
Spec2Fab: A Reducer-Tuner Model for Translating Specifications to 3D Prints

Desai Chen David I.W. Levin Piotr Didyk Pitchaya Sitthi-Amorn Wojciech Matusik

MIT CSAIL

Caustic + Texture

G
o

a
l s

p
e

ci
fi

ca
ti

o
n

Deformation + texture

G
o

a
l s

p
e

ci
fi

ca
ti

o
n

Figure 1: 3D-printed objects with various effects designed using our reducer-tuner model. Our generalized approach to fabrication enables
an easy and intuitive design of objects with different material properties. On the left: a miniature of Earth with a prescribed deformation
behavior. On the right: an optimized surface producing a caustic image under proper illumination as well as casting a shadow of a previously
designed shape. Insets visualize an input to our system.

Abstract

Multi-material 3D printing allows objects to be composed of com-
plex, heterogeneous arrangements of materials. It is often more nat-
ural to define a functional goal than to define the material composi-
tion of an object. Translating these functional requirements to fabri-
cable 3D prints is still an open research problem. Recently, several
specific instances of this problem have been explored (e.g., appear-
ance or elastic deformation), but they exist as isolated, monolithic
algorithms. In this paper, we propose an abstraction mechanism
that simplifies the design, development, implementation, and reuse
of these algorithms. Our solution relies on two new data structures:
a reducer tree that efficiently parameterizes the space of material
assignments and a tuner network that describes the optimization
process used to compute material arrangement. We provide an ap-
plication programming interface for specifying the desired object
and for defining parameters for the reducer tree and tuner network.
We illustrate the utility of our framework by implementing several
fabrication algorithms as well as demonstrating the manufactured
results.

CR Categories: I.3.8 [Computer Graphics]: Applications;

Keywords: 3D printing, goal-based material design, fabrication

Links: DL PDF WEB DATA CODE

1 Introduction

3D printing receives a lot of attention as it aims to democratize fab-
rication. The ever expanding range of printing materials allows for
fabrication of complex objects with spatially varying appearance,
optical characteristics, and mechanical properties. One of the most
important unsolved problems in this area is how to compute an ob-
ject’s material composition from a functional or behavioral descrip-
tion. We call this process specification to fabrication translation
(Spec2Fab). The goal of this work is to provide a convenient ab-
straction for specifying such translators. This is necessary to move
past the current direct specification model of 3D printing.

Today, 3D printing of an object requires a material be directly spec-
ified for each voxel inside the object volume. This approach is
fraught with difficulties. First, 3D printable models become spe-
cific to a single printer type, i.e., the models are built from materials
provided by a given printer. Consider the inconvenience that would
result from word processing documents being compatible with spe-
cific 2D printers. Second, working directly with printing materials
rather than material properties is extremely challenging for users.
Imagine the difficulty in finding the right combination of printing
materials that would provide a specific color, stiffness, or refractive
index.

Our work is motivated by the recent research efforts in the com-
puter graphics community to create specific instances of the transla-
tion process, for example, subsurface scattering [Hašan et al. 2010;
Dong et al. 2010] or deformation properties [Bickel et al. 2010].
However, each of these instances is a custom, monolithic solution
which is difficult to extend, combine, or modify. Our main insight
is that all these process instances share a similar structure. First,
they rely on the ability to accurately simulate the physical proper-
ties of an object given its geometry and material assignment. They
use this simulation within an optimization framework to search the
space of all possible material assignments in order to find the one
that best reproduces the desired properties. Due to the combinato-
rial nature of the search space the naive optimization approach is not
tractable. For example, when the printing volume has N voxels and
each of these voxels can be assigned to one of M base materials,
the search space has NM dimensions. To overcome this problem,
the search space is reduced to a lower-dimensional space using a

http://doi.acm.org/10.1145/2461912.2461994
http://portal.acm.org/ft_gateway.cfm?id=2461994&type=pdf
http://spec2fab.csail.mit.edu/
http://spec2fab.csail.mit.edu/data/
http://spec2fab.csail.mit.edu/code/

reduction model. The goal of the reduction step is to aggressively
shrink the search space in a domain-specific manner such that it still
contains good approximations to the optimal solution. This search
space reduction combined with the right choice of the optimization
algorithm delivers a computationally tractable approximation.

The reduction-optimization structure suggests that it is possible to
provide a more general abstraction mechanism for translating 3D
models to printer and material-specific representations. In this pa-
per we take the first step in achieving this goal. Our solution re-
lies on two novel data structures which are designed to aid the fab-
rication process. The reducer tree is a tree-based data structure
that allows us to parameterize the space of material assignments.
The tuner network is a data structure for specifying the optimiza-
tion process. Our solution also provides an API for specifying the
desired object, setting up the simulation, and defining parameters
for the reducer tree and tuner network. In general, our framework
simplifies the construction of new computational fabrication algo-
rithms. More specifically, different components of the process can
be easily replaced and other components easily reused. Various
optimization strategies can also be explored with lower implemen-
tation burden. In order to show these advantages, we illustrate how
existing computational design processes fit into this framework and
how they can be combined. We demonstrate the results of these
algorithms on a variety of different examples fabricated using 3D
printers.

2 Related Work

Our new data structures draw ideas from previous work in ren-
dering and optimization. The reducer tree is inspired by Cook’s
shade trees [Cook 1984] and their modern implementation in cur-
rent rendering systems (e.g., Maya, RenderMan, etc.). Using these
approaches, complex effects can be achieved by combining a set of
basic shading blocks. The reducer tree also uses a tree data struc-
ture that combines a set of primitives to compute a material as-
signment for each point inside of an object volume and describes a
spatial-partition of the object volume. While there are many space-
partitioning data structures (BSPs, Quad-trees, KD-trees, etc.), they
are difficult to specify by hand and they are typically tied to the ob-
ject geometry. Our reducer tree is intuitive to construct but suffi-
ciently general for representing material distributions. In addition,
it is specified in an object-independent manner – the same reducer
tree can be reused for processing different objects. Our second, new
data structure which is responsible for optimizing material assign-
ment is the tuner network. It is inspired by probabilistic graphical
models [Jordan et al. 1999] that have been popular for representing
variable dependence in multi-variate optimization problems. These
problems can be parallelized [Low et al. 2010] according to the as-
sociated graph structure.

Our work is also inspired by the many instances of specification to
fabrication translation pipelines that have been proposed recently.
These pipelines span a wide range of functional goals (e.g., me-
chanical, optical, appearance). They drive the simulation, opti-
mization, and reductions chosen for each method. One example
of such processes is recent work on optimizing material composi-
tion to achieve prescribed deformation behavior. Bickel and col-
leagues [2010] have designed a system for manufacturing multi-
layer composites with a given elastic behavior. Skouras et al. [2012]
provide design and construction of balloons with a prescribed shape
while inflated. Furthermore, material optimization has been em-
ployed to create mechanical clones of human faces [Bickel et al.
2012].

Optimizing and manufacturing objects with desired appearance and
optical characteristics has also been explored. Weyrich et al. [2009]

compute surface micro-geometry that yields a desired BRDF. Simi-
lar approaches have been proposed [Finckh et al. 2010; Papas et al.
2011] to produce refractive surfaces that form user-defined caus-
tics. These methods have been extended to optically decrypt hidden
images [Papas et al. 2012]. Complementary work examines fab-
ricating surfaces with spatially varying reflectance [Matusik et al.
2009; Malzbender et al. 2012] and diffuse shading [Alexa and Ma-
tusik 2010]. Another set of approaches uses optimization to com-
pute shadow casting surfaces and volumes [Mitra and Pauly 2009;
Bermano et al. 2012; Baran et al. 2012] that reproduce a given set
of input images. Finally, optimization-based approaches have also
been employed to control the subsurface scattering of 3D printed
multi-layered models [Dong et al. 2010; Hašan et al. 2010]. We
seek to exploit the common form of the above works in order to
generalize them.

There have been studies of material assignment representations in
other fields, primarily in mechanical engineering. Here we only list
a few representative works. Kumar et al. [1999] describe material
composition by dividing a volume into sub-volumes. They perform
material interpolation using local, sub-volume coordinate systems.
Jackson [2000] explores several mesh data structures for spatial
sub-division. Kou and Tan [2007] give a comprehensive review of
spatial partition schemes and material interpolation functions. Kou
et al. [2012] use a hierarchy of procedures to define material com-
position with a small number of design parameters. They run par-
ticle swarm optimization [Kennedy and Eberhart 1995] on the de-
sign parameters to minimize thermal stress of an object. Their work
focused on smoothly varying materials. There is no discussion of
high-frequency discrete material assignment for capturing details.
They are limited to global optimization algorithms such as Particle
Swarm Optimization because the dependency structure between the
design variables is not modeled. In computer graphics, procedural
descriptions for material assignment have also been studied. Cut-
ler et al. [2002] describe a scripting language for specifying lay-
ered solid models and describing material composition. Vidimče
et al. [2013] provide a fabrication language and a programmable
pipeline for specifying material composition directly and precisely
throughout a volume. In contrast, Spec2Fab can be used to design
algorithms that only require object properties rather than a precise
description of material assignment.

In this work we focus on constructing a common model for en-
compassing the entire Spec2Fab problem. We are motivated by the
similarities present in state-of-the-art algorithms. Table 1 shows the
coordinate reduction methods as well as the optimization schemes
used in all these prior approaches. Our key observation is that previ-
ous works share a common methodology and a common set reduced
coordinate components. These components are then combined with
(often off-the-shelf) optimization techniques to form new material
assignment algorithms. This suggests that one could find a small
set of components that can be tied together to synthesize advanced
methods. In this paper we attempt to identify these components as
well as a suitable model for their interaction.

3 Design Goals

The design of our general translational framework is guided by the
following principles:

• Modularity: Spec2Fab translators are complicated both algo-
rithmically and from a software engineering point of view. To
combat this, any proposed framework must break the problem
into a manageable number of small, reusable building blocks.

• Extensibility: Developers must be able to add their own
building blocks to the system. This allows the system to grow
in conjunction with the capabilities of newer 3D printers.

Paper Goal Reduced Coordinates Optimization

[Finckh et al. 2010] Optical (Caustics) B-Spline Surface Stochastic Approximation
[Papas et al. 2011] Optical (Caustics) Piecewise Constant Tiles Simulated Annealing

[Alexa and Matusik 2010] Optical (Relief) Height Field Gradient Descent
[Weyrich et al. 2009] Optical (Reflectance) Piecewise Constant Tiles Simulated Annealing

[Papas et al. 2012] Optical (Refraction) Piecewise Constant Tiles Simulated Annealing
[Mitra and Pauly 2009] Optical (Shadows) Voxel Grid Custom Discrete

[Baran et al. 2012] Optical (Shadows) Layered Materials Quadratic Program
[Bermano et al. 2012] Optical (Shadows) Height Field Custom/Simulated Annealing

[Dong et al. 2010] Optical (Subsurface) Layered Materials Conjugate Gradient
[Hašan et al. 2010] Optical (Subsurface) Layered Materials Branch and Bound
[Bickel et al. 2010] Mechanical (force) Layered Materials Branch and Bound
[Bickel et al. 2012] Mechanical (shape) Height Field Newton-Raphson

[Skouras et al. 2012] Mechanical (shape) Triangle Mesh Augmented Lagrangian Method

Table 1: The goal type, reduction type and optimization used by prior computational fabrication approaches.

• Device Independence: Spec2Fab translators should be de-
vice independent. They should be easily adaptable to different
types of 3D printers.

• Input Geometry Independence: Spec2Fab translators
should be geometry independent. For example, a process for
applying a texture to a 3D printed object should work for any
object.

4 Overview

We aim to separate the Spec2Fab process into two phases, the pro-
cess configuration phase and the process use phase. The process
configuration phase is typically done once by a skilled developer
who constructs a Spec2Fab translator. The process use phase is
typically performed multiple times by an end-user who is only re-
quired to provide an object specification (e.g., object geometry and
deformation properties) and a target device.

The process configuration phase produces a Spec2Fab translator
which will assign a desired volumetric material distribution to a
user supplied input geometry given a user specified goal. We de-
scribe this phase using two new data structures, the reducer tree and
tuner network. The reducer tree parameterizes a volumetric mate-
rial assignment using a small set of geometry and material nodes
while the tuner network is used to describe an optimization process
as a connected set of tuner objects. Both nodes and tuners can be
easily recombined and reused thus making our framework highly
modular. Furthermore, nodes and tuners define abstract interfaces
and thus developers can easily add new types of each. This makes
our framework extensible.

Reducers and tuners are chosen to be independent of printer capa-
bilities. Instead we account for printer type by altering the available
materials that the translator may assign to the input geometry. This
is important since it grants the reducer-tuner model device indepen-
dence. Finally, the geometry nodes of the reducer tree are designed
to function irrespective of input shape. Since the Spec2Fab trans-
lators produced by our algorithm use a composition of these node
types, they are geometry independent.

In the following sections we will describe the reducer tree and the
tuner network, their constituent components and the mechanisms
by which they interact.

5 Data Structures

In this section, we describe the structure of the reducer tree as well
as all types of reducer nodes implemented in our framework. We

Plane Column Voxel B-spline Stratum

Figure 2: 2D representations of the geometry nodes used in our
reducer tree.

also show the structure of individual tuners and how they can be
arranged into the tuner network.

5.1 The Reducer Tree

Estimating material assignments at output device resolution is com-
putationally intractable. Therefore, material assignment has to be
computed using a reduced representation. We specify this represen-
tation using a reducer tree. This structure is conceptually similar to
those used in programmable shading systems (such as Cook’s shade
trees [1984] or Maya Shader Networks). These systems are primar-
ily concerned with assigning known materials and textures to an
object’s surface whereas we are seeking an optimal volumetric as-
signment from a defined set of materials. In order to accomplish
this task, we build a tree-based data structure which contains the
entire object volume as its root node. We define two classes of re-
ducer nodes: geometry nodes and material nodes.

Geometry Nodes: A geometry node takes a volumetric region
as input and produces a partition of this region into smaller sub-
regions. These can be attached to the object geometry or they can
be defined in a global coordinate system. To demonstrate the flex-
ibility of the reducer tree, we define a small yet powerful set of
partitioning nodes which are described as follows (Figure 2):

• Plane Node – partitions the space into two half-spaces,

• Column Node – takes as input the number of columns and
accordingly partitions the space,

• Voxel Node – takes as input voxel size and uniformly parti-
tions the space,

• B-spline Node – partitions a volume into two regions cut by a
B-spline,

• Stratum Node – takes a single positive distance parameter as
an input and partitions the volume into two regions divided by
the iso-distance surface.

Material Nodes: The leaf nodes of the reducer tree are the ma-
terial parameterization nodes. These contain a material assignment

function λ (x) that maps spatial coordinates to materials. We al-
low our material nodes to assign a void material to regions of the
volume. Hence, surface displacements and material assignments
can be treated in a unified fashion. While material node can be ex-
tended to implement arbitrary material assignment functions (such
as Functionally Graded Materials), all the following results require
only a single type of material node, layered node, which assigns
k material layers of varying thickness to a geometry partition. We
can even assign a constant material to a region using a layered node
with a single layer.

Geometry nodes and material nodes can be connected into a tree
structure that describes a material assignment function throughout
the input geometry. The essential property of this data structure
is that it naturally adapts to the input geometry. This key feature
allows it to be reused for different shapes. Figure 3 shows two ex-
amples of reducer trees and the resulting geometric distributions of
materials. Since the tree describes a nested set of partitions, we
can efficiently perform material queries by passing a query point
through the tree until it arrives at a parameterization node. We note
that the reducer tree does not inherently enforce material continuity
between disjoint regions of the object; however, for material assign-
ment problems, this is neither required nor desired.

L
a

ye
rd

Input shape

P
la

n
e

V
o

id

L
a

ye
rd

V
o

id

L
a

ye
rd

V
o

id

P
la

n
e

P
la

n
e

...

...

Column

Subsurface scattering/texture

Input shape

...

Geometry node Material node

Stratum

Column

L
a

ye
rd

L
a

ye
rd

L
a

ye
rd

L
a

ye
rd

Facet caustics

...

Figure 3: Two examples of our reducer tree. Left: in order to cre-
ate an object producing a caustic, the input shape is first divided
into columns. Next, each column is sliced by a plane. By assigning
materials to lower parts of the columns, the microfacet surface is
created. Right: a textured object with subsurface scattering prop-
erties is produced by first dividing the input shape using a stratum
node. Then, the outer layer is sliced into columns, which create a
texture once materials are assigned. The inner part of the object
obtains a material with given subsurface scattering properties.

5.2 Tuners and Tuning the Reducer Tree

We define tuners as an abstract interface between a reducer node
and an optimization algorithm. A reducer node has parameters that
control its space partitioning and material composition, e.g., stra-
tum node has a parameter which determines its thickness, column
node has parameters that control the width of columns. A tuner is
responsible for tuning these parameters to achieve a specified goal.
A tuner is comprised of an optimization scheme, an error metric,
a simulator and a goal (Figure 4). In order to create an optimal
material assignment, tuner nodes must be attached to the reducer
tree. The developer links each tuner to a reducer node in the re-
ducer tree. Each tuner then traverses the reducer subtree (rooted at
this reducer node) and constructs a parameter list by querying each
visited reducer node. The developer can label parameters as fixed

Optimizer

Reducer Node Simulator

Metric

Error

Material

O
utputSt

at
e

Tuner

Figure 4: A diagram of the tuner workflow. Arrows indicate flow
and type of information passed between the individual tuner com-
ponents.

or free. Tuner nodes contain specific optimization routines (e.g., a
quadratic program solver). The tuner node then uses this routine
to optimize its associated free parameters. During execution, addi-
tional information (e.g., parameters, errors, etc.) from neighboring
Tuner Nodes can be obtained via the tuner network (Section 5.3).
Tuner execution can be scheduled (again by the programmer) al-
lowing both serial and parallel processing.

Figure 5 (left) shows a simple example in which two tuners are
attached to sibling nodes in a reducer tree. The first tuner is re-
sponsible for layered and void material nodes while the second is
responsible for several layered material nodes.

5.3 Tuner Network

For many fabrication problems, tuners should not act in isolation.
For instance, an optimal material assignment at a given point de-
pends on the material assignment in the neighborhood. Tuning
the free parameters without taking into account this dependency
usually yields suboptimal results. Therefore, we allow the tuners
to share information according to a user-specified graph structure.
This allows our framework to interface with a wide range of ex-
isting graph-based optimization and inference algorithms. For ex-
ample, Figure 5 (right) shows one of the tuner networks used in
our experiments. In this network, each node is connected to its
four neighbors. In Figure 11, tuners enclosed in dashed boxes are
connected in this form. Tuner networks do not always exhibit this
regular connectivity. For instance, tuners can be completely uncon-
nected (Figure 5 (left) or be organized into groups which feature
intra- but not inter-group connections.

Tuner

Connection

Tuner-reducer node connections Tuner-tuner node connections

Input shape

Columns

...

La
ye

rd

La
ye

rd

La
ye

rd

...

Plane

La
ye

rd

Spline

V
o

id

Tuner 1 Tuner 2

Figure 5: Left: Two tuners attached to a reducer tree. Each tuner is
responsible for tuning the nodes in its attached subtree (denoted by
shapes with similarly colored outlines). Right: One type of tuner
network used in our experiments.

6 Process Configuration

In this section we show each step of process configuration. At the
same time we describe our implementation of the reducer tree and
tuner network data structures.

6.1 Defining the Reducer Tree

A reducer tree can be constructed expediently using existing ge-
ometry and material node types. Reducer trees are not restricted
to use only existing node types. New node types can be added
by extending the ReducerNode class (see Figure 6). In partic-
ular, implementing a new geometry node type requires providing
the function getOutputIndex. This function takes, as input, a
3D position and returns the id of its child (Geometry or Material)
that contains this 3D point. This function also computes a local co-
ordinate for this child node. Performing computations in local co-
ordinates allows us to abstract away the geometry of a given object.
Implementing a new MaterialNode type requires specifying the
getMaterial function which takes a 3D point and returns the
material at this point in the local geometry coordinate system. Both
types of nodes have an evaluate function which is responsible
for updating their internal states. This function is used by the tuner
network to modify the internal state of the nodes. As an exam-
ple, we show a reducer tree for performing texture mapping (see
Figure 3). We also provide the corresponding pseudo-code (see Al-
gorithm 1).

ReducerNode

int getMaterial(vec3 x)

SearchSpace getSearchSpace()

void evaluate(State s)

Subclass

int getOutputIndex(vec3 x)
void evaluate(State s)

MaterialNode

int getMaterial(vec3 x)
void evaluate(State s)

GeometryNode

Figure 6: Abstract interface for Node and its two subclasses.

Algorithm 1 Constructing a reducer tree for texturing

1. Create a root node R from inputMesh

2. Subdivide R into outer layer O and inner

volume V (Stratum Node)

3. Subdivide O into set of columns C

(Column Node)

4. For each column c in C

5. Subdivide c into two layers

(Layer Node)

6. End

6.2 Defining a Tuner

Recall that a tuner consists of four components: a simulation, an
error metric, an optimizer and a goal (Figure 4). Certain combi-
nations of goal, metric and simulator are not compatible (i.e., a
deformation simulator is not compatible with an error metric that
compares images). Our API checks and prevents such incompati-
ble combinations of components. The optimization algorithm can
request the error value for a given state using a callback function
getError() which is defined by the tuner. Additional callback
functions can be defined by the developer depending on the needs
of the algorithm. For example, the branch and bound algorithm re-
quires a custom function to compute error bounds for a given state.

6.3 Binding Tuners

Tuners are assigned to nodes in the reducer tree using the setNode
function. Once assigned, a tuner can optimize the parameters of its
associated subtree. Reducer nodes provide a getSearchSpace
function which returns all free variables in the node subtree. In or-
der to make tuners as flexible as possible we provide a Parameter
class. Parameters can be either discrete or continuous, they can
have associated bounds, and they can be marked as free or fixed.

6.4 Establishing the Tuner Network

The tuner network is an undirected graph that describes connections
between tuners. Tuner nodes store a list of their neighbors. Only
neighboring tuners are allowed to exchange information. In our
current implementation, this is accomplished using a shared mem-
ory array. As an example, we show how to construct and initialize
a tuner network for a simple optimization scheme – a Simulated
Annealing algorithm [van Laarhoven and Aarts 1987] (see Algo-
rithm 2). The tuner network also requires a schedule that specifies
in what order individual tuners should be executed. This schedule is
specified by the developer. Once the tuner network is constructed,
the process configuration phase is complete. We obtain a compiled
executable that computes desired material assignment from an input
specification.

Algorithm 2 Connecting and executing the tuner network

1. for each Tuner Ti attached to a plane

2. for each Tuner Tj adjacent to Ti

3. add Tj to Ti’s list of neighbors

4. end

5. end

6. iterate N times

7. for each Tuner Ti

8. set temperature for Ti’s optimizer

9. run Ti

10. end

7 Process Use

The compiled program, which executes the tuner network, takes
five types of arguments: the input geometry, the goal, the simula-
tion configuration, a set of materials and the target 3D printer spec-
ification. After the tuner network is executed, the parameters of the
reducer nodes in the reducer tree are set. It is then straightforward
to compute the material assignment at arbitrary resolution. Since, a
typical multi-material 3D printer requires a volumetric model with
per voxel material assignment, we can simply iterate over all vox-
els in the volume. We obtain the material assignment by evaluat-
ing (getMaterial) of the reducer tree root at the center of each
voxel location. This representation can be easily converted to a
printer specific format for output. For the Objet500 Connex printer
used in this paper we extract material isosurfaces which are submit-
ted to the printer as STL files.

8 Results and Discussion

In order to evaluate capabilities of our system, we have imple-
mented a number of existing translation processes. Furthermore,
the ease with which different algorithm components can be com-
bined enabled creation of two new translation processes. The first is

Goal specification Printed result Goal specification Printed result Goal specification Printed result

Figure 7: The reducer-tuner model enables creating objects of arbitrary shapes with embedded textures. All results in this figure were created
using the same reducer tree.

an algorithm that can produce objects with desired refractive prop-
erties and an associated texture (Figure 1, right). The second allows
us to apply a desired texture to an object with prescribed deforma-
tion behavior (Figure 1, left). All of these processes, both from
prior work and new ones, easily fit into our framework, and were
manufactured using a Stratasys Object500 Connex multi-material
printer. The following paragraphs provide a detailed description
of how the individual algorithms were designed with our system.
All reducer trees and the tuner networks used for producing these
results are presented in Figure 11.

Spatially-varying Albedo: We have designed a Spec2Fab trans-
lator that allows for 3D printing of textured models (Figure 7). Be-
ing able to apply precisely specified spatially-varying albedo val-
ues to printed models is a crucial capability. However, no stan-
dard processes have been designed for this task so far. The input
to our algorithm is a shape and its desired albedo texture. Since
the texture is only affected by materials close to the surface, we use
a stratum node to divide the input shape into a thin shell and an
inner volume. We then divide the outer layer into columns. The
set of printable colors is expanded by stacking translucent materi-
als using the LayeredMaterial Node. The number of layers
is fixed to the number of print materials. The reduced parameters
are the thickness values of each material layer. For each column,
the tuner’s optimizer looks up the proper stacking that produces the
closest albedo value. Due to printer resolution, the range of albedo
values that can be achieved is quantized. We therefore implement
an error diffusion algorithm by connecting neighboring tuners. In
this simple algorithm, the simulation is a table lookup – we measure
the albedo value corresponding to different base materials.

Heterogeneous Subsurface Scattering: We have replicated
the subsurface scattering process of Hašan et al. [2010] using our
framework (Figure 8). The input to our algorithm is a 3D mesh
along with subsurface-scattering profiles defined at a set of surface
points. We use the same reducer tree as in the texture example
thereby simplifying the process configuration phase. The only dif-
ference is that we allow each column to have four layers of varying
thickness and material. We use a branch and bound optimization
algorithm which has been modified to handle continuous parame-
ters by allowing discrete increments. We implement a bound es-
timate callback function specific to this problem. Each column is
optimized independently using the algorithm. The simulation com-
putes a scattering profile for a given stacking and the error metric
compares the simulated and goal profiles using squared error.

Goal-based Caustics: We have configured two different pro-
cesses for computing goal-based caustics (Figure 9). While they
define exactly the same goal, they have very different reducer trees
and tuner networks. The first process is based on the work of Pa-

Iterations
Sc

att
er

in
g

er
ro

r
Go

al
 sp

ec
ifi

ca
tio

n

Pr
in

te
d

re
su

lt

0

0.04

0.08

0.12

0 250 500 750 1000

Figure 8: A marble chessboard with prescribed subsurface scatter-
ing properties. The insets show the samples under thin line illumi-
nation, and the graph shows the convergence of tuners for 10 out
of 100 scattering profiles used in the example. The error is mea-
sured by square distance between two profiles, each containing 400
coefficients.

pas et al. [2011]. It computes a set of micro-lenses which produce
the desired caustic image. The image is pre-processed into a set
of Gaussian distributions. Each distribution is matched with a mi-
crolens. The optimization applies simulated annealing to permute
the location of these micro-lenses in order to construct a smooth
surface. In the tuner network, each tuner is connected to its four
neighbors. During the execution of an individual tuner, the op-
timization algorithm makes a randomized decision about whether
or not to swap its micro-lens with one of its neighbors based on
smoothness of the surface. The tuners are executed many times un-
til a user-specified convergence criterion is met. In our examples,
we use 452 microlens and ran all the tuners for 2000 iterations. In
the second process, based on the work of Finckh et al. [2010], we
use a B-spline node to represent a smooth caustic surface. This is
in contrast to the potentially discontinuous surface in the method
above. The reduced parameters are the height of each spline con-
trol point. We implement a simple caustics simulator for height
fields. The simulated image is compared to the goal image using
mean squared error. We used 60× 60 control points and render the
simulated image at 240× 240 pixel resolution.

Elastic Behavior: In the spirit of Bickel et al. [2009] we have im-
plemented an algorithm to compute material distribution based on
a desired force-displacement response. The input to this algorithm
is a mesh, a simulation configuration, and a desired shape. Simu-
lation configuration includes vertex constraints and forces applied
to the mesh. For this example, we use a co-rotational finite element
method (FEM) simulation with linearly elastic materials to estimate
the objects deformation. For the reducer tree, we use a voxel par-
tition to divide the object into a low-resolution grid. We assign a

Goal specification Microfacets solution Smooth surface solution

Microfacet Error

0.05

0.15

0.25

0 10000Iterations
P

ix
e

l
e

r
r
o

r

0

100

200

300

0 2000

Ro
ug

hn
es

s

Iterations

Smooth surface error

Figure 9: 3D printed lens arrays that each produce a caustic im-
age of Einstein. Below we show convergence plots for both the
microfacet and smooth surface optimizations. The portrait is avail-
able from the United States Library of Congress’s Prints and Pho-
tographs division, now in the public domain.

Go
al

 sp
ec

ifi
ca

tio
n

Pr
in

te
d

re
su

lt

x 10
−4

Iterations

E
rr

o
r

(m
)

0

2

4

6

0 50 100 150 200

Figure 10: A 3D printed book with prescribed deformation behav-
ior under load. The plot shows the error (in meters) as a func-
tion of iteration number of our branch and bound based tuner. The
blue line shows the smallest error seen so far while the red line the
tuner’s progress exploring material subtrees [Bickel et al. 2009].

single material to each grid cell. The FEM simulator queries the
reducer tree for material assignments at arbitrary spatial locations.
We use the same branch and bound algorithm as in our subsurface-
scattering process but with a different bound computation callback
function. We use the mean squared distance between the simulated
and the desired shapes as the error metric. We have designed a sim-
ple experiment to validate our process in which we set the goal of
our optimization to be a given deformed state (Figure 10).

Combining Caustics and Spatially-varying Albedo: The first
of our new combined translation processes incorporates both
smooth caustics and texture mapping (Figure 1, right). More specif-
ically, we compute a transparent slab with a texture image that,
when illuminated, casts a prescribed caustic image. The input slab
is split into two pieces using a plane node as shown in Figure 11.
The top piece is tuned to produce an input image. The material
in the top piece is then fixed. The bottom piece is then tuned to
produce a caustics image.

Combining Deformable Object and Spatially-varying Albedo:

Our second new process combines spatially-varying albedo and
elastic deformation properties (Figure 1 left). This is a very useful
combination since when modeling objects we would like to specify
both their appearance and “feel”. In this process, the input shape

is divided into a thin shell and an inner volume. We optimize for
the deformation behavior and the texture independently due to the
limitations of our current FEM simulator. As the outer shell is very
thin, it has negligible influence on overall object deformation.

Discussion: Through our series of experiments, the reducer tree
and tuner network have allowed us to reuse a large number of soft-
ware components. In the extreme case, we arrive at our subsurface
scattering algorithm by trivially adapting the same reducer tree for
texture mapping objects. The power of component reuse is fur-
ther elucidated by the presence of column nodes in most examples
and by our ability to reuse optimization schemes (such as branch
and bound) in multiple algorithms. The reducer tree and tuner net-
work make these similarities easy to observe and exploit. The only
component whose reusability was not demonstrated in this paper is
simulation. In this work, we have aimed to fabricate objects with a
wide range of physical properties and this necessitates the use of a
wide range of simulation algorithms. Finally, once a whole process
is configured, it is independent of input geometry and goal parame-
ters. For example, we have run the spatially-varying albedo process
with different geometries and input textures

The reducer-tuner model is ideally suited for multi-material print-
ing capable of producing objects with a wide range of different
properties. In order to showcase these strengths, we have fabri-
cated our examples for an Objet500 Connex – a phase change inkjet
printer that uses photopolymers with a wide range of optical and
mechanical properties. Even though only two materials can be used
and mixed within a single object, our framework has been proven
to be very useful. As the number of materials that can be printed si-
multaneously will grow, we expect the methodology presented here
to increase in utility. For other types of 3D printing technologies,
Spec2Fab framework has a reduced use. In the case of 3D print-
ing using a single, rigid material (e.g., fused filament fabrication or
Stereolithography) the framework can be used to tune geometry of
objects. For plaster-based 3D printers that produce full-color 3D
prints, Spec2Fab framework can be employed to compute proper
texturing of objects.

9 Conclusions and Future Work

In this paper we have taken the first step towards solving an open
problem in computational fabrication – creating a general transla-
tion process that transforms user-defined model specifications into
printer and material-specific representations. Our process relies on
two data structures to make this general translation process expres-
sive and computationally tractable: a reducer tree and a tuner net-
work. We have shown how existing instances of this translation can
be expressed and combined within our system. We believe that our
API and its reference implementation will simplify and encourage
development of new translation processes.

Our framework offers many exciting opportunities for future work.
First, it would be extremely useful to implement many additional
simulators in order to allow computing a variety of other properties,
e.g., structural soundness, stability, material cost, and printing time.
These simulators could be employed to expand the range of possible
user-defined specifications. Similarly, only relatively simple error
metrics have been tested within the tuning process. The develop-
ment of more sophisticated and, in particular, perceptually-driven
material metrics remains a relatively unexplored research area. Fi-
nally, it would be very beneficial to couple our API with a visual
interface to further simplify the task of translator construction. It is
not obvious what the best visual interface for specifying functional
or physical properties of these objects is and more research in this
area is necessary.

Acknowledgements The authors would like to thank Hanspeter
Pfister, Sylvain Paris, Fredo Durand and Ilya Baran for their help-
ful suggestions as well as Bernd Bickel, Moritz Bächer and Miloš
Hašan for providing software and data. This research was sup-
ported by the following sources of funding: DARPA #N66001-
12-1-4242, NSF CCF-1138967, NSF IIS-1116296 and a Google
Faculty Research Award.

References

ALEXA, M., AND MATUSIK, W. 2010. Reliefs as images. ACM
Trans. on Graphics (SIGGRAPH 2010) 29, 4 (July), 60:1–60:7.

BARAN, I., KELLER, P., BRADLEY, D., COROS, S., JAROSZ, W.,
NOWROUZEZAHRAI, D., AND GROSS, M. 2012. Manufactur-
ing layered attenuators for multiple prescribed shadow images.
Computer Graphics Forum 31, 2 (May), 603–610.

BERMANO, A., BARAN, I., ALEXA, M., AND MATUSIK, W.
2012. ShadowPIX: Multiple images from self-shadowing. Com-
puter Graphics Forum 31, 2 (May), 593–602.

BICKEL, B., BÄCHER, M., OTADUY, M. A., MATUSIK, W.,
PFISTER, H., AND GROSS, M. 2009. Capture and modeling
of non-linear heterogeneous soft tissue. ACM Trans. on Graph-
ics (SIGGRAPH 2009) 28, 3 (July), 89:1–89:9.

BICKEL, B., BÄCHER, M., OTADUY, M. A., LEE, H. R., PFIS-
TER, H., GROSS, M., AND MATUSIK, W. 2010. Design and
fabrication of materials with desired deformation behavior. ACM
Trans. on Graphics (SIGGRAPH 2010) 29, 4 (July), 63:1–63:10.

BICKEL, B., KAUFMANN, P., SKOURAS, M., THOMASZEWSKI,
B., BRADLEY, D., BEELER, T., JACKSON, P., MARSCHNER,
S., MATUSIK, W., AND GROSS, M. 2012. Physical face
cloning. ACM Trans. on Graphics (SIGGRAPH 2012) 31, 4
(July), 118:1–118:10.

COOK, R. L. 1984. Shade trees. Computer Graphics (SIGGRAPH
84) 18, 3 (Jan), 223–231.

CUTLER, B., DORSEY, J., MCMILLAN, L., MÜLLER, M., AND

JAGNOW, R. 2002. A procedural approach to authoring solid
models. ACM Trans. on Graphics (SIGGRAPH 2002) 21, 3
(July), 302–311.

DONG, Y., WANG, J., PELLACINI, F., TONG, X., AND GUO, B.
2010. Fabricating spatially-varying subsurface scattering. ACM
Trans. on Graphics (SIGGRAPH 2010) 29, 4 (July), 62:1–62:10.

FINCKH, M., DAMMERTZ, H., AND LENSCH, H. P. A. 2010.
Geometry construction from caustic images. Computer Vision
(ECCV 2010) 6315, 464–477.

HAŠAN, M., FUCHS, M., MATUSIK, W., PFISTER, H., AND

RUSINKIEWICZ, S. 2010. Physical reproduction of materials
with specified subsurface scattering. ACM Trans. on Graphics
(SIGGRAPH 2010) 29, 4 (July), 61:1–61:10.

JACKSON, T. R. 2000. Analysis of Functionally Graded Mate-
rial Object Representation Methods. PhD thesis, Massachusetts
Institute of Technology.

JORDAN, M., GHAHRAMANI, Z., JAAKKOLA, T., AND SAUL,
L. 1999. An introduction to variational methods for graphical
models. Machine Learning 37, 183–233.

KENNEDY, J., AND EBERHART, R. 1995. Particle swarm opti-
mization. In Neural Networks, 1995. Proceedings., IEEE Inter-
national Conference on, vol. 4, IEEE, 1942–1948.

KOU, X., AND TAN, S. 2007. Heterogeneous object modeling: A
review. Computer-Aided Design 39, 4, 284 – 301.

KOU, X., PARKS, G., AND TAN, S. 2012. Optimal design of func-
tionally graded materials using a procedural model and particle
swarm optimization. Computer-Aided Design 44, 4, 300–310.

KUMAR, V., BURNS, D., DUTTA, D., AND HOFFMANN, C. 1999.
A framework for object modeling. Computer-Aided Design 31,
9, 541 – 556.

LOW, Y., GONZALEZ, J., KYROLA, A., BICKSON, D.,
GUESTRIN, C., AND HELLERSTEIN, J. M. 2010. Graphlab:
A new parallel framework for machine learning. Conference on
Uncertainty in Artificial Intelligence (UAI) (July).

MALZBENDER, T., SAMADANI, R., SCHER, S., CRUME, A.,
DUNN, D., AND DAVIS, J. 2012. Printing reflectance func-
tions. ACM Trans. on Graphics (SIGGRAPH 2012) 31, 3 (May),
20:1–20:11.

MATUSIK, W., AJDIN, B., GU, J., LAWRENCE, J., LENSCH, H.
P. A., PELLACINI, F., AND RUSINKIEWICZ, S. 2009. Printing
spatially-varying reflectance. ACM Trans. on Graphics (SIG-
GRAPH Asia 2009)) 28, 5 (Dec.), 128:1–128:9.

MITRA, N. J., AND PAULY, M. 2009. Shadow art. ACM Trans. on
Graphics (SIGGRAPH Asia 2009) 28, 5, 156:1–156:7.

PAPAS, M., JAROSZ, W., JAKOB, W., RUSINKIEWICZ, S., MA-
TUSIK, W., AND WEYRICH, T. 2011. Goal-based caustics.
Computer Graphics Forum 30, 2, 503–511.

PAPAS, M., HOUIT, T., NOWROUZEZAHRAI, D., GROSS, M.,
AND JAROSZ, W. 2012. The magic lens: refractive steganog-
raphy. ACM Trans. on Graphics (SIGGRAPH Asia 2012) 31, 6
(Nov.), 186:1–186:10.

SKOURAS, M., THOMASZEWSKI, B., BICKEL, B., AND GROSS,
M. 2012. Computational design of rubber balloons. Computer
Graphics Forum 31, 2 (May), 835–844.

VAN LAARHOVEN, P., AND AARTS, E. 1987. Simulated anneal-
ing: theory and applications, vol. 37. Springer.

VIDIMČE, K., WANG, S.-P., RAGAN-KELLEY, J., AND MA-
TUSIK, W. 2013. OpenFab: A programmable pipeline for multi-
material fabrication. ACM Trans. on Graphics (SIGGRAPH
2013) 32, 4 (July).

WEYRICH, T., PEERS, P., MATUSIK, W., AND RUSINKIEWICZ,
S. 2009. Fabricating microgeometry for custom surface re-
flectance. ACM Trans. on Graphics (SIGGRAPH 2009) 28, 3
(July), 32:1–32:6.

...

L
a

ye
rd

Input shape

Column

Deformation/texture

Input shape

...

Geometry node Material node

StratumSpline

L
a

ye
rd

L
a

ye
rd

L
a

ye
rd

Smooth caustics

...

V
o

id

Smooth caustics/texture

Input shape

Columns

...

L
a

ye
rd

L
a

ye
rd

L
a

ye
rd

...

Plane

L
a

ye
rd

Spline

V
o

id

Voxel

...

L
a

ye
rd

L
a

ye
rd

L
a

ye
rd

...

...

Tuner Tuner network

L
a

ye
rd

Input shape

P
la

n
e

V
o

id

L
a

ye
rd

V
o

id

L
a

ye
rd

V
o

id

P
la

n
e

P
la

n
e

...

...

Column

Subsurface scattering/texture

Input shape

...

Stratum

Column

L
a

ye
rd

L
a

ye
rd

L
a

ye
rd

L
a

ye
rd

Facet caustics

...

...

...

Figure 11: The figure shows all reducer trees used in this paper. Smooth caustics: The smooth caustics tree consists of a spline surface
that divides the geometry into an inner surface filled with a transparent material and an outer, void surface. This allows us to approximate
displacement mapping. Here, a single tuner is used deform the spline surface. Smooth caustics/texture: The smooth caustics/texture reducer
tree splits the object into upper and lower sections using a plane. The upper section then uses the Smooth caustics reducer tree to define
surface displacements while the lower section uses a set of columns as texture pixels. Here, a single tuner solves for the caustic image and a
set of tuners with regular connectivity solves for the textured image. Deformation/texture: The object is divided into an outer layer and inner
volume using a stratum node. The interior volume is then voxelized and each voxel is assigned a layered material. As in the previous example,
the outer layer is divided into columns which are used as pixels for the texture image. The tuner setup is also similar to the previous example
except the single tuner is used to optimize the mechanical behavior of the object. Facet caustics: Here, we build facets by dividing an object
into columns and then bisecting the columns horizontally with a plane. The orientation of this plane defines the angle of the facet surface.
We use a separate tuner to optimize each plane orientation. Subsurface scattering/texture: The subsurface scattering/texture reducer tree
partitions the object into an inner volume and outer layer using a stratum node. The inner volume is unimportant in this example so we place
a constant material there. The outer material is divided into pixels using the column node. These columns are filled with layered materials.
We optimize each column separately using an associated tuner.

