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1 Introduction

In paper [Vi07] A. Vishik using the techniques of symmetric operations in
algebraic cobordism proved that changing the base field by the function field
of a smooth projective quadric doesn’t change the property of being rational
for cycles of small codimension. This fact which he calls Main Tool Lemma
plays the crucial role in his construction of fields with u-invariant 2r + 1.

In the present paper we prove M.T.L. for the class of varieties introduced
by M. Rost in the context of the proof of Bloch-Kato conjecture. Namely, for
varieties which possess a special correspondence (see [Ro06, Definition 5.1]).
As in the Vishik’s proof the main technical tools are algebraic cobordism of
M. Levine and F. Morel [LM07], generalized Rost degree formula and divis-
ibility of Chow traces of certain Landweber-Novikov operations. Therefore,
we always assume that our base field k has characteristic 0.

We use the following notation. By k we denote the algebraic closure of
k and by Xk the respective base change X ×k k of a variety X. By K we

denote the function field of X. Given a prime p by Ch
∗
(X) we denote the

Chow ring of X modulo p-torsion taken with Z/p-coefficients, i.e., Ch
∗
(X) =

CH
∗
(X)/p, where CH

∗
(X) = CH∗(X)/(p-tors). We say that a cycle from

Ch
∗
(Xk) is defined over k if it belongs to the image of the restriction map

Ch
∗
(X) → Ch

∗
(Xk).

The following notion will be central in this paper

1.1 Definition. Let X be a smooth proper irreducible variety over a field k
of dimension n and p be a prime. Assume that X has no zero-cycles of degree
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coprime to p. Let d be an integer 0 ≤ d ≤ n. We say X is a d-splitting variety
mod p if for any smooth quasi-projective variety Y over k and all integers m
satisfying 0 ≤ m < d, the following condition holds

A cycle y ∈ Ch
m

(Yk) is defined over k ⇐⇒ y ×k K is defined over K (1)

1.2 Example. According to the results of A. Vishik

(a) any smooth projective quadric Q of dimension n is a [n+1
2

]-splitting
variety mod 2 (see [Vi07, Cor. 3.5.(1)]);

(b) a quadric Q is a n-splitting variety (mod 2) if and only if Q possesses
a Rost projector (see [Vi07, p. 373]).

The main result of the paper is the following

1.3 Theorem. Let X be a smooth proper irreducible variety over a field of
characteristik 0. Assume that X has no zero-cycles of degree coprime to p.
If X possesses a special correspondence in the sense of Rost, then X is a

n
p−1

-splitting variety and the value n
p−1

is optimal.

As an application of the techniques used in the proof of 1.3, we provide
a complete list of d-splitting projective homogeneous varieties of type F4.

To do this we introduce the following notation. Let G be a simple linear
algebraic group over k. We say a projective homogeneous G-variety X is of
type D, if the group Gk has root system of type D. Moreover, if Xk is the
variety of parabolic subgroups of Gk defined by the subset of simple roots
S of D, then we say that X is of type D/PS. In this notation PD defines a
Borel subgroup and Pi, i ∈ D, defines a maximal parabolic subgroup.

1.4 Corollary. Let X be a projective homogeneous variety of type F4 and p
be one of its torsion primes (2 or 3). Assume that X has no zero-cycles of
degree coprime to p. Then depending on p we have

p = 2: If X is of type F4/P4, then X is a (dim X)-splitting variety. For all
other types X is a 3-splitting variety and this value is optimal.

p = 3: X is always a 4-splitting variety and this value is optimal.
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2 Mod-p operations

In the present section we introduce certain operations

φq(t)
p : Ω∗ → Ch

∗
parametrized by q(t) ∈ Ch

∗
[[t]]

from the ring of algebraic cobordism Ω∗ of Levine-Morel to the Chow group
modulo p-torsion Ch

∗
, where p is a given prime. All the facts used here can

be found in [LM07], [Me03] and [Vi06].
Let CH

∗
and Ch

∗
denote the respective Chow groups modulo p-torsion.

Consider the commutative diagram

Ωm
S

k(p)
LN

//

pr

²²

Ωm+(p−1)k

pr

²²

CH
m

²²

CH
m+(p−1)k

²²

Ch
m Sk

// Ch
m+(p−1)k

,

where S
k(p)
LN is the Landweber-Novikov operation corresponding to the parti-

tion k(p) = (p − 1, p − 1, . . . , p − 1)
| {z }

k−times

, pr : Ω∗ → CH∗ → CH
∗
is the natural surjection

and Sk is the reduced p-th power operation. By the properties of reduced
power operations, Sk = 0 if k > m.

Define (cf. [Vi07, Prop. 2.1])

φt(p−1)a

p =
pr ◦ S

k(p)
LN

p
, where a = k − m.

By commutativity of the diagram φt(p−1)a

p is well-defined. If r is not divisible

by (p−1), then pr◦S
k(r)
LN = 0 and we set φtr

p = 0. Hence, we have constructed

an operation φtr

p , r > 0, which maps Ωm to Ch
r+pm

.

Finally, given a power series q(t) ∈ Ch
∗
[[t]] we define

φq(t)
p =

∑

r≥0

qrφ
tr

p , where q(t) =
∑

r≥0

qrt
r.
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By definition the operations φ
q(t)
p are additive and respect pull-backs.

Let E be a vector bundle over a smooth variety U , Consider its total
Chern class c(E) =

∏

j(t + ξj), where ξj are the roots. Define c(E)(p)(t) =
∏

j(t
p−1 + ξp−1

j ). Let E = TU be the tangent bundle of rank l. Set bl(U) =

deg c(−TU )(p). According to [Me03, §6] this number is always divisible by
p. Moreover, it is trivial if l is not divisible by (p − 1). We define the Rost
number ηp as

ηp(U) =
bl(U)

p
∈ Z/p.

We will extensively use the following property of the operation φp which
follows from the multiplicativity of Landweber-Novikov operations

2.1 Lemma. (cf. [Vi07, Prop.2.3]) Let U be a smooth projective variety of
positive dimension l and [U ] be its class in the Lazard ring L. Let β ∈ Ωj(X).
Then

φtr

p ([U ] · β) = ηp(U) · Sk(pr(β)), where r = (p − 1)(k − j) + lp > 0.

Observe that φtr

p ([U ] · β) = 0 if r is not divisible by (p − 1).

3 Construction of a cycle defined over k

In the present section we prove Theorem 1.3.

I. We proceed following the proof of [Vi07, Thm. 3.1]. Let Y be a smooth
projective variety over k. Let y ∈ Ch

m
(Yk) be such that yK is defined over K.

We want to show that y is defined over k for all m < d. Let Ω∗ be the algebraic
cobordism of Levine-Morel. There is a natural surjection pr : Ω∗ → Ch

∗
.

Consider the commutative diagram

ω
_

²²

Ωm(X × Y )

res

²²

pr
// // Ch

m
(X × Y )

p∗
// //

res

²²

Ch
m

(YK)

res

²²

u
_

²²

ω̄ Ωm(Xk × Yk)
pr

// // Ch
m

(Xk × Yk)
p̄∗

// // Ch
m

(YK) yK

where p : Spec(K) × Y → X × Y and the pull-back p∗ is surjective because
of the localization sequence for Chow groups. By the hypothesis there exists
a preimage u of yK by means of res. By surjectivity of pr and p∗, there exists
a preimage ω of u. Let ω̄ = res(ω).
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II. Let X be a variety which possesses a special correspondence. By the
results of [Ro06] this implies that

(a) n = ps − 1,

(b) ηp(Xk) 6= 0 mod p

(c) the Chow motive of X contains an indecomposable summand M which
over k splits as a direct sum of Tate motives shifted by the multiples
of d = ps−1

p−1

Mk ≃

p−1
⊕

i=0

Z/p{di}.

Let π be an idempotent defining M . We can choose ω in such a way
that the realization ρ = π∗(ω̄) ∈ Ωm(Xk × Yk) will have the following form
(cf. [Vi07, p.368])

ρ = xn × yn +
∑

i

xi × yi + x0 × y0, (2)

where the sum in the middle is taken over all i ∈ {d, 2d, . . . , (p − 2)d},
xi ∈ Ωi(Xk), yi ∈ Ωm−n+i(Yk) are certain cobordism classes, x0 is the class
of a rational point, xn = π∗(1) is the class given by a proper birational
morphism X̂ → Xk and pr(yn) = y (cf. [Vi07, Lemma 3.2]).

III. Consider the cycle φtr

p (pY ∗(ρ)) ∈ Ch
∗
(Yk) defined over k. It has codi-

mension m, if r = (dp − m)(p − 1) > 0.

3.1 Lemma. φtr

p (pY ∗(ρ)) = ηp(Xk) · y + φtr

p (y0).

Proof. Applying Lemma 2.1 to each summand xi × yi in the middle of (2)
we obtain

φtr

p (pY ∗(xi × yi)) = ηp(xi) · S
(n−i)/(p−1)(pr(yi)).

Since pr(yi) ∈ Ch
m−n+i

(Yk) and m−n+ i ≤ m−n+(p−2)d = m−d < 0, it
must be trivial. Hence, only the very right and left summands of (2) survive.

By Rost Degree Formula [LM07, Cor. 13.8] we have

xn = 1 +
∑

uZ∈L>0

uZ · [Z → Xk]. (3)
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Since π is an idempotent, π∗ ◦ π∗(1) = π∗(1). The latter implies that

π∗(
∑

uZ · [Z → Xk]) =
∑

uZ · π∗([Z → Xk]) = 0.

Hence, applying ηp we get

0 =
∑

uZ∈L>0

ηp

(

uZ · π∗([Z → Xk])
)

= upt +
∑

uZ∈L<n

uZ · π∗([Z → Xk]).

Since ηp(uZ · π∗([Z → Xk])) is divisible by p if uZ ∈ L<n, we obtain that
ηp(upt) = 0 mod p.

Therefore, for the very left summand of (2) we get

φtr

p (pY ∗(xn × yn)) = ηp

(

[Xk] +
∑

uZ∈L<n

uZ · [Z] + upt

)

· pr(yn) = ηp(Xk) · y.

Observe that ηp(uZ · [Z]) is divisible by p if uZ ∈ L<n.

Consider the cycle pY ∗(φ
tr

′

p (ρ)) ∈ Ch
∗
(Yk) defined over k. It has codimen-

sion m, if r′ = (d − m)(p − 1) > 0.

3.2 Lemma. pY ∗(φ
tr

′

p (ρ)) = φtr(y0).

Proof. By definition pY ∗(φ
tr

′

p (xi × yi)) = pY ∗(
1
p
· pr(S

d(p)
LN (xi × yi))). By mul-

tiplicativity of S∗
LN the latter can be written as

pY ∗(
1
p
· pr(S

d(p)
LN (xi × yi))) = pY ∗(

1
p
·

∑

α+β=n

pr(Sα
LN(xi)) × pr(Sβ

LN(yi))) =

=
∑

α+β=d(p)

1
p
· deg

(

pr(Sα
LN(xi))

)

· pr(Sβ
LN(yi)) =

Since m < d, yi has negative codimension for all i < n, therefore, pr(Sβ
LN(yi))

is divisible by p for all i < n.
On the other hand, we have S∗ = S∗ · c(−TX

k
)(p), where S∗ (resp. S∗) are

the (co-)homological operations. Hence,

deg
(

pr(Sα
LN(xi))

)

= deg
(

S∗(pr(xi)) · c(−TX
k
)(p)

)

.

Since all Chern classes of the tangent bundle of Xk are defined over k, and
X possesses a special correspondence, according to [Ro06, Lemma 9.3] we
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obtain that deg
(

S∗(pr(xi)) ·c(−TX
k
)(p)

)

is congruent to deg(S∗(pr(xi))) mod
p. Since S∗ respect push-forwards, deg(S∗(pr(xi))) is trivial mod p for all
i > 0. Hence, deg

(

pr(Sα
LN(xi))

)

is divisible by p for all i > 0.
Combining all together we get

pY ∗(φ
tr

′

p (ρ)) =
∑

|α|=n

1
p
deg

(

pr(Sα
LN(xn))

)

y + φtr

p (y0) = φtr

p (y0),

since Sα
LN(xn) = 0.

By Lemmas 3.1 and 3.2 the following cycle is defined over k

φtr

p (pY ∗(ρ)) − pY∗
(φtr

′

p (ρ)) = ηp(Xk) · y.

Since ηp(Xk) 6= 0 mod p, the cycle y is defined over k, therefore, X is a
d-splitting variety.

To see that d = n
p−1

is an optimal value take Y = X and consider the

cycle y ∈ Ch
d
(Xk) defining the Tate motive Z/p{n−d} in the decomposition

of the Rost motive M over k. Since M splits over K, yK is defined over K.
By condition (1) it implies that y is defined over k, i.e., M splits over k which
contradicts to the indecomposability of M . The theorem is proven.

4 F4-varieties

In the present section we apply our methods to describe all d-splitting vari-
eties of type F4.

I. Let X be a smooth proper irreducible variety over a field k. As in the
beginning of the proof of 1.3 given a cycle y ∈ Ch

m
(Yk) we construct a

cobordism class ω̄ ∈ Ωm(Xk × Yk) defined over k.
Assume that the motive of X contains a motive M = (X, π) such that

the idempotent π can be written as

πk = γ × γ∗ +
∑

i

xi × x∗
i ,

where γ ∈ Ω(p−1)d(Xk) is defined over k, γ∗ denotes its Poincare dual, i.e.,
pr(γ · γ∗) = pt and xi ∈ Ωi(Xk), i ∈ {0, d, 2d, . . . , (p − 2)d}.
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Then the realization ρ = π∗(p
∗
X(γ) · ω̄) ∈ Ωm+n−g(Xk × Yk), g = (p− 1)d,

can be written as (cf. (2))

ρ = γ × yg +
∑

i

xi × yi + x0 × y0,

where xi ∈ Ωi(Xk), yi ∈ Ωm−g+i(Yk), i ∈ {d, 2d, . . . , (p − 2)d}.
As in the proof of Lemma (3.1) we obtain that for r = (dp−m)(p−1) > 0

and any m < d the following cycle in Ch
m

(Yk) is defined over k

φtr

p (pY ∗(ρ)) = ηp(γ) · y + φtr

p (y0).

The transposed cycle πt defines a direct summand M t = (X, πt) of the
motive of X (the one which over k contains the generic point of X). The
realization ρ′ = πt

∗(ω̄) ∈ Ωm(Xk × Yk) can be written as

ρ′ =
∑

i

x(i) × y(i) + γ∗ × y(g),

where x(i) ∈ Ωi(Xk), i ∈ {0, d, 2d, . . . , (p − 2)d}, y(g) = y0.

Consider the cycle δ = pY ∗(p
∗
X(γ) · φtr

′

p (ρ′)). It is defined over k and for

r′ = (d − m)(p − 1) > 0 belongs to Ch
m

(Yk). Assume that δ = φtr

p (y0), then
subtracting it from φtr

p (pY ∗(ρ)) we obtain the cycle ηp(γ) · y. Hence, to prove
that X is a d-splitting variety it is enough to show that ηp(γ) 6= 0 mod p
and δ = φtr

p (y0).

II. Observe that for p = 2 we have δ = φtr

p (y0) by simple dimension reasons.
Indeed, in this case the cycle ρ′ consists only of two terms

ρ′ = x(0) × y(0) + γ∗ × y(g),

where the first summand vanishes in δ, since Sα
LN(x(0)) = 0 if |α| > 0 and

the second summand gives the required cycle φtr

p (y0).
For p = 3 the cycle ρ′ consists of three terms

ρ′ = x(0) × y(0) + x(d) × y(d) + γ∗ × y(g),

where again the first summand vanishes, the last gives φtr(y0) and the middle
gives

∑

α+β=d

deg
(

pr(γ · Sα
LN(x(d)))

)

· 1
p
pr(Sβ

LN(y(d))), where |α| = p−2
p−1

d. (4)
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III. Given an F4-variety X we provide a cycle γ satisfying the conditions
above as follows

p = 2: If X is generically split, then we may assume that X is of type
F4/P1. By the main result of [PSZ] the cycle

γ = H · c4(TX
k
) · c7(TX

k
),

where H is a generator of the Picard group of Xk defined over k, is the
generic point of a Rost motive sitting inside the motive of X. Observe that
[γ] = [Q3] is represented by the class of a 3-dimensional quadric. Hence,
η2(Q3) = 1 mod 2 and X is a d-splitting variety with d = 3.

If X is not generically split, i.e., X is of the type F4/P4, then M(X)
contains a Rost motive with γ = [X], i.e., X is a variety which possesses
a special correspondence. Indeed, one can show that X is a norm variety
corresponding to the cohomological invariant f5. Hence, X is a n-splitting
variety (here n = 15).

p = 3 In this case all F4-varieties are generically split. Hence, by the
results of [PSZ] the motive of X contains a generalized Rost motive with the
generic point given by the cycle

γ = H7.

The direct computation using the Adjunction formula shows that η3([H
7]) 6=

0 mod 3. Moreover, in this case the expression (4) will have the following
form

deg
(

γS2(pr(x(4)))
)

· φt12−2m

p (y(4)).

which is equal to zero since S2(pr(x(4))) is equal to zero. Hence, X is a
d-splitting variety with d = 4.

4.1 Remark. Let X be a d-splitting geometrically cellular variety. As an im-
mediate consequence of the definition of a canonical p-dimension (see [KM06])
we obtain the following inequality

cdp(X) ≥ d.

In the case of a variety of type F4/P4 it gives cd2(X) = dim X = 15.
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