, SpeakerSense does not add noticeable burden to the battery. The Speech 

Detection stage consumes 4.29mW, which is still much less than TP2‘s idle power.  

To evaluate the power consumption of the Frame Admission and Speaker 

Identification stages, we measure the power consumption of TP2 using the Power 

Monitor tool [9] (the iPhone hardware does not allow this type of measurement). 

Table 2 shows the total power consumption under different operating conditions with 

a dimmed backlight. We first observe that just continuously sampling the audio on 

TP2 consumes 335mW, which highlights the advantage of using a low-power 

processor for sampling audio for sound and speech detection. The Frame Admission 

stage adds 21mW, which is much smaller than the overhead due to audio sampling. 

The infrequently invoked Speaker Identification routine adds 415mW to the average 

power consumption for a total of 771mW. 

 

Accuracy of Speech Detection on Low-Powered Processor. We have shown that 

introducing the low-power processor results in considerable energy savings compared 

to using the current mobile phone architecture. However, we also need to validate that 

the Speech Detection on the low-powered processor is reasonably accurate, since an 

efficient but incorrect detection is useless. Table 3 shows the confusion matrix for 

Speech Detection on the low-powered processor (these numbers implicitly evaluate 

both Sound and Speech Detection since Sound Detection triggers Speech Detection).  

The precision of the Speech Detection stage—a decision tree classifier with depth 

7—is fairly high, around 93%, at the expense of a low recall at 85%. The latter is due 

to the fact that during pruning, the classifier is tuned to keep the false positive rate 

low in order to reduce the chance of waking up the phone unnecessarily. Although 

more sophisticated and demanding voice detectors can achieve better performance 

[e.g., 3, 16], we prefer the current design that has very low resource consumption. 

Table 2. HTC TP2 Power Consumption. 

Pipeline Stage: 
Sampling 

Audio 

Frame 

Admission 

Speaker 

ID 
Total 

Average Power (mW): 335 21 415 771 

 
Table 3. Confusion matrix of the accuracy of the voice and ambient noise classifiers. 

Ground Truth \ Classified As Voice Ambient Noise 

Voice 85.36% 14.64% 

Ambient Noise 7.28% 92.72% 

 



5   Training Speaker Models 

Speaker recognition requires training a speaker model for each individual who needs 

to be recognized. Acquiring the necessary training data is a practical challenge that is 

often ignored in research prototypes, where researchers collect the data required for 

training. Collecting training data directly from participants, typically by recording a 

single participant‘s voice in a quiet environment, yields the best speaker models 

because the audio data is of high quality and contains data from a single known 

person. However, this method is labor intensive and requires participants to contribute 

their voice and time to train a model. While people might be willing to provide 

explicit training data to help a loved one with memory assistance (e.g., a grandparent 

or parent), this explicit training step is unappealing in general.  

In Section 4.2 we showed that to build a robust speaker model, SpeakerSense 

needs at least 3 minutes of voice data from the speaker. In this section, we explore 

three additional ways beyond an explicit training phase to acquire training data for the 

people that a user interacts with in everyday life: using phone calls, one-to-one 

conversation, and by sharing speaker models across phones. We discuss the 

advantages and disadvantages of each method, as well as additional processing 

required, and compare performance to the ―gold standard‖ of user contributed data for 

the 17 participants we collected data from.  

5.1 Using a Phone Call to Train a Model 

Using data collected during phone calls to train speaker models has many potential 

advantages. First, the identity of the person talking on the phone is typically known 

using caller identification. Second, the audio generated by the phone‘s owner and the 

caller is automatically segmented because the voices pass through two different audio 

channels: the owner‘s voice is received by the local microphone while the caller‘s 

voice is received over the telephone network.  

There is no question that phone calls are an excellent way to train the speaker 

model for the phone‘s owner. The user‘s own voice is recorded locally by the mobile 

phone‘s microphone and can be used directly for training without any additional 

processing. The most striking difference between audio recorded during a phone call 

and user contributed data is that speech from phone calls will exhibit large segments 

of silence or background noise when the caller is talking. However, because 

SpeakerSense is already designed to select only those segments that contain voiced 

speech for training, breaks in the dialog are handled automatically.  

 Training speaker models for the caller is more challenging. The caller‘s voice is 

sampled by the phone and transmitted through the phone network where it undergoes 

band limit filtering and some spectral shaping because the telephone line is a 

narrowband communication channel. This makes it problematic to directly use the 

audio recording from another caller as input to the speaker model training since there 

is a mismatch between the narrowband speech data gathered from the phone line and 

the wideband testing data recorded by the phone‘s microphone. To determine if it is 

feasible to recover useful training data for a caller from a phone call, we investigated 



three lightweight channel compensation techniques to address the acoustic distortion 

produced by the telephone network: phone frequency warping [14], mean 

normalization [18], and the delta MFCCs features [13].  

The average speaker identification accuracy for all 17 participants using the 

different compensation techniques is shown in Figure 5. Assuming the phone is able 

to provide precise caller identification information, in the experiment we manually 

labeled the speaker‘s identity for each of the mobile phone call recordings. We trained 

the speaker models using 5-minute call recordings and tested on 5 minutes of clean 

locally recorded voice data from our 8kHz dataset to match the phone channel 

standard. We used a 32-component GMM and the variance limiting was set to 0.1 in 

order to be more robust to the noisy channel. For the frequency warping method, the 

typical phone channel bandwidth of 300~3300 Hz was linearly warped to the full 

bandwidth 0~4000 Hz. When using delta MFCCs features, 19 difference coefficients 

from a 32ms interval around the current frame are used. This introduces a 32ms delay, 

but is negligible compared to the smoothing window delay.  

It is clear from Figure 5 that without further processing, the performance of 

speaker identification was vastly reduced by using recorded telephone speech directly 

for training. Even with a 10s smoothing window, the accuracy is still poor, coming in 

at only 63% accuracy as compared to greater than 94% when using user contributed 

data. When used individually, frequency warping and mean normalization are nearly 

equally effective, with both contributing more than a 20% accuracy gain when the 

smoothing window is 3s or greater. Adding delta MFCCs to the feature vector 

produced a moderate 5% increase in accuracy when used alone. However, when Delta 

MFCCs was combined with frequency warping or mean normalization, it contributed 

an additional 4% performance gain. Because combining mean normalization with 

frequency warping provided no significant improvement over the use of each method 

individually, we omitted this combined condition from the figure. Although our 

experiments found frequency warping and mean normalization to be equally effective, 

we recommend using frequency warping over mean normalization for mobile 

applications because frequency warping is applied to each frame independently, 

which avoids maintaining a running average that introduces delay into the pipeline.  

Based on this analysis, our prototype system uses frequency warping and delta 

MFCCs together when handling phone recorded speech. Given the ease of collecting 

training data using phone calls, the trade-off of slightly reduced accuracy rates 

compared to user contributed data seems worthwhile. It is important to note that while 

 

Fig. 5. Comparisons of channel compensation methods for different length smoothing windows. 

 



we have addressed the technical feasibility of gathering training data from phone 

calls, the cultural and legal acceptability of training speaker models based on phone 

calls requires further investigation.   

5.2 Using One-to-One Conversations to Train Speaker Models 

Another possibility for training speaker models is to collect voice data from everyday 

conversations, particularly those between the phone owner and one other person. 

While more practical than asking people to explicitly contribute training data, using 

data recorded during a one-to-one conversation is more complicated than using phone 

calls because the audio collected is not automatically labeled with the person 

speaking, and the recorded data likely includes speech from both the phone owner and 

the unknown speaker.  

To process data recorded in one-to-one conversations, SpeakerSense requires the 

phone owner to manually mark the start and end of the (entire) conversation and enter 

the name of the other speaker. SpeakerSense then applies an automatic segmentation 

method that runs the phone owner‘s speaker model and the universal model on all the 

voiced frames. Intuitively, the user‘s own voice will be identified correctly, and the 

other speaker‘s voice will be marked as an unknown speaker. Once enough data from 

the other speaker has been accumulated, the system can train a model accordingly.  

To analyze the effectiveness of this automatic segmenting approach for harvesting 

training voice data from one-to-one conversations we used the conversations that we 

collected with each of the 15 adult participants. Each conversation was sampled at 

16kHz by the phone, and the start and end was marked by the researcher whose 

speaker model was pre-obtained. Informed by our previous experiments we used 32-

component GMMs. Figure 6 compares the accuracy of speaker models trained using 5 

minutes of conversation data and 5 minutes of user contributed data.     

As expected, the speaker models trained from user contributed data has better 

accuracy, since it starts with perfectly segmented voice data containing only one 

speaker. In contrast, we expected that our algorithm for automatically selecting audio 

segments for a second speaker would not be able to perfectly segment the 

conversation and thus that some number of the audio segments used in training the 

speaker model may contain voiced data from the phone owner or both speakers. 

However, as Figure 6 shows, accuracy for the speaker models trained using the 

conversation data only marginally lag behind the speaker models trained on user 

 

Fig. 6. Speaker models trained on one-to-one conversations compared to user contributed data. 

 



contributed data. The difference is consistently less than 5% for all smoothing 

lengths. This shows that using automatically segmented conversation data could be a 

reliable and practical source for training data, especially given the reduced user effort 

necessary compared to getting user contributed data.  

5.3 Sharing Speaker Models Between Phones to Train Speaker Models 

The final speaker model training solution that we explored was sharing speaker 

models between phones. This approach was suggested by Darwin [7], one of the only 

other systems we are aware of that considers the challenge of collecting training data. 

In Darwin‘s speaker identification prototype, each phone learns a speaker model for 

its owner and then exchanges its model with other phones, in a process termed ‗model 

pooling.‘ We were intrigued by the feasibility of exchanging speaker models across 

different types of devices and how well speaker models trained on one device would 

work on another device, which was not described by [7]. If possible, sharing speaker 

models would greatly reduce the training effort because each person would only need 

to train their own speaker model. 

The main challenges in sharing speaker models are the differences between the 

microphones on the devices used to capture the original audio. Although the built-in 

microphones on mobile phones are usually optimized for human voice, their 

frequency responses can differ. We hypothesized that using a channel normalization 

technique, such as using delta MFCCs features, could reduce the effect that different 

microphones have on the data. Using the 16kHz iPhone and HTC TP2 datasets, we 

conducted experiments to explore the impact of microphone variation when sharing 

speaker models between different phones and the effectiveness of applying delta 

MFCCs features to reduce the effect of the differences. 

As Figure 7 shows, the mismatch between the training and testing microphone 

when sharing models between the two phones decreased the system accuracy by 

about 7%. However, using a longer smoothing window helps reduce the negative 

impact of using different microphones. Furthermore, adding the delta MFCCs 

 

Fig. 7. Performance of sharing models between phones. Case 1: training with iPhone and 

testing with TP2. Case 2: training with TP2 and testing with iPhone. Case 3: training with 

iPhone and testing with TP2 with delta MFCCs features. Case 4: training with TP2 and testing 

with iPhone with delta MFCCs features. Case 5: training and testing with the same phone. 

 



features, which are insensitive to the microphone differences, improves the accuracy 

by about 4%. Thus our results from the TP2 and iPhone suggest that combining delta 

MFCCs features with models trained on different phones yields in an overall accuracy 

loss of only 3%. While it would be worth validating this small loss across more 

phones, we believe it is likely that speaker models can be shared across phones with 

only a negligible performance loss. It is important to note that while we have evidence 

that it is technically feasible to share speaker models across phones, user acceptance 

of sharing or exchanging models has not been investigated by Darwin or our research 

and is important to consider moving forward. 

6 Conclusions and Future Work 

Our research with SpeakerSense has addressed two challenges for using continuous 

audio sensing for speaker identification: efficient performance that enables continuous 

audio sensing and scalable methods for gathering the training data needed for speaker 

models. Through our experiments with data gathered from 17 participants in an 

indoor office environment, we have identified trade-offs between computational cost 

and performance that enable robust speaker identification on mobile phones by 

evaluating sampling rate options (8 kHz vs. 16 kHz), the length of the smoothing 

window, the number of GMM components needed to model a speaker adequately, and 

identified lower-bounds on the amount of training data needed to construct robust 

speaker models for the phone.  

To address efficiency we prototyped SpeakerSense using HMP hardware.  We 

demonstrate that splitting computation across a dedicated low-power processor that 

detects sound and voice and using the phone‘s main processor to run the 

computationally intensive speaker identification pipeline only when necessary enables 

continuous and efficient speaker identification. We believe other continuous sensing 

applications could benefit from a similar hardware-based approach. Lastly, we 

presented and evaluated methods for gathering the training data necessary for 

constructing speaker models during everyday activities, identifying channel 

compensation methods that make it feasible to gather training data from phone calls, 

and an automatic segmentation method for training speaker models using one-to-one 

conversations. Furthermore, we validate the feasibility of sharing speaker models 

between different phone platforms. 

Our research has addressed many technical issues necessary to make continuous 

audio sensing and speaker identification practical, enabling the future work needed to 

study SpeakerSense, and similar continuous sensing applications, in day-to-day use.  

Field deployments will be valuable to test our approaches for gathering training data 

in real use, to gather data about the performance of SpeakerSense across a variety of 

environments, and to evaluate whether the information provided by SpeakerSense can 

provide memory assistance for people with memory impairment in practice. We are 

excited about the potential pervasive computing applications that we believe are 

enabled by our research. 
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