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This article presents numerical work on a special case of the cosmological semi-
classical Einstein equation (SCE). The SCE describes the interaction of relativistic
quantum matter by the expected value of the renormalized stress-energy tensor of a
quantum field with classical gravity. Here, we consider a free, massless scalar field
with general (not necessarily conformal) coupling to curvature. In a cosmological sce-
nario with flat spatial sections for special choices of the initial conditions, we observe
a separation of the dynamics of the quantum degrees of freedom from the dynamics
of the scale factor, which extends a classical result by Starobinski [39] to general
coupling. For this new equation of fourth order governing the dynamics of the scale
factor, we study numerical solutions. Typical solutions show a radiation-like Big
Bang for the early universe and de Sitter-like expansion for the late universe. We
discuss a specific solution to the cosmological horizon problem that can be produced
by tuning parameters in the given equation. Although the model proposed here only
contains massless matter, we give a preliminary comparison of the obtained cosmol-
ogy with the ΛCDM standard model of cosmology and investigate parameter ranges
in which the new models, to a certain extent, is capable of assimilating standard
cosmology.

Key words: Semiclassical Einstein equation • cosmology • higher derivative gravity • asymp-
totic de Sitter solutions

1 Introduction

This paper introduces a new set of cosmological equations that emerge as a special case from
the semiclassical Einstein equation (SCE). The SCE is proposed as a minimal modification to
general relativity that takes quantum matter into account, see e.g. [7, 16, 22, 41]. While the
SCE is generally not believed to be a fundamental theory, it is widely studied in situations
where the relevant physics takes place on scales that are well separated from Planck scale and
in cosmological scenarios [38]. Many special or approximate cosmological solutions to the SCE
have been reported [9, 15,15,25,26,39].

The mathematical understanding of the SCE has only advanced recently for the case of cos-
mological applications [18, 31, 34, 35]. The intrinsic reason for the difficulties in formulating the
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SCE in a mathematically consistent fashion lie in the higher derivatives that occur due to the
covariant renormalization of the stress-energy tensor [24, 32] leading to an implicit definition
of the dynamical system for the SCE [13]. In [18], however, the dynamical degrees of freedom
of the quantum field were redefined using certain expansions of the two point functions of the
quantum field in homogeneous distributions as renormalization scheme and inserting correc-
tion terms in order to guarantee the equivalence with the standard Hadamard point splitting
renormalization. In this way, one obtains a formulation of the cosmological SCE as an explicit,
infinite-dimensional dynamical system. Here the (infinitely many) dynamic degrees of freedom
of the quantum field enter via the prefactors of the aforementioned expansion and are organized
in a ‘tower of moments’. In particular, this is possible for arbitrary (not necessarily conformal)
coupling of the quantized field to the scalar curvature.

The present paper is based on a crucial observation, namely that (a) the dynamic equation
for the tower of moments is linear homogeneous and that (b) there are massless physical states
for all (not necessarily conformal) couplings with vanishing moments as initial conditions. As
a homogeneous linear equation maps zero initial data to the vanishing solution, the dynamics
of the quantum field effectively decouples from the dynamics of the scale factor. Therefore
we derive a fourth order system of equations for the scale factor where quantum effects enter
only via geometric terms. This extends the classical Starobinski cosmologies for the conformal
coupling [39] to general couplings.

The present paper is devoted to the description and the detailed numerical investigation of
this new system of cosmological equations. In particular, we review the derivation and the
special assumptions on which these equations are based on. Moreover, we give a few examples
of explicit solutions for certain settings of the parameters including Minkowski and de Sitter-
phases and discuss approximate solutions that relate to higher order gravity [6,14]. These latter
approximate solutions incorporate both a radiation like Big Bang (sufficiently far off the Planck
scale) with a slow-down in expansion speed and a re-acceleration phase prior to an asymptotic
de Sitter phase for the late universe. Thereafter we provide numerical evidence that for large
regions of the parameter space the numerical solutions for generic parameter settings reproduce
this behavior.

Furthermore we provide a numerical exploration of solutions in dependence of the parameters.
Among these solutions we highlight a subset that relates to a solution of the cosmological horizon
problem proposed by N. Pinamonti [34] and based on the diverging negative conformal time for
the Big Bang.

In addition, we discuss parameter settings that assimilate solutions to our equations to solu-
tions of the ΛCDM standard model of cosmology. This is done for two reasons: On the one hand,
it may be viewed as a case study about how flexible cosmological models from the SCE can be,
particularly, to anticipate features of more realistic SCE-cosmologies that involve more suitable
forms of matter compared to massless scalar quantum fields. On the other hand, we wish to
identify some preliminary ideas on the order of magnitude of parameters that enter the SCE.
Here, we apply the ∆Neff-test proposed by T.-P. Hack as a test for the SCE at redshift factor
z = 3000, corresponding to the emission of the cosmic microwave background [22]. In particular,
interesting parameter regions seem to be close (but not restricted) to conformal coupling ξ = 1

6 .
These first insights of course require confirmation from models with more realistic compositions
of matter.

The qualitative results presented in our paper are in line with prior analytical and numerical
work by other authors. While the Minkowski solution to the SCE is obvious, de Sitter phases
for conformal coupling and massless fields have been found by A. A. Starobinski [39]. Recently,
special solutions of de Sitter type have been found by B. A. Juaréz for massless and massive
quantum fields for special settings of parameters in the Bunch-Davies vacuum state [25]. Here,
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we find further such solutions for special parameter sets of our new model’s equations that lead
to de Sitter type expansion [17].

Asymptotic de Sitter solutions without introducing a cosmological constant have been ob-
served e.g. in [9] for a dynamical system derived from the SCE with a massive quantum field
for conformal coupling and approximate KMS-like states, see also the in-depth discussion in [22]
(and references therein) and the recent study of M. Hänsel [23] on the phase diagram of the
massless SCE with conformal coupling. All these works, however, are restricted to conformal
coupling, whereas, in the present article, we extend this type of results to non-conformal cou-
pling.

Prior work on the numerics of the SCE has been given by P. R. Anderson [2–5]. In contrast to
our work, the quantum fields in the first three articles are only corrections to classical background
fields. Here, asymptotically classical solutions close to the Big Bang are found for generic values
of the renormalization constants. As the numerics in these works is restricted to the very early
universe shortly after the Big Bang, this is in line with our findings of a radiation like Big Bang
for massless scalar fields (Anderson also treats massive fields). In [5], where no background fields
are assumed, de Sitter solutions are found as well. The conformal ansatz to set initial conditions
at the Big Bang is again restricted to ξ = 1

6 , which is not the case in our system.
Work on the comparison of SCE-cosmology with the ΛCDM model can be found in [15,20–22],

again mostly for conformal coupling. Here, in particular, we employ similar methods for a
parameter screening of the SCE in our special system of cosmological equations with more
general coupling.

Our paper is organized as follows: In Section 2 we recapitulate the moment formulation of the
SCE. Section 3 derives our special, decoupled cosmological models and proves that they lead
to full solutions of the SCE. The subsequent Section 4 discusses special de Sitter solutions, the
settings for initial conditions and parameters. Also, the state variable is introduced in order to
compare the matter content generated by the quantum field with the matter content of perfect-
fluid Friedmann-type cosmologies. Finally, Section 4 contains the first numerical results of this
paper. In Section 5 we then provide parameter studies for numerical solutions and also include
a short digression into the cosmological horizon problem. Furthermore, w show in Section 6 that
our solutions can be fitted to the ΛCDM standard cosmology such that they completely lie in
the uncertainty band of the ΛCDM model. Finally, we identify promising regions for parameters
using the ∆Neff-test as suggested in [22]. Section 7 contains our conclusions and some comments
on future research.

2 The moment approach to the cosmological SCE

This section introduces our notation and briefly recapitulates the moment approach to the
cosmological SCE as introduced in [18]. We consider the semiclassical Einstein equation

Gµν = κ
〈
T ren
µν

〉
ω

(1)

with the metric’s sign convention (−,+,+,+). Here, Gµν is the Einstein tensor and
〈
T ren
µν

〉
ω

is
the renormalized stress-energy tensor of a free, scalar and chargeless quantum field. The field
dynamics is given by the Klein-Gordon (KG) equation,

[
�+m2 + ξR

]
φ = 0, (2)

where � = −gµν∇ν∇µ is the d’Alambertian associated with the Levi-Civita connection ∇ for
the Lorentzian metric gµν . ξ ∈ R parameterizes the curvature coupling and m ≥ 0 defines the
field’s mass. The special case ξ = 1

6 is referred to as conformal coupling. Let Gret/adv be the
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retarded and advanced fundamental solutions to the KG-equation, then φ is quantized such that
it fulfills the canonical commutation relations (CCR) [φ(x), φ(y)] = i (Gret(x, y)−Gadv(x, y)),
see e.g. [11, 12, 16, 41]. Note that with φ, also αφ for α ∈ R \ {0} is another legitimate local
quantum field. By the CCR in the given shape, we are normalizing the field strength to α = 1
and we obtain κ = 8πGNα

2, where GN is Newton’s gravitational constant. The field strength
remains as a free parameter of the theory, for notational brevity, however, we view κ > 0 as the
free parameter of the model.

The expectation value of the renormalized stress-energy tensor
〈
T ren
µν

〉
ω

is obtained by sub-
tracting the Hadamard parametrix H(x, y) from the two point function ω(φ(x)φ(y)) of the
quantum fields, applying a certain partial differential operator to ω(φ(x)φ(y)) − H(x, y) and
performing the point splitting limit y → x, see [8,32]. If ω(φ(x)φ(y))−H(x, y) is infinitely often
differentiable, the state ω(·) is a so-called Hadamard state [16, 37]. The Hadamard parametrix
is given by the asymptotic expansion of the singular part of ω(·) in powers of the Synge world
function σ(x, y) and

H(x, y) = lim
ε→+0

1

8π2


 ∆(x, y)1/2

σ(x, y) + iε(t(x)− t(y))
+ log

(
σ(x, y)

λ2

) n∑

j=0

νj(x, y)σ(x, y)j


 , (3)

where t is a time function, ∆(x, y) is the van Vleck-Morette determinant and σ(x, y), for x, y in a
geodesically convex neighborhood, is the Synge world function [16,41]. The coefficient functions
νj(x, y) are obtained recursively by the requirement that the Hadamard parametrix (truncated
to order n) should fulfill the Klein-Gordon Equation (2) (up to powers σn+1(x, y)) [16,32].

In the following, we restrict to flat cosmological space-times I × R3, where I ⊆ R is a time
interval and R3 is the Cauchy surface. Further, the metric is given by

g = −dt2 + a(t)2d~x2. (4)

Here, t = t(x) is the cosmological time and a(t) is the scale factor. We apply the convention
that t = t0 = 0 and a(t0) = 1 stand for the present state of the universe. Note that, throughout
this article, a is assumed to be sufficiently large in order to not come amiss to the Planck scale.
In particular, if we speak of a Big Bang, which usually refers to a zero of a, we refer to the phase
in direct proximity to such a zero but remote enough to justify the expectation that the SCE
is still a valid approximation to any sort of underlying theory in that regime. However, in our
mostly numeric approach a typical break-down magnitude for a solver is a ≈ 10-7 to a ≈ 10-9,
which is several orders of magnitude larger than the Planck regime.

An alternative way to parameterize space-time is by a conformal time coordinate. Using the
scale factor a(t), it is given by τ(t) =

∫ t
t0

dt
a(t) . Since dτ(t) = dt

a(t) , we see that −dt2 + a(t)2d~x2

= a2(τ)(−dτ2 + d~x2), from which we instantly derive the conformal equivalence of the metric
on the cosmological space-time with the flat metric on a suitable section of Minkowski space.
Here, we use the (slightly misleading) convention a(τ) for the scale factor a(t) at conformal time
τ = τ(t).

To study the dynamics of the SCE in the cosmological context, we wish to cast (1) in an
initial value form. As described in our previous work [18], this can be achieved via the following
procedure:

(i) We consider fixed time fields and momenta ϕ(τ, ~x) = a(τ)φ(τ, ~x), π(τ, ~x) = ∂τϕ(τ, ~x) and
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a quasi free state ω evaluated on these fields

G(τ, r) =



Gϕϕ(τ, r)
G(ϕπ)(τ, r)

Gππ(τ, r)


 = lim

τ ′→τ




ω(ϕ(τ, ~x)ϕ(τ, ~y))
1
2ω(ϕ(τ, ~x)π(τ, ~y) + π(τ, ~x)ϕ(τ, ~y))

ω(π(τ, ~x)π(τ, ~y))


 (5)

Here, it is assumed that the state ω(·) is homogeneous on fixed time fields and isotropic on the
flat time sections, i.e. does only depend on r = |~x− ~y|. Also note that only the symmetric part
of the two point function enters (5) as the anti symmetric part is fixed by the CCR.

(ii) We rewrite the dynamics of the field (2) in conformal time as a dynamical equation for
G(τ, r) and obtain

∂τG(τ, r) =




0 2 0
∆r − V 0 1

0 2(∆r − V ) 0


G(τ, r) (6)

with V = (6ξ − 1)a
′′

a + a2m2 and ∆r = r−2∂rr
2∂r.

(iii) Considering the corresponding fixed time formulation for r = |~x− ~y| at conformal time τ

H̃(τ, r) =



H̃ϕφ(τ, r)

H̃(ϕπ)(τ, r)

H̃ππ(τ, r)




=




a(τ)2Hn((τ, ~x), (τ, ~y)),
1
2 (∂τa(τ)a(τ ′)Hn((τ, ~x), (τ ′, ~y)) + ∂τ ′a(τ)a(τ ′)Hn((τ, ~x), (τ ′, ~y)))τ ′=τ

(∂τ∂τ ′a(τ)a(τ ′)Hn((τ, ~x), (τ ′, ~y)))τ ′=τ




(7)

of the Hadamard parametrix (3), we obtain 〈T ren
µν 〉, evaluated at conformal time, by applying a

partial differential operator Tµν to G − H̃. After restricting to the diagonal, this yields a R4×4

valued tensor function. In the following we denote this restriction to ~x = ~y or r = 0 by [ · ]. In
addition, terms that express renormalization freedom occur. Given that off-diagonal terms of
the stress-energy tensor vanish for flat cosmological space-time, we can express the renormalized
stress-energy tensor via its energy component 〈T ren

00 〉 and trace 〈T ren〉 = gµν〈T ren
µν 〉, see [18].

Therewith,

〈T ren〉 =
(
(6ξ − 1)(ξR+m2)−m2

) 1

a2
[Gϕϕ − H̃ϕϕ]− 6ξ − 1

a4

(
[∆r(Gϕϕ − H̃ϕϕ)]

+
1

a2
[Gππ − H̃ππ] +

a′2

a4
[Gϕϕ − H̃ϕϕ]− 2

a′

a3
[G(ϕπ) − H̃(ϕπ)]

)

− 9ξ − 2

2π2
[v1] + 4c1m

4 − c2m
2R− (6c3 + 2c4)�R,

(8)

where R = 6a
′′

a3
, �R = 36a

′′a′ 2

a7
− 18a

′′ 2

a6
− 24a

(3)a′

a6
+ 6a

(4)

a5
and [v1] is the conformal anomaly

[v1] =
m4

8
+

1

60

(
a′ 4

a8
− a′′a′ 2

a7

)
+

(6ξ − 1)m2

4

a′′

a3
+

(6ξ − 1)2

8

a′′ 2

a6

+
5ξ − 1

20

(
6
a′′a′ 2

a7
− 3

a′′ 2

a6
− 4

a(3)a′

a6
+
a(4)

a5

)
.

(9)
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Moreover,

〈T ren
00 〉 =

1

2
[Gππ − H̃ππ]− 1

2a2
[∆r(Gϕϕ − H̃ϕϕ)] +

1

2
m2[Gϕϕ − H̃ϕϕ]

+ ξ

(
G00

a2
[Gϕϕ − H̃ϕϕ] + 6

a′

a
[G(ϕπ) − H̃(ϕπ)]− 6

a′2

a2
[Gϕϕ − H̃ϕϕ]

)

− a2

4π2
[v1]− c1a

2m4 + c2m
2G00 + (3c3 + c4)J00.

(10)

with G00 = 3a
′ 2

a2
and J00 = −24a

′′a′ 2

a5
− 6a

′′ 2

a4
+ 12a

(3)a′

a4
.

(iv) One of the problems with the Hadamard parametrix H̃(τ, r) is that it does not fulfill
a well-defined set of dynamic equations. Therefore we introduce an auxiliary (non-covariant)
parametrix

Hn(τ, r) =




0
0

γ−1(τ)


h−2(r) +

n∑

l=0




αj(τ)
βj(τ)
γj(τ)


h2j(r) (11)

with the homogeneous distributions hz(r) = eizπ/2

2π2
rz−2

Γ(z)

(
log
(
r
µ

)
− ψ(z)

)
defined for z ∈ C via

analytic continuation and depending on some parameter µ > 0. Here, ψ(z) denotes the Digamma
function. Using ∆rhj(r) = hj−2(r), we obtain the coefficient functions αl(τ), βl(τ) and γl(τ)
recursively by the starting condition γ−1 = 1

2 , α0 = 1
2 and β0 = 0 and the equation

∂τHn −




0 2 0
∆r − V 0 1

0 2(∆r − V ) 0


Hn(τ, r) = O(r2(n−1)). (12)

Then, we can rewrite expressions like [G]−H̃],n] as [G]−H],n]+[H],n−H̃],n], ] ∈ {ϕϕ, (ϕπ), ππ},
or [∆r(G] − H̃],n)] as [∆r(G] − H],n)] + [∆r(H],n − H̃],n)]. The second term in these sums can
be evaluated explicitly in terms of the scale function a(τ) and its derivatives up to order four as
long as the order n is chosen larger or equal 2.

(v) We define a sequence of so-called moment functions

Mn,] = [∆n
r (G] −H],j)],

] ∈ {ϕϕ, (ϕπ), ππ}, and arrange these three real-valued functions of time into R3-valued func-
tions Mn = (Mn,ϕϕ,Mn,(ϕπ),Mn,ππ)> ∈ R3, which are independent of j provided that j ≥ n+1.
From (6) and (12) we deduce the following recursive set of equations

∂τMn = AMn +BMn+1 with A =




0 2 0
−V 0 1
0 −2V 0


 and B =




0 0 0
1 0 0
0 2 0


 . (13)

Introducing sequences M = (Mn) in weighted, discrete Lp-spaces ~̀p(w) = R3 ⊗ `p(w) with
weights wn = w−n, w > 1, we obtain the dynamical system

∂τM = (A⊗ 1 +B ⊗ L)M, (14)

where L is the left-shift operator on ~̀p(w). It has been shown that this infinite dynamical system
has maximal solutions in conformal time τ for any four-times-differentiable scale function a(τ).

(vi) We consider the energy and the trace equation derived from the semiclassical Einstein
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equation (1)
−R = gµνGµν = κ

〈
T ren

〉
ω

and G00 = κ
〈
T ren

00

〉
ω
, (15)

respectively. Wrapping up (i)–(v) above, one obtains

0 =

(
−12(3c3 + c4)− 1

480π2
+

6ξ − 1

48π2
+

(6ξ − 1)2

16π2
log(aλ0)

)

·
(
a(4)

a5
− 4

a(3)a′

a6
− 3

(a′′)2

a6
+ 6

a′′(a′)2

a7

)

+
(6ξ − 1)2

32π2

(
4
a(3)a′

a6
+ 3

(a′′)2

a6
− 10

a′′(a′)2

a7

)
+

1

240π2

(
−a
′′(a)2

a7
+

(a′)4

a8

)

+

(
6

κ
+m2

(
−6c2 +

1

48π2
+

6ξ − 1

8π2

(
1 + log(aλ0)

))) a′′

a3

+
(6ξ − 1)m2

16π2

(a′)2

a4
+m4

(
4c1 +

1

32π2
+

1

8π2
log(aλ0)

)

− m2

a2 Mϕϕ,0 + (6ξ − 1)

((
6ξ
a′′

a5
− (a′)2

a6
+
m2

a2

)
Mϕϕ,0

+2
a′

a5M(ϕπ),0 −
1

a4

(
Mππ,0 + Mϕϕ,1

))

(16)

for the trace equation and

0 =

(
6(3c3 + c4) +

1

960π2
− 6ξ − 1

96π2
− (6ξ − 1)2

32π2
log(aλ0)

)

·
(

2
a(3)a′

a4
− (a′′)2

a4
− 4

a′′(a′)2

a5

)

− (6ξ − 1)2

16π2

a′′(a′)2

a5
+

1

960π2

(a′)4

a6
−m4

(
c1 +

1

32π2
log(aλ0)

)
a2

+

(
−3

κ
+m2

(
3c2 −

1

96π2
− 6ξ − 1

16π2

(
1 + log(aλ0)

))) (a′)2

a2

+
m2

2
Mϕϕ,0 + (6ξ − 1)

(
−(a′)2

2a4 Mϕϕ,0 +
a′

a3M(ϕπ),0

)

+
1

2a2

(
Mππ,0 −Mϕϕ,1

)

(17)

for the energy constraint, see [18] for the details of the calculation. We note that the respective
first lines of (16) and (17) only consist of quantum contributions of the field, that is, of terms
originating in the renormalization freedom and the trace anomaly as well as expicitly state-
dependent contributions (the log-terms).

While the (infinite dimensional) dynamical system from (14) and (16) is well posed for any set
of initial conditions (a, a(1), a(2), a(3))> ∈ R3 and M ∈ ~̀p(w), it is, however, not clear whether
there exists a Hadamard state ω for a given set of moments M. Let us therefore shortly comment
on physical initial conditions from the ‘tow-in’ technique as described in [18] that guarantees the
existence of physical solutions for at least a subset of moments. For this purpose, a Hadamard
state and the corresponding tower of moments are prepared on some simple space-time, e.g.
Minkowski space-time. Then, after a short waiting time, the space-time is deformed by an
auxiliary dynamical equation that ‘tows’ the vector of initial conditions (a(τ), . . . , a(3)(τ))> to
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some desired vector of initial conditions (a0, . . . , a3)> ∈ R4. Both the Hadamard state and the
tower of moments propagate forward accordingly. After the tow-in phase, an interpolation phase
follows where the auxiliary dynamics of (a(τ), . . . , a(3)(τ))> and M(τ) is quickly interpolated to
the dynamics of the SCE given by (12) and (16). Thereafter the system follows this dynamic.
It can be shown that the latter can be done in a way that (a) the energy constraint (17) and
thereby the full SCE is fulfilled and (b) the initial conditions with respect to the dynamics a(t)
lie in an ε-neighbourhood to (a0, . . . , a(3))

> for arbitrarily small ε > 0. For the details, we refer
to [18, Thm. 5.11].

As the last statement of this preparatory section, we present the tower of moments for the
Minkowski state with scale factor a(τ) = 1. As computed in [18, (4.8)], the moments M in this
case are given by

Mϕϕ,n =
1

2π2

(
1
2m
)2n+2

(
log(1

2mµ) + ψ(2n+ 2)− 1
2

(
ψ(n+ 1) + ψ(n+ 2)

))(2n+ 1

n+ 1

)
,

M(ϕπ),n = 0,

Mππ,n =
1

π2

(
1
2m
)2n+4

(
log(1

2mµ) + ψ(2n+ 2)− 1
2

(
ψ(n+ 1) + ψ(n+ 3)

)) (2n+ 1)!

n!(n+ 2)!
.

(18)

It has been shown that M ∈ ~̀p(w) for sufficiently large weights w.

3 The cSCE with zero mass and Minkowski-vacuum-like states as a
dynamical system

Two observations in the dynamics of the moments in (14) and the formula for the moments
of the Minkowski vacuum state in (18) are remarkable: At first, (14) is a linear homogeneous
differential equation. At second, the moments for the Minkowski vacuum state vanish for m = 0,
i.e. M = 0 is fulfilled at the initial point of the ‘tow-in’ process, and hence M(τ) = 0 holds on the
entire cosmological space-time with expansion history a(τ) that partially consists of the tow-in
phase and partially of the SCE phase. Thus, the quantum state completely decouples from the
dynamics of the space-time. In this case, all terms in (16) and (17) that are proportional to m2,
m4 and M are eliminated which largely simplifies our equations. Additional justification that
this procedure actually results in physical solutions is given in Theorem 1 below. Finally, one
obtains a fourth-order ODE for the scale factor a(τ) together with a third-order constraint.

Furthermore, since we are interested in cosmology including solutions with a Big Bang, we
re-express the dynamic equations for a(τ) given in conformal time τ in cosmological time t. This
is done in order to deal with Big Bang-solutions, as in some cases a Big Bang-event a(t) = 0 is
shifted to conformal time τ = −∞, see also Subsection 5.3.

Formally, we substitute d
dτ = a(t) ddt into the trace equation1 and obtain

0 = (k2 log(λ0 a)− k1)

(
a(4)

a
+ 3

ȧa(3)

a2
+
ä2

a2
− 5

ȧ2ä

a3

)

+
k2

2

(
4
ȧa(3)

a2
+ 3

ä2

a2
+ 12

ȧ2ä

a3
− 3

ȧ4

a4

)
− k3

ȧ2ä

a3
+ k4

(
ȧ2

a2
+
ä

a

)
,

(19)

where we use the dot as a symbol of derivatives w.r.t. cosmological time and for the ease of

1Here we employ the convention that an expression a(k) in an equation with dot-derivatives denotes the k-th
derivative w.r.t. cosmological time whereas in an equation with prime derivatives the same expression stands
tor a k-th conformal derivative. The same convention applies to initial conditions (a0, . . . , a3).
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notation we introduced

k1 = 12(3c3 + c4) +
1

480π2
− 6ξ − 1

48π2
,

k2 =
(6ξ − 1)2

16π2
≥ 0, k3 =

1

240π2
> 0, k4 =

6

κ
> 0.

(20)

The parameters k1, k2, k3 are dimensionless, but a numerical value of k4 depends on the chosen
unit system. Moreover, as noted before, k1 consists only of quantum contributions. The energy
constraint in the present setting reads

0 = − (k2 log(λ0 a)− k1)

(
ȧa(3) − 1

2
ä2 +

ȧ2ä

a
− 3

2

ȧ4

a2

)

− k2

(
ȧ2ä

a
+
ȧ4

a2

)
+
k3

4

ȧ4

a2
− k4

2
ȧ2.

(21)

Let us next reconsider the ‘tow-in’ procedure for the proof of the existence of a physical
Hadamard state corresponding to some dynamics of moments M(τ), for the special case that
we start the tow-in process with M = 0 and hence obtain M(τ) = 0. For that scenario, we can
refine the results of [18] on the existence of physically meaningful solutions to the cSCE in an
arbitrarily small neighborhood of the initial conditions (a0, . . . , a3)> for a(t) at t = 0 and its
first to third derivatives. In the present context, we modify the tow-in argument and prove that
any set of initial conditions (a0, . . . , a3)> with k2 log(λ0a0)− k1 6= 0 can be matched exactly :

Theorem 1. Let (a0, . . . , a3)> ∈ (0,∞)×R3 be initial values for a(t) at cosmological time t = 0
such that (k2 log(λ0a0)− k1) 6= 0. Then the following holds:

(i) There exists a(t), a unique solution to the ODE (19) on some interval of time (ti, tf),
ti ∈ [−∞, 0), tf ∈ (0,∞] such that a(t) fulfills (19) with the given initial conditions.

(ii) If the initial conditions fulfill the energy constraint (21) at t = 0, then (21) is fulfilled for
all times.

(iii) There exists a Hadamard state on the cosmological space-time defined by a(t), t ∈ (ti, tf)
for the massless Klein-Gordon field with associated tower of moments fulfilling M(t) = 0.

Hence, any cosmological space-time defined by a(t) for t ∈ (ti, tf) as described in (i) and (ii) is
a solution to the cSCE for a Hadamard state as in (iii).

Proof. Note that by the assumption (k2 log(λ0a0)−k1) 6= 0 equation (19) can be brought to the
form

a(4) = f(a, ȧ, ä, a(3))

where f(·) is locally Lipschitz except for a = 0 and (k2 log(λ0a(t))−k1) = 0. Therefore, assertion
(i) follows from standard theory of ODE, see e.g. [1].

Since the energy equation is a constant of motion for the trace equation, statement (ii), is
well known, see, e.g. eq. (22) below.

To prove (iii), we modify the ‘tow-in’ argument from Section 2 in the following way: let (ti, tf)
be an interval containing t = 0 such that the solution a(t) from (i) is given.

Consider the switching function χ ∈ C∞(R, [0, 1]) with the property χ(t) = 0 for t < 3
4 ti and

χ(t) = 1 for t > 1
4 ti. Moreover, let the cosmological space-time be defined by the smooth scale

factor
atow(t) = χ(t)a(t) + (1− χ(t)),

9



which is Minkowski for t ≤ 3
4 ti.

Thus we can consider ωvac, the Minkowski vacuum state for the massless free field for values
t < 3

4 tf, which is propagated forward to a state ωtow on the entire (globally hyperbolic) space-
time defined by atow via the massless Klein-Gordon dynamics. As the Minkowski vacuum state
ωvac is Hadamard and atow(t) is smooth, so is the propagated state ωtow [18].

Furthermore, the tower of moments Mvac(t) associated to ωvac for t < 3
4 ti fulfills Mvac(t) = 0

(cf. (18) with m = 0) and therefore, by (14), the tower of moments associated with ωtow satisfies

Mtow(t) = 0, also for t ∈ (ti, tf). By this circumstance, the cSCE holds on (1
4 ti, tf). Lastly, if

the state is defined on this interval of time, it can be propagated backwards to a state ω on the
(also globally hyperbolic) space-time defined by a(t), t ∈ (ti, tf) which, for the same reasons as
above, results is a Hadamard state on this cosmological space-time. Here again the associated
tower of moments fulfills M(t) = 0, for t ∈ (ti, tf) as M(t) = Mtow(t) = 0 for t > 1

4 ti and (14).
Thus ω, a(t) and M(t) satisfy the cSCE. This proves the third assertion.

Let us shortly compare Theorem 1 to the well-known decoupling result for massless conformal
fields by Starobinski [39]. In the case of conformal coupling, Starobinski’s result is more general,
as every state decouples from the cSCE, up to the conformal anomaly term. Our result is
restricted to a special class of towed-in massless Minkowski vacuum states, exclusively. On the
other hand, our result is more general as conformal coupling ξ = 1

6 is not required.
A last remark in the present section concerns the role of the regularization parameter λ0. Since

it is only used to construct the auxiliary parametrices, it does not bear any physical meaning.
Nevertheless, different values for λ0 lead to different solutions a(t). However, note that ωvac has
to be towed in via the λ0-dependent space-time defined by atow(t) and therefore also the state
ωtow on (3

4 ti, tf) implicitly depends on λ0.

4 General discussion on the decoupled cSCE

One can easily see that the trace equation (19), with the energy equation (21) regarded as an
algebraic constraint (particularly, on the initial values), and the energy equation, regarded as
an ODE in its own right, are equivalent under the assumption ȧ 6= 0. This observation can be
traced back to a property of the Einstein tensor’s components in FLRW space-time, namely that

d

dt

(
a2G00

)
+ 2aȧG00 = −aȧ gµνGµν , (22)

and thus, imposed by the SCE (1), the analog equation holds for
〈
T ren
µν

〉
ω

as well. However, due
to the latter restriction ȧ = 0 and in order to avoid numerical difficulties close to the ȧ = 0 -
regime, we prefer to work with the trace equation (19). By the aforementioned equivalence, we
then conclude that choosing suitable initial conditions to fulfill (21) results in solutions which
satisfy (21) for all times.

Some exact solutions can be found by the ansatz a(t) = exp(Ht). Inserting it into either the
trace equation or the energy constraint, we obtain a fourth order polynomial equation for H
solved by

H = 0 or by H = ±HdS := ±
√

2k4
k3−8k2

. (23)

Obviously, H = 0 stands for the Minkowski solution while ±HdS are expanding/shrinking de

Sitter solutions with constant Hubble parameter H = ȧ(t)
a(t) . Note that HdS is a real number if

and only if k2 <
k3
8 , or equivalently, |ξ − 1

6 | <
√

1/4320. The symmetric occurrence of expanding
and shrinking de Sitter solutions is a consequence of the time reflection invariance t → −t of

10



1
6

ξ

√
2880π

√
κHdS

Figure 1: The (constant) Hubble rate HdS of the de
Sitter solutions defined in (23), shown as a function
of ξ. The vertical axis is rescaled by

√
κ as HdS is

proportional to this value and the graphic depends on
no other parameter. The dotted vertical lines show
the distinguished values ξ ∈ {1

6 ,
1
6 ±

√
1/4320}. We

see the analog graphic to the massless, Λ = 0-case
of [17].

the cSCE which can be easily read off from the decoupled equations and which will be furtherly
exploited below.

We note that the de Sitter solutions found here are not necessarily identical to those discussed
in [25], as the ‘tow-in’ states we consider here are constructed very differently from the Bunch-
Davies state for the massless field. A complete list of de Sitter solutions based on Bunch-Davis
states (massless and massive) is given in [17].

Remark 2. Note the similarity of Figure 1 with a particular graphic in [17], namely the one
showing the de Sitter Hubble rate H as a function of ξ in the massless Λ = 0-case. Despite
the different choice of state in [17] a different state was chosen, the polynomial equation to be
solved for H is very similar. Particularly, the same analysis as in [17] may be performed for our
‘tow-in’-states, also with Λ 6= 0, and we would analogously observe a quantum branch and a
(semi-) classical branch of de Sitter solutions for Λ > 0.

The problem further simplifies if ξ = 1
6 and 3c3 + c4 = − 1

5760π2 , or k1 = k2 = 0, respectively,
as e.g. considered by Starobinski [39]. In this setting it suffices to take into account the energy
constraint. Then, the latter reads as

0 =
k3

4

ȧ4

a2
− k4

2
ȧ2 (24)

and is solved by either ȧ(t) = 0 or by ȧ(t) = H a(t) with H = ±
√

2k4
k3

= ±HdS. In this scenario,

the Minkowski and de Sitter solutions thus are the only ones.
In the general case, we solve the decoupled cSCE numerically. This requires the specification

of initial conditions and insight into the dependency on the parameters k1, . . . , k4. Let us start
with a discussion of the initial conditions, a parameter study will be done in the subsequent
section.

At first, we note that the set of solutions of both our equations are invariant under transfor-
mations of the form

a(t) 7→ β1 a(β2 t+ β3) (25)

(β1, β2, β3 ∈ R, β2 6= 0), at least with simultaneous redefinitions

k4 7→ β2
2 k4 and k1 7→ k1 − k2 log(β1).

Particularly, for a full study of initial conditions and parameters we can fix our initial time to
be zero at the present time and our initial value of the scale factor of the present universe to
a(0) = a0 = 1.

A physical initial value for ȧ(t) is the present day Hubble constant H0, which is 2.2 × 10−18

sec−1 in SI-units or 1.19×10−61 in Planck units [33]. However, by the invariance of our equations
under (25) this value is rather arbitrary and should be viewed as a physically realistic choice.
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For the initial value of ä we introduce the deceleration parameter

q0 = −aä
ȧ2
, (26)

which is an invariant quantity under the transformations (25). For any given pair a(0) and
ȧ(0) 6= 0 the deceleration parameter q sets the initial conditions for ä(0). In our numerical
studies we mostly use q0 = −0.538 from ΛCDM cosmology [33] (cf. also the discussion below).
However, we emphasize that we also view this value merely as a physically realistic choice.

Finally, as mentioned before, for a given triple (a(0), ȧ(0), ä(0))> = (a0, a1, a2)> we solve (21)
for a consistent value of a3 = a(3)(0). Unless ȧ(0) = 0 the solution for a3 is unique.

As, in the end, we want to compare our equation’s solutions to the ΛCDM model, we want to
shortly (and partially) discuss its derivation. Mainly, this model is based on certain observation
on special solutions to the Friedmann equations. These, in turn, are derived from the Einstein
equation Gµν = 8πG Tµν with the assumption of a cosmological metric (4). Moreover, one
imposes the stress-energy tensor to be of the same homogeneity and isotropy type as the metric,
that is, to take the form of a so-called perfect-fluid stress-energy tensor

(Tµν) = diag(−%, p, p, p) (27)

with functions % and p, called the energy density and the pressure, respectively. The resulting
equations bear special solutions, namely by imposing the state equation p = γ · % we obtain

◦ the radiation solution a(t) ∝ (t− tBB)
1/2 with γ = 1

3 ,

◦ the dust solution a(t) ∝ (t− tBB)
2/3 with γ = 0 and the

◦ the Dark Energy solution a(t) ∝ exp(Ht) with γ = −1

(28)

(for some Big Bang times tBB and some Hubble rate H). For these three classes of solutions
we, moreover, observe that % ∝ 1

a4
, % ∝ 1

a3
and % = const., respectively- Finally, the ΛCDM

model is obtained by assuming % to be a superposition of these three types of energy content.
Formally, we make the ansatz % = %0

(Ωrad

a4
+ Ωdust

a3
+ ΩDE

)
and obtain the equation

H2 = H2
0

( Ωrad

a4
+

Ωdust

a3
+ ΩDE

)
(29)

as a cosmological model, where H = H(t) = ȧ(t)
a(t) is the Hubble rate at time t. Hereby,

%0, H0, Ωrad, Ωdust and ΩDE are some (not necessarily independent) parameters of the model,
in particular, the latter three fulfill Ωrad + Ωdust + ΩDE = 1. Whenever we speak of ‘standard
values’ for these parameters we mean the values

Ωrad = 5.38 · 10−5, Ωdust = 0.315, ΩDE = 0.685

and H0 as above, taken from [33]. Note that these values are subject to measurement uncertainty.
We denote the resulting solution by aΛCDM.

However, motivated by the ΛCDM model’s derivation we want to introduce another quantity
which will frequently find use in our later discussions. Define

Γ[ a ](t) := −1

3

(
2
a(t) ä(t)

ȧ(t)2
+ 1
)

= 2
3 q[ a ](t)− 1

3 ,

for sufficiently nice (particularly with ȧ 6= 0) scale factors a : I → (0,∞) on some interval I. In
the last equality we used the notation q[ a ] = −aä

ȧ2
, obviously inspired by (26). Moreover, we
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note that by choosing the above parameter values for Ωrad, Ωdust and ΩDE as well as the ΛCDM
equation (29), one can reproduce the value q[aΛCDM](0) = −0.538 we have introduced above.

Note that Γ has an interesting physical content. For the solutions of the Friedmann equations
mentioned above, Γ reproduces the corresponding values of γ and, conversely, if we read the
conditions Γ[ a ] ∈

{
− 1, 0, 1

3

}
as ODE’s in their own right, we reproduce the corresponding

Friedmann solutions form (28) and only these. Observing the existence of two more solutions
to the ΛCDM model, namely

a(t) ∝ sinh(βt)
1/2 and a(t) ∝ sinh(βt)

2/3

for Ωdust = 0 and for Ωrad = 0, respectively, we observe that these solutions interpolate between
a radiation- or dust-like behavior at early times and a Dark Energy-like behavior at late times.
Γ in these cases reads as

Γ
[

sinh(βt)
1/2
]

= 1
3 − 4

3 tanh(βt)2 and Γ
[

sinh(βt)
2/3
]

= − tanh(βt)2,

respectively, and thus, physically spoken, Γ shows how much a given universe is radiation/dust
dominated or Dark Energy dominated at a certain phase.

As a final comment on Γ, note that for any stress-energy tensor of the shape (27) the corre-
sponding (classical or semiclassical) Einstein equation immediately implies2 that Γ = p

% . Partic-
ularly, also the solutions of our trace equation (19) may be assigned with an energy content of
the Friedmann solutions’ types, allowing a physical interpretation.

For our numerical simulations we want to exploit the invariance under (25). To avoid numerical
instability, we rescale with β2 = 1

H0
(and, correspondingly, redefine k4) and end up with the

initial value ȧ(0) = a1 = 1 in the new time scale. q0 is not affected by our rescaling and a(3) is
still computed by the energy equation, now with k4 in the new time scale. λ0 is usually set to 1,
as a different value may be absorbed into the renormalization freedom. We employ the standard
stiff3 equation solver ode15s of the Matlab® R2020a release4. Note that the numerical solver
does not integrate into the a = 0-singularity of (19) in a strict sense, but stops at a-values
≈ 10−7 to 10−9. Particularly, we do not make any claims on Planck scale cosmology, where the
validity of the SCE is expected to break down due to quantum effects of the space-time itself.

A typical solution with the parameters

◦ ȧ(0) = H0 = 2.2 · 10−18 1
s ◦ ä(0) given by q0 = q0,ΛCDM = −0.538

◦ ξ = 1
12 ◦ 3c3 + c4 = 0.5 ◦ λ0 = 1 ◦ κ = 2·1042

is shown in Figure 2. It is typical in the sense that its behavior as a function of time is generic for
a certain range of parameters that has been identified manually in order to retrieve promising
cosmological models. The most remarkable of these properties are an exponential late time
expansion as well as a ‘square-root-like zero’ at early times. In other words, we indeed observe
a solution which admits a Big Bang and immediately after this Big Bang the universe expands
asymptotically as a(t) ∝ (t − tBB)1/2. To underpin this notion of ‘square-root-like’, we have
included a plot of the solution a of Figure 2 − together with its first two derivatives − in Figure
3. The horizontal axes in Figure 3 are now shifted to t − tBB (with a numerically obtained
value tBB), allowing a log-log-scaling. The red dotted lines show the analog curves for a pure
square-root expansion with the same Big Bang time and, particularly, how the latter fits our

2As we defined Γ, it is nothing but the fraction of the Einstein tensor’s respective diagonal entries for a FLRW
metric.

3We are particularly interested in Big Bang solutions.
4A comparison to other solvers showed little to no deviation between solutions, with deviations decreasing as

the solvers’ accuracies were increased.
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1
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Γ[a](t)

Figure 2: Solution of the cSCE (black), compared to the best fit (i.e. using numeric
values from [33], cited in the text) ΛCDM model (dotted blue)

solution over several magnitudes. Moreover, computing the Ricci scalar curvature for the metric
(4), that is R = 6

(
ä
a + ȧ2

a2

)
, we find that our Big Bang is indeed a singularity in the sense that

R→∞ as t→ tBB.
In terms of the quantity Γ, the above observations can be interpreted as a radiation dominated

early phase and a Dark Energy dominated late time expansion. The former does match the
physical expectation that a massless scalar field should behave like radiation, and the latter does
again indicate an effect of Dark Energy, although we did not include a cosmological constant to
our model. Note that one cannot easily blame a non-vanishing cosmological constant for this
effect, since the influence of c1 (that is, the renormalization constant of Λ) is ruled out by setting
m = 0.

Remark 3. Note that for metrics of the form (4) one can compute

1
6 �R =

a(4)

a
+ 3

ȧa(3)

a2
+
ä2

a2
− 5

äȧ2

a3
,

that is, the first line of (19) is proportional to �R. Hence, for parameters ε := 3c3 + c4, ξ and κ
(as well as λ0) such that k1 � k2, k3, k4, the trace equation is expected to be well approximated
by

�R = 0, (30)

at least sufficiently far away from the singularity defined by k2 log(λ0a)−k1 = 0. Note that (30)
is also solved by a(t) ∝ (t− tBB)1/2, by a(t) ∝ exp(Ht) and by a(t) ∝ sinh(t− tBB)1/2, which in
turn solve the ΛCDM model for particular choices of matter.

5 Numeric solutions of the cosmological semiclassical Einstein
equation

In the present section we identify a few regions of interest in the parameter space of our cosmo-
logical model.

Throughout this section we will denote ε = 3c2 + c3 and usually we set λ0 = 1. Moreover,
we denote by εcrit = εcrit(ξ) the value such that k1 = k1(ε, ξ) vanishes. Recall that varying ȧ(0)
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Figure 3: Double logarithmic plot of the solution in Figure 2 (black), together with
the regression lines whose slopes coincide with a square-root function (dotted red)

does not influence the shape of our solutions and may be regarded as a redefinition of a time
scale (while accordingly adjusting κ’s units). Thus, we generally omit an investigation of the
dependency of our solutions on λ0 and ȧ(0).

5.1 Influence of the renormalization freedom and the curvature coupling

We start the numerical investigations with the parameter dependency of solutions of the generic
type shown in Figures 2 and 3 and present a family of solutions in Figure 4. In particular, this
includes a few more numerical solutions at ξ = 1

12 which we count to the generic class.
The choice of values of ε was made to show the behavior of solutions around the critical value

εcrit(
1
12 = − 1

960π2 ≈ −1.0554 · 10-4. Far remote from this value solutions are captured by the red
curve (a) in Figure 4. For this critical value we have k1 = 0 as well as acrit = 1 and we cannot
solve our trace equation for a(4) at our choice of initial values. Close to that value we observe
unstable behavior. The value ξ = 1

12 , where there exists no pure de Sitter solution (cf. Figure
1), was chosen as an example for cases with the aforementioned property. Different choices for
ξ with |ξ − 1

6 | ≥
√

1/4320 produce similar graphics.
Note that any solution exists until it runs into one of the singularities a = 0 or a = acrit.

Around the aforementioned instability at ε = εcrit(
1
12) we observe that acrit approaches the

value 1 and, accordingly, we end up with a short interval of existence.

Remark 4. We want to emphasize that for any numerical solution we have observed to run
into the acrit-singularity the values of ȧ apparently remain finite in that limit. This is not very
surprising since the vector field we integrate for the solution has a pole of order one at acrit.
Hence, a sloppy analysis suggests that a is a function whose fourth derivative has a pole of
order one, implying that its third derivative has a logarithmic pole and that its second and first
derivatives as well as a itself can be continuously extended to that critical point and beyond.

Note that the immediate output of our numerical solver, which returns a and its first three
derivatives, shows that ȧ diverges in such points. Plugging the solvers output into the energy
constraint’s RHS and recalling the discussion from the beginning of Section 4, however, suggest
this divergence to be a numerical artifact.

The unstable behavior for ε → εcrit(
1
12) = − 1

960π2 can now be characterized as follows. As
ε → εcrit(ξ) we have acrit → 1. Hence, on the one hand, if ε > εcrit(

1
12) (left graphic in
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Figure 4: Influence of the parame-
ter ε = 3c3 + c4 shown in a fam-
ily of solutions. The cases ‘≥ 10-2’
and ‘≤ −10-2’, labeled by (a), contain
the values {−100,−1,− 1

10 ,−10-2} and
{10-2, 1

10 ,
1
2 , 100}, respectively, yielding

a critical value for a of numerical zero or
numerical infinity. All these solutions
show no significant difference among
each other and are covered by the red
curve. The blue lines mark the respec-
tive critical value of acrit = exp

(
k1
k2

)
for

the other cases.

Parameters:

ȧ(0) = H0, q0 = −0.538, κ = 2 · 1042,
λ0 = 1, ξ = 1

12

ε exp
(
k1
k2

)∣∣∣ ε exp
(
k1
k2

)∣∣∣
(a) ≥ 10-2 ≈ 0A (f) -1.1·10-4 0.9668
(b) 10-3 4358.4 (g) -2·10-4 0.4887
(c) 10-4 4.7492 (h) -5·10-4 0.0503
(d) 0 2.2255 (i) -10-3 0.0011
(e) -10-4 1.0429 (a) ≤ -10-2 ≈ ∞

figure 4) we have an existence interval of the form (tBB, η) with some η = η(ε) > 0 and some
tBB = tBB(ε) < 0, where in particular

η → 0 as ε→ εcrit(
1
12) and η →∞ as ε→ +∞.

Moreover, we observe that

tBB → tBB,eff as ε→ εcrit(
1
12)

with some tBB,eff < 0, playing the role of an effective Big Bang time in the limit. On the other
hand, if ε < εcrit(

1
12) (right graphic in figure 4), the solution exist on an interval of the form

(−η,∞) for some η > 0, now with

η → 0 as ε→ εcrit(
1
12) and η → −tBB,(a) as ε→ −∞,

where tBB,(a) < 0 is the Big Bang time of the limit curve (a).

If we want to combine the two resulting limits for ε → εcrit(
1
12), defined on the intervals

(tBB,eff, 0) and (0,∞), respectively, our numerical analysis suggests that we obtain a square-
root power law expansion. This is already indicated in curves (e) and (f) in Figure 4 (or their
respective branch) and behavior becomes more pronounced, if we choose values of ε even closer
to εcrit(

1
12).
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Figure 5: Solutions of the trace equa-
tion with the listed parameters. Note
that the critical value of renormal-
ization constants is given by εcrit =
− 1

5760π2 ≈ −1.75905 · 10-5, in between
the respective parameters of curve (f)
and (g). Solutions for values above the
latter are plotted on the left, for values
below on the right.

Parameters:

ȧ(0) = H0, q0 = −0.538, κ = 2 · 1042,
λ0 = 1, ξ = 1

6

ε ε

(a) A≥ 10-4 (g) -1.76·10-5

(b) 10-5 (h) -1.77·10-5

(c) 0 (i) -1.78·10-5

(d) -10-5 (j) -1.8·10-5

(e) -1.7·10-5 (k) -2·10-5

(f) -1.759·10-5 (a) ≤ -10-3

Finally, the term k1�R in the trace equation, which originates in pure quantum effects, usually
induces solutions with an exponential late-time expansion as remarked in Section 2.

Remark 5. Recall R. M. Wald’s classical work [40], where he shows that solutions to the
(classical) cosmological Einstein equation with a positive cosmological constant usually (i.e.
under some assumption on the stress-energy tensor) show a late time exponential expansion.
Thus, it is noteworthy that in our case the k1�R term seemingly plays a similar role as the
classical cosmological constant. Tuning the prefactor of �R to zero, we apparently restore a
purely radiation dominated expansion.

As a second part of this section, we want to discuss the influence of the curvature coupling
ξ by studying a family of solutions with ε → εcrit for another value of ξ. From a physical
point of view, we have the distinguished cases ξ = 0, called minimally coupled case, and ξ = 1

6 ,
called conformally coupled case. Formally, the minimally coupled case plays no particularly
distingished role.

As we have discussed before, in the case ξ = 1
6 the trace equation simplifies significantly.

Particularly, we have k2 = 0, which cancels many terms of the trace equation including the
log(a)-term. Consequently, the influence of the k1�R-term is controlled by one parameter in
a simple manner, namely ε, and not by a possibly singular dependency on the value of a (such
as our log(a)-term). Particularly, we have no critical value of a in the limit k1 → 0 (i.e. in the
limit ε → εcrit(

1
6) = − 1

5760π2 ). For k1 = 0 we are thus back in the Starobinski scenario from
Section 4. Recall that for ξ = 1

6 the solution of a pure de Sitter expansion with HdS from (23)
are present.
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Figure 6: The graphics show the quan-
tities ȧ, a/adS and Γ[ a ] deduced from a
for the parameter settings of Curves (d),
(e) and (f) of Figure 5, that is, for ε ap-
proaching εcrit from above. For reference
the red curve shows the ‘generic’ curve
with ε far remote from εcrit, labelled (a)
in Figure 5. 0 200 400 600

-2
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0

1001

Γ[a](t)
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Some numerical solutions for ξ = 1
6 are shown in Figure 5. Recall that in Figure 4 the behavior

is different if we approached the critical value of ε from below or above. But the limiting curves
appeared to be, in a suitable sense, consistent. In Figure 5, in turn, this is not the case anymore.
As expected, for a large absolute value of ε we recover the generic solution class as before.

If we approach ε → εcrit = − 1
5760π2 from above we can see how an oscillating behavior fades

in. The oscillation’s frequency grows as ε→ εcrit and decays as t→∞. The amplitude, in turn,
decays as ε → εcrit but appears to grow as t → ∞. Solutions decay in steps and the slope of
these steps is bounded from above by a value slightly larger than the initial value ȧ(0) = H0 as
well as from below by 0.

To continue the analysis we have included plots of the quantities ȧ, a/adS and Γ[ a ] deduced
from the solution a in Figure 6 for Curves (d), (e) and (f). There we observe again the aforemen-
tioned claims on ȧ, in particular the (approximate) boundary interval [0, H0] for ȧ is indicated
by the blue dotted line. In the limit ε → εcrit from above, our solutions in Figure 5 seemingly
converge to a linear expansion. This, however, is no longer true on a larger time scale. In Figure
6 this is shown by rescaling the solutions with the pure de Sitter expansion, that is, by plotting
a/adS with adS(t) = exp(HdSt) with HdS from (23). Note that all solutions for sufficiently small
k1 > 0 result in an exponential late-time expansion with de Sitter rate HdS. The latter value
can be reproduced by solving the ‘limit equation’

a(4) = −k3

k1

ȧ2ä

a2
+
k4

k1

( ȧ2

a
+ ä
)

with a(t) ∝ exp(H̃dSt) and H̃dS =

√
2k4

k1 + k3
,

where the ‘limit’ hereby refers to, after having solved (19) for a(4), neglecting all terms which do
not scale by 1

k1
. It is noteworthy that H̃dS → HdS as k1 → 0, that is, the latter limit recovers

the ξ = 1
6 -value of HdS.

The emergence of late-time de Sitter expansions can, moreover, be observed in the Γ[ a ]-plots
in Figure 6, where at late times each solution yields a Dark Energy dominated universe with
Γ[ a ](t) → −1 as t → ∞. Note that Γ[ a ] appears as approaching its limit −1 similarly to how
a damped harmonic oscillator reaches its stable equilibrium. Note that the ‘generic’ solutions
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Figure 7: The left graphic shows several
solutions with a varying deceleration para-
meter q0 ∈ [−1, 1] labeled by (b) to (j). The
gray curves, (a) and (k), show solutions for
q0 outside that interval. On the right top
we show the respective plots of Γ[ a ]. The
unlabeled curves belong to the parameters
in the obvious order, that is, between (b)
and (j) we have (c) to (i) from left to right.
The lower right graphic shows several so-
lutions with q0 = −1 in a logarithmic plot,
indicating how with an increasing value of ε
the solutions better and better approximate
a de Sitter solution, also at small values of
a. Note that for these parameters acrit is
numerically infinite.

Parameters:

ȧ(0) = H0 κ = 2 · 1042

λ0 = 1 ξ = 1
12

ε = 1: q0 = −1:

(a) q0 = −2 (A) ε = 1
(b) q0 = −1 (B) ε = 10
(c) q0 = −0.99 (C) ε = 102

(d) q0 = −0.9 (D) ε = 103

(e) q0 = −0.538 (E) ε = 104

(f) q0 = 0 (F) ε = 105

(g) q0 = 0.5 (G) ε = 106

(h) q0 = 0.9
(i) q0 = 0.99
(j) q0 = 1
(k) q0 = 2

with large k1 (the red curves in Figures 5 and 6 labeled as Curve (a)) end in a Dark Energy-
dominated late-time expansion as well. However, for sufficiently large k1 the effective late-time
de Sitter coefficient differs from the value HdS.

If, on the other hand, we approach ε → εcrit from below, the solutions tend to 0 for t < 0
and to infinity for t > 0 on decreasingly short time scales. These solutions are shown in the
right graphic of Figure 5. However, from a cosmological viewpoint these solutions do not appear
particularly useful.

To close the discussion of Figures 4 and 5 (together with 6), we remark that similar graphics
can be generated for any value of ξ. On the one hand, Figure 4 is representative for values
with |ξ − 1

6 | ≥
√

1/4320 (i.e. outside the interval distinguished in Section 4). On the other hand,

for values with 0 < |ξ − 1
6 | <

√
1/4320 the effects of Figure 4 (particularly, the influence of a

positive acrit) and the effects of Figure 5 (particularly, the presence of an attractive de Sitter
solution with parameter HdS) mix up, but we have not found any new behavior of solutions
with ε around εcrit.

We remark that similar observations have been made in [10], where the authors approximate
the state’s contributions to the back-reaction equation. In this different setting they also observe
that the respective Starobinski solution a(t) ∝ exp(HdSt) is attractive if ε− εcrit has the correct
sign, and is repulsive for the respective opposite sign.

The solutions shown in this section, at least for ε > εcrit(ξ = 1
6), underpin our observation of
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a late-time de Sitter expansion being generic.

5.2 Influence of the initial values

If we specify a certain interval of ‘reasonable’ q0-values, we again end up with the generic solution
class from Section 4, where by ‘reasonable’ we refer to values q0 ∈ [−1, 1], that is, such initial
valued for ä for which the initial value of Γ[ a ] fulfills Γ[ a ] ∈ [−1, 1

3 ].
The left graphic of Figure 7 shows the transition from an (approximately) exponential expan-

sion (q0 = −1, curve (b)) to a square-root-like expansion (q0 = 1, curve (j)). Still, for q0 = −1
we observe a radiation-like expansion at very early times. The upper right graphic in Figure 7
shows the respective curves of Γ[ a ]. The lower right graphic shows a family of solutions with a
variation of ε on a logarithmic scale, starting with curve (b) and increasing ε. The Dark Energy
dominated period is pushed to smaller values of a by increasing ε = 3c3 + c4, or k1, respectively.

Curves (a) and (k) in Figure 7 show solutions with values for the deceleration parameter
outside the interval [−1, 1], namely for q0 = −2 and q0 = 2. On both sides of said interval we
observe an inflection point with zero derivative, at t < 0 for q0 < −1 and at t > 0 for q0 > 1.
Plotting more curves, one would, moreover, see convergence of this inflection point to t = 0
for both q0 → ∞ and q0 → −∞ and in both these limits the solutions converge to the same
function, now with an inflection point with zero derivative at t = 0. An inflection point with
zero derivative of some a does imply a divergence of Γ[ a ], which we can observe in the upper
right graphic of Figure 7.

5.3 Cosmic horizon problem

We shortly recall the definition of conformal time. For a FLRW-type space-time with scal-
ing factor a, we reparameterize the time coordinate by τ(t) =

∫ t
0

(
a(t′)

)-1
dt′ such that g =

a(τ)2(−dτ2 +gR3) holds in these new coordinates. In conformal time, a causal connection of two
space-time points is given, if and only if they are causally connected in Minkowski space-time.
For a Big Bang-solution a with zero tBB we define τBB := τ(tBB).

The cosmic horizon problem concerns the extremely homogeneous state of the observable uni-
verse. If, in an universe given by a(t), two observable regions with the same matter distribution
are not causally connected, this would exclude a homogenizing process in the common causal
past of both regions. One solution to the cosmic horizon problem is that all observable regions
of the universe have a common causal past, which is achieved by a large negative value of τBB

or even τBB = −∞. This is realized by theories of the inflationary early universe [19,27,28].
Here, we want to investigate how much the cosmological model introduced in the present

paper is compatible with solutions to the cosmic horizon problem. We observed in Section 5.1
that in specific regions of the parameter space the solutions a(t) show an inflection point with
vanishing first derivative and we can even have arbitrarily many of them, see e.g. Figure 5 with
ε > εcrit(ξ). Tuning ε such that the inflection point coincides with the Big Bang, we obtain
τBB = −∞. Note that choosing ξ 6= 1

6 requires a value ε > εcrit(ξ) in order to guarantee acrit > 1,
otherwise the solutions do not exist long enough to admit a Big Bang.

Figure 8 shows τBB as a function of ε = 3c3 + c4 for fixed ξ = 1
6 and H0, q0, λ0 and κ as in

Section 4. We identify a divergence of τBB as expected. At the left end of the plot, edited as a
zoom in the right panel, we observe several discontinuities. Comparing the respective numerical
solutions, we find that in each discontinuous step of τBB the solution gathers another inflection
point. The thick-lined part marks a discontinuity where τBB jumps between two regions of
continuity.

In the left graphic of Figure 9 we see the analog of Figure 8 for some values ξ 6= 1
6 . Our

observations match the expectations, namely that also for ξ 6= 1
6 (but still close to 1

6) the
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Figure 8: τBB as a function of ε or, more precisely, its deviation from the critical
value (i.e. for which exp

(
k1
k2

)
= 1), in the case ξ = 1

6 . The remaining parameters are
set to the standard values from Section 4. The red box in left plot marks the plot area
of the right graphic. The tick (d) marks the ε-value of curve (d) in Figure 5.

solutions show an oscillatory behavior which results in several inflection points with zero first
derivative which, if shifted to the a = 0-singularity by tuning ε, yields a divergence of τBB. The
right panel displays this behavior as a function of both ε− εcrit and ξ.

Such negative poles of τBB only exist up to a certain value of |ξ − 1
6 |, where the highest blue

band (labelled Σ in Figure 9) in the right panel of Figure 9 meets the vertical axis on the left.
Determining this value numerically, we find that for this ξ value |ξ− 1

6 | =
√

1
4320

(up to numerical
error), that is, the maximum deviation of ξ from 1

6 such that our trace equation possesses exact
de Sitter solutions specified in Section 4. Recalling the discussion there, this is not surprising as
the observed oscillations appear as decaying perturbations around the stable de Sitter solution.

To conclude, although the model introduced in this article can solve the cosmic horizon
problem, fine tuning of the renormalization constants is required and the resulting cosmologies
are not close to the ΛCDM cosmological standard model.

6 Comparison with numerical ΛCDM model solutions

In this section, we want to compare our model’s solutions to the ΛCDM model’s solutions with
the parameters Ωrad = 5.38 · 10−5, Ωdust = 0.315, ΩDE = 0.685 and H0 = 2.2 · 10-18 1

s from [33].
For this purpose, we fit our model’s parameters to the ΛCDM solution using different measures
of deviation. In this way, we obtain a rough idea of parameter regions of our model that produce
‘reasonable’ cosmologies, despite the fact that a detailed investigation would require the inclusion
of massive fields and therefore goes beyond the scope of this paper.

6.1 ΛCDM uncertainty band

The ΛCDM parameters come with uncertainty errors, namely the 1-σ uncertainties given by
(cf. [33])

Ωrad = (5.38± 0.15) · 10−5,

ΩDE = 0.685± 0.007,

Ωdust = 0.315± 0.007,

H0 = (2.184± 0.016) · 10-18 1
s .

Bounded by these errors, we obtain a cuboid Q in the ΛCDM parameter space. For each y ∈ Q,
we denote the respective ΛCDM solution by aΛCDM(y) : R→ [0,∞), wherefore we extend such
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a solution at the Big Bang and before by zero. By setting

amax(t) := sup
y∈Q

(
aΛCDM(y)

)
(t) and amin(t) := inf

y∈Q

(
aΛCDM(y)

)
(t),

we obtain an uncertainty band of the ΛCDM model in the t-a-plane that is compatible with
1-σ-errors in the single parameters.

As a numerical test of our model we want to determine a certain region of the ξ-ε-plane for
fixed remaining parameters such that the solution a fulfills

amin(t) ≤ a(t) ≤ amax(t) (31)

for all t ∈ R, where we likewise extend our solutions by zero before a Big Bang.
For fixed H0, q0, λ0 and κ as in Section 4, Figure 10 shows the region in the ξ-ε-plane where the

solutions of our model satisfy (31). The shaded area in the left graphic of Figure 10 marks the
parameter region where exp

(
k1
k2

)
∈
[

1
3001 , 1

]
holds. The left bound of said interval corresponds to

the upper parabola-shaped bound of the shaded region. The right bound, in turn, corresponds
to the linear lower bound of the shaded area, that is, it corresponds to εcrit(ξ).

As we can see, there exist parameters for which (31) holds. They form a hook-shaped subset,
narrowly distributed around the conformally coupled case ξ = 1

6 and around the respective
εcrit(ξ). As mentioned before, our trace equation is symmetric under reflection at ξ = 1

6 − if
we additionally adjust ε. Hence, the gray area has a symmetric shape if we skew the graphic
in a way such that the values of εcrit form a horizontal line. In the right graphic of Figure
10 visualizes the uncertainty band defined by (31) together with some sample curves. These
represent the three possibilities of the solutions fulfilling the first inequality of (31), the second
one or both of them, depending on whether the corresponding parameter point is below, above
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Figure 10: The gray area in the left graphic marks the ξ-ε-points in which the solution
of the cSCE fulfills (31) for fixed remaining parameters as in Section 4. The shaded
area marks ξ-ε-points for which acrit ∈

[
1

3001 , 1
]

holds. The points (a), (b) and (c)
each mark an exemplary solution above, in and below the gray area, respectively. For
orientation, the blue dotted parallelogram marks the boundaries of the right plot in
Figure 9 and therein the blue line marks the set Σ. The right graphic illustrates our
numerical test by showing the ΛCDM uncertainty band in the t-a-plane in red together
with the solutions of the cSCE corresponding to the parameter points (a), (b) and (c).

or inside the hook-shaped area, respectively.

6.2 Best parameter fit

We next tune our model parameters in a way such that the solution is as close as possible to
the ΛCDM solution.

The major difficulty which prevents us from defining distance simply by some Lp-norm (p ≥ 1)
is that the solutions of our models exist on variable intervals. We therefore define a dis-
tance function as follows. We first note that the ΛCDM solution is strictly monotonically
increasing and continuous, hence invertible. Furthermore, the solutions of our model are in-
vertible by the same argument, at least if we stay in the parameter regions of our ‘generic
solution shape’ of Section 4. Thereby, we define the distance between the ΛCDM solution
aΛCDM : (tBB,ΛCDM , ∞)→ R (with the parameters from Section 4) and a solution of our model
a = a(ξ, ε, κ,H0, q0) : (tBB,(ξ,ε,κ,H0,q0),∞)→ R by

dM,p

(
a, aΛCDM

)
:=




M∫

0

∣∣a-1(α)− a-1
ΛCDM(α)

∣∣p dα




1/p

with some p ≥ 1 and some M > 0 such that a exists up to the value M . We solve the
minimization problem

min
(ξ,ε,κ,H0,q0)

dM,p

(
a(ξ, ε, κ,H0, q0), aΛCDM

)
(32)

where (ξ, ε, κ,H0, q0) ∈ R× R× R>0 × R>0 × R.
Note that a value of M = 1 seems reasonable since in this context we consider the ΛCDM as

a representation of experimental data and they are obviously measured at times where a ≤ 1.
Furthermore, we choose p = 2 to suppress large deviations.

By our previous discussions, we do not expect a unique minimum due to the symmetries
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Figure 11: One (local) minimizer of (32) determined via a downhill simplex (Nelder-
Mead) algorithm using the initial values Zi on the right. The algorithm returned the
values Zf for which we see the solution on the left. As a reference the dotted line shows
the ΛCDM solution.

of our trace equation under ξ 7→ 1
3 − ξ (and adjusting ε to obtain the same deviation from

εcrit(ξ)). Therewith, the minimum of course depends on the starting values for a downhill
simplex algorithm. If the initial value of ε is greater than εcrit(ξ) (w.r.t the initial ξ) we would
not expect the algorithm to be able to pass the εcrit = 0-hypersurface5 due to the behavior
around the values εcrit(ξ) presented in the previous sections. Also we would not expect the
algorithm to pass the κ = 0 hypersurface for the same reason. Furthermore, do we expect the
deceleration parameter to remain in the interval [−1, 1] of reasonable values, since otherwise the
inflection points presented in Figure 7 fade in and yield a large dM,p-distance for any choice of
(M,p).

As a minimizer we find the parameters Zf by using the exemplary initial values Zi according
to the table in Figure 11. The plot in Figure 11 shows the respective solution to our model
together with the ΛCDM solution (blue dotted). As we expected, we end up with a value of ξf

close to 1
6 , with a value of εf ≥ εcrit(ξf) and a value q0,f ∈ [−1, 1]. Also H0,f and κf remain close

to H0,i and κi, respectively. Note that we only considered solutions with ε > εcrit such that
acrit ∈ (0, 1) is avoided and a(t) covers a-values in the entire interval (0, 1).

6.3 The ∆Neff-test

As one further method of comparing properties of our model to the respective properties of
the ΛCDM model, we apply the ∆Neff-test suggested by [22] as a procedure to obtain limits
for parameters in the SCE, see [29, 30]. Following the literature, we reparameterize the FLRW
space-time with scale factor a(t) via the red shift factor

z(t) = 1
a(t) − 1. (33)

Neff is the effective number of neutrino families, which can be related to Ωrad in (29) via

Ωrad = Ωγ

(
1 +

7

8

(
4

11

)4/3

Neff

)
, (34)

5Here we refer to the hypersurface in the space Rξ×Rε×(R>0)κ×(R>0)H0×Rq0 parameterized by (ξ, εcrit(ξ)) ∈
R× R with ξ ∈ R in the first coordinates and arbitrarily in the remaining coordinates.
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where Ωγ is given by the energy content of photons in the present universe at t = 0. Note that
from the observation of the cosmological microwave background (CMB) there are experimental
values for Neff stemming from the temperature spectrum of cosmic neutrinos in the CMB which
slightly deviate from the thermal distribution. This deviation, in turn, can be computed from
the energy distribution provided from a solution to the Boltzmann equation, in which the rate
of expansion at the time of decoupling (between z = 3000 and z = 1100) enters [29, 30]. These
calculations also derive the deviation from the number of neutrino families N = 3 and also the
prefactor 7

8

(
4
11

)4/3
= 0.2271. The theoretical considerations, moreover, involve data from the Big

Bang-nucleosynthesis (BBN) at z ≈ 109, where the observed fraction of helium depends on the
expansion rate. The experimental findings are well compatible with the theoretical prediction
Neff = 3.046, i.e. Neff = 3.36+0.68

−0.64 from the CMB power spectrum and Neff = 3.52+0.48
−0.45 at BBN

with 95% confidence each, see [22,36]. The theoretical value for Neff along with Ωrad = 5.38·10−5

by (34) results in Ωγ = 3.18 · 10−5.
To connect Neff to the rate of expansion, we define the difference of the squared normalized

expansion rate to the theoretical prediction at the standard value for Neff as

δ

(
H

H0

)2

(z) :=
1

a(z)2

ȧ(z)2

ȧ(0)2
− ΩDE − Ωdust(1 + z)3 − Ωrad(1 + z)4, (35)

where in ȧ(z) we first take the derivative with respect to t and then reparameterize by (33).
Following [22], we define ∆Neff = Neff − 3.046 as the deviation of Neff from the theoretical

value given in [29,30]. Now, we can express the difference between the squared and normalized

expansion rate
(
H
H0

)2
(z) at the red shift parameter z via ∆Neff and obtain

∆Neff(z) =
1

Ωγ

δ
(
H
H0

)2
(z)

0.2271(1 + z)4
. (36)

This parameterization of the observed difference in expansion can be used to check whether the
error bounds, roughly |∆Neff| . 1 are fulfilled. As the BBN red shift for z = 109 is hard to
achieve numerically, we restrict to the CMB case and determine ∆Neff(z = 3000) as a function
of the model parameters via simulations. z = 109 for the BBN is beyond the capabilities of our
solver.

For this purpose, we plot ∆Neff as a function of our parameters. Hereby, we restrict to the
ξ-ε-plane and fix the remaining parameters as in Section 4.

Figure 12 shows ∆Neff(z = 3000) as a function of ξ and ε for points (ξ, ε) in which acrit /∈[
1

3001 , 1
]
. Again, the diagonal straight line marks εcrit(ξ) and if we skewed that line to be

horizontal we would end up with a graphic that is symmetric with respect to reflection at
ξ = 1

6 . On the other hand, the parabola shaped upper bound of the shaded area corresponds to
acrit = 1

3001 . In the shaded area, our solution does not reach z = 3000 and the ∆Neff-test does
not make sense. In the left graphic of the figure we included the parameter region from Figure
10. We find a small region where ∆Neff is smaller than the experimental error of 0.5 around
ξ = 1

6 and for rather small deviations of ε from εcrit. An interesting feature of this graphic is
that the level sets of ∆Neff(3000) is not too far away from the grey shaded region passing the
test of Section 6.1. Despite the fact that this region fails to pass the ∆Neff test by three orders
of magnitude, one should keep in mind that our reduced model can only give a qualitative and
preliminary insight into semiclassical cosmology.

As a main takeaway from this section, the ∆Neff seems to favour the region of small ε and ξ
close to the case of conformal coupling ξ = 1

6 .

Remark 6. Another remarkable alignment is found between the present numerical test and the
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Figure 12: ∆Neff(z = 3000) as a function of ξ and ε for fixed remaining parameters
as in Section 4. The gray shaded area marks the parameter region where exp

(
k1
k2

)
∈[

1
3001 , 1

]
and hence ∆Neff(3000) does not exist. The colors are determined from the

absolute value of ∆Neff(3000) and we emphasize the sign change along the green stripe,
particularly there exists a curve whereon ∆Neff(3000) = 0. For orientation, the dashed
area in the left graphic marks the parameter region represented in Figure 10.

regions of a divergent τBB from Section 5.3. The poles labeled by the set Σ apparently match
with the ∆Neff(3000) = 0-level set quite well.

7 Conclusion and Outlook

In this work we investigated cosmological solutions of the SCE for massless quantum fields
in special Minkowski-like states. In such states, the dynamical degrees of freedom from the
scale factor decouple from the dynamics of the quantum state, as such states come with a
vanishing ‘tower of moments’ in the sense of [18]. While this phenomenon was well known in the
conformally coupled case [39], we observe some new cases here including also non conformally
coupled fields. We thus retrieve new cosmological models from the solutions of the massless
SCE.

We provided a detailed numerical study of these new cosmological models. Typical solutions
show a radiation like Big Bang in the early universe sufficiently far remote from the Planck
scale) in conjunction with a Dark Energy-like behavior for the late universe. In our models, the
late time universe Dark Energy phase is observed without introducing a cosmological constant,
neither directly nor through a renormalization constant. Such models expose a smooth transition
in the state equation connecting energy and pressure that ranges from the ratio 1

3 (corresponding
to radiation) to −1 (corresponding to Dark Energy).

We also investigate special parameter settings that give rise to a solution of the cosmological
horizon problem as proposed by [34]. While we give numerical evidence that such solutions
exist, we also see that this behavior requires parameter tuning and is not stable under small
parameter variations.

A large part of this work is concerned with a numerical comparison of our cosmological models
with the ΛCDM standard model of cosmology. Evidently, we observe deviations in the cold dark
matter dominated phase of ΛCDM cosmology, which in turn is to be expected for a massless
quantum field. However, we show that a parameter fit of our cosmological models to the ΛCDM
cosmology endowed with physical parameters [36] remains in the strip of observational 1-σ-
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uncertainty of the ΛCDM model. Also, we identify ‘physical’ parameter regions that comply
with the ∆Neff-test as suggested by [22]. Despite that both parameter regions do not have an
intersection, they are positioned close to each other in parameter space. Interestingly, these
tests seem to favour coupling ξ close to conformal coupling ξ = 1

6 rather than minimal coupling
ξ = 0 and a small value of the renormalization constant ε = 3c3 + c4.

While we have gathered evidence that semiclassical cosmology, even without cosmological
constant, can produce interesting cosmologies that are not too far from the standard cosmology,
further extension and refinement of the model seem to be in order. Obviously, massive fields
should be incorporated and also fields with higher spin and Fermi statistics [20].
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