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Abstract

Speaking style conversion is the technology of converting nat-

ural speech signals from one style to another. In this study,

we focus on normal-to-Lombard conversion. This can be used,

for example, to enhance the intelligibility of speech in noisy

environments. We propose a parametric approach that uses a

vocoder to extract speech features. These features are mapped

using Bayesian GMMs from utterances spoken in normal style

to the corresponding features of Lombard speech. Finally, the

mapped features are converted to a Lombard speech waveform

with the vocoder. Two vocoders were compared in the proposed

normal-to-Lombard conversion: a recently developed glottal

vocoder that decomposes speech into glottal flow excitation and

vocal tract, and the widely used STRAIGHT vocoder. The con-

version quality was evaluated in two subjective listening tests

measuring subjective similarity and naturalness. The similarity

test results show that the system is able to convert normal speech

into Lombard speech for the two vocoders. However, the sub-

jective naturalness of the converted Lombard speech was clearly

better using the glottal vocoder in comparison to STRAIGHT.

Index Terms: speaking style conversion, vocal effort, Lombard

speech, glottal vocoder, Bayesian GMM

1. Introduction

Speaking style conversion is the technology of converting nat-

ural speech signals spoken in a particular style to another (e.g.

whisper to shouting or normal to Lombard) while retaining the

voice and linguistic information of the original speech signal.

Speaking style conversion has multiple potential applications,

such as personalizing speech to the needs of the end-listener

and mapping speech that is difficult to understand in such a

way that the signal becomes more intelligible. In the latter ap-

plication, for example, normal speech could be converted into

clear speech for hearing-impaired listeners. Similarly, people

with normal hearing capacity could benefit from conversion

of soft speech to a more intelligible style, such as Lombard

speech [1], in noisy environments. It should be noted that in

addition to keeping the linguistic and speaker information un-

changed, a speaking style conversion system should not sac-

rifice speech quality. Therefore, this area of study calls for

advanced technologies both in signal processing and machine

learning. Speaking style conversion is related to other areas of

speech technology such as statistical parametric speech synthe-

sis (SPSS) [2], voice conversion (VC) [3], emotional voice con-

version [4, 5] and speech intelligibility enhancement [6]. The

topic can, however, be considered as a research area of its own

because it differs from all the above areas: There is, for ex-

ample, no linguistic-to-acoustic mapping as in speech synthe-

sis and the conversion is not constrained by a strict latency re-

quirement as in speech intelligibility enhancement. In the cur-

rent study, we focus on converting normal speech to Lombard

speech.

Compared to SPSS and VC, speaking style conversion has

been studied only in a few previous investigations [7, 8, 9, 10],

and the scope has been limited mainly to conversion of single

words [8], isolated vowels [9], or logatomes (pseudo-words of

one or many syllables) [7], rather than continuous speech. On

the other hand, Lombard speech has been studied extensively in

other areas of speech technology, such as SPSS [11] and intel-

ligibility enhancement [12]. To our knowledge, the only previ-

ous study on normal-to-Lombard speaking style conversion was

published in [8]. This study involves a rule-based solution that

converts single words of normal speech to Lombard speech by

modifying the original speech’s fundamental frequency (F0),

spectrum, and phoneme duration.

There are two main approaches to convert a source speech

signal into a target one. One of them is a non-parametric ap-

proach that relies on processing directly the speech signal to

achieve conversion, while the other one is a vocoder-based

parametric approach, in which features are extracted with the

vocoder, modified, and subsequently fed into the vocoder to

synthesize the target speech signal. In this work, we choose

to focus on a vocoder-based parametric approach where the

vocoder is used to extract speech features both from the source

and target styles and machine learning is used to learn a map-

ping between them.

The most widely used vocoder is STRAIGHT [13]. How-

ever, recent speech synthesis studies have shown that the so-

called glottal vocoders constitute an effective alternative to

STRAIGHT [14]. Given this, the goal of the current study

is to build a speaking style conversion system and analyze its

performance in normal-to-Lombard conversion by specifically

exploring differences between STRAIGHT and a recent ver-

sion of glottal vocoders [15]. Since the glottal vocoder aims

to parameterize two main parts of natural speech production,

the glottal excitation and vocal tract, we hypothesize the glot-

tal vocoder to be a better vocoder candidate for the normal-to-

Lombard conversion task. The speech features to be converted

include the spectral tilt, F0, energy and duration, which are all

known to be affected when natural talkers change their speaking

style from normal to Lombard [16, 17]. To transform spectral

and energy parameters, we employ Bayesian Gaussian mixture

models (BGMMs) [18], while the duration mapping is achieved

in a straightforward manner using frame-based interpolation of

the vocoder features. BGMMs have the advantage of being less

affected by overfitting than standard GMMs, which are used

frequently in voice conversion [19]. This becomes particularly

relevant in the current work, due to the limited availability of

training data of Lombard speech. To the best of our knowledge,

Bayesian extensions to standard GMMs have been applied pre-

viously in voice-conversion related research only in [20].
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2. Speaking style conversion system

The speaking style conversion system is detailed in Figure 1.

Prior to the actual conversion, the training is carried out as

follows: First, a vocoder (STRAIGHT and the glottal vocoder

studied here) is used to extract speech features (hereby denoted

as vocoder features) at frame-level from both the source and

target styles. Second, a mapping between the source and cor-

responding target features is learned for each of the selected

vocoder features (here using BGMMs). Then, at the time of

application: 1) Vocoder features are extracted from the given

source-style speech signal, 2) the selected features are mapped

to the target style, and 3) given all the vocoder features (the

mapped features and the unmodified features), the vocoder syn-

thesizes a speech signal in the required target style.

The current work aims to convert normal speech to Lom-

bard speech by modifying the following attributes of the speech

signal: 1) spectral tilt, 2) F0, 3) energy, and 4) duration of

speech. Vocoder features representing the first three are mapped

using one BGMM per feature. All three vocoder features were

mapped for voiced frames, and energy was also mapped for (ac-

tive) unvoiced frames. The voicing decision was made based on

F0, while silent frames were detected using F0 and an energy

threshold criterion. For training, the alignment of normal and

Lombard frames was done using dynamic time warping (DTW)

[21]. Aligned normal-Lombard frames that were in the opposite

voiced/unvoiced categories were discarded from the training.

In order to modify the duration of the utterances, we scaled

the duration of the voiced and unvoiced regions separately. The

scaling was calculated as the mean ratio between the location

of the aligned frames of the source and target styles in their

corresponding utterance (outliers likely due to inaccuracies in

DTW were removed). The scale values obtained were 1.08 and

0.88 for voiced and unvoiced regions respectively (in line with

previous works [22]). The voiced and unvoiced regions were

stretched and compressed, respectively, using frame-based in-

terpolation. The duration modification was applied prior to

BGMM mapping; non-converted features’ duration was also

modified. Furthermore, prior to synthesis, and to reduce distor-

tions on the converted samples, the trajectories of the mapped

features were smoothed with a moving average.

2.1. Vocoders

• Glottal vocoder - We use a recent variant of the glottal

vocoder [14], which was originally developed for use in SPSS

[2]. It uses quasi-closed phase (QCP) [23] glottal inverse fil-

tering to decompose speech into a vocal tract filter and glottal

flow excitation. Based on this, a deep neural network-based

glottal pulse generation method was proposed in [15]. How-

ever, in contrast to text-to-speech, the present voice transforma-

tion task allows direct access to the original signal. Thus, in

this work we use the vocoding procedure in [15] without any

waveform modeling, but rather use the original estimated glot-

tal waveforms as such. This is similar to linear prediction (LP)

residual pitch-synchronous overlap-add (PSOLA) [24], and is

not conventional vocoding in the sense that synthesis also uses

non-parametric information. To parametrize speech, the follow-

ing features are extracted with the vocoder: 1) log-energy, 2)

harmonic-to-noise ratio (HNR), 3) F0, 4) vocal tract line spec-

tral frequencies (LSFs), denoted here as LSFV T , and 5) glottal

source LSFs, denoted LSFglott. The LSFglott (for spectral

tilt), F0 and energy vocoder features are chosen for the normal-

to-Lombard conversion.

• STRAIGHT vocoder - This is a widely known speech

vocoder that obtains a smooth spectral envelope such that the

periodicity interference is minimized [13]. Here, the features

extracted during analysis are: 1) the aperiodicity energy bands,

2) F0, and 3) the spectral envelope, represented through a Mel-

generalized cepstrum (MGC). The features mapped are F0 and

spectral tilt. Spectral tilt is modified by mapping the first two

Mel cepstrum coefficients (c1 and c2) of the MGC feature, and

keeping the other coefficients unchanged, as in [25]. Since the

STRAIGHT vocoder does not include an explicit energy fea-

ture, energy adjustment was performed on the final synthesized

speech signal. This was done at frame-level, and the signal was

synthesized using overlap-add.

2.2. Bayesian GMM mapping

For the current work of style conversion, a BGMM between the

two styles is trained for each vocoder feature. Vocoder features

from the source style, xs, and target style, xt, are concatenated

to obtain D-dimensional training data x = [xs, xt]
T . Let X =

[x1, ..,xN ] be modeled by a BGMM with K Gaussians with

parameters {θk}
K
i=1 and weights {πk}

K
i=1, the likelihood of X

is defined as

p(X|θ,π) =
K
∑

k=1

πkN (θk) (1)

In the Bayesian setting we consider a prior on the model pa-

rameters and aim to infer their posterior distribution. The

prior on the weights was chosen as the Dirichlet distribution

i.e. π ∼ Dir(α0), where α0 is a K-dimensional parame-

ter. We consider full covariance Gaussians parameterized by

the mean µ and precision Λ, i.e. θk = {µk, Λk}. The con-

jugate prior is chosen for θ as the Normal-Wishart distribution

i.e. θk ∼ NW(m0, β0,W0, ν0), where mean m0, scale ma-

trix W0, real values β0 > 0 and ν0 > D − 1 are parameters

of the NW distribution [18]. Latent variables {zi}
N
i=1 denote

the Gaussian to which each of the N data points {xi}
N
i=1 are

assigned.

There is no direct analytic solution for the posterior distri-

bution of the BGMM parameters. This paper uses variational

inference method [18] that approximates the analytically in-

tractable posterior with a tractable distribution called variational

distribution q(z,π,µ,Λ). This is done by making the follow-

ing independence assumption:

q(z,π,µ,Λ) ≈ q(z)q(π,µ,Λ) = q(z)q(π)

K
∏

k=1

q(µk,Λk)

(2)
Kullback–Leibler (KL) divergence to the true posterior is

then minimized to find the variational distribution. Since

we use conjugate priors, q(π) is another Dirchlet distribution

Dir(α), and q(µk,Λk) another Normal-Wishart distribution

NW(mk, βk,Wk, νk) [18]. In practice, the final update equa-

tions are similar to the expectation–maximisation (EM) algo-

rithm that iterates between finding the probabilities q(z) (called

responsibilities) based on the current model q(π)q(µ,Λ), and

updating model parameters based on the current responsibili-

ties.

During application, the new source vocoder feature, ys,

needs to be mapped to the target, yt. Let us first calculate the

probability of data y = [ys, yt]
T given data X (modeled by

the BGMM), p(y|X), called as the posterior predictive

p(y|X) =
1

α̂

K
∑

k=1

αkSt(y|mk,Σk, νk + 1−D)

where, Σk =
1 + βk

(νk + 1−D)βk

W
−1

k

(3)
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Figure 1: Block diagram of the proposed speaking style conversion system. Prior to the conversion, the Bayesian Gaussian mixture

models (GBMMs) are trained using pairs of normal and Lombard speech utterances.

That is, a mixture of multivariate Student’s t-distributions St

with kth component having means mk and covariance Σk; and

αk is the kth term in α and α̂ =
∑

k
αk [18].

Let us consider the parameters of the kth multiavariate Stu-

dent’s t in Eq. (3) as block matrices mk = [ms, mt]
T and

Σk =
[

Σss Σst

Σts Σtt

]

. Now the MMSE estimate of xt can be cal-

culated, similar to a GMM mapping [26], as

ŷt =

K
∑

k=1

p(k|ys,X)[mt +ΣtsΣ
−1

ss (ys −ms)] (4)

where p(k|ys,X) is the marginal probability of the kth compo-

nent in Eq. (3), and the other term is the mean of the kth com-

ponent in the conditional over the posterior predictive in Eq. (3)

(see Section 10.7 of [27]). MATLAB codes for the BGMM

mapping are available under an open source license1.

3. Experimental setup

3.1. Data

Recordings from 10 Finnish speakers [28], with 4 female and 6

male speakers, were used for the current study. The recordings

involved each speaker reading a text of 90 words, approximately

one minute in duration. The same text was produced in two

speaking styles, normal and Lombard speech. In order to elicit

Lombard speech, the speakers heard background noise in their

headphones while they were being recorded [28]. The record-

ings of each speaker, split into 11 utterances for each speaking

style and down-sampled from 48 kHz to 16 kHz, were used in

our experiments.

3.2. Normal-to-Lombard speech conversion

During feature extraction, analysis frames of 25 ms with a 5-

ms frame shift were employed. For the glottal vocoder, the

LSFglott and LSFV T features were 10 and 30-dimensional,

respectively, the HNR feature consisted of 5 frequency chan-

nels, and F0 (as well as the glottal closure instants used in QCP)

was computed using the REAPER tool [29]. In the STRAIGHT

vocoder, the features consisted of 21 aperiodicity energy bands

and the first 40 MGC coefficients (without the log-energy co-

efficient c0). As in the glottal vocoder, F0 was extracted using

REAPER [29]. The durations were modified using cubic spline

interpolation for all features of the two vocoders, except for

glottal vocoder’s glottal excitation pulses, where nearest neigh-

bour interpolation was applied.

1https://github.com/shreyas253/BGMM Mapping

For the mapping, BGMMs were trained for each speaker

and each vocoder feature using the utterances of the remain-

ing speakers in the dataset (both females and males) as training

data. Specifically, frame pairs of normal and Lombard speech

of the corresponding feature to be mapped were used in train-

ing each BGMM. Since the Bayesian approach does not suf-

fer from overfitting with even a large number of Gaussians,

this number was fixed to K = 100 for all the vocoder fea-

tures as significant improvements in terms of root-mean-square

(RMS) error were not observed for larger values during a sep-

arate 10-fold cross-validation. Furthermore, the BGMM com-

ponent means and precisions were modelled with prior distri-

bution NW(µ0, β0,W0, ν0), whose parameters were set sim-

ilar to those recommended in [30]: µ0 and W0 were set to the

dataset mean and precision, β0 = 1, and ν0 = D + 2. The

concentration parameter α0 was set to the all ones vector.

3.3. Evaluation

Two listening tests were conducted to evaluate the quality of

the samples obtained with the conversion system for the two

vocoders, using the modified BeaqleJS evaluation framework

[31]. 13 listeners took part on the first test, while 12 of the

same listeners took part on the second test; all the listeners were

Finnish natives.

The first evaluation was a similarity test, in which the

perceptual similarity between the converted Lombard speech

(vocoded either with the glottal vocoder or STRAIGHT) and

natural Lombard speech was evaluated. The listeners were

asked to rate, using a continuous scale from 1 to 5, how

much a converted speech sample resembles a natural Lombard

speech sample (1: none, 2: little, 3: moderately, 4: much, 5: very

much). In rating the test sample, the listeners were given a non-

converted reference which was generated by vocoding the cor-

responding sentence produced using normal speaking style. The

listener was allowed to listen to the samples as many times as

he/she wished. For this task, 16 utterances were randomly se-

lected from the dataset (4 females and 4 males; 2 utterances

per speaker). Therefore, since the listeners rated the conver-

sion system for the two vocoders, each listener rated 32 test

cases, which were presented in random order. Prior to the actual

test, each listener had a training session in order to familiarize

him/her with Lombard speech. In this training session, a subject

was able to listen to a few sample pairs of normal vs. Lombard

speech. The utterances of the training session were not used

later in the test. Furthermore, the listeners were asked to adjust

1365



Figure 2: Similarity test results, given in a scale from 1 to 5

that rates the resemblance of the converted sample to Lombard

speech (1: none, 2: little, 3: moderately, 4: much, 5: very much).

the volume to a loud yet comfortable level during the training

session and to keep the chosen volume unchanged during the

actual test.

The second evaluation was a pairwise comparison test, in

which the naturalness of converted Lombard speech samples

from the glottal vocoder and STRAIGHT were compared by the

listeners. In this evaluation, the subjects listened to two versions

of the same sentence, denoted as A and B, that represented the

conversion conducted using the glottal vocoder or STRAIGHT,

presented in a random order. The listener was asked which one

sounds more natural. In addition, the listener was allowed to

indicate if he/she had no preference to either. The listener could

listen to the samples as many times as he/she wished. In this

task, the listeners evaluated 24 test cases; the 24 utterances were

selected randomly from the dataset (4 females and 4 males; 3

utterances per speaker).

4. Results

A boxplot of the similarity test results is shown in Figure 2: the

central red line indicates the median, the boxes’ edges are the

25th and 75th percentile, and the whiskers extend to the most

extreme data points. Outliers are marked as red crosses. These

results reveal that the speaking style conversion system is able

to transform normal speech towards Lombard speech for the

two vocoders. However, there are some gender specific distinc-

tions: the median rate for the glottal vocoder-based system is

slightly larger than the median rate for STRAIGHT in case of

male speakers, while for female speakers the median rates have

almost the same value.

Table 1 shows the results of the pairwise comparison test

for naturalness of the speech; the results are shown as percent-

ages of preference between the converted samples based on the

glottal vocoder and STRAIGHT. The results show that the con-

verted samples from the glottal vocoder case were clearly pre-

ferred in terms of naturalness (98.61% for males, and 97.92%

for females) over those of STRAIGHT. Furthermore, there was

also a very small number of cases in which the listeners had no

preference between the two vocoders.

5. Conclusions

In this work, we proposed a speaking style conversion system to

perform conversion from normal speech (source speaking style)

to Lombard speech (target speaking style). In this system, a

normal speech sample is converted by mapping (a selected set

of) its speech features, extracted with a vocoder, into the corre-

sponding features of Lombard speech using BGMMs, and sub-

Table 1: Results of preference task on naturalness, presented in

percentages [%]. No pref. stands for ’No preference’.

Glottal

vocoder
STRAIGHT No pref.

Male 98.61 0.69 0.69

Female 97.92 0.00 2.08

sequently using the vocoder with these features to synthesize

speech in the target speaking style (Lombard speech). The con-

version system involved a recently developed glottal vocoder

that decomposes speech into a vocal tract filter and glottal flow

excitation. This vocoder was compared in the proposed normal-

to-Lombard speech conversion to the widely used STRAIGHT

vocoder.

Two subjective listening tests were employed to evalu-

ate the conversion quality of the proposed system for the two

vocoders. First, a similarity test evaluated the resemblance

of the converted Lombard speech to natural Lombard speech.

The results revealed that the conversion system was able to

achieve conversion from normal to Lombard speech for the two

vocoders. Both vocoders achieved the same level of resem-

blance to natural Lombard speech for female speakers. How-

ever, for males, the glottal vocoder was rated higher in resem-

blance than STRAIGHT. A possible explanation for this is that

male voices are generally easier to parameterize accurately with

glottal vocoders than female voices due to their lower pitch

[32, 33], which makes the estimation of the glottal source with

QCP more accurate. Second, a preference task compared the

naturalness of the converted samples from both vocoders. The

results showed that the converted samples obtained with the

glottal vocoder were clearly more natural than those obtained

with STRAIGHT.

While both vocoders managed to obtain similar ratings for

Lombard-likeness of the speech, the converted samples from

STRAIGHT vocoder presented artefacts (such as buzzing) that

were more disruptive to the human ear in terms of naturalness

than the artefacts present on the converted samples with the

glottal vocoder. This would partly explain the clear preference

of the listeners towards the glottal vocoder’s samples.

Finally, it should be noted that the similarity test results

showed that the rate of resemblance to natural Lombard speech

of the converted Lombard samples did not reach a high level

for any of the vocoders. The difference between natural nor-

mal speech and natural Lombard speech is prominent and there

are many acoustical properties that change from one style to an-

other. In the present work, the features selected for conversion

were spectral tilt, F0, energy, and duration. The changes in the

vocal tract are also key in Lombard speech, but these were not

included in the current system to maintain simplicity. In conse-

quence, further studies should involve vocal tract modifications

that might increase the resemblance of the converted samples

towards Lombard speech. In addition, while the BGMMs used

in the present study provide a robust alternative for the map-

ping between speaking styles when the amount of training data

is limited, the use of other alternative methods such as standard

GMMs and DNNs should be explored and compared in the fu-

ture together with larger amounts of training data.
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[19] Y. Stylianou, O. Cappé, and E. Moulines, “Continuous probabilis-
tic transform for voice conversion,” IEEE Trans. on Speech and

Audio Processing, vol. 6, no. 2, pp. 131–142, 1998.

[20] L. Li, Y. Nankaku, and K. Tokuda, “A Bayesian approach to voice
conversion based on GMMs using multiple model structures,” in
Proc. of Interspeech, Florence, Italy, 2011, pp. 661–664.

[21] D. Ellis, “Dynamic time warp (DTW) in Matlab,”
http://www.ee.columbia.edu/dpwe/resources/matlab/dtw/, 2003.

[22] J. H. L. Hansen and V. Varadarajan, “Analysis and compensation
of Lombard speech across noise type and levels with application
to in-set/out-of-set speaker recognition,” IEEE Trans. on Audio,

Speech, and Language Processing, vol. 17, no. 2, pp. 366–378,
2009.

[23] M. Airaksinen, T. Raitio, B. Story, and P. Alku, “Quasi closed
phase glottal inverse filtering analysis with weighted linear pre-
diction,” IEEE/ACM Trans. on Audio, Speech, and Language Pro-

cessing, vol. 22, no. 3, pp. 596–607, 2014.

[24] E. Moulines and J. Laroche, “Non-parametric techniques for
pitch-scale and time-scale modification of speech,” Speech Com-

munication, vol. 16, no. 2, pp. 175–205, 1995.

[25] C. Valentini-Botinhao, J. Yamagishi, and S. King, “Mel cepstral
coefficient modification based on the glimpse proportion mea-
sure for improving the intelligibility of HMM-generated synthetic
speech in noise,” in Proc. of Interspeech, Portland, USA, 2012.

[26] A. Kain and M. W. Macon, “Spectral voice conversion for text-
to-speech synthesis,” in Proc. of ICASSP, Seattle, USA, 1998, pp.
285–288.

[27] K. P. Murphy, “Conjugate Bayesian analysis of the Gaussian dis-
tribution,” Tech. Rep., 2007.

[28] E. Jokinen, U. Remes, and P. Alku, “The use of read versus con-
versational Lombard speech in spectral tilt modeling for intelli-
gibility enhancement in near-end noise conditions,” in Proc. of

Interspeech, San Francisco, USA, 2016, pp. 2771–2775.

[29] D. Talkin, “REAPER: Robust Epoch And Pitch EstimatoR,”
https://github.com/google/REAPER, 2015.

[30] K. P. Murphy, Machine Learning: A Probabilistic Perspective.
MIT press, 2012.

[31] S. Kraft and U. Zölzer, “BeaqleJS: HTML5 and JavaScript based
framework for the subjective evaluation of audio quality,” in Proc.

of Linux Audio Conference, Karlsruhe, Germany, 2014.

[32] A. Suni, T. Raitio, M. Vainio, and P. Alku, “The GlottHMM entry
for Blizzard Challenge 2011: Utilizing source unit selection in
hmm-based speech synthesis for improved excitation generation,”
in Proc. of Blizzard Challenge 2011 Workshop, Turin, Italy, 2011.

[33] ——, “The GlottHMM entry for Blizzard Challenge 2012: Hy-
brid approach,” in Proc. of Blizzard Challenge 2012 Workshop,
Portland, USA, 2012.

1367




