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Abstract We present the GAMBIT modules SpecBit,
DecayBit and PrecisionBit. Together they provide a new
framework for linking publicly available spectrum gener-
ators, decay codes and other precision observable calcula-
tions in a physically and statistically consistent manner. This
allows users to automatically run various combinations of
existing codes as if they are a single package. The modular
design allows software packages fulfilling the same role to
be exchanged freely at runtime, with the results presented in
a common format that can easily be passed to downstream
dark matter, collider and flavour codes. These modules con-
stitute an essential part of the broader GAMBIT framework,
a major new software package for performing global fits. In
this paper we present the observable calculations, data, and
likelihood functions implemented in the three modules, as
well as the conventions and assumptions used in interfac-
ing them with external codes. We also present 3-BIT-HIT, a
command-line utility for computing mass spectra, couplings,
decays and precision observables in the MSSM, which shows
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how the three modules can easily be used independently of
GAMBIT.
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1 Introduction

Run II of the Large Hadron Collider (LHC) is engaged in
a wide-ranging search for evidence of physics Beyond the
Standard Model (BSM). Such models typically have large
parameter spaces, so understanding their phenomenology
requires detailed calculations using computer programs. Phe-
nomenological studies therefore often involve a large chain
of public codes that must be linked together.

This set of codes includes spectrum generators (to deter-
mine the masses of new particles), decay calculators (to
obtain decay widths), and packages capable of predicting
low-energy precision observables, such as the anomalous
magnetic moment of the muon. These codes need to be linked
together in such a way that information from the spectrum
generator can be passed to the other calculators, and their
outputs can in turn be used in other programs.

For the Minimal Supersymmetric Standard Model
(MSSM) and the Next-to-minimal Supersymmetric Standard
Model (NMSSM), there are the SLHA [1] and SLHA2 [2]
conventions, which simplify matters somewhat. However,
even in these cases it can be far more convenient to have the
programs automatically linked, as can be testified by the pop-
ularity of packages that incorporate individual codes, such as
SUSY-HIT [3] for the MSSM and NMSSMTools [4-6] for
the NMSSM. On the other hand, keeping individual codes
distinct in a modular framework allows for easier isolation
of the origin of differences in results, and for the ability to
mix and match different codes according to preference or
the specific advantages of one tool or another. Indeed, the
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need to compare several software packages for cross-checks,
catching bugs and revealing uncertainties in each calculation
has been demonstrated on numerous occasions (see e.g. Refs.
[7-10]).

Here we present a framework that provides the best of both
worlds, designed to work with all models including both non-
supersymmetric models and exotic SUSY models beyond the
MSSM and NMSSM. The framework consists of three pack-
ages: SpecBit, for handing renormalisation group running
and calculation of mass spectra, DecayBit, for computing
branching ratios and widths, and PrecisionBit, for calculat-
ing other precision observables. All three packages are inter-
faced in acommon way within GAMBIT 1.0.0[11], allowing
specific functions and external software to be exchanged at
runtime, whilst being run from exactly the same input param-
eters under the same physical conventions. The user interface
is designed to be as simple and general as possible, so that
information can be extracted and inserted in an intuitive way.

GAMBIT (the Global and Modular Beyond-SM Inference
Tool) is a multi-purpose physics tool for performing param-
eter scans and global fits in BSM models using either fre-
quentist or Bayesian statistics. Each of the three packages
we describe here is a module within the broader GAMBIT
framework. Here we highlight terms that may be consid-
ered GAMBIT jargon, and provide a simple summary of their
meanings in the glossary (Appendix H). Each module col-
lects a series of module functions based on acommon theme.
Each module function typically calculates a single observ-
able or likelihood component for use in a fit, or performs
some calculation that is needed by another module function
in order to eventually arrive at the value of an observable or
likelihood. Module functions that require the results of other
module functions can declare dependencies on the physi-
cal or mathematical quantities that they require. GAMBIT
defines a series of theoretical models available for analysis,
and various rules that relate the different module functions
to each other, to models, and to functions that are available
for modules to call from external physics codes, known as
backends. At runtime, the GAMBIT dependency resolver
identifies the module and backend functions required to com-
pute the observables and likelihoods requested by a user, and
arranges them into a dependency tree. It then uses methods
from graph theory to ‘solve’ the tree, and determine the order
in which the functions must be called so that all dependen-
cies and model consistency requirements are guaranteed to
be satisfied. GAMBIT’s sampling module ScannerBit [12]
runs the user’s choice of sampling algorithm on the solved
dependency tree, and saves the resulting parameter samples,
derived observables and likelihoods in an output database for
subsequent statistical analysis and plotting.

SpecBit, DecayBit and PrecisionBit are used to com-
pute and return spectra, decay widths and precision observ-
ables, run associated backend codes, interpret the results

thus obtained, and provide them to other modules as required
for subsequent calculations. Other GAMBIT modules calcu-
late dark matter observables (DarkBit [13]), high-energy col-
lider signatures (ColliderBit [ 14]) and quantities from flavour
physics (FlavBit [15]). An extended description of the struc-
ture, features and abilities of GAMBIT can be found in Ref.
[11].

SpecBit, DecayBit and PrecisionBit are designed so that
a user may easily add new models and interfaces to new
backends. Models that have already been implemented in
GAMBIT are automatically supported. The first release fea-
tures various incarnations of the MSSM and the scalar-singlet
dark matter model, as these are the models on which the first
GAMBIT scans [16-18] have been performed.

The three modules have been initially set up to exploit
several external codes: !

— FlexibleSUSY [19] and SPheno [20,21] for spectrum
generation, performing calculations in the dimensional
reduction (DR) scheme.

— FeynHiggs [22-27] for additional Higgs and W mass
calculations in a mixed DR /on-shell (OS) scheme.

— HDECAY? [28-30] and FeynHiggs [22-26] for Higgs
decays.

— SDECAY? [31] for sparticle decays

— FeynHiggs, Superlso [32-34] and GM2Calc [35] for
calculation of additional precision observables.

The models and backends supported by SpecBit, Decay-
Bit and PrecisionBit will be continually updated, and they
are expected to grow rapidly. There are immediate plans
to add interfaces to the spectrum generators SOFTSUSY
[36-39] and SuSpect [40] for the MSSM, next-to-minimal
SOFTSUSY [41], NMSSMCALC [42-45] and NMSPEC
[6] for the NMSSM, and many additional models via Flex-
ibleSUSY [19] and SARAH / SPheno [21,46-50]. For
decays in the MSSM, HFOLD [51] and SFOLD [52] could
also be added. We are also adding SUSYHD [53] as a first
example for a forthcoming Mathematica® interface and we
will also add similar pure and hybrid effective field theory
calculations of HSSUSY [54,55] and FlexibleEFTHiggs
[55] from FlexibleSUSY. NMSSM decays will be obtain-
able from NMSSMCALC [42-45] and NMHDECAY [4,5].
Decays in other models can be added from SARAH /

! When any of these external codes are used as part of GAMBIT or
the SpecBit, DecayBit and PrecisionBit modules, the references for
that code listed here should be cited along with this manual. A full
list of references associated with all external codes currently utilised as
GAMBIT backends can be found in the file README . md in the main
directory of the GAMBIT source code.

2 We interface with SDECAY and HDECAY via SUSY-HIT [3].

3 http://www.wolfram.com/mathematica.
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SPheno and the upcoming FlexibleDecay extension of
FlexibleSUSY.

In Sect. 2 we describe the module SpecBit. This includes
how SpecBit manages the running of spectrum generators,
how to access and use the information it extracts from them,
and how it can be used to analyse vacuum stability. Next
we provide a detailed description of the module DecayBit
(Sect. 3), including the decay data it contains, decay calcula-
tions it performs internally, and its use of backends. In Sect. 4
we detail PrecisionBit, including its likelihood functions and
interfaces to external precision codes. Section 5 gives some
examples of each of the modules in action within GAMBIT,
and presents 3-BIT-HIT, a simple utility that performs a sim-
ilar function to SUSY-HIT, and serves as a basic example of
the standalone use of SpecBit, DecayBit and PrecisionBit
outside of the GAMBIT framework. We give a brief summary
in Sect. 6. In Appendix A we review the physics of the mod-
els discussed in this paper, and the conventions that we adopt
for them. We provide details of the interface with SPheno in
Appendix B, explicit documentation of some of the classes
involved in SpecBit in Appendices C-E, instructions for
adding new spectrum generators to SpecBit in Appendix F,
and an explicit example of how to build spectrum classes
for new models in Appendix G. In Appendix H, we give the
glossary of GAMBIT terms highlighted at various points in
this paper.

SpecBit, DecayBit and PrecisionBit are released under
the standard 3-clause BSD license,* and can be downloaded
from gambit.hepforge.org.

2 SpecBit

All information in GAMBIT about the spectrum of particle
masses and their couplings comes from module functions in
SpecBit. This includes the pole masses and mixings of all
physical states in the model, scheme dependent parameters,
such as those defined in DR [57-59] or M S [60] schemes,’
Higgs couplings and basic SM inputs (such as the top quark

4 http://opensource.org/licenses/BSD-3-Clause. Note that ficore [56]
and some outputs of FlexibleSUSY [19] (incorporating routines from
SOFTSUSY [36]) are also shipped with GAMBIT 1.0. These code
snippets are distributed under the GNU General Public License (GPL;
http://opensource.org/licenses/GPL-3.0), with the special exception,
granted to GAMBIT by the authors, that they do not require the rest
of GAMBIT to inherit the GPL.

5 Note that, for a given model, if a user wants to support backend codes
that require input parameters in a different scheme to the one imple-
mented in SpecBit, then the user must add a function that converts
between the two schemes. Consistency can then be ensured by spec-
ifying a scheme-specific spectrum as a dependency. Currently there
are no conversions between different schemes in SpecBit, because all
backends and native calculations can accept DR and M S parameters
as inputs.
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Fig. 1 Schematic representation of the structure of SpecBit. Model
parameters (red box) are obtained from the GAMBIT Core and fed
to SpecBit module functions (grey boxes). These module functions
run spectrum generator backend codes and embed the
results within Spectrum wrapper objects (inner grey boxes), which
carry the spectrum information out to other GAMBIT functions that
require it. In some cases the backend code remains connected to the
wrapper object, allowing RGEs to be called to translate couplings and
mass parameters to other scales. In this diagram solid outlines indicate
“active” elements for a hypothetical scan, while dashed outlines indicate
inactive elements. The “active” elements are those that are activated
by the central GAMBIT dependency resolution system, or manually
run in a standalone code. The “inactive” elements represent alternate
calculation pathways not required in a scan, but can be switched on
instead if the user chooses

pole mass). In BSM models where some of this required
information is a calculable prediction of the model, SpecBit
will obtain it by calling a spectrum generator, taking inputs
as model parameters. In cases where the information is not a
prediction, but is already specified directly by the free param-
eters of the model (e.g. if a pole mass is defined as a model
parameter), SpecBit will simply take this information from
the model parameters and store it in a similar way to the infor-
mation extracted from the spectrum generator. Spectrum data
is then stored inside Spectrum wrapper objects, which trans-
port the data to other GAMBIT module functions that request
it. A general overview of this process is shown in Fig. 1.

Because some calculations require the values of running
parameters at a particular scale, SpecBit also allows the DR
or M S parameters to be run to a scale chosen locally in any
module function, using a relevant spectrum generator back-
end.

2.1 Supported models and spectrum generators

The first release of SpecBit is extendable to any model, but
has built-in support for the scalar-singlet dark matter model,
and the MSSM. It also provides a low-energy spectrum object
containing SM information.


http://gambit.hepforge.org
http://opensource.org/licenses/BSD-3-Clause
http://opensource.org/licenses/GPL-3.0

Eur. Phys. J. C (2018) 78:22

Page 50f 71 22

Table 1 SM capabilities

provided by SpecBit. The Capability Function (return type): brief description Dependencies
capability SM_spectrumis SMINPUTS get_ SMINPUTS (SMInputs): Provide
understood .to provide running Standard Model parameters in SLHA?2
paramet.ers in the M S scheme, input conventions
along with pole masses
gedgcd_subspectrum get_QedQcd_spectrum SMINPUTS
(const SubSpectrum*): Create
QedQcdWrapper version of
SubSpectrum from SMInputs
structures
SM_spectrum get_SM_spectrum (Spectrum): SMINPUTS

Higgs_Couplings

SM_higgs_couplings
(HiggsCouplingsTable):
Construct a table of SM Higgs couplings

Create Spec trum object from
QedQcdWrapper and SM Higgs
parameters

Higgs_decay_rates

2.1.1 Standard model spectrum

GAMBIT is designed to fit models of BSM physics. There
is thus no full spectrum generator implemented for the SM.
However, BSM spectrum generators typically rely on SM
inputs as low-energy boundary conditions. To store this infor-
mation, SpecBit contains a gedocd spectrum object, which
was originally part of SOFTSUSY and is also used in Flexi-
bleSUSY. This is the source of some of the SM data that can
be extracted from SpecBit® and details of the relevant cap-
abilities are given in Sect. 2.2.2 and Table 1. More details on
this 0edocd object can be found in the SOFTSUSY manual
[36].

2.1.2 Spectrum generators for the MSSM

MSSM mass spectra are typically obtained by finding solu-
tions to the renormalisation group equations (RGEs) that
simultaneously satisfy boundary conditions (BCs) at high
and low scales, before using self energies to calculate the pole
masses. The low-scale BC matches the spectrum to observed
SM data, and the high-scale BC places constraints on the soft
SUSY-breaking masses.

The first version of SpecBit comes with interfaces to two
different spectrum generators: FlexibleSUSY and SPheno.
It also contains an interface to FeynHiggs, which can be used
to obtain Higgs and sparticle pole masses; details of our inter-
face to FeynHiggs are given in Sect. 3.1.3. FlexibleSUSY
creates a spectrum generator for a given model, defined in
a SARAH input file, and uses a FlexibleSUSY model file
to specify the BCs for that model. SPheno runs in different
modes according to the input BCs.

The model is defined by both a set of input parameters
that specify DR parameters of the MSSM, and an additional

© The SM data extractable from SpecBit are shown in Table 16.

scale at which the soft SUSY-breaking DR parameters are
defined. Note that when there are constraints relating the
parameters to each other, varying this scale is not equivalent
to a reparametrisation, as there will be different mass split-
tings that cannot be reproduced by any point in parameter
space when the constraints are applied at a different scale.

SpecBit currently implements several spectrum gener-
ators using FlexibleSUSY 1.5.1 (with SARAH 4.9.1).
In the spectrum generator MSsMatMGUT, the soft parame-
ters are defined at the scale where the gauge couplings
unify, which is determined iteratively. In MssvatQ, the soft
parameters are instead defined at a user-specified scale Q.
The MssMatycUT and MSSMat0 spectrum generators support
the MSSM63atMGUT and MSSM63atQ models, respec-
tively. These models represent the most general formula-
tion of the C P-conserving MSSM with the couplings given
in Eq. (A.12f) set to zero (see Appendix A.2 for the full
MSSM Lagrangian). MSSM63atMGUT is defined at the
scale where the gauge couplings unify, and MSSM63atQ is
defined at a user-specified scale Q. These are currently the
most general SUSY models of the GAMBIT model hierarchy
(which is described in Sect. 5 of Ref. [11]).

More constraining BCs create lower-dimensional sub-
spaces of these more general parameter spaces, so a vast
number of possible subspaces exist. SpecBit uses the
GAMBIT model hierarchy to relate these subspaces to the
MSSM63atMGUT or MSSM63atQ models, and can use
the MSSMatMGUT or MSSMatQ spectrum generators to deter-
mine their mass spectra. It is also possible to directly imple-
ment the boundary condition in a FlexibleSUSY spectrum
generator. As an example of this, we have also implemented
a specific cMssu spectrum generator. This was mostly intro-
duced as a basic check of the model hierarchy, but remains
in GAMBIT for convenience.

Technical details of how the FlexibleSUSY spectrum
generators are implemented are given in documentation

@ Springer
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shipped with the code (see doc/Adding_FlexibleSUSY_
Models.txt), though an illustrative example is given in
Appendix G.1, and details required to use them in scans are
given in Sects. 2.2.4 and 2.2.5. In the additional documenta-
tion, we also demonstrate how to add an MSSM variant where
soft parameters are fixed at the SUSY scale (1owrssM in the
FlexibleSUSY naming scheme), where the SUSY scale is
defined as the geometric mean of the DR stop masses and is
determined iteratively. We will include this variant natively
in the next version of SpecBit.

In the case of SPheno, the running mode is determined
by the initialisation of its internal variables. In contrast to
FlexibleSUSY, the available modes are triggered accord-
ing to the model being scanned (CMSSM, or one of the
MSSMatMGUT or MSSMatQ models), not by the usage
of different functions. Other running modes available in the
out-of-the-box version of SPheno, such as the NMSSM,
GMSB, AMSB, etc., are not covered in the backend version
of the software used in GAMBIT but, as mentioned before,
there are immediate plans to include these in future releases.
The specific details of how to use SPheno as a spectrum
generator in GAMBIT are provided in Sects. 2.2.4 and 2.2.6.
A comprehensive description of the backend system can be
found in the main GAMBIT paper [11], and in Appendix B
for the specific case of SPheno.

For each of these spectrum generators the EWSB con-
ditions are used to fix || and b, so that the Higgs vacuum
expectation values (VEVs) are fixed by the measured Z boson
mass and the input ratio of the two VEVs (tan 8 = z—z).

The pole masses and mixings calculated by the spectrum
generator are stored internally in the GAMBIT spectrum
wrapper in a format that follows SLHA?2 conventions [2]
allowing full family mixing for sfermions.

2.1.3 Spectrum generators for the scalar-singlet dark
matter model

The scalar-singlet mass spectrum is available in two forms.
One is a via a simple container object that is set up without
any spectrum generation, in other words the relevant pole
masses and coupling, which govern the new physics effects
at the TeV scale, are input directly from scanner-generated
parameters. The other option is a spectrum object that inter-
faces with FlexibleSUSY to calculate the spectrum with full
RGE-running capabilities.

The simple container spectrum is the most efficient option
for a range of calculations in GAMBIT that require only the
masses and coupling at a fixed scale. In this case, the only
new model parameters required for other module functions
are mg and Aj;. In the container object these parameters are
stored directly from the GAMBIT model parameters.

If radiative corrections and/or renormalisation group run-
ning of model parameters is necessary, then a fully calculable

@ Springer

spectrum is required. For this purpose, we offer a spectrum
object that uses FlexibleSUSY and the input parameters to
calculate pole masses and couplings. This spectrum object
also has the capacity to evolve parameters between different
scales using RGEs. This spectrum object interprets the input
model parameters, in particular the masses of the scalar sin-
glet (ms) and the Higgs boson (1m},), as M S quantities, while
all other SM masses are taken according to SLHA?2 conven-
tions [2]. These running parameters are defined at the scale
mz. The EWSB conditions are then imposed to calculate the
value of the quartic Higgs coupling A (Eq. (A.2)), and pole
masses are calculated at a user-specified scale Q. The scale
O may be varied as a nuisance parameter in the GAMBIT
model sM_Higgs_ running (see Ref. [11] for more details),
or left as the top mass by default. Optimally, this scale should
be set to minimise logarithmic contributions to the RGE B
functions with the largest coefficient.

2.2 User interface and options
2.2.1 General settings

In this section we describe how to use SpecBit to run avail-
able spectrum generators via a GAMBIT input YAML file.
Atthe most rudimentary level, spectrum information can sim-
ply be written to disk for one model point in an SLHA2-like
format, using SLHAea.? Atamore advanced level, the infor-
mation can be written to disk for every point in a GAMBIT
scan, via the GAMBIT printer system (for details, see Sect. 9
of the GAMBIT Core paper and manual [11]), and anal-
ysed using external software. More advanced usage, such as
accessing spectrum information at the C++ level (in a GAM-
BIT module function, for example), is described in Sect. 2.3.
For details on YAML usage of the capabilities and associated
options described here, please see the GAMBIT manual [11]
or the SpecBit example files in the yaml_files directory of
the GAMBIT source tree. A README file can be found in this
directory, which explains the example files further.

2.2.2 Standard model

The capabilities available in SpecBit related to the SM are
given in Table 1. The capability su_spectrum is provided
by the function

get_SMINPUTS.

7 YAML is the language that GAMBIT input files are written in; see
www.yaml.org.

8 SLHAea is a C++ class allowing internal representation of SLHA
files; see fthomas.github.io/slhaea.
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This creates an object containing the low-energy SM param-
eters obtained directly from the model parameters, which
must contain the parameters in the StandardModel_SLHA2
GAMBIT model [11]. This can then be used to build BSM
spectrum objects that require this low-energy data.

By default, the get_sminpUTS function populates its W
mass with the observed value of 80.385 GeV [61]. Users
who prefer the W mass returned to respect the tree-level
relationship with mz and sin®6@y can choose for it to
be calculated at tree level instead, by setting the option
enforce tree level MW = true for this function.

The module function

get_QedQcd_spectrum

has a dependency on sv_spectrum, and provides the cap-
ability gedgcd_subspectrum. This function creates an
effective 0edocd object. The returned oedocd object con-
tains the low-energy data, where all running quantities from
the sMinputs dependency are now given at the scale myz.
This is then wrapped along with the original sMinputs into
a subSpectrum object.

Finally, to provide the capability su_spectrum, the mod-
ule function

get_SM_spectrum

wraps the gedgcd_subspectrum object into a full spectrum
object along with a simple container for the Higgs pole mass
and vacuum expectation value, providing a complete SM
spectrum.

The capability Higgs Couplingsisdescribedin Sect.2.6.

2.2.3 Scalar-singlet dark matter

The capabilities available in SpecBit that either produce or
depend on the scalar-singlet spectrum are given in Table 3.

SpecBit has a capability singletdM spectrum to pro-
vide essential details as regards the scalar-singlet spectrum.
This capability is provided by the module functions

get_SingletDM_spectrum_simple and
get_SingletDM_spectrum_ FS,

both of which return a spectrum object. The former returns
the simple container spectrum, as described in Appendix F.2,
and the latter returns a more sophisticated spectrum, com-
puted with FlexibleSUSY, which can run parameters as
described in Sect. 2.3.3. All options described in Sect. 2.2.5
can be given to this function.

If an error is encountered during initial spectrum gen-
eration, a FlexibleSUSY error is passed to GAMBIT.
The handling of such an error is controlled by the option

invalid_point_fatal; if this option is set to true, invalid
spectra will trigger a SpecBit error. It is a common con-
sideration to check for perturbativity of the dimensionless
couplings up to a specific high-energy scale [62—-64]. We pro-
vide the ability to do this with the option check perturb.
The maximum scale to run the couplings up to is set with
the option check_high_scale. If the couplings are found
to be non-perturbative, then an invalid point exception is
raised as if the initial spectrum calculation encountered an
error. The options, input types and default values for the
get_SingletDM_spectrum_ FS function are given in the list
below.

— check_perturb: takes a bool to demand that the spec-
trum be run to check_high_ scale. Default false.

— check_high_scale: takes a double to define the scale
that the couplings are run to (given in units of GeV) after
spectrum generation. Default Mp; = 1.22 x 10'° GeV.

— invalid_point_fatal: kill the whole scan if a Flexi-
bleSUSY error is encountered during spectrum genera-
tion. Default false.

— FlexibleSUSY options: see Sect. 2.2.5.

The module function
get_SingletDM_spectrum_as_map

also provides capability singletDM spectrum, but as a
C++map (aliased as map_str_dbl). For this function to
run, the singletDM spectrum needs to be provided as a
Spectrum object. In other words, this function just trans-
lates between the Spectrum type and a C++ map. The main
use of this function is to print the contents of the spectrum
to an output stream for each data point during a scan (as the
map_str_dbl type is “printable” but the spectrum type is
not), as shown in Fig. 2.

There are also some additional capabilities related to vac-
uum stability in the scalar-singlet model:
stability,check_perturb_min_lambda,VS_likelihood
and expected_lifetime. These are discussed in detail in
the advanced usage example in Sect. 2.5.2.

vacuum__

2.2.4 MSSM

The capabilities available in SpecBit relevant for the MSSM
model are given in Table 2.

SpecBit has a number of module functions that provide
the Capability unimproved MSSM_ spectrum. We will start
by examining three of them:

get_MSSMatMGUT_spectrum,

get_MSSMatQ_spectrum, and
get_CMSSM_spectrum.
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SM + MSSM
parameters
get_ SMInputs Y

SMINPUTS
(as SMInputs)

get_MSSMatQ_spectruni get_unimproved_
¢ Y MSSM_spectrum_as_map

FlexibleSUSY

[ unimproved_MSSM_spectrum

unimproved_MSSM_spectrum
(as Spectrum)

(as std::map)

7 \

To e.g. PrecisionBit To output (printer)

Fig. 2 A typical flow of information through SpecBit, using
MSSM module functions as examples. First, model parameters
(red box) are obtained from the GAMBIT Core. Some of these
are used to construct Standard Model input information for the
spectrum generation (SMINPUTS, upper grey box), while MSSM
parameters are passed directly to the spectrum builder function
(get_MSSMatQ_spectrum,lower left grey box). This function con-
structs a Spectrum object, which wraps information obtained from
FlexibleSUSY , and passes it on to other parts of GAM-
BIT. In addition, the Spectrum object is translated into a C++ map
(lower right grey box), which can be parsed by the GAMBIT printer
system and written to disk

These module functions provide the
MSSsM_spectrum capability in the form of a spectrumobject
by calling one of the FlexibleSUSY spectrum generators
described in Sect. 2.1.2. The module functions all depend
on sMiNPUTS provided in the form of an sMInputs struc-
ture. These spectra are of the most sophisticated type, pro-
viding full two-loop RGE running, as described in Sect. 2.3.3.
Options can be supplied to FlexibleSUSY via the input
YAML file, and they are discussed in Sect. 2.2.5.
Additionally the module function

unimproved_

get_MSSM_spectrum_SPheno

also provides the Capability unimproved_MSSM_spectrum,
but in this case obtains the information from a different spec-
trum generator: SPheno. As with the module functions that
call FlexibleSUSY, this module function depends on an
SsMInputs object and provides a Spectrum object, select-
ing the specific model and running mode of the backended
SPheno at runtime. In contrast to the FlexibleSUSY case,
however, this spectrum object does not provide RGE run-
ning. Is is simply a static spectrum equivalent to the contents
of an SLHAea object (sLHAstruct), which is a simple con-
tainer of SLHA-like information (described in more detail
in Sect. 2.3.3 under SLHAea output). The options available
for the backend version of SPheno used by this module
function are in Sect. 2.2.6.
The module function
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get_MSSM_spectrum_from_SLHAfile

also pI‘OVideS this unimproved_MSSM_spectrum capability
in the form a spectrum object. However, instead of using
a spectrum generator to do this it uses an SLHA file. The
Spectrum object in this case does not provide the ability for
RGE evolution, but is rather a simple container spectrum.
This function takes the options

— filenames: path to SLHA file to be read in. Can be a list
of many file names, in which case each file will be read
in sequentially.

— cycles: number of loops over the filenames list to
allow (default -1 indicates no limit). When the limit is
hit an error will be raised, stopping the scan.

This function is mainly for debugging purposes, because one
usually generates spectra on the fly during a scan.
Two further SpecBit module functions,

get_unimproved_MSSM_spectrum_as_SLHAea and

get_unimproved_MSSM_spectrum_as_map

are available for translating a spectrum object to either an
SLHAea object (stuHAstruct) or to a C++ map (as in the
analogous scalar-singlet DM function), respectively. These
still represent the spectrum, just with a different type, so
the module functions have both a dependency and a cap-
ability of unimproved_MSSM_spectrum, but with different
types. See Fig. 2 for an example use case of this ‘translation’
behaviour. We have found each format useful for different
tasks. For example, some module functions in other parts
of GAMBIT request spectrum information in sLHAstruct
format, rather than as full spectrum objects, because these
functions work closely with backend codes that were origi-
nally designed to work via SLHA files. So keeping the format
directly parallel to SLHA was convenient for them. On the
other hand, the std: : map format is useful because at present
neither Spectrum objects nor sLHAstruct objects can be
directly written to disk by the GAMBIT printer system [11],
SO converting to std: :map is necessary as an intermediate
step for this purpose.
The module functions

get_MSSM_spectrum_ as_SLHAea and
get_MSSM_spectrum_as_map

also translate a Spectrum object into an SLHAea struc-
ture or a std: :map. However, in these cases the capability
and dependency is MsSSM_spectrum, a capability that can
also be provided by the module functions from Precision-
Bit, as shown in module function Table 10 and discussed in
Sect. 4.2.3.
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In the MSSM it is often useful to be able to identify which
Higgs boson is most similar to the SM Higgs boson. The
module function

most_SMlike_Higgs_MSSM

provides this information by returning a PDG code repre-
senting the C P-even Higgs with couplings that are closest to
those of the SM Higgs boson. We deem the lightest C P-even
state to be the most SM-like if sin(8—«) > cos(f—«), where
« is the mixing angle defined in Eq. (A.16); otherwise, this
function returns the PDG code of the heavier C P-even Higgs.
This function has capability sulike Higgs PDG code, and
a dependency on the MSSM_spectrum.

It is also possible to extract the low-energy SM spectrum
from the MSSM spectrum. The capability sv_subspectrum
is provided by the module function

get_SM_SubSpectrum_from_ MSSM_Spectrum,

which has a dependency on the MsSM_spectrum.
Finally, there are three module functions that require back-
end functions from FeynHiggs. These module functions,

FH_MSSMMasses,
FH_HiggsMasses and
FH_Couplings,

respectively, provide MSSM masses with capability
FH_MSSMMasses, Higgs masses with  capability
prec_HiggsMasses, and Higgs couplings with capability
FH_Couplings_output.

2.2.5 FlexibleSUSY options

Any spectrum generator interfaced to GAMBIT will inevitably
have its own set of options to control precision and methods of
calculation. Here we briefly summarise the FlexibleSUSY
options, which can be set via YAML options. For a more
detailed explanation of these options, see the FlexibleSUSY
manual [19].

— precision_goal:relative error for the calculation of the
DR spectrum. Default 1 x 1074,

— max_iterations: maximum number of iterations for
the two-scale algorithm. Default —101og;y(precision_
goal).

— calculate sm masses: compute SM pole masses dur-
ing spectrum calculation. Default false.

— pole_mass_loop_order: number of loops in self ener-
gies for pole mass calculation. Default 2.

— ewsb_loop_order: number of loops in radiative correc-
tions to the EWSB conditions in Eq. 33 of Ref. [19].
Default 2.

— beta_loop_order: loop order for RGEs. Default 2.

— threshold_corrections_loop_order: 100p order for
threshold corrections as defined in Eqs. 6—13 of Ref. [19].
Default 2.

— Two-loop Higgs pole mass corrections are controlled for
specific terms with a boolean input, these are by default
all set to true. The available terms are:

— use_higgs_2loop_at_as: O(asay),

— use_higgs_2loop_ab_as: O(abozs),

— use_higgs_2loop_at_at: (9(0[12 —+ oo + Oég),
— use_higgs_2loop_atau_atau: O(Ot%),

where for x = t,b, 7, 0y = y)%/(4r[) and yy is the corre-
sponding Yukawa coupling, and «; is the strong coupling
constant.

Note that the included spectrum generators created by
FlexibleSUSY perform a fixed-order calculation of the
Higgs mass and we do not currently support additional Flex-
ibleSUSY codes’ HSSUSY and FlexibleEFTHiggs that
resum large logarithms. However, we refer the reader to
Ref. [55] for a discussion of how the large logarithms fortu-
itously cancel in the fixed-order FlexibleSUSY calculation,
such that the uncertainty is much lower at higher scales in
the MSSM than one would naively expect.

If the FlexibleSUSY spectrum generator encounters an
error during calculation, this may be passed on as a SpecBit
error, resulting in the termination of a scan, or as an invalid
point exception, which will result in the scan point being
given an invalid likelihood (an extremely small value defined
by model_invalid_for lnlike_ belowin the YAML ﬁle).
See Ref. [11] for more details on exception handling. The
management of these exceptions within GAMBIT is con-
trolled with the option invalid point fatal discussed in
Sect. 2.2.3.

2.2.6 SPheno options

As with FlexibleSUSY, there are a number of options avail-
able for SPheno to control certain aspects of the calculation.
In GAMBIT only a limited set of all the available options
for SPheno is allowed, because many features or models
permitted by SPheno are not yet covered in GAMBIT. A
detailed explanation of all the options available for SPheno
can be found in the manual [21], under the SLHA block
SPhenolnput.

9 Such options will be added at a later date, however, in the intervening
period, an advanced user may also add these codes themselves, follow-
ing the instructions given in this manual.
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The following options can be provided via the YAML
options section in the input YAML file, and they will be inter-
nally assigned to the corresponding variables in SPheno.

— SPA_convention: use the SPA convention [65], effec-
tively setting the parameter output scale to 1 TeV. Default
false.

— GguTscale: fixed value for the GUT scale. Default 0.0,
which causes the GUT scale to be obtained at runtime.

— StrictUnification: force strict unification of the
gauge couplings g1 = g» = g3. Default false.

— delta_mass: relative precision in the calculation of the
masses. Default 107°.

— n_run: maximum number of iterations for the mass cal-
culation. Default 40.

— TwoLoopRGE: Whether to use two-loop RGEs. Default
true.

— Alpha: value of the fine-structure constant «(0). Default
ey

— gamz: value of the decay width of the Z gauge boson.
Default 2.49 GeV.

— gamw: value of the decay width of the W gauge boson.
Default 2.04 GeV.

— Use_bsstep_instead_of_rkgs: use the bsstep algo-
rithm instead of rkqgs. Default false.

— Use_rzextr_instead_of_pzextr: use the rzextr

algorithm instead of pzextr. Default false.

Note that the MSSM SPheno spectrum generator sup-
ported currently is the one immediately available after down-
loading SPheno, rather than including auto-generated code
from SARAH. It includes only the fixed-order Higgs-mass
calculation, so the hybrid EFT/fixed-order calculation based
on FlexibleEFTHiggs [55] which has been developed very
recently [66] is not currently available in SpecBit.

Errors prompted by SPheno are collected by the internal
integer variable kont, which takes different values according
to the source of the error. The specific error messages corre-
sponding to values of kont can be found in Appendix C of
the manual [21]. For any of these values, the backend con-
venience function run_SPheno raises an invalid_point
exception, as described in [11].

2.2.7 Mass cut options

For any module function that constructs a Spectrum object,
it is possible to specify options that enforce user-defined
relationships between particle pole masses: mass_cut and
mass_cut_ratio. Any spectrum that does not pass the spec-
ified cuts is declared invalid (which may invalidate the entire
parameter point, depending on whether the likelihood ulti-
mately depends on the spectrum or not [11]). While these
cuts are not, in general, physically required, we have found
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this feature useful for certain specialised scans, for example
explorations of co-annihilation regions in the MSSM.

These options take one or two particle names recognised
by the spectrum, along with two numbers used to define the
range to be cut. They are best explained by way of an example
entry in the rRules section of a GAMBIT YAML file:

- capability: unimproved_MSSM_spectrum
function: get_CMSSM_spectrum
options:

mass_cut: [[
"hO_1",120,130],["~e-_1",100,1000]1]

mass_ratio_cut: [I[
"~e-_1","|~chiO_1|",1,1.011]

The above code invalidates any points that do not have:

— the mass of the lightest Higgs between 120 and 130 GeV,

— the mass of the lightest slepton between 100 and
1000 GeV, and

— the mass of the lightest slepton within 1% of the mass of
the lightest neutralino.

Note in particular the use of absolute value signs for the
neutralino mass, which may be negative. This notation can
be used wherever a particle name is given, in order to define
the cut rule in terms of the absolute value of the particle mass.
Also note that two such cut rules are given for mass_cut,
illustrating the fact that these options can be used to apply
arbitrarily many cuts simultaneously.

2.3 Interface details for GAMBIT module writers (C++
API for spectrum and related classes)

In Sect. 2.2 we provided details for a base-level user of GAM-
BIT to simply operate the code as written. However, one of
the goals of GAMBIT is to provide a framework into which
researchers can add their own calculations while maintain-
ing easy use of all pre-existing GAMBIT functions. This
section is intended as a guide for users of this kind. This
information will also be needed by users running SpecBit
externally to GAMBIT. Here we describe details of the inter-
faces to objects provided by the SpecBit module, and how
they should be used to facilitate physics calculations of other
modules.

In Sect. 2.3.1 we demonstrate the most common methods
for accessing spectrum information. In Sects. 2.3.2 and 2.3.3,
we outline the class structure used to store spectrum infor-
mation, and explain the details of its interface. The helper
class sMInputs is discussed last, in Sect. 2.3.5.
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2.3.1 Basic spectrum access

The spectrum information is stored in a Spectrum object,
the full structure of which will be described in Sect. 2.3.2.
However, here we briefly describe the basic user interface.
To access a Spectrumobjectin anew module function, the
module function should be declared to have a dependency
on the appropriate spectrum. As described in section 3.2.1
of the GAMBIT paper [11], the spectrum object can then be
obtained by dereferencing the safe pointer returned by the
SpecBit module function, e.g.
using namespace Pipes::my_module_function;

const Spectrum& spec =
*Dep::SingletDM_spectrum;

One can now access the spectrum information using spec.
The spectrum information is primarily accessed using a string
accessor plus a tag, as in

double mh0 =
spec.get (Par::Pole_Mass, "h0_1");

Note that par is simply a namespace, so the tags can be
brought into scope with the using keyword, and then used
more succinctly, i.e.

using namespace Par; double mh0 =
spec.get (Pole_Mass, "h0_1");

The tag in the first argument of the getter specifies the type
of information to look for. The second argument is a string
that, in combination with the tag, tells the getter exactly what
information is requested. To simplify access to quantities
that are naturally grouped together in vectors (e.g. C P-even
Higgs or neutralino masses in the MSSM), the get function
may also be called with an index:

double mh0 = spec.get (Pole_Mass,"h0",1);

Aswell as a get function, Spectrumobjects contain a has
function with an almost identical function signature, which
can be used to check if a quantity exists in the spectrum before
attempting to retrieve it:

bool has_mhO_1 = spec.has(Pole_Mass, "h0",1);

where has_mh0_1 is true if the quantity exists in the spec-
trum, and false if it does not.

It is also possible to set the values of spectrum param-
eters, but not via the base-level spectrum object interface.
For this more advanced usage, see Sect. 2.3.3. Most users
will not need to do this.

This form of string getter allows the spectrum information
to be accessed in a simple, uniform way across all models
and all GAMBIT modules. The user simply needs to know
the specific tags and string names used for each piece of
information. Particle names, for example, can be found in
the GAMBIT particle database (see Sect. 10.1 of Ref. [11]).

/Spectrum wrapper\

SMInputs
Spectrum
generator
LE SubSpectrum backend
wrapper
HE SubSpectrum Spectrum
wrapper generator
\ j backend

Fig. 3 Schematic representation of a Spectrum object. Basic Stan-
dard Model “input” information is contained in a structure call
SMInputs , the content of which mirrors
the correspondingly named SLHA?2 block. Low scale (generally < mz)
spectrum information is wrapped by a “low-energy” SubSpectrum
object . High scale (generally > m z) spec-
trum information is wrapped in a “high-energy” SubSpec t rum object

. This split mirrors a common require-
ment of spectrum generators that Standard Model input parameters
be first supplied at a common scale, then run by the “low-energy”
SubSpectrum object to a matching scale, after which the main spec-
trum generation for the BSM model is performed and wrapped into the
“high-energy” SubSpectrum object. The outer Spectrum object
provides a uniform interface to these underlying structures and makes
it easy to retrieve common parameters such as pole masses without the
need to interact directly with the subspectra

For convenience, in Appendix C we give tables listing
the tags, strings, and indices needed to access data via the
getters, checkers, and setters for the SM, the MSSM, and the
scalar-singlet model.

Note that only information tagged with Pole Mass can
be retrieved via the base-level spectrum interface. For other
information (and to run RGEs, when available) one must use
the equivalent subspectrum interface, which is described in
Sect. 2.3.3.

2.3.2 spectrum class structure

At the centre of the SpecBit module is a virtual interface
class named spectrum, for accessing typical spectrum gener-
ator output in a generalised and standardised way. Wherever
possible, SLHA2 conventions [1,2] are used as the standard.
The objects accessed by this interface can thus be considered
as an in-memory representation of the data that one would
typically find in the SLHA2 ASCII output of a spectrum gen-
erator.

Each spectrum object contains three main data mem-
bers, illustrated in Fig. 3: an sMInputs object, which con-
tains SM input parameters (closely mirroring the sMINPUTS
block defined by SLHA2); and two SubSpectrum objects,
one labelled L& for ‘low energy’ and which typically contains
low-scale SM information, and the other labelled == for ‘high
energy’, which typically contains higher-scale model infor-
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class Spectrum
{
public:
SubSpectrum& get_LEQ);
SubSpectrum& get_HEQ);
SMInputs&

// Access "low-energy" SubSpectrum
// Access "high-energy" SubSpectrum
get_SMInputs(); // Access SMInputs associated with this Spectrum

std::unique_ptr<SubSpectrum> clone_LE() const; // Copy "low-energy" SubSpectrum
std::unique_ptr<SubSpectrum> clone_HE() const; // Copy "high-energy" SubSpectrum
// (whole Spectrum object can be copied using standing copy constructor/assignment methods)

void RunBothToScale(double scale); // Run both LE and HE SubSpectrum to same scale
// (Default units: GeV)
// Get/check/set functions for parameter retrieval/input with zero or one indices.

bool

has(const Par::Tags partype, const std::string& mass, const int index=NONE) const;

double get(const Par::Tags partype, const std::string& mass, const int index=NONE) const;

SLHAstruct getSLHAea(int slha_version) const; // Create SLHAea object from LE+HE SubSpectra in

~+SLHA standard slha_version. HE takes precedence.

void writeSLHAfile(int slha_version, str fname) const; // Output spectrum contents as an SLHA

})

Fig. 4 Simplified class declaration of primary Spectrum class.
Not shown are various overloads, constructors and assignment
operators, helper functions, and all private members. Addi-
tionally, the index arguments for the has/get functions are

mation such as Higgs-sector or BSM data. The reason for
this separation is that, typically, one requires different calcu-
lations for accurately evaluating and evolving low-energy SM
parameters (like quark masses) and high-energy ones like the
MSSM. The code to do each calculation will be wrapped in a
separate subspectrum structure. This wrapper also provides
access to running parameters and RGE-running facilities, if
these are available in a backend code wrapped by a particu-
lar subSpectrum. We describe the subSpectrum interface in
Sect. 2.3.3. Details needed for writing such a class are found
in Sect. 2.4. The purpose of the host spectrum object is to
provide a consistent interface to the underlying subspectra
and SM input parameters.

In Fig. 4 we provide a simplified overview of the contents
of the spectrum class, for reference. We will now discuss
the various functions and data members shown in this figure.

Data member getters The central members of a spectrum
object are accessed via three functions:

get_LE()/get_HE() Accesses the hosted subSpectrum
object identified as ‘low energy’ or ‘high energy’.

get_SMInputs () Accesses the hosted sMInputs object.

clone LE()/clone HE() Creates a copy of the hosted
SsubSpectrum object identified as ‘low energy’ or ‘high
energy’.

The ‘clone’ functions exist because by design, it is not pos-
sible to perform actions that modify contents of Spectrum
objects provided to GAMBIT module functions as dependen-
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—file, conforming to SLHA standard slha_version.

implemented via operator overloads rather than optional argu-
ments as is shown. For the full class declaration please see
Elements/include/gambit/Elements/spectrum.hpp in
the GAMBIT source code

cies. This protection extends to the subspectrum objects, so
in order to perform actions that modify the spectrum (like
RGE running) one must first copy the whole Spectrum or
‘clone’ the relevant subsSpectrum.

Copying spectrum objects Because GAMBIT prevents the
results of module functions from being modified by other
module functions, if a user wishes to modify the contents
of a SpecBit-provided spectrum object, the user must first
copy it. The copy constructor (and associated constructors) of
the spectrum object are designed to perform a ‘deep’ copy.
To make a copy, one can simply use the copy constructor or
assignment operators, i.e.

Spectrum spec_copy (spec);//This is a deep copy
Spectrum spec_copy=spec; //Also a deep copy

RGE running There is little in the underlying object that
can be modified from the spectrum interface, except
via the RunBothToscale function. This function runs the
renormalisation-scale-dependent parameters of the under-
lying subspectrum objects to the same scale. Note that
the underlying RGEs may not be valid beyond certain
scales on both the high and low ends, so some caution and
knowledge of the underlying objects is required in order to
safely use this feature (see ‘RGE running’ in the following
subsection).
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| Spectrum
get... generator
backend
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Fig. 5 Schematic representation of a SubSpectrum object. These
objects interface directly to spectrum information or external spectrum
generators . Accessor functions (e.g. has, get) are used to
access spectrum parameters, and, in the case where a spectrum generator
is connected, the RunToScale function can be called to run the whole
spectrum to a different scale (pale-green boxes). To standardise param-
eters that should be retrievable from generated spectra for each model,
we define a separate SubSpectrumContents object for each model.
Each wrapper is then associated with some SubSpectrumContents
(green box), and is required to provide all the contents defined therein

2.3.3 subspectrum objects

While the spectrum interface provides fast and easy access
to pole masses, it does not allow access to more detailed
spectrum information, such as the values of couplings, mix-
ings, and running mass parameters. For this purpose one
must use the subspectrum interface (Fig. 5). As we covered
in Sect. 2.3.2, the simplest way to obtain a SubSpectrum
object is to extract it from a host Spectrum object using the
get LE()/get_HE() functionsor clone LE()/clone HE()
functions:

const SubSpectrum& mssm = spec.get_HE();
unique_ptr<SubSpectrum> copy = spec.clone_HE();

Following the same pattern as the Spectrum interface,
spectrum information can be accessed via the subspectrum
interface using a get function, for which the arguments are
a tag, a string identifier, and zero to two indices:

using namespace Par;
double mass_sul = mssm.get (Pole_Mass, "~u",1);

Let us now examine the contents of the SubSpectrum
interface class. This class is a virtual interface for derived
classes individually designed to wrap the data from external
spectrum generator codes. The virtualisation allows module
writers to treat spectrum data in their own module functions
in a generic way, with the selection of the actual spectrum
generator to use being a decision left to runtime. The wrap-
ping of external codes is then decoupled from the use of the
datarequired by module functions, meaning that replacement
wrappers can be written for new external spectrum generator
codes, and the new wrapper activated, without necessitating
any modification of downstream module functions.

For reference, a simplified outline of the subspectrum
class is shown in Fig. 6. For the precise class declaration
please see the file

Elements/include/gambit/Elements/subspectrum.

hpp
in the GAMBIT source tree.

Getters, checkers and setters Like the spectrum interface,
the subspectrum interface also provides a has function,
which accepts the same input arguments as the get func-
tion, and which returns a boo1 that indicates whether or not
a given SubsSpectrum object contains the requested param-
eter:

bool has_mass_sul = mssm.has(Pole_Mass, "~u",1);

Unlike the spectrum interface, the subspectrum interface
also provides set functions. These can be used to modify
or overwrite parameter data contained in the subSpectrum
object. For example,

double newmass = 500; // Units generally in
double newmass2 = 600; // powers of GeV
mssm.set (Pole_Mass,newmass, "~u",1);
mssm.set_override (Pole_Mass,newmass2,"~u",1l);

The set and the set_override functions differ in an impor-
tant way. The set function, if permitted by the underlying
wrapper class, will directly change a value in the underly-
ing spectrum generator code, and thus may, for example,
impact renormalisation group running. On the other hand,
the set_override function does not see the underlying spec-
trum generator code at all, and it will simply store a replace-
ment value that will be preferentially retrieved when using
the get function. This can be useful for storing, for exam-
ple, precision calculations of pole masses in such a way
that they can be seamlessly used by other GAMBIT mod-
ule functions, via the standard interface. We emphasise that
the set_override value will take ultimate priority, and in
fact the underlying value known to the spectrum generator
code will become masked, and irretrievable. So in the exam-
ple above, acalltomssm.get (Pole Mass, "~u", 1) afterthe
call to mssm.set_override would retrieve the value 600.
There is also an optional final bool argument to
set_override (not shown in Fig. 6), which indicates
whether the function is permitted to add to the contents of a
Ssubspectrum. The default is false, leading to an error if a
user tries to override a part of the subSpectrum contents that
does not already exist. By setting this true, one can insert
arbitrary new information into the subspectrum, which will
become retrievable with the get method. This functional-
ity should be used sparingly, as the writers of other module
functions generally will not be aware of the existence of the
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class SubSpectrum
{
public:
std::unique_ptr<SubSpectrum> clone() const;

// Clone (copy) this SubSpectrum object

virtual void writeSLHAfile(int slha_version, const str& fname) const; // Write out spectrum to SLHA

—file (if possible) in SLHA standard slha_version
virtual SLHAstruct getSLHAea(int slha_version) const;

—possible)

// Get spectrum in SLHAea format (if

virtual void add_to_SLHAea(int slha_version,SLHAstruct&) const;// Add spectrum data to an SLHAea

—object (if possible) in SLHA standard slha_version

// Limits to RGE running; warning/error raised if running beyond these is attempted.

// If these aren’t overridden in the derived class then effectively no limit on running will exist.
// These are public so that module writers can use them to check what the limits are.

virtual double hard_upper() const {return DBL_MAX;}

virtual double soft_upper() const {return DBL_MAX;}

virtual double soft_lower() const {return 0.;}
virtual double hard_lower() const {return 0.;}

// Returns the renormalisation scale of parameters. By default should be in units of GeV.

virtual double GetScale() const;
void RunToScale(double scale, int behaviour =

0); // Run spectrum to scale (Default units:

GeV) .

// Get/check/set functions for parameter retrieval/input with zero, one, and two indices

virtual bool

virtual void
void

};

Fig. 6 Simplified class definition of SubSpectrum class, which
is the virtual base class for interacting with spectrum genera-
tor output, including an interface for running RGEs. Not shown
are various overloads, constructors, helper functions, and all pri-
vate members. The index arguments for the has/get/set func-

additional data. If you find yourself wanting to add large
amounts of new data to a spectrum, it is generally better to
define a new spectrumContents and to create a new spec-
trum wrapper class that conforms to this expanded contents
set (see Appendix F.1).

RGE running The subspectruminterface provides the main
connection to RGE-running facilities in any underlying
spectrum-generator code; the RunBothToScale function of
the spectruminterface is just a thin wrapper over this. These
facilities do not exist in all subSpectrum objects, so one
must make sure, via the GAMBIT dependency resolution
process, that an appropriate spectrum is supplied to module
functions that require running facilities. If a module func-
tion attempts to call any of the following functions when no
underlying RGEs are connected, then SpecBit will throw an
error and terminate.

The two most fundamental RGE-related functions are the
RunToScale and Getscale functions. The latter function
takes no arguments and simply returns the energy scale at
which any running parameters accessible by the get function
are defined, for example couplings and running masses. The
RunToScale function accepts a new energy scale as input,
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has(const Par::Tags, const str&,
virtual double get(const Par::Tags, const str&,
set(const Par::Tags, const double,
set_override(const Par::Tags, const double, const str&, int index1=NONE, int index2=NONE);

int index1=NONE, int index2=NONE) const;
int index1=NONE, int index2=NONE) const;

const str&, int index1=NONE, int index2=NONE);

tions are implemented via operator overloads rather than the
optional arguments shown. For the full class definition please see
Elements/include/gambit/Elements/subspectrum.
hpp in the GAMBIT source code

and when called will run the underlying RGE code and recal-
culate the running parameters.

The precise behaviour of the RunToscale function can be
altered via the optional integer ‘behaviour’ argument. This
controls how attempts to run parameters beyond the known
accurate range of the underlying RGEs are handled. There
exist two sets of limits in the subSpectrum interface; upper
and lower “soft” limits, and upper and lower “hard” limits.
These specify the energy ranges that affect the action of the
behaviour switch, and can be checked with the following
functions:

virtual double hard_upper () const
virtual double soft_upper () const
virtual double soft_lower () const
virtual double hard_lower () const

Note that when writing a new SubSpectrum wrapper these
functions need to be overridden to specify valid ranges of
RGE evolution, otherwise the default limits (which effec-
tively allow unlimited running) will be used.
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The “behaviour” flag acts in conjunction with the hard and
soft limits according to the following rules:

0 (default) — If running beyond soft limit

requested, halt at soft limit (parameter evolution will sim-

ply stop silently at this limit).

1 — If running beyond soft limit requested,
throw warning; beyond hard limit, throw error.

behaviour = <anything else> — Ignore limits and
attempt running to requested scale (errors may still be
thrown by the backend spectrum generator code if it sets
its own hard-coded limits).

behaviour =

behaviour =

SLHAea output Strictly speaking, the subspectrum objects
do notrely on SLHA, and can interface to the spectrum codes
for any model. However, SLHA is an existing standard for
the MSSM, so we provide the spectrum in this standard. The
SubsSpectrum interface thus provides three functions that
convert subspectrum contents into SLHA2 format, making
use of the SLHAea C++ library:!?

void writeSLHAfile(int slha_version,const str&
fname) Writes out the contents of the SubSpectrum in
SLHA format with the name fname. If s1ha versionis
setto 1 then it will conform to SLHA1 standard, while if it
is setto 2 then it will conform to the SLHA?2 standard. Ide-
ally this should only be used for debugging purposes, as
minimising disk access is preferable in high-performance
computing applications. However, some backend codes
do not have proper APIs and can only be run via the com-
mand line, or have otherwise hard-coded requirements
for input SLHA files.

SLHAstructgetSLHAea (int slha_version) Writesthe
contents of the SubSpectrum into an SLHAea::Coll
object (for which sLHAstruct is an alias). This is an
in-memory string-based representation of an SLHA file,
which is in the SLHA standard spHA version while
negating any need to write to disk. Block contents can
easily be accessed via [] operators (see the SLHAea
documentation for examples).

void add_to_SLHAea (SLHAstruct&) Similar  to
getSLHAea, however, the spectrum content is added to a
pre-existing sLHAstruct, passed in by reference via the
input argument and modified in place.

SLHAeais very flexible and can be used to also create SLHA-
like structures for other models. Therefore this may also
be exploited for non-minimal SUSY models and non-SUSY
models too, though other than the MSSM and NMSSM there
is no existing standard to fix the precise form and ensure that
other codes will understand the results. However, this feature

10 http://fthomas.github.io/slhaea/.

is also rather useful for auto-generated programs, where one
can construct the interface between the different generated
codes to work with new SLHA blocks.

2.3.4 The svuinputs class

The three data members of a Spectrum object are two
SubSpectrum objects, plus an suInputs object. The latter
object does not strictly contain information about the calcu-
lated spectrum, and the data it contains is not accessed via
the get function of the host spectrum object. Rather, it con-
tains information that in most cases was used as input to the
external spectrum generator code. It is a simple struct that
directly mirrors the SMINPUTS, VCKMIN and UPMNSIN blocks
defined by the SLHA?2 standard (see Fig. 7).

Because sMInputs is a structure, all data members (the
elements of the SLHA2 blocks) have public access, and so
parameter values can be accessed directly (see Fig. 7 for
the variable names). The structure contains only two func-
tions, getSLHAea and add_to_SLHAea. The former simply
returns the contents of the structure as an SLHAea object
(which can be easily written to disk, for example), while
the second adds the contents of the structure to an existing
SLHAea object. The latter feature is mainly used internally
by spectrum objects to construct a full SLHA?2 representa-
tion of their contents.

2.3.5 Extra overloads for get/set/has functions

In the discussions of the interface for Spectrum and
SubSpectrum objects, we have mentioned only one set of
function signatures for the get, set and has functions used
to access spectrum data, however, several overloads of these
functions are available. Most of these are designed to stream-
line the interaction between Spect rum objects and the GAM-
BIT particle database (see Sect. 10.1 of Ref. [11]), and
they allow particle data to be retrieved according to PDG
codes and, where appropriate, antiparticle string names (see
Models/src/particle_database.cpp for the full set of
definitions known to GAMBIT).

For spectrum objects, the extra function signatures are as
follows:

// PDG code + context integer

bool has (tag, PDGcode, context)

double get (tag, PDGcode, context)

// PDG code + context integer (as std::pair)
bool has (tag, std::pair<int,int>)

double get (tag, std::pair<int, int>)

// Short name plus index (as std::pair)
bool has (tag, const std::pair<str,int>)
double get (tag, const std::pair<str,int>)
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struct SMInputs

{

// SLHA1

double alphainv; // 1:
double GF; // 2:
double alphaS; // 3:
double mZ; // 4:
double mBmB; // 5:
double mT; // 6:
double mTau; /] T:
// SLHA2

double mNu3; // 8:
// double mW; // 9:
double mE; // 11:
double mNuil; // 12:
double mMu; // 13:
double mNu2; // 14:
double mD; // 21:
double mU; // 22:
double mS; // 23:
double mCmC; // 24:

// Block VCKMIN
struct CKMdef {
double lambda;
double A;
double rhobar;
double etabar; };
CKMdef CKM;

// Block UPMNSIN

struct PMNSdef {
double thetal2; //
double theta23; //
double thetal3; //
double deltail3; //
double alphal; //
double alpha2; //

};

PMNSdef PMNS;

// Retrieve contents as an SLHAea object
SLHAstruct getSLHAea(int getSLHAea) const;

// Add contents to existing SLHAea object;
void add_to_SLHAea(int
<—+slha_version,SLHAstruct& slha) const;

};

Fig. 7 Definition of the SMInputs class. No simplification
has been performed; this is the full class definition as found
in Elements/include/gambit/Elements/sminputs.hpp
(with condensed comments)

For subspectrum objects the above extra function sig-
natures also exist, plus matching set and set_override
functions:

// PDG code + context integer
void set (tag, value, PDGcode, context)
void set_override (tag, value, PDGcode, context)

// PDG code + context integer (as std::pair)
void set (tag, value, std::pair<int,int>)
void set_override (tag, value,

std::pair<int, int>)

// Short name plus index (as std::pair)
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void set (tag, value, const
std::pair<str, int>)

void set_override (tag, value,
std::pair<str,int>);

When PDG codes + context integers are used with these
functions to specify a particle, the GAMBIT particle database
will be used to translate the code into a string identifier, which
will then be checked against the string keys defined in the
underlying subsSpectrum wrapper to do the data lookup.
When writing new wrappers it is therefore important to
ensure that particle string names match the strings registered
in the GAMBIT particle database.

Similarly, whenever any of these interface functions are
called with a string name (potentially also with one index),
the underlying wrapper will first be searched for a match to
that string. If a match cannot be found, then the GAMBIT
particle database will be used to try to translate the string
name into a short name plus an index (e.g. "~chi_0" will be
translated to the pair ("~chi", 0)) or vice versa. If there is
still no match found with any spectrum contents, the GAM-
BIT particle database will again be used to try to translate the
string name into the string for a matching antiparticle (e.g.
"~chi+_0" will be translated to "~chi-_0") and the search
will be tried again (including translating from string name to
short name plus index and vice versa). If no match can be
found, an error will be thrown and the scan aborted (except
in the case of the has functions, which will simply return
false).

These mechanisms together provide considerable conve-
nience when using the spectrum interface in module func-
tions that do not know precisely how the backend spectrum
generator has been connected to a given wrapper. As an exam-
ple, any of the following calls to a spectrum object con-
taining a subSpectrum that conforms to the Mssu spectrum
contents (see Appendix C) will retrieve the same information
(the lightest selectron/anti-selectron pole mass):

spectrum.get (Pole_Mass, "~e-",1);

spectrum.get (Pole_Mass, "~e-_1");

spectrum .get (Pole_Mass, std: :make_pair
("~e-",1));

spectrum.get (Pole_Mass,1000011,0) ;

spectrum .get (Pole_Mass, std: :make_pair
(1000011,0)) ;

spectrum.get (Pole_Mass, "~e+",1);

spectrum.get (Pole_Mass, "~e+_1") ;

spectrum.get (Pole_Mass, std: :make_pair
("~e+", 1))

spectrum.get (Pole_Mass,-1000011,0) ;

spectrum .get (Pole_Mass, std: :make_pair
(-1000011,0)) ;

There is one final set of overloads to be mentioned: the
safeget overloads. These act as drop-in replacements for
any of the get functions, however, they will throw a GAMBIT
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error (causing the program to halt and report a problem) if
the retrieved value is not-a-number (NaN).

2.4 Adding support for new models and/or codes

Adding spectrum generators for models not shipped with
GAMBIT is an inevitably technical task, as it involves writ-
ing an interface to new code. We have, however, endeavoured
to make the procedure as orderly as possible. To spare more
casual users the full technical details, we have placed these
in Appendix F. Here we give only a brief overview of the
procedure, along with a checklist of tasks to be completed
and links to the sections in the appendix that explain the cor-
responding details. Some of the jargon used in the checklist
has not been necessary to introduce up until now, but rather
than explain it here we instead refer readers to the full details
in the Appendix.

The bulk of the work is in writing a SubSpectrum wrap-
per class, which will wrap the new spectrum generator and
be usable as we describe in Sect. 2.3. There are also several
peripheral tasks to be completed, such as writing a mod-
ule function to properly construct the new subSpectrum
and package it into a Spectrum object, potentially writing
new subSpectrumContents definitions (which enforce con-
sistency between wrappers that ostensibly share a physics
model), and making additions to the GAMBIT model hierar-
chy (discussed in Ref. [11]). These required tasks are:

1. Choose a subspectrumContents definition to which
the new wrapper will conform, or write a new one
(Appendix F.1).

2. Write a specTraits specialisation to define helper
types for the new subspectrum wrapper (Appendix F.2,
but see also the extensions with the Model and Input
typedefs used in Appendices F.3 and F.4).

3. Write the subspectrum wrapper class (Appendix F.2).
This step can be further broken down into:

— Write the get/set interface functions to the exter-
nal code, which return values conforming to the
requirements of the chosen subsSpectrumContents,
and connect them to the get/set interface via the
fill_getter_maps and fill_setter_maps func-
tions of the wrapper class. Appendices F.2, F.3 and
F.4 cover the various allowed types of interface func-
tions and how to properly connect them to the wrapper
interface.

— Write the special get_Model and get_Input func-
tions in the wrapper (if needed by the chosen type of
interface function; see Appendices F.3 and F.4)

— Write the RGE interface functions if RGE-running
capabilities are desired (Appendix F.6).

4. Write the module function(s) that construct and return a
spectrum interface object connected to the new wrapper
(Appendix E.7).

To illustrate the process concretely, we provide a full worked
example of the writing of a complicated wrapper for a Flex-
ibleSUSY spectrum generator in Appendix G.

2.5 Advanced spectrum usage: vacuum stability

In this section, we present a sophisticated example of how
the spectrum object and SpecBit module functions can be
used, where we calculate stability of the electroweak vac-
uum for simple Higgs sectors. These functions are included in
SpecBit 1.0.0 and will be used in a follow-up to the study of
the scalar-singlet dark matter global fit [18]. To explain what
these module functions do and why, we first present a brief
review of vacuum stability. We then give the details of the cor-
responding observable and likelihood functions implemented
in GAMBIT.

The stability of the SM electroweak vacuum in the absence
of new physics below the Planck scale (Mp; ~ 1.2 x
10" GeV) has been studied extensively [67-79] (see also ref-
erences within, and Refs. [80-82]). Although the first bounds
on the Higgs mass from vacuum stability were estimated
over three decades ago [83,84], the experimentally measured
125 GeV Higgs [85,86] has created increased interest in this
topic, as this value results in the existence of a high-energy
true vacuum state. If the Higgs field tunnelled from the elec-
troweak vacuum to the global minimum at any point in space,
abubble of low-energy vacuum would form, a process known
as bubble nucleation. This bubble would propagate outwards
at very nearly the speed of light [67], converting all space in
its future light cone into the true vacuum state, having catas-
trophic results.

The lifetime of the SM electroweak vacuum does exceed
the lifetime of the Universe. It thus exists in a meta-stable
state, and the SM is not inconsistent with reality. Yet there is
still a non-zero probability of decay, such that a transition to
the true vacuum is at some point inevitable.

If new physics does exist below the Planck scale, this
may dramatically decrease or increase the lifetime of the
false vacuum. For example, as shown in Refs. [73,87,88],
using effective couplings suppressed by 1/Mpy, high-energy
physics could indeed reduce the lifetime of the electroweak
false vacuum down to a fraction of a second. However, even
the most minimal extensions to the SM can have a notable
impact on the stability of the electroweak vacuum.

Examples of the most recent calculations of the vacuum
stability of the SM are those of Refs. [74,79], using three-
loop RGEs and two-loop threshold corrections to the quartic
Higgs coupling A at the weak scale. This is referred to as
next-to-next-to leading order (NNLO). Before these results
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the state of the art was next-to leading order (NLO) using
two-loop RGEs and one-loop threshold corrections at the
weak scale [89-97]. These vacuum stability studies were,
however, performed in a flat background spacetime. Studies
have also been done with the SM coupled to gravity in a
curved spacetime [98,99], motivated by the possibility that
the region of the true minimum (typically > 10'% GeV) may
be influenced by the gravitational field.

There have been numerous studies of vacuum stability in
BSM theories, such as scalar extensions of the Higgs sector
[62—-64,100-104]. In these scenarios the addition of a scalar
particle can have a positive contribution to the running of
the quartic Higgs coupling, which for certain values of the
new couplings can completely remove the high-energy global
minimum [64]. See Ref. [18] for a discussion of vacuum
stability in a scalar-singlet-extended Higgs-sector model.

Within GAMBIT we currently use FlexibleSUSY [19] to
solve the RGEs up to the Planck scale. For a generic model
we are limited to two-loop RGEs and one-loop threshold cor-
rections when using SARAH output. However, higher-order
RGEs may be added where these are known, such as in the
SM. Therefore even for the scalar-singlet model, where we
use generated RGEs, this is comparable to the precision of
the most recent studies [64,103]. Additionally, as with the
GAMBIT spectrum object itself, the vacuum stability mod-
ule functions may be used in conjunction with any spectrum
generator with RGE-running functionality that can be inter-
faced to GAMBIT.

The details of the likelihood function and the relevant
physics used to classify a parameter point as either stable,
meta-stable or unstable are presented in the following sec-
tion.

2.5.1 Likelihood details

In this section we outline the details of the derivation leading
to the likelihood function used in the GAMBIT vacuum sta-
bility module functions. The electroweak vacuum obtains a
high-energy global minimum when the running quartic Higgs
coupling becomes negative at a high scale. For a large renor-
malisation scale u the Higgs potential can be approximated
with an effective potential of the form

V(h) = @h“ (1)

for 4 > v, where u = O(h). The scale at which the quartic
coupling becomes negative, and thus the size of the poten-
tial barrier between the electroweak vacuum and this global
minimum, will affect the likelihood of a quantum mechanical
tunnelling to this lower-energy state.
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If there exists a high-energy global minimum, then there
is a non-zero probability of decay to this state, and thus the
electroweak vacuum has a finite lifetime.

There are three possible cases for electroweak vacuum
stability, outlined below.

— Stable: If A(i) > 0 forall &© < Mp then the electroweak
vacuum is the only minimum of the Higgs potential (up
to Mpy) and is therefore absolutely stable.

— Meta-stable: If there exists a ug < Mpjsuchthat A(ug) <
0 and the lifetime of the electroweak vacuum state is
longer than the age of the Universe.

— Unstable: If there exists a g < Mpj such that A(ug) < 0
and the lifetime of the electroweak vacuum state is less
than the age of the Universe.

Due to the shape of the resulting likelihood function,
the distinction between meta-stability and instability is very
well defined, with the expected lifetime of the electroweak
vacuum being extremely sensitive to changes in the model
parameters.

To determine the stability of a model we calculate the
rate of quantum mechanical tunnelling through an arbitrary
potential barrier, following the derivation in Ref. [105] obtain
an analogous field-theoretic solution. In this context, a tun-
nelling event corresponds to a bubble nucleation in which
the Higgs field decays to the lower-energy state. We invoke
the thin-wall approximation [106], in which the equation of
motion of the bubble of radius R, nucleated at time ¢t = 0, is
(x> —*) = R

From quantum mechanics, one can derive the rate of tun-
nelling for a particle through a potential barrier, which can
then be generalised to a rate of bubble nucleation per unit
volume per unit time of

I~ [ye B/1 )

where I depends on the size of the past light cone and B is

determined by the shape and size of the potential barrier.
Consider a scalar field ¢. For bubble nucleation in flat

four-dimensional spacetime we can take ¢ to be a function

of p = (12 + |x|2)]/2 only (where T = it), as there exists
an O(4) symmetry. B is given by the action [105]

00 2
B=Sg= 2n2/ p3dp 1 <d—¢> +V (3)
0 2 \dp

satisfying the Euclidean equation of motion for ¢,

d’¢  3dp dV

o A A 4
dp2+pdp d¢ @
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The boundary conditions of this equation of motion can be
combined into the single requirement that lim,_, o ¢ (p) =
qo- The solution to Eq. (4) is known as the bounce solution,
as it describes, in Euclidean time, a solution that is in the
unstable vacuum at t — —oo, the global vacuum at ¢t = 0,
and bounces back to the starting point at f — co.

The process outlined above for a simple scalar field can be
applied to the Higgs field, with the use of the approximation
Vh) ~ )»(h)h4 /4.1f we perform this calculation at tree level,
we can obtain an approximation for the coefficient B. Taking
A(h) = X, A < 0, we have a solution [91] to the analogue of
Eq. (4) as

2 2R

h(p) = mm 5)

where R is a dimensional factor associated with the size of
the bounce. This can be a relevant quantity such as the height
of the barrier, or the change in renormalisation scale between
adjacent minima; we shall use the latter. From Eq. (3) we then
obtain the action

872

=357 (6)

E

The validity of the approximation V a Ah*/4, with A < 0, is
not immediately evident, as 4 = 0 is an unstable maximum,
and indeed any value of 2 > 0 is unstable. However, as
stated in Ref. [91], the bounce solution is not a constant field
configuration, so requires a non-zero kinetic energy. Because
of this, the required bounce solution is suppressed even in
the absence of a potential barrier, and thus this is still a valid
approximation [107].

Now that we have an expression for B we need to deter-
mine the pre-factor. The explicit form of this pre-factor, I,
was first calculated in Ref. [108] by taking account of one-
loop quantum corrections. Yet because the behaviour of the
exponential in I” dominates to such a large extent, the value of
I'h need only be an approximation, so we follow the analysis
of Ref. [67] and determine I by a dimensional reasoning.

If we take the Planck constant and the speed of light to
be unity (A = ¢ = 1), then the rate of decay per unit time
per unit volume, I"/ V has units of [length]~*. Thus I must
have units of [length]_4 or [energy]4. The characteristic scale
relevant in this problem is the width or height of the potential
barrier, thus we take () ~ A‘g =1/ R*, where we henceforth
take Ap to be the energy at which A(u) is at a minimum.!!

I/ V is the rate of decay per unit time per unit volume. As
we are ultimately interested in the probability of the Universe
having decayed in our past light cone, we multiply I"/V by

1 If the minimum value of the running quartic coupling Ay, < 0 is
achieved after Mpy, but A(Mp;) < 0, we take Amin = A(Mpy).

the volume of the past light cone ~T}%, where Ty is the age
of the Universe.!? Thus we obtain a rate

I~ (T,Ap)*e SE, (7)

and we obtain the total expected decay rate in the past light
cone

A \* 872

140 4B

~ Z3 R cha— 8
P (e MP]) exp< 3|)»(AB)|) ®

Here A(Ap) is the minimum value of the quartic Higgs cou-
pling, and we have expressed the age of the Universe as
T, ~ ¢4/ Mp,.13

The arguments used to arrive at Eq. (8) were based only on
dimensional analysis. Although this quantity is now dimen-
sionless it cannot be immediately interpreted as a probabil-
ity, instead it should be interpreted as the expected value
for the random variable k, where k is the number of decay
events that occurred in the time given (in this case ~ 10 bil-
lion years).'* To model the probability that the Universe has
actually decayed in the given time interval, we use a Poisson
distribution, @ (k; 1) = (A*/k!)e~*. Because we want the
likelihood that no decay has occurred in our past light cone,
we calculate the probability that k = 0, which is given by

Ap\* 82
L=exp|— 6‘140—) ex (——) . )
P ( Mn) P\ T30

The likelihood given by Eq. (9) is typically either extremely
small or exactly one, being extremely sensitive to the value
of A(Ap). This results in an almost step-function transi-
tion from a meta-stable to an unstable Universe when actual
Lagrangian-level model parameters are varied.

The likelihood in Eq. (9) is difficult to study, due to its
double exponential behaviour. In GAMBIT we return the log-
likelihood, so this likelihood contains some useful informa-
tion even within the stable/meta-stable region of the param-
eter space. In most cases though, this function will either

12 This can be computed more rigorously for a standard FLRW cos-
mology, see Ref. [74], however, to the level of detail required here this
result is equivalent.

13 Equation (8) may be expressed in different units. For example,
Ref. [67] expresses the age of the Universe in “units of the electroweak
scale”, as T, ~ e191 where the mass of the Z boson is set as m; = 1.
Similarly Ref. [109] expresses the probability in what would equiva-
lently be called “units of the Planck scale”, but leave the original factor
of Mpj in the expression; this is the style we follow.

14 By a decay event we mean the decay of the Universe at our position
due to a decay at some point in our past light cone, and thus a decay
of the observable Universe. Of course, more than one decay event does
not physically make sense, so all situations where k > 1 are effectively
equivalent — the Universe has decayed to the true vacuum.
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entirely rule out a point or contribute zero to the total log-
likelihood. This is indeed useful for ruling out large regions
of a parameter space quickly.

2.5.2 Code description

The vacuum stability calculations in GAMBIT are separated
into several module functions, shown in Table 3. As renor-
malisation group running requires a model spectrum object,
these include spectrum dependencies. The spectrum must
be capable of running to different energy scales, and as such
cannot be a simple container spectrum.

The module function find min_lambda, which has cap-
ability vacuum_stability, runs the quartic Higgs coupling
to determine the scale at which it reaches a turning point. This
function produces a struct of type dbl_dbl bool, which
contains the expected lifetime of the Universe (double), the
scale of the instability (double), and whether or not the cou-
plings remain perturbative up to the scale returned (bool).
If a turning point is not reached before some user-specified
high scale (set via YAML option set high scale, which
defaults to Mp), the high scale is returned instead of the
scale of the turning point. These calculations can be applied
to any model with a Higgs field that does not mix with other
scalars.

Derived from the results of find _min_1ambda is the phys-
ical observable

— expected_lifetime: the expected lifetime of the elec-
troweak vacuum in years

and the likelihood functions

— VS_likelihood: the log-likelihood of vacuum decay not
having yet occurred, given the current age of the Universe

— check _perturb _min_lambda: the perturbativity of the
running couplings at the instability scale. To allow this
function to be used as a log-likelihood, it returns O for
models where the couplings remain perturbative up to the
instability scale, and invalidates the model otherwise.

In vs_likelihood, the expected age is compared to the
current age of the Universe, which is currently hard-coded to
13.6 x 10? years. If A does not have a turning point before
Mpy, then the lifetime returned is 1 x 10390 years.

The function check_perturb _min_lambdaisanefficient
way to check that the couplings of a theory remain pertur-
bative up to Mp; or some alternative scale, chosen via the
option set_high scale of function find_min_lambda. By
performing this check directly in GAMBIT, we avoid any
need to rely on similar checks implemented in some (but not
all) spectrum generators. The actual calculation is performed
simultaneously with the vacuum stability check, and is thus
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extracted by check perturb min lambda from the output
of the vacuum_stability capability. The result is a flag set
true only if all spectrum parameters tagged dimensionless
are less than (477)!/? at a set of points evenly distributed in
log space between the electroweak scale and the smaller of
Ap and the high scale chosen for £ind min lambda. The
default is to test 10 points; this can be reset with the YAML
option check_perturb_pts of find min lambda.

A simple example of the GAMBIT input YAML com-
mands for using the vacuum stability likelihood, and out-
putting the Higgs pole mass and the expected age of the
Universe as observables, is given below.

- capability: print_SingletDM_spectrum
purpose: Observable

- capability: VS_likelihood
purpose: LogLike

- capability: expected_lifetime
purpose: Observable

2.6 Higgs couplings

In addition to providing particle spectra to the rest of GAM-
BIT, SpecBit can also produce Higgs couplings, which it
provides as a compact HiggsCouplingsTable. The Higgs
couplings are required by HiggsBounds/HiggsSignals,
which are discussed in the ColliderBit manual, Ref. [14].
These objects carry all decays of neutral and charged Higgs
bosons present in the theory under investigation, their C P
eigenvalues, a list of all particles in the theory that Higgses
can decay invisibly to, values of the SM-normalised effec-
tive couplings of each neutral Higgs to WW, ZZ, 1, bb, cc,
5§, tvt™, wTu~, Zy and hy, and additional comparison
decays of SM Higgses with the same masses as the neutral
BSM Higgses. SpecBit obtains all decays from DecayBit.
It makes the C P and invisible state identifications within its
own functions. The effective couplings can be obtained in
two different ways. The first is to build them directly from
couplings provided by dedicated routines in external cal-
culators, as in MSSM_higgs_couplings_FH (see Table 2),
which retrieves couplings from FeynHiggs (see Sect. 3.1.3
for details of this interface). Alternatively, they can be esti-
mated on the basis of the partial width approximation, where
the squared effective coupling is taken as the ratio of the
partial widths to the relevant final state of the BSM and
equivalent SM-like Higgs. Examples of the partial width
approach are MSsM_higgs_couplings_pwid (Table 2) and
SingletDM_higgs_couplings_pwid (Table 3).

Note that all Higgs couplings available in GAMBIT
presently refer to loop-corrected values; tree-level couplings
could be added if required, but should be differentiated from
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DecayTable

Fig. 8 Schematic representation of the structure of DecayBit. Masses
and couplings are provided from SpecBit (grey box), and used to cal-
culate decay widths and branching fractions (B F's) for each particle
individually, sometimes with the assistance of backends such as SUSY-
HIT and FeynHiggs. The widths and B F's are gathered into a single

the present couplings by assigning them an alternative capa-
bﬂity (e.g. Higgs_Couplings_tree_level).

3 DecayBit

All particle decay widths used in GAMBIT are provided by
the dedicated module DecayBit. These range from known
decays of SM particles, to modifications of SM decay widths
and branching fractions due to new physics (e.g. top and
Higgs decays), to decay widths of new particles present in
BSM theories.

These data are needed by ColliderBit [14] for predicting
Higgs decay rates and calculating corresponding LHC Higgs
likelihoods. They also allow ColliderBit to connect predic-
tions for LHC production of BSM particles with observable
final states, by simulating particle collisions and subsequent
decays of the particles produced in the initial interaction. The
same data are required by DarkBit [13] to simulate cascade
decays of final states produced in dark matter annihilation
and decay, allowing it to make predictions for cosmic ray
fluxes in dark matter indirect detection experiments. Decay
widths of SM and BSM particles are also important for pre-
dicting the relic density of dark matter, through their partic-
ipation in thermal freeze-out, or if dark matter is produced
non-thermally from decays of some heavy resonance.

Although DecayBit provides uncertainties on some decay
widths and branching fractions (currently only those that we
take from the PDG [61]), these are not utilised as yet by
other GAMBIT modules (indeed not even by HiggsSignals
nor HiggsBounds). Future likelihood functions are expected
to make use of these data, and future versions of DecayBit
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DecayTable: :Entry for each particle . These are
then collected into a single GAMBIT DecayTable (purple box), con-
taining all decays of the entire spectrum, and eventually passed on to
other GAMBIT modules

are anticipated to also feature calculation of uncertainties on
partial and total widths of BSM states.

The overall structure of DecayBit is outlined in Fig. 8,
showing the modular calculation of each particle’s decays,
and their combination into a complete DecayTable for the
model under investigation. Here we begin by describing
the decays currently implemented in DecayBit (Sect. 3.1),
including the details of the calculations, input data and exter-
nal codes it employs. We then go through the specific mod-
ule functions it offers (Sect. 3.2), and the details of the code
(Sect. 3.3), covering the associated data structures and utility
functions, how to add support for new channels and models,
and an explicit worked example of the computation of Higgs
boson decays.

3.1 Supported decays
3.1.1 Standard model

DecayBit contains total widths and associated uncertainties
for decays of the W, Z, t, b, T and p, as well as their antipar-
ticles, and the most common mesons 7°, 7%, 1, p°, p* and
w. It also includes partial widths to all observed, distinct final
states for W, Z,t, b, 7, i, 79 and 7%, including many-body
final states in many cases (although we do not include such
states where the branching fraction would otherwise be con-
tained within a lower-multiplicity channel). We take these
data directly from the Particle Data Group compilation of
experimental results [61]. These data are used in GAMBIT
in two scenarios. The first is whenever a decay has no rele-
vant BSM contribution, e.g. if BSM contributions are heavily
loop-suppressed, or if the particle sector of the scan is sim-
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ply the SM, as when scanning e.g. the DM halo model only.
The second is in the cases where the only significant BSM
modification to the decay of the SM particle is to open a new
decay channel, meaning that the new decay can simply be
added to the existing SM decays. Where neither of these sce-
narios apply, i.e. where BSM corrections are relevant for SM
— SM decays, DecayBit accounts for the corrections via an
appropriately model-dependent calculation.

We group together hadronic channels for W and Z decays,
assigning them a final state consisting of two generic hadrons.
Note that ‘hadron’ is recognised as a generic particle by the
GAMBIT particle database; see Sect. 10.1 of Ref. [11].

DecayBit also features various calculations of Higgs
boson partial and total decay widths. For a pure SM Higgs,
the user can choose to either calculate decays at the predicted
value of the Higgs mass with FeynHiggs, or extract them
from precomputed tables contained in DecayBit. The latter
are the predicted SM Higgs partial and total widths given as
a function of Higgs mass in Ref. [110]. Using these tables
wherever possible is preferable to simply calling HDECAY,
as they include additional higher-order corrections for 4-body
final states obtained using PROPHECY4F [111,112].

3.1.2 Scalar singlet

Whenmg < my, /2, the Higgs can decay to two singlet scalars.
The partial width for this process is

A2 w2 1/2
hs?0 (1—4m§/m,3) . (10)

Prmsss = 35 o

Whenever this channel is kinematically open, DecayBit cal-
culates the partial width and adds it to the existing set of SM
Higgs decays, rescaling the decay branching fractions (BFs)
and total width obtained for a pure SM Higgs.

The decay  — SS would be entirely invisible at the
LHC, so would contribute to the invisible width of the Higgs
boson. Assuming SM-like couplings, as is the case for the
scalar-singlet model, 95% confidence level (CL) upper limits
on the Higgs invisible width from LHC and Tevatron data are
presently at the level of 19% [113]. We implement this as a
complete likelihood function in DecayBit, by interpolating
the function shown in Fig. 8 of [113].

3.1.3 MSSM

DecayBit will calculate decays of all sparticles and addi-
tional Higgs bosons in the MSSM, including branching frac-
tions to SM and SUSY final states. It can also calculate SUSY
corrections to decays of the top quark and the SM-like Higgs.

The decays of each Higgs may come (independently) from
backend functions in either HDECAY via SUSY-HIT, or
FeynHiggs. For the calculation of effective Higgs couplings

by SpecBit (see Sect. 2.6), DecayBit will also compute
decays of an SM Higgs with the same mass as any of the
MSSM Higgs bosons, using either FeynHiggs or by interpo-
lating its own internal tables. For masses between 80 GeV and
1 TeV, these tables come directly from Ref. [110]. Between 1
and 80 GeV, and between 1 and 16 TeV, we supplement them
with additional results that we obtained by running HDE-
CAY 6.51 [28]. For Higgs masses above 1 TeV, in order to
obtain finite results we disabled electroweak corrections and
decays to 55, bb, gg and ut ;™ (which are negligible at large
masses, where WT W™, ZZ and ¢7 final states dominate).
Because of these settings, and the absence of any corrections
obtained with PROPHECY4F [111,112] in our supplemen-
tal calculations, small discontinuities can be expected at the
transitions between different tables.

Top quark decays are available only by calling Feyn-
Higgs. Sparticle decays are available only from SDECAY
via SUSY-HIT. DecayBit can calculate Higgs and top widths
for arbitrary MSSM-63 models when employing Feyn-
Higgs, but is limited to MSSM-20 models for sparticle and
Higgs decays when using SUSY-HIT, due to the fact that
SUSY-HIT is not SLHA2 compliant as models with greater
freedom rely on the more general SLHA2 format allowing
full family mixing amongst the sfermions.

We backend SUSY-HIT 1.5 in a similar fashion to other
codes, but we patch it via the GAMBIT build system when it
is automatically downloaded, in order to make a number of
crucial modifications. Here we go through the most important
of these.

SUSY-HIT is written as a standalone program, whereas
GAMBIT requires callable functions in a shared library. We
therefore convert the main program of SUSY-HIT to a func-
tion, and modify the makefile to produce a shared library.

Interfacing to HDECAY and SDECAY via SUSY-HIT
means that we retain the standard HDECAY and SDE-
CAY options chosen there: multi-body decays, loop-induced
decays and 1-loop QCD corrections to 2-body decays are
all enabled, and any running masses and couplings are cal-
culated at the EWSB scale in the DR scheme. However,
we directly inject the bottom quark pole mass calculated by
SpecBit into SUSY-HIT, rather than relying on its internal
pole mass calculation.

For some rather specific models, the 1-loop QCD cor-
rections Aj to the widths of the lighter sparticles are neg-
ative and larger than the tree-level results, causing SUSY-
HIT to return negative decay widths. We have so far found
models where this is the case for gluinos, sbottoms, stops,
sups, sdowns, neutralinos and charginos. To rectify this, we
have patched SUSY-HIT to implement a correction factor
designed to approximately mimic resummation. When the
corrections are negative and larger than the tree-level result,
instead of obtaining the 1-loop corrected widths as usual in
SUSY-HIT
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Toy = Ftree(l + Al): (11)

we apply the correction as

oy =

, 12)

motivated by a similar improvement implemented in NMS-
DECAY [114]. Here Ay = Ax,1 + Ay,1 + ... refers to the
sum of 1-loop corrections to the partial widths for all 2-body
final states X, Y, etc. Note that of course this expression
does not actually resum higher-order corrections correctly.
It is simply employed as an expression that reproduces the
leading-order term of Eq. (11) and will be positive, so that
the pathology of the negative width is avoided.

With the original definition (Eq. (11)) it is thus straight-
forward to define a 1-loop 2-body branching fraction B for
final state X as

BX =FX,tree(1+AX,l)/Ftot- (13)

However, this no longer follows when I is corrected by
Eq. (12). In this case, we simply revert to determining branch-
ing fractions from the tree-level partial and total widths, but
retain the more accurate total width obtained by Eq. (12) as
the total decay width to be used elsewhere in GAMBIT.

Correcting negative widths with Eq. (12) has a downside:
the total width of a sparticle becomes discontinuous in the
model parameters at A = —1. Whilst this is still an obvious
improvement over having non-physical results for A < —1,
it is not ideal. An alternative treatment would be to use
Eq. (12) whenever A < 0, which would ensure continuity,
and to apply the correction to each partial width individually,
allowing one-loop branching fractions to still be calculated
when A7 < 0. However, this would modify the standard
behaviour of SUSY-HIT in the regime —1 < A; < 0. In the
interests of keeping our modifications to external codes sim-
ple and minimal, we therefore consider it preferable to pay
the price of a discontinuous width, restricting our modifica-
tions to changes that only have an impact when SUSY-HIT
would otherwise return unphysical results.

A related issue is that at high SUSY-breaking scales, the
M S correction to the tree-level ¢ and b pole masses required
for calculating Higgs couplings in SUSY-HIT also becomes
large, leading to numerical instabilities. To remedy this, we
import the improved running M S expressions for m; and
from HDECAY 6.51 to SUSY-HIT.

Finally, we also implemented a diskless generalisation of
the SLHA interface to SUSY-HIT. This avoids the need to
read and write files to disk, allowing GAMBIT spectrum con-
tents to be directly injected into SUSY-HIT common blocks
in SLHA format, and decay data to be extracted directly

@ Springer

from other common blocks and easily converted to the native
GAMBIT pecayTable format (described in Sect. 3.3).

We connect to and use FeynHiggs as a regular GAMBIT
backend, without significant'> modification. GAMBIT sup-
ports versions 2.11.2 and later. We adopt the settings for the
real MSSM recommended in the FeynHiggs documentation,
but restrict neutral Higgs mixing to the C P-even states, for
compatibility with HiggsBounds/HiggsSignals. For ver-
sion2.12.0 we set 1oglevel = 3inorder toinclude NNLL
corrections.'® We pass MSSM models to FeynHiggs using
the function FHSetPara, directly setting the SM parameters
in SLHA?2 parametrisation, the C P-odd Higgs pole mass,
the 44 parameter at the SUSY scale and the DR soft terms
(sfermion mass parameter matrices, gaugino mass parame-
ters and trilinear couplings, also at the SUSY scale), from the
outputs of the Spectrumobjects provided by SpecBit. We set
the FHSetPara arguments Ot and Ob to the renormalisation
scale of the DR soft masses, so that FeynHiggs interprets
stop- and sbottom-sector parameters in the DR scheme, and
converts them internally to the on-shell scheme.

3.2 Available functions and options

Here we give a compact census of the module functions in
DecayBit. These are also laid out in Tables 4, 5, 6 and 7.
Antiparticle equivalents of all functions described below
are automatically created from the decays of their particle
partners, assuming C P symmetry. This need not be assumed
when adding additional states or channels to DecayBit.

3.2.1 Standard model

The SM particle decay functions are listed in Table 4. These
are assigned names

particle_designation_decays
and capabilities
particle_designation_decay_rates,

where particle_designation is simply the particle name for
neutral isosinglets, particle_designation = particle_name_{plus,
minus} for charged Ileptons and gauge bosons,
particle_designation = {particle_name, particle_namebar} for
quarks, and particle_designation = particle_name_{0, plus,
minus} for isotriplet mesons.

15 We correct some minor bugs preventing compiler safety checks.

16 We make no attempt within GAMBIT to directly remedy any dis-
crepancies seen between FeynHiggs and other codes [55,66]; we refer
the reader to those papers, and the first GAMBIT MSSM results papers
[16,17] for further discussion.
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Table 5 Scalar-singlet functions provided by DecayBit. Neither of these functions has any backend requirements nor options

Capability

Function (return type): brief description

Dependencies

Higgs_decay_rates

SingletDM_Higgs_decays
(DecayTable: :Entry):

SingletDM_spectrum
Reference_SM_Higgs_decay_rates

Computes all decays of the Higgs
boson, including to scalar singlets

Inl,_Higgs_invWidth

InlL_Higgs_invWidth_SMlike (double):

Higgs_decay_rates

Computes the log-likelihood of the

Higgs invisible width

The function
Ref_SM_Higgs_decays_table

constructs Reference SM_Higgs decay rates from the
tables of Ref. [110] (which are determined using HDECAY
[28-30] and PROPHECY4F [111,112]), using the pole
mass provided by SpecBit or PrecisionBit (see Sect. 3.1.1).
The alternative function

Ref_SM_Higgs_decays_FH

constructs Reference SM Higgs decay ratesfrom Higgs
couplings obtained from FeynHiggs (by e.g.
SpecBit::FH_Couplings; see Table 2). The result of one
or the other of these two functions is presented to the rest of
GAMBIT as the definitive Higgs_decay rates, by function

SM_Higgs_decays.

The two functions are also used by other module functions
to compare BSM Higgs decays to equivalent SM decays.

3.2.2 Scalar singlet
We highlight the parts of DecayBit specific to the scalar-

singlet model in Table 5. Only the Higgs decay rates are
modified in this model. The function

SingletDM_Higgs_decays
simply piggybacks off the SM Higgs decay calculation,
and then rescales the total width and branching fractions
to accommodate the additional 7 — SS§ contribution. The
SM-like Higgs invisible width likelihood is provided by the
function

InlL_Higgs_invWidth_SMlike,

which has capability 1nt._Higgs_ invwidth and depends on
the Higgs_decay_rates.

@ Springer

3.2.3 MSSM

Table 6 lists the full set of MSSM decay functions contained
in DecayBit. The naming scheme follows a similar structure
of the SM decays, with function names

particle_designation_decays
and capabilities
particle_designation_decay_rates.

Here particle_designation includes the particle name and any
relevant indices: p1lus or minus for charged bosons, bar for
sfermionic antiparticles, mass-ordering indices for bosons,
neutralinos and charginos and third-generation sfermions,
and weak eigenstate indicators 1 or r for first- and second-
generation sfermions. Despite the fact that GAMBIT works
exclusively in SLHA?2 mass-ordered basis internally, we des-
ignate first- and second-generation sfermion decays in the
weak eigenstate basis because SUSY-HIT is not SLHA2-
compliant, and left-right mixing is typically small in the
first two generations in the MSSM anyway. This will prob-
ably be generalised somewhat further in future revisions of
DecayBit. We discuss the conversion between mass, weak
and family-mass eigenstates in more detail in Sect. 3.3.2.
DecayBit can compute MSSM Higgs sector decays
using either SUSY-HIT or FeynHiggs; it includes sepa-
rate module functions for each of these options.!” It also
includes additional top decays via intermediate off-shell
MSSM states, calculable via FeynHiggs. Similar to the
reference functions for the SM-like Higgs described in
Sect. 3.2.1, DecayBit also provides functions to compute
reference decays of an SM Higgs with the same mass
as the AO (Capability ReferenceistAoidecayfrates)
and the ‘other’, non-SM-like, C P-even neutral MSSM

17 Note that the only module functions in Table 6 with an explicit
backend requirement listed are those that make use of SUSY-
HIT. The corresponding FeynHiggs functions instead depend on
FH_Couplings_output, which can be obtained from SpecBit’s
function FH_Couplings — which exhibits the equivalent backend
requirement on FeynHiggs (see Table 2).
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3.3 Code description and interface details
3.3.1 The DecayTable

GAMBIT includes a specific DecayTable container class
for storing and passing decay information to the rest of the
code. A DecayTable contains one or more instances of the
subclass DecayTable: : Entry, each of which holds the full
decay information for a single particle. The primary job of
DecayBit is to construct a DecayTable: :Entry for each
particle in a given model, and then to put them together into a
complete DecayTable that other parts of the code can access.

EachpecayTable: : Entryincludes the width of the parti-
cle, the positive and negative uncertainties on that width, the
branching fractions to different decay channels, the uncer-
tainties on the branching fractions, and information about
which code(s) (GAMBIT, a backend or some combination)
was responsible for computing the decay information. The
width and branching fraction uncertainties are not currently
used in any calculations in GAMBIT, and they are only set
for SM particles (where they are known experimentally from
the Particle Data Group [61]), but they may be set more com-
pletely and used in more advanced likelihood functions in the
future, for example in Higgs physics. Widths can be set and
accessed directly with the width_in_cev field. Decay chan-
nels and branching fractions are added and retrieved with
set_BF () and BF (). The following simple example for the
decays of the W™ boson shows these in action:

// Declare a set of decays for the
// W7T DecayTable::Entry Wplus;

// Set the total width
Wplus.width_in_GeV = 2.085;

// Set branching fraction and uncertainty
// for W —ev,

Wplus.set_BF(0.1071, 0.0016, "e+", "nu_e");

// Find the partial width for W — ey,
double pw = Wplus.width_in_GeV
* Wplus.BF ("e+","nu_e");

The functions set_BF () and BF () each have five different
overloads, allowing the decay channel to be specified with
any of the particle identifiers recognised by the GAMBIT
particle database (see Sect. 10.1 in Ref. [11]). These are:

1. asimple argument list of strings corresponding to the final
state particles’ long names (as in the example above)

2. an argument list of alternating PDG codes and context
integers,

3. an argument list of alternating short name strings and
integer particle indices,

4. a std::vector of long name strings, and

5. a
code — context integer pairs.

of PDG

std::vector<std: :pair<int, int>>

All of these forms allow an arbitrary number of final state
particles to be specified for a given decay channel. The
DecayTable: : Entry subclass also has a simple convenience
method has_channel () that takes channels specified in any
of the above forms, and returns a boo1 indicating whether the
eEntry already contains a field corresponding to that decay
channel or not.

The individual entries in a full pecayTable can be
accessed using semantics reminiscent of a regular C++
std: :map, where the key is the decaying particle, referred
to by any of the three possible designators recognised by the
GAMBIT particle database. For example,

// Declare a DecayTable
DecayTable BosonDecays

// Add entries (here are some I prepared

earlier)
BosonDecays ("W+") = Wplus;
BosonDecays ("W-") = Wminus;
BosonDecays ("zZ0") = 7Z;
BosonDecays ("h0O_1") = SM_higgs;

// Get the branching fraction for W — ev,

double enueBF =
BosonDecays ("W+") .BF ("e+", "nu_e") ;

// Get underlying Entry for Higgs

// six different ways

DecayTable: :Entry h;

= BosonDecays ("h0_1");

= BosonDecays (25, 0);

= BosonDecays ("h0", 1);

BosonDecays.at ("h0_1");

= BosonDecays.at (25, 0);

= BosonDecays.at("h0", 1);

n i e e = i
1}

In this example, a DecayTable is created for holding the
decays of SM bosons. The decays of the individual chan-
nels, each an instance of the DecayTable: : Entry subclass,
are then added to the table with the () method. A branch-
ing fraction for W — e v, is then extracted directly from
the DecayTable. The entire entry for Higgs decays is then
extracted in six different ways, showing the standard bracket
methods, the constant at access method (reminiscent of reg-
ular C++ STL container access), and the three different ways
of referring to the particle whose decays are desired from the
table.

The DecayTable machinery integrates seamlessly with
SLHA and its generalisations, via stHAstruct SLHAea
objects. Individual DecayTable: :Entry instances can be
constructed directly from SLHA DECAY blocks provided
in SLHAea: : Block format, and made to emit them with the
method getspHAea block. Likewise, a complete
DecayTable can be constructed directly from an SLHA file

@ Springer



22 Page 34 of 71

Eur. Phys. J. C (2018) 78:22

or an SLHAstruct object containing DECAY blocks, and can
be output to either format with writesLHA and getSLHAeA.

Full documentation of the programming interface pro-
WdedbytheDecayTableandDecayTable::Entryckﬂses
can be found in

Elements/include/gambit/Elements/decaytable.
hpp.

3.3.2 Utilities

The module functions check_first_sec_gen mixing and
get_mass_es_pseudonyms (Table 7) rely on a series of
helper functions that probe the sfermionic MSSM mixing
matrices provided by SpecBit, in order to determine the
gauge composition of a given mass or family-specific mass
eigenstate, or the converse for gauge eigenstates. These func-
tions are most relevant for DecayBit and backends such as
SUSY-HIT, but are needed also by ColliderBit and DarkBit.
They therefore ship as part of the main GAMBIT distribu-
tion, in the Elements directory. Functions can be found here
for returning:

— the mass eigenstate with largest contribution from a given
gauge eigenstate, plus full mixing and composition infor-
Inaﬁonifrequﬁed(slhahelp::massfesifromigauge
_es())

— the gauge eigenstate with largest contribution from a
given mass eigenstate, plus full mixing and composition
information if required (slhahelp::gague_es_from_
massies())

— the (6-flavour) mass eigenstate that best matches a given
family (2-flavour) mass state, plus full mixing and com-
position information if required (slhahelp: :mass_es
7closest7toifamily())

— the family (2-flavour) mass state that best matches a given
(6-flavour) mass eigenstate, plus full mixing and com-
position information if required (slhahelp::family
state_closest_to_mass_es())

— the two (6-flavour) mass eigenstates that best match
a requested generation, as well as the implied (2-
flavour) family mixing matrix between the family states
(slhahelp::familyistateimixfmatrix())

Full documentation can be found in

Elements/include/gambit/Elements/mssm_
slhahelp.hpp.

The DecayBit module proper contains just two utilities
of note that are not actual module functions (in the GAMBIT
sense).
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The first is the class DecayBit: :mass_es_pseudonyms,
which is used as the return type for get mass_es pse-
udonyms after obtaining the necessary content from the
slhahelp functions. This is essentially just a container of
named strings, one for each SLHA1 MSSM weak/family
eigenstate sfermion.

The second is the function becayBit: :CP_conjugate (),
which takes as its lone argument a DecayTable: : Entry and
returns a corresponding DecayTable: :Entry for the CP
conjugate of the original particle, assuming C P symmetry.
The X = bar and Y = minus variants of the module functions
in Tables 4 and 6 consist of nothing more than a call to this
function, using their dependencies on the corresponding X
= empty and ¥ = plus variants.

3.3.3 A worked example: SM-like Higgs decays

To illustrate some of the workings of DecayBit more con-
cretely, here we go through the example of decays of the
Higgs in detail.

The rollcall header DecayBit_rollcall.hpp declares
a series of functions that are each capable of generating a
DecayTable: :Entry containing the width and branching
fractions for Higgs decays:

#define CAPABILITY
Reference_SM_Higgs_decay_rates
START_CAPABILITY

#define FUNCTION Ref_SM_Higgs_decays_table
START_FUNCTION (DecayTable: :Entry)
DEPENDENCY (mh, double)

#undef FUNCTION

#undef CAPABILITY

#define CAPABILITY Higgs_decay_rates
START_CAPABILITY

#define FUNCTION SM_Higgs_decays

START_FUNCTION (DecayTable: :Entry)

DEPENDENCY (Reference_SM_Higgs_decay_rates,
DecayTable: :Entry)

#undef FUNCTION

#define FUNCTION SingletDM_Higgs_decays
START_FUNCTION (DecayTable: :Entry)

DEPENDENCY (Reference_SM_Higgs_decay_rates,
DecayTable: :Entry)

DEPENDENCY (SingletDM_spectrum, Spectrum)

ALLOW_MODELS (SingletDM, SingletDMZ3)
#undef FUNCTION

#define FUNCTION MSSM_hO_1_decays

START_FUNCTION (DecayTable: :Entry)

DEPENDENCY (SLHA_pseudonyms,
DecayBit::mass_es_pseudonyms)

BACKEND_REQ (cb_widthhl_hdec, (sh_regd),
widthhl_hdec_type)
BACKEND_REQ (cb_wisusy_hdec, (sh_reqgd),
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wisusy_hdec_type)

BACKEND_REQ (cb_wisfer_hdec, (sh_regd),
wisfer_hdec_type)
BACKEND_OPTION( (SUSY_HIT), (sh_reqgd) )

ALLOW_MODELS (MSSM63atQ, MSSM63atMGUT)
#undef FUNCTION

#undef CAPABILITY

The first of these, Ref_SM_Higgs_decays_table, calcu-
lates the width and decay branching fractions of the pure
SM Higgs, interpolating in the tables of Ref. [110] using the
Higgs pole mass (provided by another module function as a
dependency). This decay information is presented to the rest
of the code with Capability Reference_SM _Higgs_decay_
rates, to allow other functions to declare that they depend
on knowing the pure SM decays as reference quantities,
even if the actual decays of the Higgs in the model being
scanned turn out to be different from the SM case. The func-
tion sM_Higgs_decays has a dependency on this reference
set of decay information, and simply presents it ‘as is’ to the
rest of the code as the definitive decays of the Higgs, as indi-
cated by the capability Higgs decay rates. The module
function singletDM Higgs_decays gives the Higgs decays
in the case of an SM-like Higgs that can also decay to two
singlets. This function also piggybacks off the SM reference
decay information, simply adding in the # — S§ decay and
rescaling the SM branching fractions. MssM_h0_1_decays
returns decays of the lightest MSSM Higgs.

The latter two functions have corresponding ALLOW
MODELS declarations, whereas sM_Higgs_decays 18 consid-
ered to be universally compatible with all models, and it will
be used as a fallback in any case where a model-specific
Higgs decay function does not exist, i.e. assuming that the
Higgs is unaltered from the SM. The singlet variant also has
a dependency on the singletDM_spectrum, which it uses
to extract the S mass and coupling in order to compute the
invisible width.

The MSSM variant has no dependency on a Spectrum
object, because it instead relies on BACKEND_REQuUirements,
which it demands to be filled from its only declared
BackeND_opTION, SUSY-HIT. A spectrum object is not
needed because the backend initialisation function for SUSY-
HIT has this dependency itself, as that is where the pole
masses, couplings and mixings are actually fed into SUSY-
HIT. The function MssM_h0_1_decays does have a dep-
endency on the sLHA pseudonyms however, as these are
needed to interpret the weak/family eigenstate decay widths
returned by SUSY-HIT, and to place them into the resulting
DecayTable: :Entry in terms of mass eigenstates.

The macro calls illustrated in these declarations are
described in more detail in the full GAMBIT paper [11].

The SM reference function computes the total width and
branching fractions of the Higgs as follows:

// Reference SM Higgs decays from Ref.
[1107 .
void Ref_SM_Higgs_decays_table(
DecayTable: :Entry& result)
{
using namespace
Pipes::Ref_SM _Higgs_decays_table;

// Get the Higgs pole mass
double mh = *Dep::mh;

// Invalidate point if mj; is outside the
most

// reliable part of the LHCHiggsXSWG [110]
// tables.

double minmass =
runOptions->getvValueOrDef<double>(90.0,
"higgs_minmass") ;

double maxmass =
runOptions->getValueOrDef<double>(160.0,
"higgs_maxmass") ;

if (mh < minmass or mh > maxmass)

{ std::stringstream msg; msg << "Requested
Higgs virtuality is " << mh << ";
allowed range is " << minmass << "--" <<
maxmass << " GeV.";
invalid_point () .raise(msg.str()); }

// Set the contents of the Entry
result.calculator = "GAMBIT: :DecayBit";
result.calculator_version =
gambit_version;
result.width_in_GeV =
virtual_ SMHiggs_widths
("Gamma" ,mh) ;
result.set_BF(virtual_SMHiggs_widths
("bb",mh),
0.0, "b", "bbar");

First the Higgs mass is extracted from the mh depen-
dency, and checked against the allowed minimum and max-
imum Higgs mass. These bounds are used to ensure that
the SM-like Higgs is not outside the range over which
the values covered by the tables of Ref. [110] are most
reliable. The calculator and version are then set, and the
total width is extracted from the tables of Ref. [110]
with the function virtual SMHiggs widths (found in
Elements/src/virtual_higgs.cpp). Finally, branching
fractions to different final states are set by calls to set_BF (),
in a similar fashion to the first example of Sect. 3.3.1.

The body of sM Higgs decays simply rebrands this
information from Reference SM_Higgs decay rates to
Higgs decay rates, indicating to the rest of GAMBIT that
it indeed represents the true Higgs decays in this case, and
should be used as such in later calculations:
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// SM decays: Higgs
void SM_Higgs_decays
result)

(DecayTable: :Entry&

{
namespace Pipes::SM_Higgs_decays;
result =
*Dep::Reference_SM_Higgs_decay_rates;

The decays of the Higgs are harvested and assembled with
the decays of all other particles into a single DecayTable,
by the function a11 decays:

#define CAPABILITY decay_rates
START_CAPABILITY

#define FUNCTION all_decays

START_FUNCTION (DecayTable)

DEPENDENCY (Higgs_decay_rates,
DecayTable: :Entry)

MODEL_CONDITIONAL_DEPENDENCY (hO_2_decay_
rates, DecayTable: :Entry, MSSM63atQ,
MSSM63atMGUT)

#undef FUNCTION
#undef CAPABILITY

Here we see the generic dependency upon Higgs_decay_
rates; regardless of the model being scanned, a1l decays
requires a DecayTable: :Entry that describes the decays
of the Higgs boson. Depending on which model is actually
being scanned, this can end up being fulfilled by any one
of the three functions with capability Hicgs_decay rates
described above. The function all decays also has a
MODEL_CONDITIONAL_DEPENDENCY on the set of decays of
each BSM particle, such as the second C P-even Higgs in
the MSSM. The function body of a11_decays simply takes
all the entries that it depends on, and adds them to a single
DecayTable object, along the lines of the second example
in Sect. 3.3.1.

3.3.4 Adding support for new models and programs
Supporting a new model in DecayBit is a matter of:

1. writing additional module functions that can generate
DecayTable: : Entry objects for the novel field content,

2. adding new module functions that can compute new
decays of existing particles in the new model, and

3. adding dependencies on these new functions to all

decays.

Adding a new backend capable of calculating decay rates
and branching fractions is essentially the same as adding any
new backend, and should follow the recipe presented in the
main GAMBIT paper [11]. After this, using the new backend
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from DecayBit requires writing new module decay functions
designed to take advantage of it, or modifying existing ones
to do so. In some rare cases, the backended functions might
have the same signature as those of an existing backend, in
which case the backend simply needs to be selected at the
YAML file level, using the rules section (see Sect. 6 of [11]).

4 PrecisionBit

The PrecisionBit module serves a number of related pur-
poses. It provides so-called nuisance likelihoods, which
describe the uncertainties on known quantities that are impor-
tant inputs to other calculations, which one might like to vary
within their experimentally allowed ranges in the course of a
scan. This functionality is discussed in Sect. 4.1. Examples
include the mass of the top quark and the strong coupling;
similar quantities relevant only to dark matter observables
are dealt with in DarkBit (e.g. the strange quark content of
the proton and the local density of dark matter).

PrecisionBit is also responsible for calculating BSM cor-
rections to precision SM observables, such as the mass of
the W boson and the weak mixing angle Oy, and provid-
ing correspondingly corrected pole masses and couplings to
the rest of GAMBIT wherever appropriate. It also provides
likelihood functions for quantifying the agreement of the pre-
dicted corrections to the precision observables with experi-
mental data. We discuss PrecisionBit’s ability to compute
MSSM precision corrections and likelihoods in Sect. 4.2.
Except for precision mass corrections, PrecisionBit does
not (yet) support the calculation of precision corrections in
non-supersymmetric models; these will be implemented as
relevant when the corresponding models are implemented in
GAMBIT.

Figure 9 shows how these different components of Preci-
sionBit fit together, and how the two ‘halves’ of the module
are connected via SpecBit and the input SM parameters.

4.1 Standard model nuisances

PrecisionBit provides a number of SM nuisance likelihoods,
related to SM couplings, quark masses and the masses of the
Z and W bosons. These likelihoods are generally approxi-
mated by x 2-like functions, comparing experimentally deter-
mined central values (and errors) with the SM input values
provided by GAMBIT. Whenever they are available and rel-
evant, we add theoretical errors to the experimental ones in
quadrature (i.e. assuming that they are uncorrelated).'®

18 Some members of the LHC Higgs Cross-section Working Group
advocate a linear combination (see Sect. 12.5 of [115]), on the basis of
an assumed flat constraint on the theoretical systematic. However, no
statistical justification is given for this, and as far as we can see it can only
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Fig. 9 Schematic representation of the structure of PrecisionBit.
Model parameters (red boxes) are used by SpecBit to provide masses
and couplings (grey box) to PrecisionBit, and they are also used by Pre-
cisionBit directly to compute most SM nuisance likelihoods

. PrecisionBit uses the precision Higgs masses from SpecBit
(grey box right), along with its own precision calculation of the W mass
(upper-right blue box), to convert the spectrum provided by SpecBit
into a precision-updated version (upper-left blue box). It then uses the
improved spectrum for calculating likelihoods associated with the Higgs
and W masses ,as well as a suite of electroweak pre-
cision observables (EWPO) (lower blue box). It then feeds the EWPO
predictions to its own experiment-based EWPO likelihoods

4.1.1 Couplings

Likelihoods associated with the Fermi coupling constant
(GFr) and fine-structure constant (oey) are constructed
by comparing model input values with those determined
from electroweak global fits, with G r (1.1663787 +
0.0000006) x 107 GeV~2 and aem(mz)~! = 127.940 +
0.014 (MS scheme) [61]. Similarly, the strong coupling
(o) likelihood is calculated using a Xz—averaged value of
as(mz) = 0.1185 £ 0.0005 (MS scheme) taken from the
sub-field of lattice determinations [61]. Uncertainties are
taken to correspond to 1 o confidence intervals with no addi-
tional theoretical uncertainties. The PrecisionBit functions
providing these likelihoods are summarised in Table 8.

Footnote 18 continued

be justified as an extremely conservative Gaussian approximation to a
profile likelihood in which a flat systematic parameter has been profiled
out. In contrast, a Bayesian treatment of this case would result in a
quadrature sum, even with a flat prior for the systematic error. Here we
assume a Gaussian constraint on the theoretical systematic anyway, so
combination in quadrature with the (Gaussian-distributed) experimental
uncertainties is the statistically correct combination procedure to use
here, in both frequentist and Bayesian treatments of this case.

4.1.2 Masses

Likelihoods associated with the M S light quark (u,d, s)
masses at u = 2 GeV, m.(m.), and mp(mp), are calculated
by PrecisionBit by comparing input values from GAMBIT
with the corresponding PDG values and uncertainties [61],
approximating the likelihoods as 2 functions. Similarly, the
likelihood corresponding to the top quark mass is evaluated
using combined Tevatron and LHC measurements [116]. For
the light quark masses a single, joint likelihood is calculated
with terms corresponding to the ratio of # and d masses, the
ratio of the s mass to the sum of u# and d masses, and my,
respectively. Users can optionally provide their own values
for these three quantities.

The W and Z boson mass likelihoods are based on
mass measurements and corresponding uncertainties from
the Tevatron and LEP experiments [61]. These strictly cor-
respond to the mass parameter in a Breit—-Wigner function
rather than pole masses, but the difference is negligible for
almost all purposes. PrecisionBit also provides a simple
Higgs-mass likelihood, using the ATLAS and CMS combi-
nation [117] and is used directly as the PDG average [118].
The module functions providing the W, Z and & mass likeli-
hoods are summarised in Table 8. Unlike the other SM par-
ticle masses, the model-dependent W and # mass depen-
dencies are satisfied by functions specific to different model
spectrum types, listed in Table 9. In this case, if theoretical
uncertainties are available, we add them in quadrature to the
experimental uncertainties when evaluating the x? approxi-
mation to the mass likelihoods. By summing in quadrature,
we assume that the experimental and theoretical errors are
uncorrelated, which is reasonable given that they come from
entirely different sources. The more detailed Higgs likeli-
hoods of ColliderBit [14] will usually be more useful than
the simple Higgs-mass likelihood provided in DecayBit. The
latter can offer a lightweight alternative when varying the
mass of the SM Higgs as a nuisance parameter in simple
scans, as in e.g. Ref. [18].

4.2 MSSM precision observables

PrecisionBit allows for users to calculate a collection of pre-
cision observables using an array of external code packages.
These observables can be accessed directly through module
functions, passed as input to likelihood calculations, or used
to update particle spectra for use throughout GAMBIT.

4.2.1 External code interfaces
Currently, PrecisionBit makes use of the external code pack-
ages FeynHiggs [22], Superlso [33] and GM2Calc [35]

for calculating precision observables in the MSSM. The
GAMBIT interface to FeynHiggs was described already in
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Table 8 PrecisionBit module functions providing log-likelihood cal-
culations related to SM couplings and particle masses. All functions
depend on SMINPUTS with the exception of the likelihoods of the
W and h masses, which depend directly on the calculated W and h
masses, respectively. These are available from both SM and BSM spec-

tra, as summarised in Table 9. Except in very simple scenarios, the more
detailed Higgs likelihoods of ColliderBit [14] are generally to be pre-
ferred to 1nl,_h mass_chi?2, as they simultaneously take account
of correlated constraints on the mass and couplings

Capability

Function (return type): brief description

Dependencies

Options (type)

InlL,_alpha_em

1InL_alpha_s

1nl,_GF

InL_light_qguark_masses

1nlL_mcmc

1nL_mbmb

InL_alpha_em_chi2 (double):
Computes the log-likelihood of the
fine-structure constant, cem (1), in the
M S scheme

InL_alpha_s_chi2 (double):
Computes the log-likelihood of the

strong coupling constant, a(m7), in the
M S scheme

Inl,_GF_chi2 (double): Computes
the log-likelihood of the Fermi coupling
constant, G g

InL_light_quark_
masses_chi2 (double): Computes
the joint log-likelihood of the M'S
masses of the u, d and s quarks at
n=2GeV

InL_mcmc_chi2 (double): L
Computes the log-likelihood of the M S
mass mq(me)

InL_mbmb_chi2 (double): L
Computes the log-likelihood of the M S

SMINPUTS

SMINPUTS

SMINPUTS

SMINPUTS

SMINPUTS

SMINPUTS

mud_obs (double)

mud_obserr (double)
msud_obs (double)
msud_obserr (double)
ms_obs (double)

ms_obserr (double)

mass mp(mp)

1Inl_t_mass

InL_t_mass_chi2 (double):

SMINPUTS

Computes the log-likelihood of the top

quark pole mass

1Inl,_Z_mass

InL_Z_mass_chi2 (double):

SMINPUTS

Computes the log-likelihood of the Z

boson pole mass

1Inl_W_mass

InL_W_mass_chi2 (double): mw

Computes the log-likelihood of the W

boson pole mass

1Inl_h_mass

InL_h_mass_chi2 (double): mh

Computes the log-likelihood of the &

boson pole mass

Sect. 3.1.3, and the interface to Superlso is covered in detail
in the FlavBit paper [15].

The module function cM2c_susy calls library routines
from GM2Calc to calculate the anomalous magnetic moment
of the muon and translates the result and the errors from a,,
to (g — 2),. GM2Calc can accept parameters and masses
given in SLHA conventions. The module function exploits
GAMBIT helper functions, discussed in Sect. 3.3.2, to con-
vert between SLHA and SLHA2, which GAMBIT uses
internally to store the spectrum. The inputs from the spec-
trum object, including the SMINPUTS parameters, are then
passed on to the GM2Calc object by the module func-
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tion cvM2c_susv. One important subtlety is that GM2Calc
also has two non-SLHA inputs, which provide input val-
ues for the fine-structure constant, «, in the Thompson
limit and another «, which includes SM fermion contribu-
tions to the on-shell photon vacuum polarisation. These def-
initions differ from the MS a(myz), the inverse of which
appears in entry 1 of the SLHA input block suIneuTs. By
default, GAMBIT uses the default values recommended by
the GM2Calc authors. It is possible to overwrite these values
using the YAML options GvM2calc extra alpha e M7 and
GM2Calc_extra_alpha_e_thompson_limit.
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Table 9 Summary of

Function (return type): brief description

Dependencies

PrecisionBit module functions Capability
providing the W and /& masses o
from different GAMBIT
Spectrum inputs. These
functions have no options nor
backend requirements
mh

mw_from_SM_spectrum
(triplet<double>): Provides the
W mass and its uncertainties from an
SM spectrum

mw_from_ SS_spectrum
(triplet<double>): Provides the
W mass and its uncertainties from a
scalar-singlet model spectrum

mw_from_ MSSM_spectrum
(triplet<double>): Provides the
W mass and its uncertainties from an
MSSM spectrum

mh_from_ SM_spectrum
(triplet<double>): Provides the
h mass and its uncertainties from an SM
spectrum

mh_from_SS_spectrum
(triplet<double>): Provides the
h mass and its uncertainties from a
scalar-singlet model spectrum

mh_from MSSM_spectrum
(triplet<double>): Provides the
mass and associated uncertainties of the
most SM-like Higgs boson in the MSSM

SM_spectrum

SingletDM_spectrum

MSSM_spectrum

SM_spectrum

SingletDM_spectrum

MSSM_spectrum
SMlike_Higgs_PDG_code

PrecisionBit also contains an experimental interface to
the proprietary code SUSY-POPE [119,120], but this is not
recommended for general use. In addition, a new FeynHiggs
routine FHEWPO, based on work used for Refs. [121,122],
has very recently been released for beta testing in Feyn-
Higgs 2.13.0-beta. We understand that this beta is now to
be considered production-stable,' and so expect to support
it in a future version of GAMBIT. Further calculations of the
EWPO may in the future become available through the Flexi-
bleTools collaboration behind FlexibleSUSY or through use
of auto-generation software, which is now being developed
with GAMBIT.

The various interface functions to different external code
packages within PrecisionBit are summarised in Table 10,
and include calculations of backend-specific data-types for
input to other functions, accessor functions for specific
observables, and functions for updating particle spectra to
include precision corrections to the W and Higgs-sector
masses.

4.2.2 Electroweak precision observable likelihoods

Electroweak precision observables are well measured observ-
ables from the electroweak sector of the SM. Due to the
precise measurements they can provide constraints on BSM

physics. For a pedagogical introduction see Ref. [123], where

19 T, Hahn, personal communication

Z-pole and non Z-pole sets of electroweak precision observ-
ables are listed in Tables 1 and 2, respectively. Precision-
Bit includes a collection of functions for using the precision
observables calculated by external code packages to calcu-
late likelihoods. Currently, likelihood functions are provided
for the effective leptonic weak mixing angle sin? Ow eft, the
departure from 1 of the ratio of the Fermi constants implied
by neutral and charged currents Ap, and the muon anoma-
lous magnetic moment a,, (also referred to as g — 2 = 2a,,).
For each of these observables, PrecisionBit calculates likeli-
hoods by combining experimental and theoretical uncertain-
ties in quadrature (i.e. assuming that theoretical and experi-
mental errors are not correlated), and constructing likelihood
functions based on the difference between the calculated and
experimentally measured values. The module functions that
provide these capabilities are listed in Table 11.

PrecisionBit also offers two module functions able to pro-
vide the predicted SM contribution to g — 2. These are listed
along with the likelihood functions in Table 11. The first is
calibrated to eTe™ data, giving a, sm = (11659180.2 +
4.9) x 10710 [124], whereas the second comes from 77t~
data, and corresponds to a;, sm = (11659189.4 £ 5.4) x
10710 [124].

For the g — 2 likelihood, we combine errors from the
predicted SM contribution in quadrature with the theoretical
error arising from the BSM contribution, as these two the-
ory errors are entirely independent of each other, and there-
fore uncorrelated. In the likelihood function, we compare
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Table 10 PrecisionBit module function interfaces to external code
packages for calculation of precision observables. These functions
include calculations of backend-specific data-types for input to other

functions, retrieval functions for specific observables, and functions for
updating particle spectra for use throughout GAMBIT

Capability

Function (return type): brief description

Dependencies

Backend requirements

FH_Precision

deltarho

prec_mw

prec_sinwW2_eff

edm_e

edm_n

edm_hg

MSSM_spectrum

muon_gm2

SP_PrecisionObs

FH_PrecisionObs
(fh_PrecisionObs): Calculate
precision observables in the MSSM with
FeynHiggs

FH_precision_deltarho (double):

Retrieve parameter Ap from
FeynHiggs precision calculations

FH_precision_mw(double):
Retrieve W mass in the MSSM from
FeynHiggs precision calculations

FH_precision_sinW2 (double):
Retrieve effective leptonic weak mixing
angle sin® Oy efr from FeynHiggs
precision calculations

FH_precision_edm_e (double):
Retrieve electron electric dipole moment
from FeynHiggs precision calculations

FH_precision_edm_n (double):
Retrieve neutron electric dipole moment
from FeynHiggs precision calculations

FH_precision_edm_hg(double):
Retrieve mercury electric dipole
moment from FeynHiggs precision
calculations

make_MSSM_precision_
spectrum_H_W(Spectrum):
Function to provide an updated MSSM
spectrum with precision W and Higgs

mgﬁgﬁﬁSSMiprecisioni
spectrum_W(Spectrum): Function
to provide an updated MSSM spectrum
with precision W mass

make_MSSM_precision_spectrum
_none (Spectrum) : Function to
present an unimproved MSSM spectrum
as if it is a precision spectrum

FH_precision_gm2 (double):
Retrieve MSSM contribution to g — 2
from FeynHiggs precision calculations

GM2C_SUSY (double): Calculate
MSSM contribution to g — 2 using
GM2Calc

STI_muon_gm?2 (double): Calculate
MSSM contribution to g — 2 using
Superlso

SP_PrecisionObs (double):
Calculate precision observables in the
MSSM with SUSY-POPE
(experimental)

FH_Couplings_output

FH_Precision

FH_Precision

FH_Precision

FH_Precision

FH_Precision

FH_Precision

unimproved_MSSM_spectrum

prec_mw
prec_HiggsMasses

unimproved_MSSM_spectrum

prec_mw

unimproved_MSSM_spectrum

FH_Precision

MSSM_spectrum

SuperIso_modelinfo

FeynHiggs

GM2Calc

Superlso

SUSY-POPE
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Table 11 PrecisionBit module

i
functions providing Capability

Function (return type): brief description

Dependencies

log-likelihood calculations for

e Inl,_sinW2 eff
electroweak precision

InlL_sinW2 eff chi2 (double):
Computes the log-likelihood associated

prec_sinW2_eff

observables with sin2 Oy ot
1InL_gm2 InL_gm2_chi2 (double): Computes muon_gm2
the log-likelihood associated with muon muon_gm2_SM
g—2
InL_deltarho 1nL_deltarho_chi2 (double): deltarho
Computes the log-likelihood associated
with Ap
muon_gm2_SM gm2_SM_ee(triplet<double>):
Computes the SM contribution to g — 2,
based on eTe™ data
gm2_SM_tautau(triplet<double>):
Computes the SM contribution to g — 2,
based on T 7~ data
the sum of the SM and BSM contributions to the experi- o'zhso = max (o,g‘;" /mw, Usti};ezOGW " / sin® QW,eff> , (14)

mental measurement a, = (11659208.9 & 6.3) x 10-10

[125,126], where the error is the sum in quadrature of statis-
tical (5.4 x 10710) and systematic (3.3 x 1071%) uncertainties.

Theoretical calculations of the MSSM contribution to a,,
can be taken from either GM2Calc, Superlso or Feyn-
Higgs. While Superlso and FeynHiggs include essentially
the same one and two-loop corrections, and give more or
less consistent results, GM2Calc includes additional two-
loop contributions and an improved on-shell calculation of
the one-loop effects, leading to significant improvements in
precision for some parameter combinations. GM2Calc cal-
culates an uncertainty on its prediction, using the magni-
tudes of the two-loop Barr—Zee corrections [127] to estimate
the magnitude of neglected higher-order contributions [35];
PrecisionBit adopts this estimate directly when employing
GM2Calc. For FeynHiggs and Superlso, no such esti-
mate is available. Following the discussion in Ref. [128], we
assign a theoretical uncertainty of either 30% or 6 x 10710
(whichever is greater) to the values of g —2 that PrecisionBit
obtains from Superlso and FeynHiggs.

PrecisionBit’s theoretical predictions of sin? Ow etf and
Ap inthe MSSM are currently provided exclusively by Feyn-

Higgs. We assume a theoretical error, 6:316209 ,of 12x 1073
S W eff

on sin? Ow.err [129]. The fractional MSSM corrections to
both sin® Oy efr and my are approximately proportional to
Ap attree level, with a constant of proportionality quite close
to one in magnitude (within a few tens of percent [129]).
Combined with the fact that Ap < 1 in general, to a good
approximation the theoretical error on its value can be esti-
mated from the fractional uncertainty on sin> Ow eff OF My
we therefore adopt a theory error on Ap of

where o€ = 10 MeV [129].

my

4.2.3 Precision-updated MSSM spectrum

As described in Table 10, PrecisionBit includes a number of
module function for updating existing MSSM spectra with
precision calculations of particle masses:

make_MSSM_precision_spectrum_H_W(),
make_MSSM_precision_spectrum W(), and

make_MSSM_precision_spectrum_none ().

These functions take an unimproved MSSM_spectrum as a
dependency, update its mass spectrum with precision val-
ues, and return the improved version as an MSSM_spectrum.
The = _w version updates both the Higgs-sector and the
W masses, the w version does only the W mass, and
make_MSSM_precision_spectrum_none Simply transmutes
an unimproved_MSSM_spectrum into an MSSM_spectrum
without further modification. The precision W and Higgs-
sector masses are typically provided via dependencies ful-
filled by functions that call FeynHiggs (though they can of
course in principle come from anywhere).

In addition to updating the masses, the make MSSM_
precision_spectrum_H_W() and make_MSSM_ prec-
ision_spectrum_w() functions also update the associated
theoretical uncertainties provided by the original spectrum
object. The uncertainty on the pole mass of the W is adopted
from its dependency on the precision value of my. When
calculating this with FeynHiggs, we assume an uncertainty
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of 10MeV [129] (as discussed in the context of the theory
error on Ap in Sect. 4.2.2).%0

For the MSSM Higgs bosons (AO, K%, HO and Hi),
the methods by which PrecisionBit arrives at the central
value and uncertainties on the mass are configurable by the
user, using the options Higgs predictions source and
Higgs_predictions_error method, respectively. For the
Higgs_predictions_source, there are three possible val-
ues:

1: Update each of the Higgs masses to the value derived
from the precision calculator (canonically FeynHiggs).
This is the default.

2: Keep the masses unchanged from the original input spec-
trum.

3: Assign the mean of the masses found in the original spec-
trum and the ones provided by the precision calculator.

Five options are available for assigning theoretical uncer-
tainties to the MSSM Higgs masses. These are based on
different combinations of three quantities with unique val-
ues for each Higgs state: the error associated with the mass
from the original input spectrum (A;), the error determined
by the precision calculator (A ), and the difference of cen-
tral values from the two calculations (Ag). All but one of
the options for using these quantities assigns them as addi-
tional errors beyond a so-called ‘range around chosen cen-
tral’ (RACC) calculation. The RACC is defined such that the
upper error o is the distance from the central value chosen
with Higgs_predictions_error_method to the greater of
the values predicted by the original spectrum and the preci-
sion calculator. The lower error o_ is defined analogously as
the distance from the central value chosen to the lesser of the
two predictions. With these definitions, the available options
for the Higgs_predictions_error_method are:

1: Upper and lower uncertainties both set equal to the sum
in quadrature of all three uncertainties: O’_%_ =02 =42+
AL+ A7

2: RACC, with A added to the error associated with the
distance to the spectrum generator value (the spectrum-
generator ‘edge’), and A, added to the precision-
calculator edge. This is the default.

3: RACC, with Ag /2 added to both o and 0.

4: RACC, with A, /2 added at the spectrum-generator edge,
and A, added at the precision-calculator edge.

5: RACC, with A4 /2 added at the precision-calculator edge,
and A added at the spectrum-generator edge.

20 1¢ is, however, worth noting that this is in fact no smaller than the value
that we assign to the uncertainty on the W mass calculation performed by
FlexibleSUSY, so the replacement has no effect if FlexibleSUSY has
been used to generate the original unimproved MSSM_spectrum.
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The resulting precision-improved spectrum is provided to
the rest of GAMBIT for physics calculations, and in the case
of the Higgs bosons, computation of Higgs-mass likelihoods
by ColliderBit.

5 Examples
5.1 Example YAML files

In yaml_files, we give some example input YAML files
that run various functions from SpecBit, DecayBit and Pre-
cisionBit within GAMBIT. The file SpecBit_MSSM.yaml
runs a number of tests on the various MSSM spectra, using
either FlexibleSUSY or SPheno from within SpecBit.
The file SpecBit_vacuum_stability.yaml does a short
(10 minutes runtime on a single core) scan of the Higgs
and top mass, in order to map out the regions of SM
vacuum (meta-)stability and perturbativity. The DecayBit
example DecayBit MSSM20.yaml computes decay widths
and branching fractions for a single example point in the
MSSM20atQ model [11]. DecayBit_SingletDM does the
same for ten randomly selected parameter combinations in
the scalar-singlet dark matter model. PrecisionBit_MSSM
20.yaml computes all precision observables and likeli-
hoods contained in PrecisionBit, for the same example
MSSM20atQ point as DecayBit_MSSM20.yaml.

5.2 3-BIT-HIT

As a convenience for users simply wishing to use some basic
functionality of SpecBit, DecayBit and PrecisionBit from
the command line, we also provide an additional driver pro-
gram 3-BIT-HIT. This program doubles as an example of
how the three modules can be used in standalone mode, i.e.
without the GAMBIT Core or the other modules.

3-BIT-HIT takes a single MSSM model as input via a
minimal YAML file 3bithit.in, in either the weak-scale
MSSM20atQ or GUT-scale NUHM2 parametrisation. The
user can also specify SM parameters, following SLHA?2 con-
ventions. The program then solves the RGEs and evaluates
pole masses, calculates decay widths and branching fractions
of all SM particles and their superpartners, computes elec-
troweak precision observables, and finally outputs the results
as a single SLHA file 3bithit.out.slha.

The basic spectrum generation in 3-BIT-HIT is done using
FlexibleSUSY via SpecBit, with the Higgs and W masses
replaced by precision calculations performed with Feyn-
Higgs by PrecisionBit. The resulting SM-like Higgs mass
and uncertainties emitted in the final SLHA file are based
on the default settings in PrecisionBit::make MSSM

precision_spectrum_H_W():
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Higgs_predictions_source = 1
Higgs_predictions_error_method = 2

The Higgs-sector decays are computed by DecayBit using
FeynHiggs, SM decays are based on native DecayBit func-
tions, and sparticle decays come from SDECAY, via SUSY-
HIT and DecayBit. 3-BIT-HIT computes the SUSY contribu-
tion to the anomalous magnetic moment of the muon, along
with its uncertainty, using calls to GM2Calc from Precision-
Bit. All other electroweak precision observables (EWPO)
come from FeynHiggs via PrecisionBit, where errors are
also assigned to them.

3-BIT-HIT performs a similar function to SUSY-HIT, but
computes EWPO in addition to spectra and decays. It also
employs FlexibleSUSY instead of SuSpect for spectrum
generation, FeynHiggs for Higgs decays rather than HDE-
CAY, and our patched version of SDECAY (see Sect. 3.1.3
for details) for sparticle decays. Its source can be found in
DecayBit/examples/3bithit.cpp, anditcan be built with

make 3bithit

6 Summary

In this paper we have introduced the GAMBIT modules
SpecBit, DecayBit and PrecisionBit. These are designed to
flexibly integrate publicly available programs for spectrum
generation, the calculation of decay widths and branching
ratios, and additional precision calculations, like the anoma-
lous magnetic moment of the muon. Together, these modules
provide a powerful way to synergise spectrum generators,
decay codes and additional precision calculations, allowing
users to extract the information produced by them in a com-
mon format. We have illustrated this use with the example
standalone program 3-BIT-HIT (Sect. 5), which provides a
single interface to FlexibleSUSY, FeynHiggs, SDECAY
and GM2Calc. At the same time, these modules play a cru-
cial role within the full framework of GAMBIT, where they
provide essential information to other packages and impor-
tant components of the log-likelihood functions used to drive
global fits.
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Appendices
A Physics models

Here we give a compact physical definition of each of the
models currently supported by SpecBit, DecayBit and Pre-
cisionBit, complementing the slightly more code-focussed
description in the main GAMBIT paper [11]. GAMBIT is pri-
marily designed for global fits to extensions of the Standard
Model (SM) of particle physics. Many calculations in these
extensions require SM quantities, and many such extensions
make minimal modifications to the SM; examples are the
scalar-singlet dark matter model (Appendix A.3) and effec-
tive weakly interacting massive particle (WIMP) dark matter
(see Ref. [13] for an example in GAMBIT). We therefore
begin with the SM itself.

A.1 Standard model

The SM describes the interactions of all observed funda-
mental particles. These interactions are invariant under the
symmetries of the gauge group,

Gsy = SUQB)c x SUQR)L x U(1)y. (A1)

The Lagrangian density is given by

Lsm =) i3 i(QiPQ; + LiPL; +ug; Dup;
+dgiDdg; + egi Deg;)
+ Zi,j:l,3 [Za,bzl,z(Yu)ianbQ?(¢T)buRj
+ (Ya)ij Qiddrj + (Ye)ijLiger; + h.c.]
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+1Duo? = w1l — Al

1 1 A A 1 B B
- ZB,WB‘“’ — ZW‘”WW — ZGWG‘“’ (A.2)
where u g;, dg; and eg; represent the right-handed up-type
quark, down-type quark and lepton. Similarly,

¢+) (Mi) (VLi>
= s i — 5 L, = 5
¢ (¢O Qi dri ' eLi

represent the Higgs, left-handed quark and left-handed lepton
doublets, respectively. Here i and j specify the generation of
the fields, a and b are SU (2)r indices, and €., is the anti-

symmetric tensor.
The B, W;fv and va are field strength tensors for

(A3)

the By, Wlf and G 5 fields respectively, which are, respec-
tively, associated with the U(1)y, SU(2)L and SU(3)c
gauge groups. The kinetic terms for the matter fields include
D = D"y,,, where D, is the usual covariant derivative,
which, for example, takes the following form for all fields
transforming non-trivially under both SU (2)1, and SU (3)c:

D, =8, —ig1QyBy —igxW, T —igsaGL. (A4
Here g1 and Qy are the GUT-normalised gauge coupling
and GUT-normalised chargesm of U(1)y. Similarly g, and
T4 are the SU (2)1, gauge couplings and generators, respec-
tively, and g3 and A® are the SU(3)c gauge couplings and
generators, respectively.

Electroweak symmetry is broken when the Higgs field
develops a VEV, v,

@) = - <°> (A5)
AU |

so that field may be rewritten as

¢’ = L(v + 41" +iGY). (A.6)
V2

where 1 is the physical Higgs boson and GV is the unphysical
Goldstone boson that corresponds to the longitudinal mode
for the massive Z° boson.

The SM VEV gives masses to the SM particles. The Z
and W gauge bosons obtain tree-level masses

1 12 2 1
myz = E‘/ (g +g2) v My = Egzv.

2l Hypercharge is often written without GUT normalisation, such that

the charge for a field ¢ is ¥ ¢ = /573 Q(f, and will be written in the
covariant derivative with the gauge coupling g’ = /3/5¢1.

(A7)
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The weak mixing angle Oy is given by

12 2
sinZoy = 8 _1_Mw (A.8)
g7+ my
though it is important to note that the last equality depends on
the tree-level relations given in Eq. (A.7), so this definition
holds only within the renormalisation scheme in which the
gauge couplings are defined. An alternative definition can be
made in terms of pole masses,

(pole) 2
M w

sin ggn-shell = (A.9)

(pole)2 *
mz

Finally, one should note that neither of these correspond
exactly to the leptonic effective weak mixing angle, which is
an important precision observable. This quantity is relevant
to PrecisionBit and is discussed in Sect. 4.2.2.

A.2 Minimal supersymmetric standard model

The MSSM superpotential is given by

W = e {Zi’jzlj [(Yu)ij Qfﬁfl}f — (Ya)ij Qf’l:lfbj

- (Ye)ijig‘ﬁa‘;ﬁj] — Mﬁ;ﬁg}, (A.10)
where a hat indicates a superfield and i, j specify the gener-
ation, while a, b are SU (2)1, indices. This includes the Hig-
gsino mixing parameter (., which appears as a dimension one
coefficient of the up- and down-type Higgs superfields,

R 7+ . 70
H, = F{uo H; = {{{ .
H, H,

The chiral superfields have dimensionless up- and down-
type Yukawa couplings, Y, and Y, with the Higgs super-
fields and the chiral superfields for the right-handed quarks.
Specifically left-handed quarks, Q, interact with both the
chiral superfields for the right-handed up quarks, U¢, and
the up-type Higgs superfield through Y, and with down
quarks, D¢, and the down-type Higgs superfields through
Y. Similarly the chiral superfield for left-handed leptons L
has Yukawa interactions, Y, with the chiral superfields for
the right-handed leptons, E€ and H,.

Terms which break supersymmetry without introducing
quadratic divergences are given in the soft SUSY-breaking
Lagrangian,

(A.11)
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1 Zn ~ s~ z o~
Lo == 5 [MBOB + MaWaWa + Moy | (A120)
i = ~ = ~ = ~
-3 [MjBOysBO + MyWaysWa + MégBysgB]
(A.12b)
— [bH Haa + hc. | = m¥y [ HL 2 = midy, | Hal?
(A.12¢)
+2 =13 {— [Q,T(ng)ij O + diy; (m2)idr;

i ()i + L (m})ij L + &, (mﬁ)ijéRj]

(A.12d)
— oegbst L Aaphbt
+ —€ap (Tu)l]QiHuuRj (Td)thinde
— (L) L¢ HYeh, +h.c.] (A.12¢)

— €ab [(Cu)ij Q?H;bﬁ;;j - (Cd)ij Q?H;bjgj

— (Co)y LIH T, +h.c.]} . (A.12f)

As in the previous equation we have indices i, j for gener-
ation and a, b for SU (2)1, and in addition A € {1, 2, 3} is the
index for SU (2)1, gauge generators and B € {1,2,3...8}
is the index for the SU (3)c. The superpartners of the U (1)y
gauge field, BO, the SU(2)L gauge fields, WA, and the
SU(3)c gauge fields, gp get soft masses, My, M> and M3,
respectively, as well as potential contributions from M}, M,
and Mj. The Higgs scalar fields, H, and Hy receive soft
scalar mass contributions, m%_lu, m%_ld, respectively, and they
are mixed by the soft bilinear mass squared, b. The left-
handed squarks, Q; and sleptons, L; and the right-handed up-
type squarks, itRrj, down-type squarks, c?Ri, and charged slep-
tons €g; all have soft scalar masses, (mZQ)ij, (m%)ij, (mg),-j,
(mﬁ) ij and (mg) ij» respectively. Finally we have soft trilin-
ears for the up-type squarks and Higgs, (T,);;, down-type
squarks and Higgs, (Ty);;, and the sleptons and down-type
Higgs, (T.);; and also the terms that are soft when there is
no singlet in the model, (C,);;, (Cy);; and (C.);;. The latter
are normally assumed to be zero, even though the MSSM has
no scalar singlets as it is difficult to generate these. The soft
trilinears may also be rewritten in terms of the following:

(Tr)ij

A.13
)y a.13)

(Ap)ij =

fefu,d,e}.

In the MSSM the neutral components of the up- and down-
type scalar Higgs fields, H,? and HC(,), respectively, develop

VEVs,
_ Vg _ L 0
(Hg) = (0> . (Hy) = «/5 (U”> s

(A.14)

-

and the bilinear soft term, b, mixes them, so that they must
be rotated to obtain the physical mass eigenstates, h;

hi\ Re(HL?)_%

where the mixing matrix is commonly expressed in terms of
a mixing angle «,

—sina cos o
Zy = . .
cosa sina

Similarly the pseudoscalar Higgs state, A, is formed from the
imaginary parts of the Higgs scalar fields

(jﬁ) =227 <I’"(H3 )) .

Im(H))

(A.15)

(A.16)

(A.17)

where G is the neutral Goldstone boson. At tree level it
is straightforward to show that the mass eigenstates can be
obtained with a rotation,

Z,— (— sin B8 cos ﬂ)

cos B sinp (A.18)

giving a massless Goldstone boson and an expression for the
pseudoscalar mass,

b

sinBcos B’ (A-19)

2 _
mA—

The charged Higgs-mass eigenstate, H* and charged Gold-
stone boson, G are related to the charged scalar Higgs fields
through

G* HF
<H+) = Zur ((Hd‘)*) |

The squarks are rotated into the mass eigenstates as,

(A.20)

wy (O () (C
iy 05 dr 03

~ 51 3 52

i3 0 d 0

2=z =3, j3 =2Z; dﬁ (A.21)
4 “R1 t ‘RI

“s figs ds dgy

1o iR ds dgs

@ Springer



22 Page460f 71

Eur. Phys. J. C (2018) 78:22

and the sleptons and sneutrinos are rotated as,

- r2

e %

g i )

e ~

52 i% V1 Ly
2l=z3], [n]|=2z](L! (A.22)
€4 €R1 5 il

es g’f 3 3

% R2

€6 Zhs

The neutralinos are mass eigenstates from combinations
of the Bino BY, neutral Wino W3 and the up- and down-type
Higgsinos, H,? and Hl?,

xg BY

ooz [V A23
~ = /4N ~ s .

X3 H) (A2
x5 A

where we follow the SLHA [1] convention and require the
mixing matrix, Zy, to be real, which means the masses of the
neutralinos may be negative. Note that this is the form of the
masses and mixings that can be accessed from the spectrum
object in GAMBIT and used for passing into interfaces to
various backend codes that need the spectrum as an input.
We follow the SLHA convention of negative masses because
this ensures the maximum number of codes can be supported
without conversion during interfacing. For any codes or inter-
nal calculations which expect neutralino masses and mixings
in another convention, this must be converted in the interface.

The mass matrix of the charginos is diagonalised through
a biunitary transformation, such that the two component
chargino mass eigenstates are given by

+ T
X\ _ Wi tth A4
() =v- (™). 829
<X1:> U (Wl T W2> (A.25)
X2 H/S

A.3 Scalar-singlet dark matter model

The scalar-singlet model is a minimalistic extension of the
SM, with one new scalar charged only under a Z, symmetry.
This symmetry guarantees that the scalar is a stable dark
matter candidate, and restricts the most general permitted
renormalisable Lagrangian density on symmetry arguments
to be

120 1 22ty 1
[’SS=EIU“SS +§)\‘h5S |H| +Z)“SS +§8MS8'LLS,
(A.26)

where M% is a mass squared term for the singlet, A, the
Higgs-portal coupling and XAy the quartic self coupling.
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The singlet mass has an additional contribution from
EWSB through the Higgs-portal coupling, giving a mass,

/ 1
mg = M?g + zkhsvzﬁ

where v is the SM Higgs VEV in Eq. (A.5). As the Z; symme-
try must remain unbroken for stable dark matter we demand
that the scalar field, S, does not obtain a VEV and thus no
mixing occurs between the Higgs and the new scalar field.
This requirement is satisfied for Ag > 0.

(A.27)

B Spectrum generators as backends: SPheno

One of the key features of GAMBIT is its ability to interface
with different external codes to perform relevant calculations
for a specific scan. These codes, or backends, are linked with
GAMBIT in a non-trivial way in order to access their func-
tions directly via memory, rather than through a shell. Details
and descriptions of the backend system and how to create a
new backend can be found in the main GAMBIT paper [11].

Consequently, as with other calculations, the genera-
tion of a spectrum can be delegated to a backend library
which provides the required capability. At the time of the
first release, GAMBIT comes along with FlexibleSUSY
[19] internally implemented as the de facto spectrum gen-
erator for MSSM models, but also allows the use of the
backended spectrum generator SPheno [20,21]. In this
section we describe how SPheno is added as a backend
to GAMBIT and how it provides the spectrum capability
unimproved MSSM_spectrum, to serve as a guide for the
addition of other spectrum generators in the future, e.g.
SOFTSUSY [36-39] or SuSpect [40]. It is worth noting
that SPheno is written in Fortran, so some of the details
of the backending process will differ significantly from soft-
ware written in other languages; SOFTSUSY, for example,
is written in C++, so it would need to draw on the classloading
tool BOSS (Backend-On-a-Stick Script, described in [11]).

B.1 Installation and import of variables/functions from the
backend

The general guideline to create a GAMBIT backend from
an external tool, as described in the main GAMBIT paper
[11], is to compile it into a shared library in order to provide
access to the internal variables and functions at runtime. This
thus requires patching the makefile provided by SPheno to
create this shared library. Effectively one needs to add the
flag ~shared to the rule 1ib/1libspheno.so, as well as the
flag - £p1C to the compilation rule for every source file.
Once compiled, this makes the variables and functions
inside SPheno available to use in GAMBIT. However,



Eur. Phys. J. C (2018) 78:22

Page 47 of 71 22

the main Fortran program spheno does not get a shared
library symbol, and thus all the functions and subrou-
tines inside, such as the one that calculates the spectrum
CalculateSpectrum, are not made available to GAMBIT.
This is easily fixed by a further patch into the main file
SPheno3 . £90, to change the program directive for a Module
directive, and commenting all the executed lines in the pro-
gram, but leaving the subroutines unscathed.

Therefore, all the variables and functions can be accessed
by the backend system. These are imported by using the
macros BE_VARIABLE and BE_FUNCTION, described in the
Backends section of the GAMBIT main paper [11], with the
library symbols _ module MOD var for a variable var in
a module module. Note that Fortran is case insensitive, but
all library symbols are written in small caps (except the MOD
tag). The files Backends/include/gambit/Backends/
frontends/SPheno.hpp and SpecBit/src/frontends/
SPheno.cpp are then created to import these variables and
functions, and to give any specifications that are necessary.

Along with the imported variables and functions, a
set of convenience functions is created, by the macro
BE_CONV_FUNCTION, see Ref. [11], specified in the frontend
file spPheno.cpp. These are run_SPheno, ReadingData,
InitializeStandardModel,
ErrorHandling. In particular the convenience function
run_SpPheno will effectively be the main function of the
backend and will cover the executed lines commented out
by the patch, avoiding those that perform input and output
operations, which will be described in the section below.

Lastly, every backend gets a backend initialisation func-
tion, where any overall initialisations for the backend are per-
formed, inside the namespace BE_ INT FUNCTION in the fron-
tend source file. The only initialisation required by SPheno
at this stage is the information about the model which is done
by the function ModelInUse.

Spectrum_Out and

B.2 Input and output, warnings and errors

SPheno follows the SLHA conventions [1,2] for the for-
mat of the spectra it generates, and as such all its input and
(successful) output happens in the form of files using the
SLHA format. Reading and writing from files is inefficient
and hence, for the most part, GAMBIT avoids performing
any of these tasks at the point level, for it would slow down
the scans significantly. Therefore, all the input required and
output provided by SPheno is stored and obtained directly to
and from the backend variables, as described above, via two
convenience functions ReadingData and Spectrum Out.
The convenience function ReadingData initialises all
required SPheno variables for the relevant model and scan.
Firstly all the SM parameters are initialised in the con-
venience function InitializeStandardModel using the
structure sMInputs, followed by some internal initialisation

of variables via the backended functions InitializelLoop
Functions and set_A11_Parameters_0.In addition all the
run options, as described in detail in Sect. 2.2.6, are parsed
at this step.

Secondly, all the information pertaining to the SLHA
blocks MINPAR, EXTPAR, MSL2, MSE2, MSQ2, MSU2,
MSD2, TUIN, TDIN and TEIN is pulled from the model
parameters and stored in the corresponding SPheno vari-
ables. As expected, not every variable is required to be
filled for every model, e.g. for the CMSSM, only the vari-
ables relating to the MINPAR block are filled, which are
obtained from the model parameters M0, M12, TanBeta,
SignMu and 20. Variables relating to other SLHA input
blocks are either filled somewhere else, SMINPUTS in
InitializeStandardModel, and MODSEL in the backend
initialisation function, as described above; or are ignored for
they have no internal use as an input, such as SPINFO.

The output convenience function Spectrum_oOut deals
with the creation of a spectrum object from the spectrum
generated by SPheno. As was mentioned in Sect. 2.2.4,
the backended SPheno version does not provide post-
generation RGE running, like FlexibleSUSY does. Rather,
the spectrum is stored in a sLHAstruct variable and then
transformed into a static Spectrum object via the function
spectrum_from_ SLHAea. By default the scale dependent
output (SLHA blocks MSOFT, GAUGE, etc.) is given at
the SUSY scale.

Warnings and error messages in SPheno are also written
into a file and, likewise, GAMBIT diverts that output to avoid
slowing down the scans. Internally this is done by initializing
the variable Errcan to 0, hereby forcing SPheno to write any
output into an unused buffer and not to a file. Error tracking is
hence done by use of the integer variable kont, whose value
depends on the specific error that occurred. For any non-zero
value of kont, the convenience function ErrorHandling
appends the corresponding message to the logger and raises
an invalid_point exception. Specific details on which val-
ues of kont correspond to which error messages can be found
in Appendix C of the SPheno manual [21].

B.3 Calculation of the spectrum

The spectrum is calculated in SPheno by using the back-
ended function calculateSpectrum, provided all required
variables are initialised previously. After this function is run,
all the output variables are filled (including the error tracking
variable kont), and they are written into a Spectrum object,
as described above.

Once the spectrum is calculated, it is returned to the func-
tion that had this backend requirement, by providing the capa-
bility spheno_mMssMspectrum. The built-in function with
this backend requirement is get_MSSM_spectrum_SPheno.
This function provide the capability unimproved MSSM_
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Table 12 List of available

SubSpect rumContents Name Plain English description Tables

definitions SM SM pole masses and QED x QCD running parameters 16
SM_slha SM pole masses and SLHA SMINPUTS MSbar masses (light quarks) 16
SMHiggs SM Higgs sector; pole mass and VEV 16
MSSM 63 parameter general MSSM in SLHA?2 conventions 17
SingletDM Scalar-singlet dark matter plus SM Higgs sector 18

spectrum, effectively passing along the created spectrum
object to the next level in the dependency tree. The definition
of the function get MSSM spectrum SPheno 1S

#define FUNCTION get_MSSM_spectrum_SPheno

START_FUNCTION (Spectrum)

ALLOW_MODELS (CMSSM, MSSM63atMGUT,
MSSM63atQ)

DEPENDENCY (SMINPUTS, SMInputs)

BACKEND_REQ (SPheno_MSSMspectrum,
(l1ibSPheno), int, (Spectrumé&, const
Finputs&) )

BACKEND_OPTION ( (SPheno,
(1ibSPheno))

#undef FUNCTION

3.3.8),

where Finputs is a data structure containing the input param-
eters and the run options.

All of the additional calculations available in the out-of-
the-box version of SPheno, such as low-energy observables,
branching ratios and cross sections, are disabled in this back-
ended version, as their functionality is already covered by
other GAMBIT modules: FlavBit [15], DecayBit and Col-
liderBit [14].

C List of SpecBit subspectrumcontents
definitions

Spectrum information that has been stored in SpecBit may

be accessed via the subspectrum interface class. The stored

information is given in Table 16 (for low-energy SM infor-

mation), Table 17 (for the MSSM) and Table 18 (for the

scalar-singlet model). To extract this information SpecBit

has accessors that have one of the following forms:
subspectrum . get (tag, label)

subspectrum . get (tag, label , index 1)
subspectrum . get (tag, label , index 1, index 2)

The arguments /abel and iag are given in Tables 16, 17 and 18
in columns 3 and 4, respectively. The fifth column in these
tables specifies the number of indices that are required as
additional arguments, which will be either 0, 1 or 2. When
necessary the last two columns in these tables provide the
range each index runs over. These indices specify the element
in a vector or matrix of parameters that are structured this
way.
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If the using namespace Par directive is notin use in the
scope, then /ag must be prefixed with the namespace qualifier
Par, €.8. Par: :1ag.

The subspectrum classes provide interfaces to specific
backend spectrum generators, while subSpectrumContents
classes define what parameters a subSpec t rum wrapper must
provide. In Table 12 we list the subspectrumContents def-
initions which ship with the SpecBit module in GAMBIT
1.0.0, and describe each of them in detail in the table refer-
enced beside each list item.

D List of SpecBit subspectrum wrappers

Here we provide a list of all the subSpectrum wrapper
classes which ship with the GAMBIT 1.0.0 version of
SpecBit. Wrappers based on simple parameter containers
with no RGE facilities are listed in Table 13, while wrappers
that connect to full spectrum calculators are listed in Table 14.
The interface to the wrapped content of these classes is
defined by their associated subSpectrumContents classes,
which are given in the “Contents” column of each table. The
SubSpectrumContents classes are themselves described in
Appendix C.

E subspectrum wrapper GetterlMaps and
SetterMaps function signatures

In this appendix we give details of the allowed function
pointer signatures for the Gettervaps and SetterMaps
objects which constitute the link between subSpectrum
interface functions, and backend spectrum data (see
Appendix F.2). In principle the system can be extended to
allow any function signature. However, it cannot be done
automatically, and thus at present only a limited set of options
is available. If the object to which you want to interface does
not conform to one of these signatures, you will need to write
‘helper’ functions in your wrapper which alter the function
signature. Some of the function signatures listed are designed
to support such helper functions.

The list is given in Table 15. So, for example, to store a
function pointer with the signature double f (Model&) ina
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Table 13 List of available

“simple” SubSpectrum Name Plain English description Contents

wrappers, which wrap oply MSSMSimpleSpec General container for MSSM spectrum. MSSM

paramete.r.d.ata and provide no Can be constructed from an SLHAea

RGE facilities, and they are object

therefore not connected to any )

backend spectrum generators. SLHASimpleSpec Base class for wrappers based on SLHAea n/a

Spectrum data is either entered SMHiggs SimpleSpec Very simple wrapper for SM Higgs SMHiggs

directly as input parameters or parameters

retrieved from an external SMSimpleSpec General container for SM spectrum data. SM_slha

source, such as an SLHA file. Can be constructed from an SLHAea

The final column ‘Contents’ object

izle)s&‘gictrumc@ntents ScalarSingletDM SimpleSpec Simple wrapper for scalar-singlet DM SingletDM

definition (see Appendix C) to parameters, plus SM gauge and Yukawa

which the wrapper conforms couplings

Tablf 14 List of available Name Plain English description Contents
full” SubSpectrum

Wrappers, which connect MSSMSpec General templated wrapper for all MSSM

directly to backend spectrum FlexibleSUSY MSSM models

generator code and provide

RGE-running facilities. The QedQcdWrapper Wraps QED xQCD calculator from SM

final column ’Contents’ gives SOFTSUSY

the SubSpectrumContents SingletDMSpec Wraps FlexibleSUSY spectrum for SingletDM

definition (see Appendix C) to

scalar-singlet model

which the wrapper conforms

Table 15 List of data members of the GetterMaps and
SetterMaps classes (which are std: : maps), and the correspond-
ing signatures of function pointers which can be stored in those maps.
Note, however, that functions requiring index input cannot be stored
directly in the map; they must first be associated with sets of allowed

values for those indices using the listed “Helper class”; see text. In the
table, the name Sel f refers to the SubSpectrum wrapper class itself
(that is, these maps accept function pointers to members functions of
the wrapper class)

Data member name  Type Helper class ~ “Getter” function signature “Setter” function signature

map0 fmap0 none double Model::f () void Model: : f (double)

mapl fmapl FInfol double Model::f (int) void Model::f (int,double)
map?2 fmap?2 FInfo2 double Model::f(int, int) void Model::f (int, int,double)
map 0w fmapOw none double Self::f() void Self::f (double)

maplw fmaplw FInfolw double Self::f(int) void Self::f(double, int)
map2W fmap2w FInfo2w double Self::f(int,int) void Self::f(double, int, int)
map0_extraM fmap0_extraM none double Modelé&) void f (Modelg,double)
mapl_extraM fmapl_extraM FInfolM double Modelé&, int) void f (Modelé&,double, int)
map2_extraM fmap2_extraM FInfo2M double Model&, int, int) void f (Model&,double, int, int)
map0_extral fmap0_extral none double Inputé&) void f (Inputé&,double)
mapl_extral fmapl_extral FInfolI double Input&, int) void f (Inputé&,double, int)
map2_extral fmap2_extral FInfo2I double Input&, int, int) void f (Inputé&,double, int,int)

GetterMaps collection, one needs to put it into the map0 map,
as shown in the example in Appendix F.3. The mapow (see
Appendix F.2), map0_extrav and map0_extral maps work
similarly, with function signatures as shown in the table.
Functions associated with indices require an extra step;
they must be associated with lists of the allowed indices. This
is made easy via the FInfo helper classes, which are listed
in Table 15. For example, say we wish to attached two-index

functions with the signature double Model::f (int,int)
to the get interface. The fi11_getter_ maps function for a
wrapper Wrap would then be:

static Wrap::GetterMaps
Wrap: : £111_getter_maps ()

{

static const std::set<int> 1012 =
initsSet(0,1,2);
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Table 17 The spectrum contents available via the get function
for wrappers conforming to the MSSM spectrum contents defini-
tion (Appendix F.1). These quantities may be obtained via subspec-
trum.get (Par: :tag,label,index 1,index 2) where label and tag are
given in columns 3 and 4, respectively, and subspectrum is defined

as in Sect. 2.3.3. The final two arguments are optional and are filled
when necessary by the indices from the allowed range given in the last
two columns. Note that weak mixing angle here is defined in the DR
scheme and is simply reconstructed from the gauge couplings using the
expression given in Eq. (A.8)

Quantity Plain English description String Tag Index 1 range Index 2 range
mg(’le Gluino pole masses t~g" Pole_Mass n/a n/a
ml;‘(,’f W boson pole mass T+ Pole_Mass n/a n/a
mi(z)le Pseudoscalar Higgs pole mass "AQ" Pole_Mass n/a n/a

[I);lf Charged Higgs pole masses "H+" Pole_Mass n/a n/a

Zzle C P-even Higgs pole masses "ho" Pole_Mass {1,2} n/a
mEOle up-type squark pole masses Ayt Pole_Mass {1,2,3,4,5,6} n/a
ms.(’le down-type squark pole masses "~gn Pole_Mass {1,2,3,4,5,6} n/a

2016 slepton pole masses e Pole_Mass {1,2,3,4,5,6} n/a
mgme sneutrino pole mass "~nu" Pole Mass {1,2,3} n/a
mioile chargino pole masses "~chi+" Pole Mass {1,2} n/a

i%le neutralino pole masses "~chiOQ" Pole Mass {1,2,3,4} n/a
Z; in (A.21) up-type squark mixing A" Pole_Mixing {1,2,3,4,5,6} {1,2,3,4,5,6}
Z; in (A.21) down-type squark mixing "~dn Pole_Mixing {1,2,3,4,5,6} {1,2,3,4,5,6}
Z; in (A.22) slepton mixing T~ Pole_Mixing {1,2,3,4,5,6} {1,2,3,4,5,6}
Z; in (A.22) sneutrino mixing "~nu" Pole_Mixing {1,2,3} {1,2,3}
Zy in (A.23) neutralino mixing "~chiOQ" Pole_Mixing {1,2,3,4} {1,2,3,4}
Uy in (A.25) chargino mixing "~chi+" Pole_Mixing {1,2} {1,2}
U_ in (A.25) chargino mixing "~chi-" Pole_Mixing {1,2} {1,2}
Zpy in (A.15) CP even Higgs mixing "ho" Pole_Mixing {1,2} {1,2}
Zain A.17 CP odd Higgs mixing "AQ" Pole_Mixing {1,2} {1,2}
B in (A.12¢) soft Higgs bilinear "BMu" mass?2 n/a n/a
m%{“ in (A.12¢) soft Higgs-mass squared "mHu2 " mass2 n/a n/a
m%{d in (A.12¢) soft Higgs-mass squared "mHd2" mass?2 n/a n/a
m124 in (A.19) ‘DR pseudoscalar mass squared "mA2" mass?2 n/a n/a
mZQ in (A.12d) soft squark mass squared "mg2 " mass?2 {1,2,3} {1,2,3}
mﬁ in (A.12d) soft up-squark mass squared "mul2" mass?2 {1,2,3} {1,2,3}
m(zi in (A.12d) soft down-squark mass squared "md2" mass?2 {1,2,3} {1,2,3}
m% in (A.12d) soft slepton mass squared "ml2" mass?2 {1,2,3} {1,2,3}
mg in (A.12d) soft slepton mass squared "me2" mass?2 {1,2,3} {1,2,3}
M in (A.12a) Bino soft mass M1 massl n/a n/a
M3 in (A.12a) Wino soft mass "M2" massl n/a n/a
M3 in (A.12a) Gluino soft mass "M3" massl n/a n/a
Mu in (A.10) Superpotential Higgs bilinear "Mu" massl n/a n/a
vu in (A.14) Up-type Higgs VEV "vu" massl n/a n/a
vd in (A.14) Down-type Higgs VEV "vd" massl n/a n/a
T, in (A.12e) Trilinear "YU massl {1,2,3} {1,2,3}
Ty in (A.12e) Trilinear "Tydar massl {1,2,3} {1,2,3}
T, in (A.12¢) Trilinear "TYe" massl {1,2,3} {1,2,3}
g1in (A.4) U(1)y gauge coupling?* "gl" dimensionless n/a n/a
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Table 17 continued

Quantity Plain English description String Tag Index 1 range Index 2 range
g2 in (A.4) SU (2)1. gauge coupling "g2" dimensionless n/a n/a

g3 in (A.4) SU (3)c gauge coupling "g3" dimensionless n/a n/a

tan ratio of VEVs v, /vy "tanbeta" dimensionless n/a n/a

sin? Oy in (A.8) weak mixing angle "sinw2" dimensionless n/a n/a

Y, in (A.10) Up-type quark Yukawa "yu" dimensionless {1,2,3} {1,2,3}
Y, in (A.10) Down-type quark Yukawa "ydr dimensionless {1,2,3} {1,2,3}

Y, in (A.10) lepton Yukawa "Ye" dimensionless {1,2,3} {1,2,3}

GetterMaps map_collection;

map_collection[Par: :tag] .map?2 [label]
= MTget::FInfo2 (&Model::£,1012,1012)

return map_collection;

}

where std::set<int> 1012 is initialised with a helper
function (from the  header
Utils/util_functions.hpp). This set is then used to tell
the GetterMaps that each index of the function can accept
the values 0, 1 or 2. At present, it is not possible to restrict
the allowed index values pair-wise (that is, GAMBIT can-
not automatically provide safeguards against users asking
for specific invalid combinations of indices).

For more examples of how to add functions to Get terMaps
and setterMaps please see the source code for the various
Subspectrum wrappers that ship with SpecBit. These are
listed in Appendix D.

initSet gambit/

F Adding support for new spectrum calculators

While the GAMBIT modules described in this paper are ini-
tially distributed with the MSSM and scalar-singlet models
already implemented, the great advantage of this framework
is the manner in which new models can be systematically
added. In this section we describe how to do this.

The most simple way to extend SpecBit is to just add a
new SubSpectrumContents definition, which is described
in Appendix F.1. This creates a new standardised set of string
label/tag/index sets to which new subSpectrum wrappers
may choose to conform. This is the first step that is required
for adding a wrapper for an entirely new model, but it does
not actually provide any real capabilities, it only standardises
the interface for wrappers which provide access to the same
basic physics model.

The real work of interfacing to new spectrum informa-
tion is done by writing a SubSpectrum wrapper, which is the
standardised GAMBIT interface to any container of spec-
trum information. This information may be supplied using a
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new spectrum generator created with FlexibleSUSY, a new
model in SARAH / SPheno, or any available public or pri-
vate spectrum generator for that model (which is written in
C/C++ or Fortran; codes written in other languages can at
present only be launched via calls to the operating system).

The new spectrum generator then needs to be interfaced
with SpecBit. If the spectrum generator is written in C++
and has getters and setters to access the spectrum informa-
tion (and a run method) then this task can be greatly sim-
plified. It is also possible to use the spectrum objects as a
simple container for parameters, with no RGE-running facil-
ities (i.e. no actual spectrum generator “hooked up”’), which
is the simplest use case.

There are therefore a number of different ways that the
Spectrum interface class can be connected to parameter data.
We will tackle these various cases in order of increasing com-
plexity throughout the following sections.

As well as designing the wrapper class, in order to actually
use the new spectrum object one must write GAMBIT module
functions that construct the objects and return them as GAM-
BIT capabilities (running the backend spectrum generator if
required). This task will be discussed in Appendix F.7.

As a quick-reference for writers of new wrapper classes,
in Sect. 2.4 we provide a checklist of tasks to be completed
when writing a wrapper, with references to the subsection of
this guide in which the relevant detailed instructions can be
found.

F.1 SubSpectrumContents definitions

In this section we describe the mechanism which enforces
the consistency of subspectrum objects wrapping differ-
ent spectrum calculators. Recall that subspectrum objects
are simply a virtual interface class; the real work of inter-
facing to external spectrum calculators is performed by
wrapper classes which derive from Subspectrum. In the
process of defining this wrapper class, one must asso-
ciate the wrapper with a subspectrumContents class. The
SubSpectrumContents classes are simple structs that
define which parameters are supposed to be contained by
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wrappers that interface to a calculator for a specific physics
model. So, for example, two wrapper classes which wrap two
different external spectrum calculators, but which calculate
the spectrum for the same physics model, should both be
associated with the same subsSpectrumContents class. The
shared subsSpectrumContents class then acts as a promise
that identical ‘get’ calls made to each of the two wrap-
pers should retrieve equivalent information. Furthermore, if a
wrapper fails to make certain parameters accessible that are
defined as part of the SpectrumContents, then a runtime
error will occur when the spectrum is constructed. The error
will explain that the wrapper does not conform to the declared
contents and so cannot be used. This message should serve
only to help wrapper writers not to forget any contents; it will
not occur when using completed wrappers.

The first release of SpecBit defines the set of
SubSpectrumContents classes listed below:

namespace SpectrumContents {

struct SM { sM(); };

struct SM_slha { SM_slha(); };
struct SMHiggs { SMHiggs(); };
struct MSSM { MSSM(); };
struct SingletDM { SingletDM(); };

}

and descriptions of each of them can be found in Appendix C.

The above code shows the entire declaration for these classes,

as can be found in Models/include/gambit/Models/

SpectrumContents/Regi- steredSpectra.hpp, with the
exception that each class is derived from a base class
SubsSpectrumContents (omitted here for brevity). The only
definition required for these classes is their constructor,
which for the above classes are defined in source files with
matching names in the Models/src/SpectrumContents/

directory. Defining the constructor, which defines the required
parameters for that spectrum type, is very simple. It is easiest
to explain with an example, so below we show the definition
for the scalarsingletbu class:

SpectrumContents: :
ScalarSingletDM: :ScalarSingletDM ()
{
using namespace Par;
setName ("ScalarSingletDM") ;

addParameter (massl, "vev" )i
addParameter (dimensionless, "lambda_hS");
addParameter (Pole_Mass, "ho");
addParameter (Pole_Mass, ST

}

First, a string name for the spectrum contents should
be declared via the setName function. After that one
simply declares all the parameters that should exist in
the subspectrum wrapper by specifying the tag/string
name/indices by which that parameter should be accessed.
In the example the index definition argument is omitted, and
so the parameter is assumed to be scalar-valued and require
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no index. To define an index requirement, one supplies as a
final argument a vector of integers, specifying the dimension
size of each required index. For example, to define a vector
parameter with six entries, and a matrix parameter requiring
two indices each of size three, one would write e.g.

std::vector<int> v6; v6.push_back (6);
std::vector<int> m3x3; m3x3.push_back(3);
m3x3 .push_back (3) ;
t~gn , V6);
"mg2", m3x3);

addParameter (Pole_Mass,
addParameter (mass?2 ,

The subSpectrumContents constructor definitions can

always be consulted to check exactly what content is required

to be retrievable from any wrapper that conforms to it. For

reference purposes we provide tables in Appendix C that

describe each of the pre-defined subSpectrumContents

sets, with cross-referencing to theoretical descriptions of

each parameter. The descriptions of pre-defined subspectrum
wrappers in Appendix D also refer to these tables to describe

what they contain.

F.2 Wrapping a simple parameter collection

The most basic kind of object for which one may wish to
construct an interface is a simple class that contains parame-
ter values. Such an object is far simpler than the typical case
that the subspectrum interface is designed to wrap, and so
many of its features are not needed. The functionality pro-
vided by wrapping these simple objects in a subSpectrum
could be entirely replaced by the standard GAMBIT Model
system (see Ref. [11]), which already provides a way to deal
with simple parameter containers, however, it can be use-
ful to interact with parameters via the Spectrum interface
in the cases where they might alternatively be provided by
a true spectrum generator. It is also useful to examine this
case simply to demonstrate the most basic requirements that
a wrapper class must fulfill.

So let us consider the following simple class, and con-
struct a wrapper that links it to the SubSpectrum interface.
This wrapper is in fact implemented in GAMBIT and pro-
vides some scalar-singlet dark matter parameters and Stan-
dard Model Higgs sector parameters for use by DarkBit; the
full in-code implementation can be found in

Models/include/gambit/Models/SimpleSpectra/
ScalarSingletDMSimpleSpec.hpp.

Example 1 Simple “Model” class for the ScalarSingletDM model

namespace Gambit

{

namespace Models

{
struct SingletDMModel

{
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double HiggsPoleMass
double HiggsVEV

double SingletPoleMass
double SingletLambda;

The namespace used here is not important, we specify it just
to match the actual code.

To begin wrapping this structure, one must define a spe-
cialisation of the specTrai ts template class. The purpose of
this class is to communicate essential type information to the
subspectrumbase classes. Suppose that our wrapper class is
to be named ScalarsingletDMSimpleSpec; the associated
traits class should then be:

namespace Gambit
{
namespace Models
{
class ScalarSingletDMSimpleSpec;
}
template <>
struct SpecTraits<
Models::ScalarSingletDMSimpleSpec>
DefaultTraits
{

static std::string name ()

{ return "ScalarSingletDMSimpleSpec"; }
typedef

SpectrumContents::ScalarSingletDM
Contents;

Y
}

Here the namespace is important; the original specTraits
template is declared in the cambi t namespace, so the special-
isation must also live in that namespace. Note that we forward
declare the class scalarSingletDMSimpleSpec, which will
be our wrapper, because we need it as the template parameter
for the traits class.

The required members of this SpecTraits specialisation
are as follows:

name () A function returning a std: : string name for
the wrapper. This is used in error messages so
the class name is generally the logical choice.

contents A typedef that identifies the contents defini-

tion to which this wrapper will conform (see
SubSpectrumContents in Appendix F.1)

Other specTraits members can be defined, however, for this
simple example we do not need them (the defaults inherited
from pefaultTraits will suffice). We will return to this in
the more complicated examples of Appendices F.3 and F.4.

We are now ready to define the wrapper itself. The decla-
ration is as follows:

Example 2 SubSpectrum wrapper for the ScalarSingletDM model

namespace Gambit
{
namespace Models
{
class ScalarSingletDMSimpleSpec
public
Spec<ScalarSingletDMSimpleSpec>
{
private:
SingletDMModel params;

public:
ScalarSingletDMSimpleSpec
(const SingletDMModel& p)
params (p) {}

// Wrapper-side interface functions
// to SingleDMModel

double get_HiggsPoleMass () const;
double get_HiggsVEV () const;
double get_SingletPoleMass () const;
double get_lambda_hS() const;

void set_HiggsPoleMass (double in);
void set_HiggsVEV (double in);

void set_SingletPoleMass (double in);
void set_lambda_hS (double in);

static GetterMaps fill_getter_maps();
static SetterMaps fill_setter_maps();

Let us discuss what is going on here. First, the wrapper
class must inherit from the spec class, and provide its own
type as the template parameter. This is because we employ
the CRTP (curiously recurring template pattern) for static
polymorphism, to allow the base class access to the wrapper
member functions.

Second, the wrapper contains an instance of the
SingletDMModel object to which we want to interface. This
is not necessary, but it is helpful for maintaining encapsula-
tion.

Next is the constructor. The wrapper writer is quite free to
do what they like with this; here we simply use it to initialise
the member object.

Following the constructor are a series of “getter” and “set-
ter” functions, which retrieve and set the parameter values we
are interested in. These are the functions that we will “hook
up” to the subspectrum “get” and “set” functions. These
functions can access the hosted SingletDMModel in our
example, and so could also perform extra tasks like calling
functions of the singletbMmodel (if it had any) or perform-
ing unit conversions. Our later examples will demonstrate
tasks like this. For now, it will suffice for these functions to
have the following sort of definition:
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double get_lambda_hS () const
{ return params.SingletLambda; }

void set_lambda_hS (double 1in)
{ params.SingletLambda = in; }

We will refrain from listing the rest of the definitions in this
example because they follow a similar pattern.

Finally, we get to the key part of the wrapper; the
fill getter maps and fill setter maps functions.
These are what define the actual interface to the hosted
Model (and Input) objects. They are simply functions that
fill a series of map (i.e. std: :map) structures in the base
class, where these maps are what define which functions
are ‘hooked up’ to the get, set and has functions of the
Ssubspectrum interface (see Sect. 2.3.3). The operation of
these ‘filler’ functions is most easily seen by looking at the
definition of one, so let us examine the fill getter maps
definition for our example:

static ScalarSingletDMSimpleSpec: :GetterMaps
ScalarSingletDMSimpleSpec::fill_getter_
maps ()
{
GetterMaps map_collection;
typedef ScalarSingletDMSimpleSpec Self;

map_collection[Par::massl].mapOW["vev"]
= &Self::get_HiggsVEV;
map_collection[Par::massl] .map0W
["lambda_hsS"]
= &Self::get_lambda_hS;
map_collection[Par::Pole_Mass].mapOW["h0"]
= &Self::get_HiggsPoleMass;
map_collection[Par::Pole_Mass].mapOW["S"]
= &Self::get_SingletPoleMass;

return map_collection;

}

Here GetterMaps is another type inherited from the base
spec class, and is the main container object that we
use to associate a tag/string pair with a function pointer.
So the first entry is what makes it possible for a call
subspectrum.get (Par::massl, "vev") to the interface
class to in turn call the get_HiggsVEV member function
of Model. The £i11 _getter maps () function is used by
the base spec class to initialise a member variable of type
GetterMaps, so here we are in fact defining how this member
variable will be ‘filled’. The £i11 setter_maps function
works in direct analogy to the 111 _getter maps function,
so we will skip discussion of it.

Note that neither of these filler functions must be defined,
the wrapper will compile without them and the interface will
simply not accept any tag/string pairs to the get/set functions.
For example one may fill the ‘getter’ maps, but not the ‘set-
ter’ maps, and it will then simply be impossible to change
the parameters in the underlying model object via the ‘set’
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functions, which is not necessarily problematic. However,
if one fails to fill the ‘getter’ maps in accordance with the
declared contents of the wrapper, then a runtime error will
be thrown as soon as the wrapper object constructor is called,
which will present a message telling the user that the wrapper
is not correctly defined.

There is a subtlety here; note the mapow data member
which is accessed from the map_collection variable. This
member is what defines the function signature of the func-
tion pointer to be stored in the map_collection. This func-
tion signature must be known ‘in advance’ in order for
the base class to call the function pointer, so the function
pointer needs to be placed in the correct location within
the map_collection. In our case the mapow data member
expects functions with the signature

double Self::function(void) ;

that is, they should be a member function of the wrapper, take
no arguments, and return a double. The equivalent mapow
member within setterMaps expects the signature

void Self::function (double);

that is, functions should be members of the wrapper, should
accept a double, and return void.

Functions with a variety of other signatures can also be
used, however, they must be placed in the correct data mem-
ber of Get terMaps/SetterMaps in order to work. A full list
of the allowed function signatures, the way they should be
stored in the CetterMaps/SetterMaps, and the way they
can be accessed via the subspectrum get and set functions,
is given in Appendix E. We will see some of these other sig-
natures in use in the more complicated wrapper examples.

F.3 Interfacing directly with member functions of an
external class

When one wants to create a SubSpectrum wrapper for pre-
existing classes, it may be the case that the pre-existing class
already has “getter” and “setter” functions, such that one does
not need to write new ones in the wrapper. Unfortunately, it
is not possible to store functions of arbitrary signature in the
GetterMaps and SetterMaps, and the pre-enabled set of
permitted signatures is not very large. More can be added,
however it is quite technically involved. If you have a special
need to add more, then please contact the authors for advice.

The practical use cases of directly using external member
functions is therefore very limited, however, in SpecBit we
make use of this feature for our most complicated wrapper;
the MssMspec wrapper which interfaces to FlexibleSUSY
model objects. Furthermore, new auto-generated Flexible-
SUSY spectrum generators will come with the required set
of getters/setters with the correct function signature, so it is
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useful to describe this ‘shortcut’ interface method just for the
sake of the FlexibleSUSY case.

Suppose that the external class to be wrapped has the fol-
lowing form:

struct MyClass
{

double get_parl () const;

double get_par2(int i, int j) const;
void set_parl (double in);

void set_par2(int i, int j, double in);

Y

It does not matter where the parameters themselves live at
present, we just need the functions that set and retrieve them.
In this example we will also show how to deal with functions
requiring indices.

These functions can be inserted into the GetterMaps and
SetterMaps of the wrapper via the filler functions as follows:

static MyWrapper: : GetterMaps
MyWrapper: : £i11_getter_maps ()
{
GetterMaps map_collection;
static const std::set<int> 1012 =
initSet(0,1,2);

map_collection([ftagl] .map0["parl"]
= &Model::get_parl;
map_collection[fag2] .map2 [ "par2"]
= &FInfo2( &Model::get_par2, i012,
)

i012

return map_collection;

}

and

static MyWrapper: : SetterMaps
MyWrapper: : £111_setter_maps ()

{

SetterMaps map_collection;

static const std::set<int> 1012 =
initset(0,1,2);

map_collection(tagl] .mapO["parl"]
= &Model::set_parl;
map_collection([tag?2] .map2["par2"]
= &FInfo2( &Model::set_par2, i012,
) ;

i012

return map_collection;

}

where these function signatures match the map0 and map2
members of the GetterMaps and SetterMaps classes, as
shown in Appendix E. This appendix also gives an explana-
tion of the FInfo2 helper class and how it is used to help
specify the allowed indices to get and set functions.

In order to call these functions via function pointers,
the subspectrum wrapper needs to know the C++ type of

the hosted class. This can be supplied via a typedef in the
SpecTraits struct;

namespace Gambit
{
namespace Models {class MyClass;}
template <>
struct SpecTraits<MyWrapper>
{
static std::string name ()
{ return "MyWrapper"; }
typedef SpectrumContents: :MyContents
Contents;
typedef MyClass Model;
Y
}

DefaultTraits

The wrapper base classes will then be able to use the MyClass
type via the Model typedef. In addition, the wrapper needs to
have access to an instance of the MyClass type. This must be
provided by overloading a special inherited member function
get_Model in the wrapper, e.g.

class MyWrapper
public Spec<MyWrapper>
{
private:
Model model;

public:

MyWrapper (Model& m) model (m)

Model& get_Model () { return model; }
const Model& get_Model ()
model; }

const { return

static GetterMaps fill_getter_maps() ;
static SetterMaps fill_setter_maps();

Note that here Model is the typedef for AyClass, which is
learned via the specTraits struct. We assume in this exam-
ple thatan instance of mode1 is carried as a data member of the
wrapper class, which is a good idea for maintaining encapsu-
lation, but it is not strictly required. All that is required is that
get_Model () return an instance of the Model type. Note also
that both const and non-const versions of get_Model () are
required, because the wrapper base classes need both in order
to maintain const-correctness when const wrapper objects
are used.

F.4 Interfacing with non-class functions

In the previous subspectrum wrapper examples, we covered
interfacing with member functions of wrapper objects, and
with member functions of particular external classes. The
former can be designed to access external functions or classes
in arbitrary ways and so are the most generally useful, while
the latter have limited use due to restrictions on the allowed
function signature but are convenient for dealing with certain
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special cases such as FlexibleSUSY classes. Now, we will
deal with interfacing to plain functions that are not members
of any class.

As with the other permitted kinds of functions, these are
also restricted to specific function signatures. In fact, they do
not provide any additional functionality over simply using
member functions of the wrapper classes, and wrapper mem-
ber functions are usually a better choice since they have easier
access to data members of the wrapper class. However, they
can be useful to avoid code repetition if the target functions
are to be used in more than one wrapper, for example if they
perform some common unit conversions or simple calcula-
tions.

The allowed non-class function signatures are described
in Appendix E. They may be connected to cetterMaps and
SetterMaps as in the following example:

double get_Pole_mElectron(const SMInputsé&
inputs)
{ return inputs.mE; }

static MyWrapper: : GetterMaps
MyWrapper: : £111_getter_maps ()
{

GetterMaps map_collection;

map_collection[Par::Pole_Mass] .mapO_extral
[ n e—il n ]
= &get_Pole_mElectron;

return map_collection;

}

This time, we have used the map0_extraT signature, which
requires an Input object as an argument, and no indices. As
with the Mode1 object case, the wrapper needs to be informed
of the type of the Input object, and provided an instance
of it, via the SspecTraits class and get_Input functions,
respectively:

namespace Gambit

{

template <>

struct SpecTraits<MyWrapper> DefaultTraits
{

static std::string name ()

{ return "MyWrapper"; }

typedef SpectrumContents: :MyContents

Contents;

typedef SMInputs Inputs;
}i
}

and
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class MyWrapper
public Spec<MyWrapper>
{

Input& get_Input();

const Input& get_Input () const;

}

Here, 1nput is imagined to be a class containing input infor-
mation used to setup the wrapper, but which one may also
wish to access via the subSpectrum interface along with
the rest of the spectrum data. But it is simply an arbitrary
class which can be used to pass information to the interface
functions.

F.5 Index offsets

In general, subspectrum wrapper interfaces use a one-based
indexing system. For example when retrieving neutralino
pole masses from the MSSM spectrum wrappers the light-
est neutralino is retrieved with the index 1. However, not
all external functions will follow this convention, so it is
useful to have a system for converting between index sys-
tems. The wrapper system provides this functionality via the
index_offset wrapper class member function. This func-
tion should be overridden in the wrapper in order to define
an offset to be added to all index values input by users to the
get and set functions of that wrapper. Its function signature
is

static int index_offset () {return offset;}

So, for example, if offser is -1, then when a user calls e.g.
subspec.get (Pole_Mass, "~e", 1) the offset will be added
to the input index of 1, resulting in 0, before being passed
to the external function (which will therefore see the index
as 0). If the index_offset function is not overridden then a
default null offset of 0 will be applied.

Note that this function should have public access.

F.6 Interfacing with renormalisation group running
functions

Now we have seen all the basic ways of connecting functions
of various kinds to the subSpectrum get/set interface. So
far, however, the framework may seem like overkill for the
tasks we have performed. Why not just call the external func-
tions and store the return values in the appropriate place?
Why store pointers to the functions themselves, or wrappers
for those functions? The primary answer here is because we
want to be able to call renormalisation group-running func-
tions, and have these affect all the values accessed by the
subspectrum interface. If we simply copied the results of
the spectrum calculation into an intermediate object, such as
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an sLHAea object, then this would not be possible. But with
the framework we have set up, when the get/set functions
are called it is possible for them to interact directly with the
contents of external spectrum generator codes, and so the
values they retrieve can be affected by RGE running.

If the external spectrum generator is a C++ code, then con-
necting the subsSpectrum wrapper to the RGE-running facil-
ities should be fairly easy. There are two main functions that
need to be connected: Get Scale,and RunToScaleOverride.
These functions are not required by the sSubspectrum
Contents definitions, so whether or not a particular sub
Spectrum can perform RGE running will need to be inferred
from the GAMBIT capability it is given via whatever module
function provides it.

The cetscale function is the simplest, and should return
the scale at which all running parameters are defined. If there
is an analogous function or parameter defined in the host
Model object then the GetScale definition will simply be
something like this:

double MyWrapper: :GetScale ()
{

const

return model.get_scale();

}

The rRunToScaleOverride function is wrapped by the
user-side RunToScale function, which adds additional checks
and behaviour modifications. But the RunToScaleOverride
is what should be overridden in the wrapper and connected
to any external rRGE-running functions. For example:

void MyWrapper: :RunToScaleOverride (double
scale)

{
model.run_to(scale);

}

Of course the details for hooking up these functions cor-
rectly are entirely dependent on how the external code works.
The onus is therefore on the wrapper writer to understand the
external code. However, the power of this framework is that
once the wrapper is defined, writers of other module functions
can interact with spectrum information in a totally generic
way, even including RGE running.

F.7 Constructing and returning Spectrum objects from
module functions

So far, we have described how to design a new wrapper
class for external spectrum data. However, in GAMBIT, a
Spectrum object needs to be constructed from the wrapper
and returned via a module function before the spectrum data
can be used by other module functions. Here we discuss the
general requirements of this process.

The details for constructing the wrapper depend on how
the wrapper and its constructor are defined, which are up

to the wrapper writer. We will therefore use the singletDum

example wrapper from Appendix F.2 to demonstrate the more

general requirements for creating and returning the abstract

interface. Let us first write out an example module function

which does this, and then we will examine it line-by-line.
First, the module function rollcall declaration:

#define CAPABILITY SingletDM_spectrum
START_CAPABILITY
// Create a Spectrum object from SMInputs,
// SM Higgs parameters, and the SingletDM
// parameters
#define FUNCTION get_SingDM_spec
START_FUNCTION (Spectrum)
DEPENDENCY (SMINPUTS, SMInputs)
ALLOW_MODEL_DEPENDENCE (StandardModel_Higgs,

SingletDM)
MODEL_GROUP (higgs,
(StandardModel_Higgs))
MODEL_GROUP (singlet, (SingletDM))

ALLOW_MODEL_COMBINATION (higgs,
#undef FUNCTION
#undef CAPABILITY

singlet)

Now the module function itself:

void get_SingDM_spec (Spectrum& result)
{
using namespace Pipes::get_SingDM_spec;
const SMInputs& sminputs =
*myPipe: :Dep: : SMINPUTS;

Models: :SingletDMModel s;
s.HiggsPoleMass = *Param.at ("mH");
s.HiggsVEV = 1. /

sgrt (sgrt(2.) *sminputs.GF) ;
s.SingletPoleMass = *Param.at("mS");
s.SingletLambda = *Param.at ("lambda_hS");

Models::
ScalarSingletDMSimpleSpec
singletspec(s);

result =
Spectrum(singletspec, sminputs, &Param) ;

}

Let us look first at the module function definition, and then
afterwards we will examine how the rollcall declaration
ensures that the necessary dependencies are made avail-
able. The first line gives the function signature, which, as
always, returns void and takes one argument by reference,
which is the pre-allocated memory for the storage of the
function result. Here we will create a Spectrum object so
the ‘result’ type is Spectrum. Next, a dependency on an
SsMInputs object (as described in Sect. 2.3.5) is retrieved.
Lines 7 to 11 show the construction of an instance of
the singletDMModel class, which is the object that we
want to wrap. Here we set the parameters contained in
the class by extracting them from the pParams map sup-
plied by GAMBIT via the core hierarchical model system
(see Sect. 5 of Ref. [11]). On line 14 we then use the
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SingletDMModel instance to construct our instance of the
ScalarSingletDMSimpleSpec wrapper class.

Nearing the end of the module function, we construct
on line 16 the full spectrum object out of the components
we have prepared, namely the scalar-singlet subSpectrum
object and an svuInputs object. More generally one can
also supply the ‘low-energy’ subSpectrum component, how-
ever, this shortened constructor will automatically gener-
ate an sMsimpleSpec (see Appendix D) wrapper based
on sMinNpUTs to fulfil this role. The final argument to the
Spectrum constructor is the set of model parameters which
were available to this spectrum when it was constructed,
which are retrieved via the params map.

Finally, the newly constructed object is moved into the
result space of the module function, from where it can
be distributed to other module functions by the GAMBIT
dependency resolver.

Now, let us return to the module function rollcall dec-
laration and see how it requests the dependencies that we
require. The first two lines simply declare the name for the
capability that this function provides. The next two (define/s-
tart function) declare the C++ name of the function (which of
course must match the function as defined elsewhere). Note
here that we also declare the result type for this function
as Spectrum.

Next, we declare the dependency we require. Here it is
declared as suinpPUTS, with type sMInputs. This will then
be made available to our module function by the GAMBIT
core.

The next few lines declare a joint dependence on model
parameters from both Standardvodel Higgs and
SingletDy, that is, they declare that this module function
requires parameters from both of these models. For more
details on this syntax please see Ref. [11].

With the rollcall declaration done we are finished, and the
Spectrum object created by the module function
get_SingDM_spec is made available to the rest of GAM-
BIT under the capability name singletDM spectrum.

F.8 Scheme-dependence and other special dependency
requirements

All of the capabilities associated with Spectrum types in
GAMBIT 1.0.0 are understood to provide running parame-
ters in only one scheme. For example, spectra obtained via
the capability named 11ssu_spectrumare understood to pro-
vide parameters in the DR scheme, while spectra obtained
via the capability named su_spectrum provide parameters
in the M S scheme. Thus, when adding new spectrum genera-
tors, users should check that they conform to these “defaults”
if they write new module functions which promise to provide
these existing capabilities (see Tables 1,2 and 3). If providing
a spectrum in a different scheme then a different capability
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name should be used, for example 1MSsM_spectrum MSbar.
Of course this spectrum will then not be automatically usable
by existing GAMBIT module functions which expect the
default DR MSSM spectrum, because the new capability
will not match with the dependencies of existing functions.
Therefore further modification of the dependency hierarchy
will generally be necessary to fully integrate such a spectrum
with existing module functions. We recommend that users
with special requirements of this kind contact the GAMBIT
authors for advice on how best to do this.

Along similar lines, some users may wish to receive cer-
tain spectrum-related information in a very specific format,
for example requiring a running mass extracted at a specific
loop order or including specific corrections. Such specificity
goes beyond the intended use cases for Spectrum objects,
so in general this information needs to be recomputed at
the point where it is needed from information available
via the spectrum wrappers. For example, one might per-
form some auxiliary calculations in the interface to a back-
end code that might have a special requirement for some
input parameter. If the quantity is required repeatedly then
users should consider creating a new capability, for example
Higgs mass_tree level, and adding a new module func-
tion which performs the necessary calculations to provide
this capability.

F.9 Controlling wrapper lifetimes

That covers the construction of a simple wrapper, however,
there are a few more subtleties regarding the lifetime (in the
sense of time between construction/destruction of the C++
objects as the code runs) of the various wrapper objects to be
discussed. There are several constructors for the spectrum
object, and it is important to choose the correct one depend-
ing on how you want the member SubSpectrum objects to
be treated. The options are listed below, with the argument
accepting the GAMBIT parameter container replaced with
<Param> for brevity.

Spectrum () — Creates an empty object.

Spectrum(const SubSpectrum& he, const SMInputs&
smi, <params>) — Constructs a new object, automatically
creating an sMsimpleSpec as the LE subspectrum, and
cloning the “HE” subspectrum object supplied and taking
possession of it.

Spectrum(const SubSpectrum& le, const Sub
Spectrum& he, const SMInputs& smi, <Params>) —
Construct new object, cloning both subspectrum objects
supplied and taking possession of them.

Spectrum (SubSpectrum const le, SubSpectrum
const he, const SMInputs& smi, const std) .
Construct new object, wrapping existing SubSpectrum
objects. If the original objects are prematurely destructed
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then attempting to access them via the Spectrum interface
will cause a segmentation fault.

G Worked example of writing a subspectrum
wrapper

In this section we provide a stripped-down tutorial-style
example of how to define a new subSpectrum wrapper and
return a Spectrumobject from a module function. Comments
and instructions will be kept to a bare minimum, and instead
we will simply refer to the appropriate sections of the paper
body in which further details can be found.

G.1 FlexibleSUSY MSSM wrapper

The first step in adding a new FlexibleSUSY spectrum gen-
erator to SpecBit is to run FlexibleSUSY and generate the
C++ code for the new spectrum generator. It then needs to be
added to the GAMBIT cmake build system, and the appropri-
ate headers included in certain key SpecBit headers. As men-
tioned in Sect. 2.1.2 we provide instructions for these steps
as separate documentation, which can be found in gambit/
doc/Adding_FlexibleSUSY_Models. txt, and they will
change when future technical improvements to the GAMBIT
BOSS [11] system permit FlexibleSUSY to be automati-
cally backended. Thus we begin this example by assuming
that these steps have been completed. From this point we can
begin following the checklist given in Sect. 2.4.
(1) Choose or create a SubSpectrumContents definition
(Appendix F.1) — The purpose of the subspectrum classes
is to enforce consistency between wrappers which wrap
the same essential physics, so one should always try to
use an existing definition if possible. However, for the pur-
poses of this example we will pretend that the definition
for the MSSM did not previously exist. Thus, in gambit/
Models/include/gambit/Models/ SpectrumContents/
RegisteredSpectra.hpp we add a line of code:

struct MSSM: SubSpectrumContents { MSSM() ;
Y

Next we create a new source file gambit/Models/ src/
SpectrumContents/MSSM. cpp With contents which define
all the MSSM masses and parameters:

#include "gambit/Models/SpectrumContents/
RegisteredSpectra.hpp"

namespace Gambit
{
SpectrumContents: :MSSM: : MSSM ()
{
setName ("MSSM") ;
using namespace Par;

// useful index definitions

std::vector<int> scalar = initVector (1) ;
std::vector<int> v2 = initVector (2);
std::vector<int> v3 = initVector (3);
std::vector<int> v4 = initVector (4);
std::vector<int> v6 = initVector (6);
std::vector<int> m2x2 = initVector(2,2);
std::vector<int> m3x3 = initVector (3,3);
std::vector<int> médx4 = initVector (4,4);
std::vector<int> mé6x6 = initVector(6,6);
// Spectrum parameters
// tag, name, shape
addParameter (mass2, "BMu" , scalar);
addParameter (mass2, "mHd2", scalar);
addParameter (mass2, "mHu2", scalar);
addParameter (mass2, "mg2", m3x3);
addParameter (mass2, "ml2", m3x3);
addParameter (mass2, "md2", m3x3);
addParameter (mass2, "mu2", m3x3);
addParameter (mass2, "me2", m3x3);
addParameter (massl, "M1l", scalar);
addParameter (massl, "M2", scalar);
addParameter (massl, "M3", scalar);
addParameter (massl, "Mu", scalar);
addParameter (massl, "vu", scalar);
addParameter (massl, "vd", scalar);
addParameter (massl, "Tvyd", m3x3);
addParameter (massl, "TYe", m3x3);
addParameter (massl, "TYu", m3x3);
addParameter (massl, "ad" , m3x3);
addParameter (massl, "ae" , m3x3);
addParameter (massl, "au" , m3x3);
addParameter (dimensionless, "gl", scalar);
addParameter (dimensionless, "g2", scalar);
addParameter (dimensionless, "g3", scalar);
addParameter (dimensionless, "sinW2",
scalar) ;
addParameter (dimensionless, "Yd", m3x3);
addParameter (dimensionless, "Yu", m3x3);
addParameter (dimensionless, "Ye", m3x3);
addParameter (Pole_Mass, "~g", scalar);
addParameter (Pole_Mass, "~d", v6);
addParameter (Pole_Mass, "~u", v6) ;
addParameter (Pole_Mass, "~e-", v6) ;
addParameter (Pole_Mass, "~nu", v3);
addParameter (Pole_Mass, "~chi+", v2);
addParameter (Pole_Mass, "~chiO", v4);
addParameter (Pole_Mass, "hO", v2);
addParameter (Pole_Mass, "AO0", scalar);
addParameter (Pole_Mass, "H+", scalar);
addParameter (Pole_Mixing, "~d", m6x6) ;
addParameter (Pole_Mixing, "~u", m6x6) ;
addParameter (Pole_Mixing, "~e-", m6x6) ;
addParameter (Pole_Mixing, "~nu", m3x3) ;
addParameter (Pole_Mixing, "~chiO", mdx4);
addParameter (Pole_Mixing, "~chi-", m2x2);
addParameter (Pole_Mixing, "~chi+", m2x2);
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addParameter (Pole_Mixing, "hO", m2x2) ;
addParameter (Pole_Mixing, "AO", m2x2) ;
addParameter (Pole_Mixing, "H+", m2x2) ;

The spectrumContents that we will use are now defined.
(2) Write a specTraits specialisation — In this example,
the getter and setter functions are defined in an exter-
nal object, so the example in Appendix F.4 is relevant. It
is best to define our SpecTraits class in the header file
for the subspectrum wrapper class, because the defini-
tion needs to be available to the C++ compiler when actual
Subspectrum class is defined. We thus begin a new header
file SpecBit/include/gambit/SpecBit/MSSM_FS.hpp
and add the following code (neglecting include guards):

#include "gambit/Elements/spec.hpp"

#include "gambit/Models/SpectrumContents/
RegisteredSpectra.hpp"

#include "gambit/contrib/MassSpectra/
flexiblesusy/models/MSSM/MSSM_model_slha.hpp"

namespace Gambit
{
namespace SpecBit
{
class MSSM_FS; //Forward declaration

template <>
struct SpecTraits<SpecBit::MSSM_FS>
DefaultTraits
static std::string name() {return "MSSM_FS";}
typedef SpectrumContents::MSSM Contents;
using namespace flexiblesusy;
typedef MSSM_slha<Two_scale> Model;

(3) Write the subspectrum wrapper class (Appendix F.2) —
We can now declare the wrapper class in the same file:

namespace Gambit
{
namespace SpecBit
{
class MSSM_FS
{
private:
Model fs_model;
typedef MSSM_FS Self;

public Spec<MSSM_FS>

public:
// Interface function overrides
static int index_offset () {return -1;}
double GetScale() const;
void SetScale (double scale);
void RunToScaleOverride (double scale);

//constructors / destructors
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MSSM_FS() {}
MSSM_FS (Model& m) fs_model (m) {}

// Functions to allow the base ‘'Spec’
class

// access to ‘Model’

Model& get_Model () {return fs_model;}

const Model& get_Model () const

{return fs_model;}

// Functions to fill SLHAea objects
void add_to_SLHAea (int
slha_version, SLHAstruct& slha) const;
SLHAstruct getSLHAea (int getSLHAea)
const;

// Map filler overrides
static GetterMaps fill_getter_maps();
static SetterMaps fill_setter_maps();

// Helper functions

double get_tanbetal() ;

double get_DRbar_mA2 () ;

double get_sinthW2_DRbar () ;
double get_MAhl_pole_slha();
double get_MHpml_pole_slha();
void set_MAhl_pole_slha (double);
void set_MHpml_pole_slha (double) ;
void set_MGluino_pole_slha (double) ;
void set_MZ_pole_slha(double) ;
void set_MW_pole_slha(double) ;

void set_MSu_pole_slha(double, int);
void set_MSd_pole_slha(double, int);
void set_MSe_pole_slha(double, int);
void set_MSv_pole_slha(double, int);

void set_MCha_pole_slha (double,

int) ;
void set_MChi_pole_slha(double, int)

void set_Mhh_pole_slha(double, int);

void set_ZD_pole_slha(double, int, int);
void set_ZU_pole_slha(double, int, int);
void set_ZE_pole_slha(double, int, int);
void set_ZV_pole_slha(double, int, int);
void set_ZH_pole_slha(double, int, int);
void set_ZA_pole_slha(double, int, int);
void set_ZP_pole_slha(double, int, int);
void set_ZN_pole_slha(double, int, int);
void set_UM_pole_slha(double, int, int);
void set_UP_pole_slha(double, int, int);
void set_ZH_pole_slha(double, int, int);

Y
}
}

We now begin a new source file
gambit/SpecBit/src/MSSM_FS.cpp

to hold the definitions of the wrapper functions:

using namespace Gambit;
using namespace SpecBit;

// Fill an SLHAea object
void MSSM_FS::add_to_SLHAea (int
slha_version, SLHAstruct& slha)
const
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// Here one needs to extract all the SLHA
// information from the spectrum object and
// store it in the supplied SLHAea object.
// This takes many lines of code, so we
// exclude it from this example. For a
// working MSSM example of this function see
// "gambit/SpecBit/include/gambit/
// SpecBit/MSSMSpec.hpp".

}

// Return a new (filled) SLHAea object
SLHAstruct MSSM_FS::get_SLHAea (SLHAstruct& slha)
const

SLHAstruct output;
add_to_SLHAea(slha_version,output) ;
return output;

void MSSM_FS::RunToScaleOverride (double scale)
{
fs_model.run_to(scale);

double MSSM_FS::GetScale() const
{

return fs_model.get_scale();

void MSSM_FS::SetScale(double scale)
{
fs_model.set_scale(scale);

}

// ‘extra’ function to compute TanBeta
double MSSM_FS::get_tanbetal()
{
return fs_model.get_vu() / fs_model.get_vd():;

}

// ‘extra’ function to compute mA2
double MSSM_FS::get_DRbar_mA2 ()
{
double tb = get_tanbeta();
double cb = cos(atan(tb));
))
()

i

double sb = sin(atan(tb
return fs_model.get_BMu / (sb * cb);

}

// ‘extra’ function to compute DRbar weak
// mixing angle
double MSSM_FS::get_sinthW2_DRbar ()
{
double sthW2 = Utils::sqgr(fs_model.get_gl())
* 0.6 / (0.6 * Utils::sqgr(fs_model.get_gl())
+ Utils::sqr(fs_model.get_g2()));
return sthwWw2;
}

// Wrapper functions for A0 and H+ getters, to
// retrieve only the non-Goldstone entries.
double MSSM_FS::get_MAhl_pole_slha()
{

return fs_model.get_MAh_pole_slha(l);

double MSSM_FS::get_MHpml_pole_slha()
{

return fs_model.get_MHpm_pole_slha(1l);
}

// Helper functions for manually setting pole

// masses. We can use a macro to automate this.
#define POLE_MASS_SETTER (NAME) \
void MSSM FS: :set_ ##NAME## pole slha(double mass, \
int 1)\
A\
fs_model.get_physical_slha().NAME(i) = mass;\
N

POLE_MASS_SETTER (MSu)
POLE_MASS_SETTER (MSd)
POLE_MASS_SETTER (MSe)
POLE_MASS_SETTER (MSv)
POLE_MASS_SETTER (MCha)
POLE_MASS_SETTER (MChi)
POLE_MASS_SETTER (Mhh)

// Similar for mixings
#define POLE MIXING_SETTER (NAME) \
void MSSM FS: :set ##NAME## pole slha(double mass, \
int i, int j)\
A\
fs model.get_physical_slha() .NAME(i,j) = mass;\
N

POLE_MIXING_SETTER (ZD)
POLE_MIXING_SETTER (ZU)
POLE_MIXING_SETTER (ZE)
POLE_MIXING_SETTER (ZV)
POLE_MIXING_SETTER (ZH)
POLE_MIXING_SETTER (ZA)
POLE_MIXING_SETTER (ZP)
POLE_MIXING_SETTER (ZN)
POLE_MIXING_SETTER (UM)
POLE_MIXING_SETTER (UP)
POLE_MIXING_SETTER (ZH)

// Higgs-mass setters
void MSSM_FS::set_MAhl _pole_slha(double mass)
{

fs_model.get_physical_slha().MAh(l) = mass;

void MSSM_FS::set_MHpml_pole_slha(double mass)
{

fs_model.get_physical_slha().MHpm(l) = mass;
}

// Pole masses with no indices
#define POLE_MASS_SETTERO (FNAME, VNAME) \
void MSSM_FS: :set_ ##FNAME## pole slha(double\
mass) \
{\
fs_model.get_physical_slha().VNAME = mass;\
N

POLE_MASS_SETTERO (MGluino, MGlu)
POLE_MASS_SETTERO (MZ, MVZ)
POLE_MASS_SETTERO (MW, MVWm)

// Filler function for getter function maps
MSSM_FS::GetterMaps MSSM_FS::fill_getter_maps ()
{

MSSM_FS::GetterMaps map_collection;

static const std::set<int> 101 = initSet(0,1);

static const std::set<int> 1012 =
initSet(0,1,2);

static const std::set<int> 10123 =
initset(0,1,2,3);

static const std::set<int> 1012345 =
initset(0,1,2,3,4,5);

/// mass2 - mass dimension 2 parameters
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// Functions from Model
// (i.e. flexiblesusy: :MSSM slha<Two_scale>)
{
typename MTget::fmap0 tmp_map;
tmp_map [ "BMu"] = &Model::get_BMu;
tmp_map ["mHd2"] = &Model::get_mHd2;
tmp_map ["mHu2"] = &Model::get_mHu2;
map_collection[Par::mass2].map0 = tmp_map;

// Extra functions from the wrapper
map_collection[Par::mass2].mapOW["mA2"] =
&Self::get_DRbar_mA2;

// Functions from Model with two indices
{
typename MTget::fmap2 tmp_map;
tmp_map["mg2"]1=FInfo2 (&Model: :get_mqg2,

io12, 1012);

tmp_map["ml2"]1=FInfo2 (&Model::get_ml2,
io1z, i012);
tmp_map["md2"]=FInfo2 (&Model: :get_md2,
iolz, i012);
tmp_map["mu2"]1=FInfo2 (&Model: :get_mu2,
1012,1012);
tmp_map["me2"]1=FInfo2 (&Model: :get_me2,
1012,1012);
map_collection[Par::mass2].map2 = tmp_map;

/// massl - mass dimension 1 parameters

// Zero-index Member functions of Model

{
typename MTget::fmap0 tmp_map;
tmp_map["M1"] = &Model::get_MassB;
tmp_map["M2"] = &Model::get_MassWB;
tmp_map["M3"] = &Model::get_MassG;
tmp_map["Mu"] = &Model::get_Mu;
tmp_map["vu"] = &Model::get_vu;
tmp_map["vd"] = &Model::get_vd;
map_collection[Par::massl].map0 = tmp_map;

// Two-index member functions of Model
{
typename MTget::fmap2 tmp_map;
tmp_map ["TYd"]1=FInfo2 (&Model::get_TYd,

1012,1012);

tmp_map["TYe"]1=FInfo2 (&Model::get_TYe,
i012,1012);
tmp_map["TYu"]=FInfo2 (&Model: :get_TYu,
1012,1012);

tmp_map["ad"] =FInfo2 (&Model::get_TYd,
1012,1012);

tmp_map["ae"] =FInfo2 (&Model::get_TYe,
1012,1012);

tmp_map["au"] =FInfo2 (&Model::get_TYu,
i012,1012);
map_collection[Par::massl].map2 = tmp_map;

/// dimensionless - mass dimension 0 parameters

// Zero-index member functions of Model
{
typename MTget::fmap0 tmp_map;
tmp_map["gl"]= &Model::get_gl;
tmp_map["g2"]= &Model::get_g2;

tmp_map["g3"]= &Model::get_g3;
map_collection[Par::dimensionless] .map0 =
tmp_map;
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// Zero-index ‘extra’ functions from wrapper
{
typename MTget::fmapOW tmp_map;

tmp_map["tanbeta"] = &Self::get_tanbeta;
tmp_map["sinW2"] = &Self::get_sinthW2_DRbar;
map_collection[Par::dimensionless] .map0W
=tmp_map;

// Two-index member functions of Model
{
typename MTget::fmap2 tmp_map;
tmp_map["Yd"]= FInfo2 (&Model::get_vd,i012,
i012);
tmp_map["Yu"l= FInfo2 (&Model::get_Yu,i012,
1012);
tmp_map["Ye"]= FInfo2 (&Model::get_Ye, 1012,
i012);
map_collection[Par::dimensionless].map2 =
tmp_map;

/// Pole Mass - Pole mass parameters

// Zero-index member functions of Model

{
typename MTget::fmap0 tmp_map;
tmp_map["W+"] = &Model::get_MVWm_pole_slha;
tmp_map["~g"] = &Model::get_MGlu_pole_slha;
map_collection[Par::Pole_Mass].map0 = tmp_map;

// Zero-index ‘extra’ functions from wrapper
{
typename MTget::fmapOW tmp_map;
tmp_map["A0"] = &Self::get_MAhl_pole_slha;
tmp_map["H+"] = &Self::get_MHpml_pole_slha;
map_collection[Par::Pole_Mass].mapOW =
tmp_map;

// One-index member functions of Model

{
typename MTget::fmapl tmp_map;
tmp_map["~d"] = FInfol(
&Model : :get_MSd_pole_slha, 1012345 );
tmp_map["~u"] = FInfol(
&Model: :get_MSu_pole_slha, 1012345 );

tmp_map["~e-"]1= FInfol/(
&Model: :get_MSe_pole_slha, 1012345 );
tmp_map["~nu"]l= FInfol (

&Model : :get_MSv_pole_slha, 1012 );
tmp_map["h0"] = FInfol(
&Model: :get_Mhh_pole_slha, 101 );

tmp_map["~chi+"] = FInfol/(

&Model: :get_MCha_pole_slha, 101 );
tmp_map["~chi0"] = FInfol(

&Model: :get_MChi_pole_slha, 10123 );
map_collection[Par::Pole_Mass].mapl = tmp_map;

/// Pole Mixing - Pole mass parameters

// Two-index member functions of Model

{
typename MTget::fmap2 tmp_map;
tmp_map["~d"] = FInfo2 (
&Model : :get_7ZD_pole_slha, 1012345, i012345);
tmp_map["~nu"]= FInfo2(
&Model: :get_ZV_pole_slha, 1012, 1012);
tmp_map["~u"] = FInfo2(
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// Filler function for setter function maps

&Model : :get_ZU_pole_slha, 1012345, 1012345);

tmp_map["~e-"]= FInfo2(

&Model::get_ZE_pole_slha, 1012345, 1i012345);

tmp_map["h0"] = FInfo2(
&Model: :get_ZH_pole_slha, 101, i01);
tmp_map["A0"] = FInfo2(
&Model : :get_ZA_pole_slha, 101, i01);
tmp_map ["H+"] = FInfo2(
&Model: :get_ZP_pole_slha, 101, i01);

tmp_map["~chi0"] = FInfo2(

&Model: :get_ZN_pole_slha, 10123, 10123);
tmp_map["~chi-"] = FInfo2(

&Model: :get_UM_pole_slha, 101, i01);
tmp_map["~chi+"] = FInfo2(

&Model : :get_UP_pole_slha, 101, i01);
map_collection[Par::Pole_Mixing].map2
tmp_map;

return map_collection;

MSSM_FS::SetterMaps MSSMSpec_FS::

{

fill_setter_maps ()

MSSM_FS::SetterMaps map_collection;

static const std::set<int> i01 = initSet(0,1);

static const std::set<int> 1012 =
initSet(0,1,2);

static const std::set<int> 10123 =
initset(0,1,2,3);

static const std::set<int> 1012345 =
initsSet(0,1,2,3,4,5);

/// mass2 - mass dimension 2 parameters

// Zero-index member functions of Model
{
typename MTset::fmap0 tmp_map;
tmp_map [ "BMu"] = &Model::set_BMu;
tmp_map ["mHd2"] = &Model::set_mHd2;
tmp_map ["mHu2"] = &Model::set_mHu2;

map_collection[Par::mass2].map0 = tmp_map;

// Two-index member functions of Model

{
typename MTset::fmap2 tmp_map;
tmp_map["mg2"]1=FInfo2 (&Model::set_mqg2,
i012,1012);
tmp_map["ml2"]1=FInfo2 (&Model::set_ml2,
1012,1012);
tmp_map["md2"]1=FInfo2 (&Model::set_md2,
1012,1012);
tmp_map ["mu2"]=FInfo2 (&Model::set_mu2,
1012,1012);
tmp_map["me2"]1=FInfo2 (&Model::set_me2,
i012,1012);

map_collection[Par::mass2].map2 = tmp_map;

/// massl - mass dimension 1 parameters

// Zero-index member functions of Model

{
typename MTset::fmap0 tmp_map;
tmp_map["M1"]= &Model::set_MassB;
tmp_map["M2"]= &Model::set_MassWB;
tmp_map["M3"]= &Model::set_MassG;
tmp_map["Mu"]= &Model::set_Mu;
tmp_map["vu"]= &Model::set_vu;

tmp_map["vd"]= &Model::set_vd;
map_collection[Par::massl].map0 =
tmp_map;

// Two-index member functions of model object

{
typename MTset::fmap2 tmp_map;

tmp_map ["TYd"]1=FInfo2 (&Model::set_TYd,

i012,1012);

tmp_map ["TYe"]=FInfo2 (&Model::set_TYe,

1012,1012);

tmp_map["TYu"]=FInfo2 (&Model::set_TYu,

1012,1012);

tmp_map["ad"] =FInfo2 (&Model::set_TYd,i012,
i012);

tmp_map["ae"] =FInfo2 (&Model::set_TYe,i012,
1012);

tmp_map["au"] =FInfo2 (&Model::set_TYu,i012,
i012);

map_collection[Par::massl].map2 = tmp_map;

/// dimensionless - mass dimension 0 parameters

//

// Zero-index member functions of Model

{
typename MTset::fmap0 tmp_map;
tmp_map["gl"]l= &Model::set_gl;
tmp_map["g2"]= &Model::set_g2;
tmp_map["g3"]= &Model::set_g3;

map_collection[Par::dimensionless] .map0

tmp_map;

// Two-index member functions of Model
{
typename MTset::fmap2 tmp_map;

tmp_map["Yd"]l= FInfo2 (&Model::set_vyd,i012,

i012);

tmp_map["Yu"]l= FInfo2 (&Model::set_Yu,i012,

i012);

tmp_map["Ye"]l= FInfo2 (&Model::set_Ye,i012,

i012);

map_collection[Par::dimensionless] .map2

tmp_map;

/// Pole_Mass parameters

// Zero-index ’'extra’ functions from wrapper

{
typename MTset::fmapO0W tmp_map;

tmp_map["~g"] = &Self::set_MGluino_pole_slha;
tmp_map["A0"] = &Self::set_MAhl_pole_slha;
tmp_map["H+"] = &Self::set_MHpml_pole_slha;

tmp_map["W+"] = &Self::set_MW_pole_slha;

map_collection[Par::Pole_Mass].mapOW
tmp_map;

// One-index ‘extra’ functions from wrapper

{
typename MTset::fmaplW tmp_map;
tmp_map["~u"] = FInfolW(

&Self::set_MSu_pole_slha, 1012345 );

tmp_map["~d"] = FInfolwW(

&Self::set_MSd_pole_slha, 1012345 );

tmp_map["~e-"1= FInfolW(
&Self::set_MSe_pole_slha, 1012345 );
tmp_map["~nu"]= FInfolW(
&Self::set_MSv_pole_slha, 1012 );
tmp_map["~chi+"] = FInfolW(
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&Self::set_MCha_pole_slha, 101 );
tmp_map["~chi0"] = FInfolwWw(
&Self::set_MChi_pole_slha, 10123 );
tmp_map["h0"] = FInfolW(
&Self::set_Mhh_pole_slha, 101 );

map_collection[Par:
tmp_map;

:Pole_Mass] .maplW =

}

/// Pole Mixing parameters

// Two-index ‘extra’ functions from wrapper

{

typename MTset::fmap2_ extraM tmp_map;

tmp_map["~d"] = FInfo2W(
&Self::set_ZD_pole_slha, 1012345, 1012345);
tmp_map["~nu"l= FInfo2W(
&Self::set_2ZV_pole_slha, 1012, i012);
tmp_map["~u"] = FInfol2W(
&Self::set_7ZU_pole_slha, 1012345, 1012345);
tmp_map["~e-"]1= FInfo2W(
&Self::set_ZE_pole_slha, 1012345, 1012345);
tmp_map["h0"] = FInfol2W(
&Self::set_ZH_pole_slha, 101, i01);
tmp_map["A0"] = FInfol2W(
&Self::set_ZA_pole_slha, 101, i01);
tmp_map["H+"] = FInfol2W/(
&Self::set_ZP_pole_slha, 101, i01);
tmp_map["~chi0"] = FInfo2W(
&Self::set_ZN_pole_slha, 10123, 10123);
tmp_map["~chi-"] = FInfol2W(
&Self::set_UM_pole_slha, 101, i01);
tmp_map["~chi+"] = FInfo2W(
&Self::set_UP_pole_slha, 101, i01);

map_collection[Par::Pole_Mixing] .map2W =

tmp_map;

return map_collection;

(4) Write a module function to construct and return a
Spectrum interface object connected to the new wrapper
(Appendix F.7) — Let us suppose that the new module
function will be added to SpecBit. Module functions that
construct spectrum objects for the MSSM are declared in
the header SpecBit/include/gambit/SpecBit/SpecBit_
MSSM_rollcall.hpp. To this file, within the capability
block beginning #define CAPABILITY unimproved_MSSM
_spectrum, we add the following declaration:

#define FUNCTION get_MSSM_FS_spectrum
START_FUNCTION (Spectrum)

ALLOW_MODELS (MSSM63atQ)

DEPENDENCY (SMINPUTS, SMInputs)

#undef FUNCTION

We assume here that the new FlexibleSUSY spectrum gen-
erator has been defined such that the soft masses are input
at a user-specified scale Q, such that the matching GAM-
BIT model parameters are ussv63at0. We therefore declare
ALLOW_MODELS (MSSM63at0Q), so that we will be able to
access these parameters in our module function. We will
also need SM SLHA?2 parameters, but it is more convenient
to obtain them via an suInputs object rather than directly
from GAMBIT model parameters, so we declare a depen-
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dency on sMInpUTs, which can be provided by an existing
SpecBit module function.

Next we add the module function definition to an appropri-
ate source file; gambit /SpecBit/ src/SpecBit_MSSM.cpp
is suitable for this example:

// Runs MSSM spectrum generator with
// input at scale Q
void get_MSSM_FS_spectrum
{
namespace myPipe =
Pipes::get_MSSM_FS_spectrum;
namespace ss = softsusy;
const SMInputs& sminputs =
*myPipe: :Dep: : SMINPUTS;
flexiblesusy::MSSM_input_parameters input;

(Spectrum& result)

// Transfer input parameters to FlexibleSUSY
input.Qin = *myPipe::Param.at("Qin");

//double valued parameters

input.TanBeta = *Param.at ("TanBeta") ;
input.SignMu = *Param.a ("SlgnMu");
input.mHuU2IN = *Param.at ("mHu2") ;
input .mHd2IN = *Param.at ("mHd2") ;
input.MassBInput = *Param.at("M1");
input.MassWBInput = *Param.at("M2");
input.MassGInput = *Param.at("M3");

//3x3 matrices; filled with the help of
// a convenience function
#define FILL_3X3_SYM \

fill 3x3_symmetric_parameter_matrix
#define FILL_3X3 \

fill 3x3_parameter matrix

input.mg2Input = FILL_3X3_SYM("mg2", Param);
input.ml2Input = FILL_3X3_SYM("ml2", Param);
input.md2Input = FILL_3X3_SYM("md2", Param);
input.mu2Input = FILL_3X3_SYM("mu2", Param);
input.me2Input = FILL73X3 SYM("me2", Param) ;
input.Aeij = FILL_3X3("Ae", Param);
input.Adij FILL_3X3("Ad", Param);
input.Auij = FILL_3X3("Au", Param);

// Construct spectrum generator input objects

// SoftSUSY object used to set quark and
lepton

// masses and gauge couplings in QEDxQCD

// effective theory.

softsusy::QedQcd oneset;

// Fill QedQcd object with SMInputs values
oneset.setPoleMt (sminputs.mT) ;
oneset.setPoleMtau (sminputs.mTau) ;
oneset.setMbMb (sminputs.mBmB) ;

oneset.setMass (ss::mDown, sminputs.mD) ;
oneset.setMass (ss::mUp, sminputs.mU) ;
oneset.setMass (ss::mStrange, sminputs.mS) ;
oneset.setMass (ss: :mCharm, sminputs.mCmC) ;
oneset.setAlpha(ss::ALPHA,
1./sminputs.alphainv) ;
oneset.setAlpha(ss::ALPHAS, sminputs.alphaSsS);
oneset.setMass (ss::mElectron, sminputs.mE);
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oneset.setMass (ss: :mMuon, sminputs.mMu) ;

oneset.setPoleMZ (sminputs.m2z) ;

// Run everything to Mz
oneset.toMz () ;

// Create spectrum generator object
flexiblesusy::MSSM_spectrum_generator
<Two_scale> spectrum_generator;

// Generate spectrum
spectrum_generator.run (oneset, input);

// Create SubSpectrum wrapper objects
MSSM_FS

mssmspec (spectrum_generator.get_model () )
QedQcdWrapper gedgcdspec (oneset, sminputs) ;

// Check for problems during spectrum
generation

if( spectrum_generator.get_problems ()

.have_problem() )

{
std::ostringstream msg;
problems.print_problems (msg) ;
invalid_point () .raise(msg.str());

}

// Package QedQcd SubSpectrum object, MSSM

// SubSpectrum object, and SMInputs struct

// into a ’full’ Spectrum object

result = Spectrum(gedgcdspec,mssmspec,
sminputs,myPipe: :Param) ;

The example is now complete. Various aspects related
to error checking, code re-use between module functions,
and altering the behaviour of the spectrum generator via
YAML options, have been removed in order to keep the
example simpler. It is also useful to write several ‘auxil-
iary’ module functions to perform helper tasks on the new
spectrum, for instance transforming the capability, extract-
ing SsLHAea objects, and similar tasks. See the module func-
tions in "gambit/SpecBit/src/SpecBit_MSSM.cpp" for
examples of these.

7 Glossary

Here we explain some terms that have specific technical def-
initions in GAMBIT.

backend An external code containing useful functions (or
variables) that one might wish to call (or read/write) from
a module function.

backend function A function contained in a backend. It
calculates a specific quantity indicated by its capability.
Its capability and call signature are defined in the back-
end’s frontend header.

backend requirement A declaration that a given module
function needs to be able to call a backend function or
use a backend variable, identified according to its capa-
bility and type(s). Backend requirements are declared in
module functions’ entries in rollcall headers.

backend variable A global variable contained in a back-
end. It corresponds to a specific quantity indicated by
its capability. Its capability and type are defined in the
backend’s frontend header.

BOSS The Backend-On-a-Stick script, used for
pre-processing C++ backend code to allow GAMBIT to
dynamically load classes from it.

capability A name describing the actual quantity that is cal-
culated by a module or backend function. This is one
possible place for units to be noted; the other is in the
documented description of the capability (see Sect. 10.7
of Ref. [11]).

dependency A declaration that a given module function
needs to be able to access the result of another module
function, identified according to its capability and type.
Dependencies are declared in module functions’ entries
in rollcall headers.

dependency resolver The componentofthe GAMBIT Core
that performs dependency resolution.

dependency resolution The process by which GAMBIT
determines the module functions, backend functions
and backend variables needed and allowed for a given
scan, connects them to each others’ dependencies and
backend requirements, and determines the order in
which they must be called.

dependency tree A result of dependency resolution; a
directed acyclic graph of module functions connected
by resolved dependencies. See Fig. 5 of Ref. [11] for an
example.

frontend The interface between GAMBIT and a given back-
end, consisting of a frontend header plus optional
source files and type headers.

frontend header The C++ header in which the frontend to
a given backend is declared.

module A subset of GAMBIT functions following a com-
mon theme, able to be compiled into a standalone
library. Although module often gets used as shorthand
for physics module, this term technically also includes
the GAMBIT scanning module ScannerBit.

module function A function contained in a physics mod-
ule. It calculates a specific quantity indicated by its capa-
bility and type, as declared in the module’s rollcall
header. It takes only one argument, by reference (the
quantity to be calculated), and has a void return type.

physics module Any module other than ScannerBit, con-
taining a collection of module functions following a
common physics theme.

@ Springer



22 Page 68 of 71

Eur. Phys. J. C (2018) 78:22

rollcall header The C++ header in which a given physics

module and its module functions are declared.

type A general fundamental or derived C++ type, often refer-

ring to the type of the capability of a module function.

References

10.

11.

12.

15.

. P.Z. Skands et al., SUSY Les Houches accord: interfacing SUSY

spectrum calculators, decay packages, and event generators. JHEP
07, 036 (2004). arXiv:hep-ph/0311123

. B.C. Allanach et al., SUSY Les Houches accord 2. Comput. Phys.

Commun. 180, 8-25 (2009). arXiv:0801.0045

. A. Djouadi, M.M. Miihlleitner, M. Spira, Decays of super-

symmetric particles: the program SUSY-HIT (SUspect-SdecaY-
Hdecay-InTerface). Acta Phys. Pol. 38, 635-644 (2007).
arXiv:hep-ph/0609292

. U. Ellwanger, J.F. Gunion, C. Hugonie, NMHDECAY: a Fortran

code for the Higgs masses, couplings and decay widths in the
NMSSM. JHEP 02, 066 (2005). arXiv:hep-ph/0406215

. U.Ellwanger, C. Hugonie, NMHDECAY 2.0: an updated program

for sparticle masses, Higgs masses, couplings and decay widths
in the NMSSM. Comput. Phys. Commun. 175, 290-303 (2006).
arXiv:hep-ph/0508022

. U. Ellwanger, C. Hugonie, NMSPEC: a Fortran code for the spar-

ticle and Higgs masses in the NMSSM with GUT scale bound-
ary conditions. Comput. Phys. Commun. 177, 399407 (2007).
arXiv:hep-ph/0612134

. B.C. Allanach, S. Kraml, W. Porod, Theoretical uncertainties in

sparticle mass predictions from computational tools. JHEP 03,
016 (2003). arXiv:hep-ph/0302102

. B.C. Allanach, A. Djouadi, J.L. Kneur, W. Porod, P. Slavich,

Precise determination of the neutral Higgs boson masses in the
MSSM. JHEP 09, 044 (2004). arXiv:hep-ph/0406166

. E. Staub, P. Athron, U. Ellwanger, R. Grober, M. Miihlleitner, P.

Slavich, A. Voigt, Higgs mass predictions of public NMSSM spec-
trum generators. Comput. Phys. Commun. 202, 113-130 (2016).
https://doi.org/10.1016/j.cpc.2016.01.005

P. Drechsel, R. Grober, S. Heinemeyer, M.M. Muhlleitner, H. Rze-
hak, G.Weiglein, Higgs-boson masses and mixing matrices in the
NMSSM: analysis of on-shell calculations. Eur. Phys. J. C77(6),
366 (2017). https://doi.org/10.1140/epjc/s10052-017-4932-4
The GAMBIT Collaboration: P. Athron, et al., GAMBIT: the
global and modular beyond-the-standard-model inference tool.
Eur. Phys. J. C77(11), 784 (2017). https://doi.org/10.1140/epjc/
$10052-017-5321-8

The GAMBIT Scanner Workgroup: G.D. Martinez, J. McKay, B.
Farmer, P. Scott, E. Roebber, A. Putze, J. Conrad, Comparison
of statistical sampling methods with ScannerBit, the GAMBIT
scanning module. Eur. Phys. J. C77(11), 761 (2017). https://doi.
org/10.1140/epjc/s10052-017-5274-y

. GAMBIT Dark Matter Workgroup: T. Bringmann et al., DarkBit:

A GAMBIT module for computing dark matter observables and
likelihoods. Eur. Phys. J. C77(12), 831 (2017). https://doi.org/10.
1140/epjc/s10052-017-5155-4

. The GAMBIT Scanner Workgroup: C. Balazs et al., Collid-

erBit: a GAMBIT module for the calculation of high-energy
collider observables and likelihoods. GAMBIT collaboration.
Eur. Phys. J. C77(11), 795 (2017). https://doi.org/10.1140/epjc/
$10052-017-5285-8

The GAMBIT Flavour Workgroup collaboration: F.U. Bern-
lochner et al., FlavBit: A GAMBIT module for computing flavour

@ Springer

17.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

observables and likelihoods. Eur. Phys. J. C77(11), 786 (2017).
https://doi.org/10.1140/epjc/s10052-017-5157-2

. The GAMBIT Collaboration: P. Athron et al., Global fits of GUT-

scale SUSY models with GAMBIT. Eur. Phys. J. C77(12), 824
(2017). https://doi.org/10.1140/epjc/s10052-017-5167-0
GAMBIT Collaboration: P. Athron, C. Baldzs et al., A global fit
of the MSSM with GAMBIT. Eur. Phys. J. C (2017, under final
review). arXiv:1705.07917

. GAMBIT Collaboration: P. Athron, C. Baldzs et al., Status of the

scalar singlet dark matter model. Eur. Phys. J. C 77, 568 (2017).
arXiv:1705.07931

P. Athron, J.-H. Park, D. Stockinger, A. Voigt, FlexibleSUSY—a
spectrum generator for supersymmetric models. Comput. Phys.
Commun. 190, 139-172 (2015). arXiv:1406.2319

W. Porod, SPheno, a program for calculating supersymmetric
spectra, SUSY particle decays and SUSY particle production at
ete™ colliders. Comput. Phys. Commun. 153, 275-315 (2003).
arXiv:hep-ph/0301101

W. Porod, F. Staub, SPheno 3.1: extensions including flavour, CP-
phases and models beyond the MSSM. Comput. Phys. Commun.
183, 2458-2469 (2012). arXiv:1104.1573

S. Heinemeyer, W. Hollik, G. Weiglein, FeynHiggs: a program for
the calculation of the masses of the neutral CP even Higgs bosons
in the MSSM. Comput. Phys. Commun. 124, 76-89 (2000).
arXiv:hep-ph/9812320

S. Heinemeyer, W. Hollik, G. Weiglein, The masses of the
neutral CP—even Higgs bosons in the MSSM: accurate anal-
ysis at the two loop level. Eur. Phys. J. C 9, 343-366 (1999).
arXiv:hep-ph/9812472

G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein,
Towards high precision predictions for the MSSM Higgs sector.
Eur. Phys. J. C 28, 133-143 (2003). arXiv:hep-ph/0212020

M. Frank, T. Hahn et al., The Higgs boson masses and mixings
of the complex MSSM in the Feynman-diagrammatic approach.
JHEP 02, 047 (2007). arXiv:hep-ph/0611326

T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, High-
precision predictions for the light CP-even Higgs boson mass of
the minimal supersymmetric standard model. Phys. Rev. Lett. 112,
141801 (2014). arXiv:1312.4937

H. Bahl, W. Hollik, Precise prediction for the light MSSM Higgs
boson mass combining effective field theory and fixed-order cal-
culations. Eur. Phys. J. C 76, 499 (2016). arXiv:1608.01880

A. Djouadi, J. Kalinowski, M. Spira, HDECAY: a program for
Higgs boson decays in the standard model and its supersym-
metric extension. Comput. Phys. Commun. 108, 56-74 (1998).
arXiv:hep-ph/9704448

M. Spira, QCD effects in Higgs physics. Fortschr. Phys. 46, 203—
284 (1998). arXiv:hep-ph/9705337

J.M. Butterworth et al., The Tools and Monte Carlo Working
Group, in Summary Report from the Les Houches 2009 Workshop
on TeV Colliders, in Physics at TeV colliders. Proceedings, 6th
Workshop, Dedicated to Thomas Binoth, Les Houches, France,
June 8-26, 2009 (2010). arXiv:1003.1643

M. Muhlleitner, A. Djouadi, Y. Mambrini, SDECAY: a For-
tran code for the decays of the supersymmetric particles in
the MSSM. Comput. Phys. Commun. 168, 46-70 (2005).
arXiv:hep-ph/0311167

F. Mahmoudi, Superlso: a program for calculating the isospin
asymmetry of B — K™y in the MSSM. Comput. Phys. Commun.
178, 745 (2008). arXiv:0710.2067

F. Mahmoudi, Superlso v2.3: a program for calculating flavor
physics observables in supersymmetry. Comput. Phys. Commun.
180, 1579 (2009). arXiv:0808.3144

F. Mahmoudi, SuperlIso v3.0, flavor physics observables calcula-
tions: extension to NMSSM. Comput. Phys. Commun. 180, 1718
(2009)


http://arxiv.org/abs/hep-ph/0311123
http://arxiv.org/abs/0801.0045
http://arxiv.org/abs/hep-ph/0609292
http://arxiv.org/abs/hep-ph/0406215
http://arxiv.org/abs/hep-ph/0508022
http://arxiv.org/abs/hep-ph/0612134
http://arxiv.org/abs/hep-ph/0302102
http://arxiv.org/abs/hep-ph/0406166
https://doi.org/10.1016/j.cpc.2016.01.005
https://doi.org/10.1140/epjc/s10052-017-4932-4
https://doi.org/10.1140/epjc/s10052-017-5321-8
https://doi.org/10.1140/epjc/s10052-017-5321-8
https://doi.org/10.1140/epjc/s10052-017-5274-y
https://doi.org/10.1140/epjc/s10052-017-5274-y
https://doi.org/10.1140/epjc/s10052-017-5155-4
https://doi.org/10.1140/epjc/s10052-017-5155-4
https://doi.org/10.1140/epjc/s10052-017-5285-8
https://doi.org/10.1140/epjc/s10052-017-5285-8
https://doi.org/10.1140/epjc/s10052-017-5157-2
https://doi.org/10.1140/epjc/s10052-017-5167-0
http://arxiv.org/abs/1705.07917
http://arxiv.org/abs/1705.07931
http://arxiv.org/abs/1406.2319
http://arxiv.org/abs/hep-ph/0301101
http://arxiv.org/abs/1104.1573
http://arxiv.org/abs/hep-ph/9812320
http://arxiv.org/abs/hep-ph/9812472
http://arxiv.org/abs/hep-ph/0212020
http://arxiv.org/abs/hep-ph/0611326
http://arxiv.org/abs/1312.4937
http://arxiv.org/abs/1608.01880
http://arxiv.org/abs/hep-ph/9704448
http://arxiv.org/abs/hep-ph/9705337
http://arxiv.org/abs/1003.1643
http://arxiv.org/abs/hep-ph/0311167
http://arxiv.org/abs/0710.2067
http://arxiv.org/abs/0808.3144

Eur. Phys. J. C (2018) 78:22

Page 69 of 71 22

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.
47.

48.

49.

50.

S1.

52.

53.

54.

55.

P. Athron, M. Bach et al., GM2Calc: precise MSSM prediction for
(g-2) of the muon. Eur. Phys.J. C76, 62 (2016). arXiv:1510.08071
B.C. Allanach, SOFTSUSY: a program for calculating supersym-
metric spectra. Comput. Phys. Commun. 143, 305-331 (2002).
arXiv:hep-ph/0104145

B.C. Allanach, M.A. Bernhardt, Including R-parity violation in
the numerical computation of the spectrum of the minimal super-
symmetric standard model: SOFTSUSY. Comput. Phys. Com-
mun. 181, 232-245 (2010). arXiv:0903.1805

B.C. Allanach, C.H. Kom, M. Hanussek, Computation of neutrino
masses in R-parity violating supersymmetry: SOFTSUSY3.2.
Comput. Phys. Commun. 183, 785-793 (2012). arXiv:1109.3735
B.C. Allanach, A. Bednyakov, R. Ruiz de Austri, Higher order cor-
rections and unification in the minimal supersymmetric standard
model: SOFTSUSY?3.5. Comput. Phys. Commun. 189, 192-206
(2015). arXiv:1407.6130

A. Djouadi, J.-L. Kneur, G. Moultaka, SuSpect: a Fortran
code for the supersymmetric and Higgs particle spectrum in
the MSSM. Comput. Phys. Commun. 176, 426455 (2007).
arXiv:hep-ph/0211331

B.C. Allanach, P. Athron, L.C. Tunstall, A. Voigt, A.G. Williams,
Next-to-minimal SOFTSUSY. Comput. Phys. Commun. 185,
2322-2339 (2014). arXiv:1311.7659

K. Ender, T. Graf, M. Muhlleitner, H. Rzehak, Analysis of the
NMSSM Higgs boson masses at one-loop level. Phys. Rev. D 85,
075024 (2012). arXiv:1111.4952

T. Graf, R. Grober, M. Muhlleitner, H. Rzehak, K. Walz, Higgs
boson masses in the complex NMSSM at one-loop level. JHEP
10, 122 (2012). arXiv:1206.6806

J. Baglio, R. Grober et al., NMSSMCALC: a program package for
the calculation of loop-corrected Higgs boson masses and decay
widths in the (complex) NMSSM. Comput. Phys. Commun. 185,
3372-3391 (2014). arXiv:1312.4788

S.F. King, M. Muhlleitner, R. Nevzorov, K. Walz, Exploring the
CP-violating NMSSM: EDM constraints and phenomenology.
Nucl. Phys. B 901, 526-555 (2015). arXiv:1508.03255

F. Staub, SARAH. arXiv:0806.0538

F. Staub, Automatic calculation of supersymmetric renormaliza-
tion group equations and self energies. Comput. Phys. Commun.
182, 808-833 (2011). arXiv:1002.0840

F. Staub, SARAH 3.2: Dirac Gauginos, UFO output, and
more. Comput. Phys. Commun. 184, 1792-1809 (2013).
arXiv:1207.0906

F. Staub, SARAH 4: a tool for (not only SUSY) model
builders. Comput. Phys. Commun. 185, 1773-1790 (2014).
arXiv:1309.7223

M.D. Goodsell, K. Nickel, F. Staub, Two-loop Higgs mass calcula-
tions in supersymmetric models beyond the MSSM with SARAH
and SPheno. Eur. Phys. J. C 75, 32 (2015). arXiv:1411.0675

W. Frisch, H. Eberl, H. Hlucha, HFOLD—a program pack-
age for calculating two-body MSSM Higgs decays at full one-
loop level. Comput. Phys. Commun. 182, 2219-2226 (2011).
arXiv:1012.5025

H. Hlucha, H. Eberl, W. Frisch, SFOLD—a program package for
calculating two-body sfermion decays at full one-loop level in
the MSSM. Comput. Phys. Commun. 183, 2307-2312 (2012).
arXiv:1104.2151

J. Pardo Vega, G. Villadoro, SusyHD: Higgs mass determination
in supersymmetry. JHEP 07, 159 (2015). arXiv:1504.05200

E. Bagnaschi, F. Brimmer, W. Buchmiiller, A. Voigt, G. Wei-
glein, Vacuum stability and supersymmetry at high scales with
two Higgs doublets. JHEP 03, 158 (2016). arXiv:1512.07761

P. Athron, J.-H. Park, T. Steudtner, D. Stockinger, A. Voigt, Precise
Higgs mass calculations in (non-)minimal supersymmetry at both
high and low scales. JHEP 01, 079 (2017). arXiv:1609.00371

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys.
J. C 72,1896 (2012). arXiv:1111.6097

W. Siegel, Supersymmetric dimensional regularization via dimen-
sional reduction. Phys. Lett. B 84, 193-196 (1979)

D.M. Capper, D.R.T. Jones, P. van Nieuwenhuizen, Regulariza-
tion by dimensional reduction of supersymmetric and nonsuper-
symmetric gauge theories. Nucl. Phys. B 167, 479-499 (1980)
I. Jack, D.R.T. Jones, S.P. Martin, M.T. Vaughn, Y. Yamada,
Decoupling of the epsilon scalar mass in softly broken
supersymmetry. Phys. Rev. D 50, R5481-R5483 (1994).
arXiv:hep-ph/9407291

W.A. Bardeen, A.J. Buras, D.W. Duke, T. Muta, Deep inelastic
scattering beyond the leading order in asymptotically free gauge
theories. Phys. Rev. D 18, 3998 (1978)

Particle Data Group: K.A. Olive et al., Review of particle physics.
Chin. Phys. C 38, 090001 (2014)

G. Bélanger, K. Kannike, A. Pukhov, M. Raidal, Z3 scalar singlet
dark matter. JCAP 1, 022 (2013). arXiv:1211.1014

T. Alanne, K. Tuominen, V. Vaskonen, Strong phase transition,
dark matter and vacuum stability from simple hidden sectors.
Nucl. Phys. B 889, 692-711 (2014). arXiv:1407.0688

N. Khan, S. Rakshit, Study of electroweak vacuum metastability
with a singlet scalar dark matter. Phys. Rev. D 90, 113008 (2014).
arXiv:1407.6015

J.A. Aguilar-Saavedra et al., Supersymmetry parameter analysis:
SPA convention and project. Eur. Phys. J. C 46, 43-60 (2006).
arXiv:hep-ph/0511344

F. Staub, W. Porod, Improved predictions for intermedi-
ate and heavy Supersymmetry in the MSSM and beyond.
Eur. Phys. J. C77(5), 338 (2017). https://doi.org/10.1140/epjc/
$10052-017-4893-7

M. Sher, Electroweak Higgs potential and vacuum stability. Phys.
Rep. 179, 273 (1989)

J. Elias-Mir6, J.R. Espinosa et al., Higgs mass implications on
the stability of the electroweak vacuum. Phys. Lett. Sect. B
Nucl. Elementary Part. High Energy Phys. 709, 222-228 (2012).
arXiv:1112.3022

S. Alekhin, A. Djouadi, S. Moch, The top quark and Higgs boson
masses and the stability of the electroweak vacuum. Phys. Lett.
Sect. B Nucl. Elementary Part. High Energy Phys. 716, 214-219
(2012). arXiv:1207.0980

F. Bezrukov, M.Yu. Kalmykov, B.A. Kniehl, M. Shaposhnikov,
Higgs Boson mass and new physics. JHEP 10, 140 (2012).
arXiv:1205.2893 [275 (2012)]

G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice,
G. Isidori, A. Strumia, Higgs mass and vacuum stability in the
Standard Model at NNLO. JHEP 08, 098 (2012). https://doi.org/
10.1007/JHEP08(2012)098

1. Masina, Higgs boson and top quark masses as tests of elec-
troweak vacuum stability. Phys. Rev. D 87, 053001 (2013).
arXiv:1209.0393

V. Branchina, E. Messina, Stability, Higgs boson mass, and new
physics. Phys. Rev. Lett. 111, 1-5 (2013). arXiv:1307.5193

D. Buttazzo, G. Degrassi et al., Investigating the near-criticality
of the Higgs boson. JHEP 12, 089 (2013). arXiv:1307.3536

L. Di Luzio, L. Mihaila, On the gauge dependence of the Stan-
dard Model vacuum instability scale. JHEP 06, 079 (2014).
arXiv:1404.7450

N.K. Nielsen, Removing the gauge parameter dependence of the
effective potential by a field redefinition. Phys. Rev. D 90, 036008
(2014). arXiv:1406.0788

A. Andreassen, W. Frost, M.D. Schwartz, Consistent use of the
standard model effective potential. Phys. Rev. Lett. 113, 241801
(2014). arXiv:1408.0292

J.R. Espinosa, G.F. Giudice et al., The cosmological Higgstory of
the vacuum instability. JHEP 09, 174 (2015). arXiv:1505.04825

@ Springer


http://arxiv.org/abs/1510.08071
http://arxiv.org/abs/hep-ph/0104145
http://arxiv.org/abs/0903.1805
http://arxiv.org/abs/1109.3735
http://arxiv.org/abs/1407.6130
http://arxiv.org/abs/hep-ph/0211331
http://arxiv.org/abs/1311.7659
http://arxiv.org/abs/1111.4952
http://arxiv.org/abs/1206.6806
http://arxiv.org/abs/1312.4788
http://arxiv.org/abs/1508.03255
http://arxiv.org/abs/0806.0538
http://arxiv.org/abs/1002.0840
http://arxiv.org/abs/1207.0906
http://arxiv.org/abs/1309.7223
http://arxiv.org/abs/1411.0675
http://arxiv.org/abs/1012.5025
http://arxiv.org/abs/1104.2151
http://arxiv.org/abs/1504.05200
http://arxiv.org/abs/1512.07761
http://arxiv.org/abs/1609.00371
http://arxiv.org/abs/1111.6097
http://arxiv.org/abs/hep-ph/9407291
http://arxiv.org/abs/1211.1014
http://arxiv.org/abs/1407.0688
http://arxiv.org/abs/1407.6015
http://arxiv.org/abs/hep-ph/0511344
https://doi.org/10.1140/epjc/s10052-017-4893-7
https://doi.org/10.1140/epjc/s10052-017-4893-7
http://arxiv.org/abs/1112.3022
http://arxiv.org/abs/1207.0980
http://arxiv.org/abs/1205.2893
https://doi.org/10.1007/JHEP08(2012)098
https://doi.org/10.1007/JHEP08(2012)098
http://arxiv.org/abs/1209.0393
http://arxiv.org/abs/1307.5193
http://arxiv.org/abs/1307.3536
http://arxiv.org/abs/1404.7450
http://arxiv.org/abs/1406.0788
http://arxiv.org/abs/1408.0292
http://arxiv.org/abs/1505.04825

22 Page 70 of 71

Eur. Phys. J. C (2018) 78:22

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

A.V.Bednyakov, B.A. Kniehl, A.F. Pikelner, O.L. Veretin, Stabil-
ity of the electroweak vacuum: gauge independence and advanced
precision. Phys. Rev. Lett. 115,201802 (2015). arXiv:1507.08833
M. Lindner, Implications of triviality for the standard model. Z.
Phys. C 31, 295 (1986)

B. Schrempp, M. Wimmer, Top quark and Higgs boson masses:
interplay between infrared and ultraviolet physics. Prog. Part.
Nucl. Phys. 37, 112 (1996). arXiv:hep-ph/9606386

G. Altarelli, G. Isidori, Lower limit on the Higgs mass in the
standard model: an update. Phys. Lett. B 337, 141-144 (1994)
N. Cabibbo, L. Maiani, G. Parisi, R. Petronzio, Bounds on the
fermions and Higgs boson masses in grand unified theories. Nucl.
Phys. B 158, 295-305 (1979)

P.Q. Hung, Vacuum instability and new constraints on fermion
masses. Phys. Rev. Lett. 42, 873 (1979)

G. Aad, T. Abajyan et al,, Observation of a new particle
in the search for the Standard Model Higgs boson with the
ATLAS detector at the LHC. Phys. Lett. B 716, 1-29 (2012).
arXiv:1207.7214

S. Chatrchyan, V. Khachatryan et al., Observation of a new boson
atamass of 125 GeV with the CMS experiment at the LHC. Phys.
Lett. B 716, 30-61 (2012). arXiv:1207.7235

V. Branchina, E. Messina, Stability and UV completion of the
Standard Model. EPL 117(6), 61002 (2017). https://doi.org/10.
1209/0295-5075/117/61002

L. Di Luzio, G. Isidori, G. Ridolfi, Stability of the electroweak
ground state in the Standard Model and its extensions. Phys. Lett.
B 753, 150-160 (2016). arXiv:1509.05028

J.A. Casas, J.R. Espinosa, M. Quiros, Improved Higgs mass sta-
bility bound in the standard model and implications for supersym-
metry. Phys. Lett. B 342, 171 (1995). arXiv:hep-ph/9409458
J.A. Casas, J.R. Espinosa, M. Quirds, Standard model stability
bounds for new physics within LHC reach. Phys. Lett. B 382,
374-382 (1996). arXiv:hep-ph/9603227

G. Isidori, G. Ridolfi, A. Strumia, On the metastability of the
Standard Model vacuum. Nucl. Phys. B 609, 387-409 (2001).
arXiv:hep-ph/0104016v2

C.P. Burgess, V. Di Clemente, J. Ramén Espinosa, Effective oper-
ators and vacuum instability as heralds of new physics. JHEP 1,
041 (2002). arXiv:hep-ph/0201160

G. Isidori, V.S. Rychkov, A. Strumia, N. Tetradis, Gravitational
corrections to standard model vacuum decay. Phys. Rev. D 77,
1-6 (2008). arXiv:0712.0242

N. Arkani-Hamed, S. Dubovsky, L. Senatore, G. Villadoro, (No)
eternal inflation and precision Higgs physics. JHEP 0803, 075
(2008). arXiv:0801.2399

F. Bezrukov, M. Shaposhnikov, Standard model Higgs boson
mass from inflation: two loop analysis. JHEP 0907, 089 (2009).
arXiv:0904.1537

L.J. Hall, Y. Nomura, A finely-predicted Higgs boson mass
from a finely-tuned weak scale. JHEP 1003, 076 (2010).
arXiv:0910.2235

J. Ellis, J.R. Espinosa, G.F. Giudice, A. Hoecker, A. Riotto, The
probable fate of the Standard Model. Phys. Lett. B 679, 369-375
(2009). arXiv:0906.0954

FE. Loebbert, J. Plefka, Quantum Gravitational Contributions to
the Standard Model Effective Potential and Vacuum Stability.
Mod. Phys. Lett. A30(34), 1550189 (2015). https://doi.org/10.
1142/S0217732315501898

0. Czerwinska, Z. Lalak, £.. Nakonieczny, Stability of the effective
potential of the gauge-less top-Higgs model in curved spacetime.
JHEP 11, 207 (2015). https://doi.org/10.1007/JHEP11(2015)207
M. Gonderinger, Y. Li, H. Patel, M.J. Ramsey-Musolf, Vacuum
stability, perturbativity, and scalar singlet dark matter. JHEP 1, 53
(2010). arXiv:0910.3167

@ Springer

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

A. Drozd, B. Grzadkowski, J. Wudka, Cosmology of multi-
singlet-scalar extensions of the standard model. Acta Phys. Pol.
B 42, 2255-2262 (2011). arXiv:1310.2985

C.-S. Chen, Y. Tang, Vacuum stability, neutrinos, and dark matter.
JHEP 4, 19 (2012). arXiv:1202.5717

H. Han, S. Zheng, New constraints on Higgs-portal scalar dark
matter. JHEP 12, 44 (2015). arXiv:1509.01765

S. Kanemura, M. Kikuchi, K. Yagyu, Radiative corrections to
the Higgs boson couplings in the model with an additional
real singlet scalar field. Nucl. Phys. B 907, 286-322 (2016).
arXiv:1511.06211

S. Coleman, Fate of the false vacuum: semiclassical theory. Phys.
Rev. D 15, 2929-2936 (1977)

E. Kolb, M.S. Turner, The Early Universe (Addison-Wesley Pub-
lishing Company, Redwood City, 1990)

K. Lee, E.J. Weinberg, Tunneling without barries. Nucl. Phys. B
267, 181 (1986)

G.C. Callan, S. Coleman, Fate of the false vacuum II, first quantum
corrections. Phys. Rev. D 16, 1762-1768 (1977)

G. Degrassi, SM vacuum stability (2014). Retrieved from http://
benasque.org/2014imfp/talks_contr/296_Degrassi.pdf

LHC Higgs Cross Section Working Group: J.R. Andersen et al. In
Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, ed.
By S. Heinemeyer, C. Mariotti, G. Passarino, R. Tanaka (2013).
https://doi.org/10.5170/CERN-2013-004

A. Bredenstein, A. Denner, S. Dittmaier, M.M. Weber, Precise
predictions for the Higgs-boson decay H - WW/ZZ — 4 leptons.
Phys. Rev. D 74, 013004 (2006). arXiv:hep-ph/0604011

A. Bredenstein, A. Denner, S. Dittmaier, M.M. Weber, Radia-
tive corrections to the semileptonic and hadronic Higgs-boson
decays H > W W / Z Z — 4 fermions. JHEP 02, 080 (2007).
arXiv:hep-ph/0611234

G. Belanger, B. Dumont, U. Ellwanger, J.F. Gunion, S. Kraml,
Global fit to Higgs signal strengths and couplings and implica-
tions for extended Higgs sectors. Phys. Rev. D 88, 075008 (2013).
arXiv:1306.2941

D. Das, U. Ellwanger, A.M. Teixeira, NMSDECAY: a Fortran
code for supersymmetric particle decays in the next-to-minimal
supersymmetric standard model. Comput. Phys. Commun. 183,
774-779 (2012). arXiv:1106.5633

LHC Higgs Cross Section Working Group: S. Dittmaier et al,
Handbook of LHC higgs cross sections: 1. Inclusive Observables
(2011). https://doi.org/10.5170/CERN-2011-002

The ATLAS, CDF, CMS, D0 Collaborations:, First combination
of Tevatron and LHC measurements of the top-quark mass (2014).
arXiv:1403.4427

ATLAS, CMS: G. Aad et al., Combined measurement of the
Higgs boson mass in pp collisions at /s = 7 and 8 TeV with
the ATLAS and CMS experiments. Phys. Rev. Lett. 114, 191803
(2015). arXiv:1503.07589

Particle Data Group: K.A. Olive et al., Review of particle
physics, update to Ref. [61] (2015). http://pdg.Ibl.gov/2015/
tables/rpp2015-sum-gauge-higgs-bosons.pdf

S. Heinemeyer, W. Hollik, D. Stockinger, A.M. Weber, G. Wei-
glein, Precise prediction for M(W) in the MSSM. JHEP 08, 052
(2006). arXiv:hep-ph/0604147

S. Heinemeyer, W. Hollik, A.M. Weber, G. Weiglein, Z pole
observables in the MSSM. JHEP 04, 039 (2008). arXiv:0710.2972
S. Heinemeyer, W. Hollik, G. Weiglein, L. Zeune, Implications of
LHC search results on the W boson mass prediction in the MSSM.
JHEP 12, 084 (2013). arXiv:1311.1663

0. StAdl, G. Weiglein, L. Zeune, Improved prediction for the
mass of the W boson in the NMSSM. JHEP 09, 158 (2015).
arXiv:1506.07465

K. Matchev, TASI lectures on precision electroweak physics, in
Particle physics and cosmology: the quest for physics beyond the


http://arxiv.org/abs/1507.08833
http://arxiv.org/abs/hep-ph/9606386
http://arxiv.org/abs/1207.7214
http://arxiv.org/abs/1207.7235
https://doi.org/10.1209/0295-5075/117/61002
https://doi.org/10.1209/0295-5075/117/61002
http://arxiv.org/abs/1509.05028
http://arxiv.org/abs/hep-ph/9409458
http://arxiv.org/abs/hep-ph/9603227
http://arxiv.org/abs/hep-ph/0104016v2
http://arxiv.org/abs/hep-ph/0201160
http://arxiv.org/abs/0712.0242
http://arxiv.org/abs/0801.2399
http://arxiv.org/abs/0904.1537
http://arxiv.org/abs/0910.2235
http://arxiv.org/abs/0906.0954
https://doi.org/10.1142/S0217732315501898
https://doi.org/10.1142/S0217732315501898
https://doi.org/10.1007/JHEP11(2015)207
http://arxiv.org/abs/0910.3167
http://arxiv.org/abs/1310.2985
http://arxiv.org/abs/1202.5717
http://arxiv.org/abs/1509.01765
http://arxiv.org/abs/1511.06211
http://benasque.org/2014imfp/talks_contr/296_Degrassi.pdf
http://benasque.org/2014imfp/talks_contr/296_Degrassi.pdf
https://doi.org/10.5170/CERN-2013-004
http://arxiv.org/abs/hep-ph/0604011
http://arxiv.org/abs/hep-ph/0611234
http://arxiv.org/abs/1306.2941
http://arxiv.org/abs/1106.5633
https://doi.org/10.5170/CERN-2011-002
http://arxiv.org/abs/1403.4427
http://arxiv.org/abs/1503.07589
http://pdg.lbl.gov/2015/tables/rpp2015-sum-gauge-higgs-bosons.pdf
http://pdg.lbl.gov/2015/tables/rpp2015-sum-gauge-higgs-bosons.pdf
http://arxiv.org/abs/hep-ph/0604147
http://arxiv.org/abs/0710.2972
http://arxiv.org/abs/1311.1663
http://arxiv.org/abs/1506.07465

Eur. Phys. J. C (2018) 78:22

Page 71 of 71 22

124.

125.

126.

standard model(s). in Proceedings, Theoretical Advanced Study
Institute, TASI 2002, Boulder, USA, June 3-28, 2002 (2004), pp.
51-98. arXiv:hep-ph/0402031

M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Reevaluation of
the hadronic contributions to the muon g-2 and to a(MZZ). Eur.
Phys. J. C 71, 1515 (2011). arXiv:1010.4180

Particle Data Group, Berkeley: K. Nakamura et al., Review of
particle properties. J. Phys. G 37, 075021 (2010)

G.W. Bennett, B. Bousquet et al., Final report of the E821 muon
anomalous magnetic moment measurement at BNL. Phys. Rev.
D 73, 072003(2006). arXiv:hep-ex/0602035

127.

128.

129.

S.M. Barr, A. Zee, Electric dipole moment of the electron and of
the neutron. Phys. Rev. Lett. 65, 21-24 (1990) [Erratum: Phys.
Rev. Lett. 65, 2920 (1990)]

D. Stockinger, Topical review: the muon magnetic moment
and supersymmetry. J. Phys. G 34, R45-R91 (2007).
arXiv:hep-ph/0609168

S. Heinemeyer, W. Hollik, G. Weiglein, Electroweak precision
observables in the minimal supersymmetric standard model. Phys.
Rep. 425, 265-368 (2006). arXiv:hep-ph/0412214

@ Springer


http://arxiv.org/abs/hep-ph/0402031
http://arxiv.org/abs/1010.4180
http://arxiv.org/abs/hep-ex/0602035
http://arxiv.org/abs/hep-ph/0609168
http://arxiv.org/abs/hep-ph/0412214

	SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates and precision observables
	Abstract 
	1 Introduction
	2 SpecBit
	2.1 Supported models and spectrum generators
	2.1.1 Standard model spectrum
	2.1.2 Spectrum generators for the MSSM
	2.1.3 Spectrum generators for the scalar-singlet dark matter model

	2.2 User interface and options
	2.2.1 General settings
	2.2.2 Standard model
	2.2.3 Scalar-singlet dark matter
	2.2.4 MSSM
	2.2.5 FlexibleSUSY options
	2.2.6 SPheno options
	2.2.7 Mass cut options

	2.3 Interface details for GAMBIT module writers (C++ API for !Spectrum! and related classes)
	2.3.1 Basic spectrum access
	2.3.2 !Spectrum! class structure
	2.3.3 !SubSpectrum! objects
	2.3.4 The !SMInputs! class
	2.3.5 Extra overloads for !get!/!set!/!has! functions

	2.4 Adding support for new models and/or codes
	2.5 Advanced spectrum usage: vacuum stability
	2.5.1 Likelihood details
	2.5.2 Code description

	2.6 Higgs couplings

	3 DecayBit
	3.1 Supported decays
	3.1.1 Standard model
	3.1.2 Scalar singlet
	3.1.3 MSSM

	3.2 Available functions and options
	3.2.1 Standard model
	3.2.2 Scalar singlet
	3.2.3 MSSM
	3.2.4 Collectors and helpers

	3.3 Code description and interface details
	3.3.1 The !DecayTable!
	3.3.2 Utilities
	3.3.3 A worked example: SM-like Higgs decays
	3.3.4 Adding support for new models and programs


	4 PrecisionBit
	4.1 Standard model nuisances
	4.1.1 Couplings
	4.1.2 Masses

	4.2 MSSM precision observables
	4.2.1 External code interfaces
	4.2.2 Electroweak precision observable likelihoods
	4.2.3 Precision-updated MSSM spectrum


	5 Examples
	5.1 Example YAML files
	5.2 3-BIT-HIT

	6 Summary
	Acknowledgements
	Appendices
	A Physics models
	A.1 Standard model
	A.2 Minimal supersymmetric standard model
	A.3 Scalar-singlet dark matter model

	B Spectrum generators as backends: SPheno
	B.1 Installation and import of variables/functions from the backend
	B.2 Input and output, warnings and errors
	B.3 Calculation of the spectrum

	C List of SpecBit !SubSpectrumContents! definitions
	D List of SpecBit !SubSpectrum! wrappers
	E !SubSpectrum! wrapper !GetterMaps! and !SetterMaps! function signatures
	F Adding support for new spectrum calculators
	F.1 SubSpectrumContents definitions
	F.2 Wrapping a simple parameter collection
	F.3 Interfacing directly with member functions of an external class
	F.4 Interfacing with non-class functions
	F.5 Index offsets
	F.6 Interfacing with renormalisation group running functions
	F.7 Constructing and returning !Spectrum! objects from module functions
	F.8 Scheme-dependence and other special dependency requirements
	F.9 Controlling wrapper lifetimes

	G Worked example of writing a !SubSpectrum! wrapper
	G.1 FlexibleSUSY MSSM wrapper

	7 Glossary
	References


