
Multiprocessing has distinct advantages-and unique constraints
with implications for performance. This survey highlights the

architectural strategies of five multiprocessor systems.

SPECIAL FEATURE:

Commercial
Multiprocessing
Systems*

M. Satyanarayanan
Carnegie-Mellon University

In the decade and a half since the advent of third-
generation computers, many multiprocessing
systems have been built by both universities and in-
dustry. Unfortunately, there seems to be little public-
ly accessible information on commercially available
multiprocessing systems. This survey describes the
architectures, system organizations, error recovery
facilities, operating systems, and other features of
multiprocessing systems made by five major US
mainframe manufacturers. Unless dictated by the
need for understandability, I have avoided material
not directly related to the multiprocessing aspects of
these systems. With the exception of the Honeywell
60/66, unclassified quantitative data on performance
is unavailable and therefore cannot be given. The con-
cluding section discusses general issues in multi-
processing, drawing upon the information presented
in the survey.
Before setting out to study each system in detail, it

is appropriate to ask ourselves two questions:

* What is multiprocessing?
* Why is multiprocessing done?

This introduction answers these questions.

What is multiprocessing? The attribute that
characterizes a multiprocessing system is the shar-
ing of global memory by the processors making up
the system. "Sharing" in this context means that the
memory should be addressable by all the processors.
Mere linking together of a number of computer
systems, as in a computer network, does not result in
a multiprocessing system.

*This article is taken from a monograph, Multiprocessors: A Com-
parative Study, by M. Satyanarayanan, to be published by Prentice-
Hall Inc.

To refine our definition, we include two further
criteria. First, the processors constituting the multi-
processing system should not be highly specialized.
I/O channels, front ends, and other similar special-
ized processing units often share mainmemory with a
central processor, but such configurations do not fit
within our notion of a multiprocessing system.
"Highly specialized" is clearly a subjective term.
How does one determine whether a processor is
highly specialized or not? The view taken here is that
a processor is not highly specialized if it can do
significant computation on its own, without external
assistance.** Independent processing is our second
criterion, therefore, and it permits us to classify a
system such as the Cyber 170 as a multiprocessing
system, even though its central processors and
peripheral processors differ radically from each
other. The peripheral processors share main memory
with the central processors and, in fact, are capable of
running the operating system by themselves.
In short, we define a multiprocessor configuration

as one which consists of at least two processors satis-
fying the following conditions:

* the processors share global memory,
* they are not highly specialized, and
* each of the processors can do significant com-
putation individually.

Why use multiprocessing? That multiprocessing is
not just an intellectual curiosity but a technique of
practical value is clearly demonstrated by the

**What is "significant computation" and what is not is once again
debatable. In the absence of quantitative criteria, one has to use
value judgments at some point. Rather than going through further
levels of recursion in this definition, I prefer to appeal to the reader's
intuitive notion of "significant computation."

0018-9162/80/0500-0075$00.75 © 1980 IEEE 75May 1980

Figure 1. A uniprocessor IBM 3701168 system.

Figure 2. An attached processing IBM 370/168 configura-
tion.

Figure 3. A true multiprocessing IBM 370/168 configuration.

number of commercially available multiprocessing
systems. Given such a "proof by existence," it is
legitimate to ask the question: "What problems do
these multiprocessing systems successfully solve?"

First, given a job which taxes the resources of the
largest computers available, it may be possible to
split up the job into a number of tasks (or processes)
and run each on a different processor, reducing the
overall execution time. Unfortunately, given the
present state of the art in parallel processing, the
prognosis for the success of this kind of application,
at least in the near future, seems bleak. In most cases,
the amount of time and effort needed to recode a pro-
gram so that it can be executed faster on a multi-
processor, far outweighs the gains in execution time.
Significant advances in the automatic decomposition
of sequential programs into parallelly executable
tasks are needed before the benefits of parallel pro-
cessing can stand as the primary reason for using
multiprocessing systems.
A second, more commonly cited reason for using a

multiprocessing system is increased throughput.
Given that the workload at an installation is larger
than what the largest uniprocessor can handle, a
multiprocessor seems to be a good idea. For example,
using two processors as a multiprocessor is usually
better than configuring them as uniprocessor
systems and partitioning the workload between
them. This is true because in a multiprocessor the
sharing of hardware resources and processor time
tends to smooth out effects due to stochastic varia-
tions in job characteristics. To give a trivial example,
suppose there are 10 jobs to be run. Splitting them in-
to two groups of five each and running one group on
each uniprocessor may, in a pathological case, result
in five CPU-bound jobs being run on one processor
and five I/O-bound jobs on the other, implying that
the former processor will be overloaded and the latter
underutilized. Running all 10 jobs on an equivalent
multiprocessor configuration, however, will usually
result in better performance. This occurs even
though each processor in a multiprocessing con-
figuration performs worse than when it is in a uni-
processing configuration-a point I will discuss in
the conclusion. Whether or not it is worthwhile to run
the processors in a multiprocessing, configuration
greatly depends on the extent of this degradation as
well as on the job characteristics.

Finally, because of the redundancy inherent in a
multiprocessor system, it is usually morerobust than
a uniprocessor system. Failure in any one redundant
component (e.g. one processor) is usually noncrit-
ical-the system can continue processing with the re-
maining hardware. The performance in such a case
will obviously be degraded. Serviceability is also im-
proved since repairs can be made on defective com-
ponents while the rest of the system is operating. A
major advantage of a multiprocessor over a unipro-
cessor is that, given the right hardware and software
support, a program on a failed processor can be
restarted on another processor and continued from a
point close to the point atwhich failure occurred. This
implies that the frequency of software checkpoints

COMPUTER76

can be greatly reduced-no small gain, since check-
pointing is notorious for its hogging of computer
resources.
In addition to these technical advantages, there are

often economic reasons for using multiprocessing
systems. Whatever one's favorite reason for multi-
processing is, multiprocessing systems will play an
undeniably important role in the computer systems
of the future.

The IBM 370 Model 168

The System 370 is a family of computers com-
prising a wide range of implementations but having a
single architectural specification. Case and Padegs2
describe the S/370 architecture and discuss its evolu-
tion. The Model 168, discussed in detail'here, is one of
the implementations of the S/370 architecture that
support multiprocessing. Multiprocessing in the
370/168 comes in two flavors, designated MP, for
multiprocessing, and AP, for attached processing.
Architecturally these are identical-the same pro-
cessor instructions are available to handle both situa-
tions. From a system organization point of view,
however, they differ significantly. For lack of a better
term we refer to both of them generically as "MP"
and use the term "true MP" when we wish to specify
the special subcase.

Overview. Figure 1 shows a uniprocessor 370/168
configuration. The central processing unit contains
the instruction decoding and execution units as well
as a cache. Main storage'is equally divided between
four units referred to as logical storage units, and
four-way interleaving is present between the LSUs.
Peripherals are connected to the system via chan-
nels-highly specialized processing units with very
simple instruction sets-which operate asynchronous-
ly with the CPU.
Figure 2 shows anAP configuration. The' structure

is very similar to that of a uniprocessor system, with
the addition of an attached processing unit. This
APU is a processor that is almost identical to the
standard 370/168 CPU and differs from the latter on-
ly in that channels cannot be attached to it. Since the
APU has its own cache, a cache invalidate line is pres-
ent between the APU and the CPU, to ensure con-
sistency of cache contents. Also present is an inter-
processor communication line, used by the APU and
CPU to communicate with each other. The term "pro-
cessor" in the rest of this section will refer to both
APUs and CPUs.
A true MP configuration is shown in Figure 3. It

can be viewed as being made up of two independent
uniprocessor systems, each with its- own CPU mem-
ory and channels, connected through a multisystem
control unit.' The MCU handles the routing of
memory requests to the appropriate LSU and also
contains controls for reconfigur-ing the system. A
cache invalidate interface and interprocessor com-
munication line are present in this configuration as
well. Channels are associated with a specificCPU and

consequently cannot communicate with another
CPU or APU.

The proces'sor. The S/370 has a 32-bit word divided
into four eight-bit bytes and a comprehensive in-
struction set encompassing fixed-point, floating-
point, character manipulation, and decimal arith-
metic instructions as well as instructions for system
control. The architecture is register-oriented, with 16
GPRs-general-purpose registers-and four float-
ing-point registers. Besides these, there are 16 con-
trol registers containing control information of
relevance to the operating system and the hardware.
The state of a processor is defined at any instant by
all these registers, together with a 64-bit register
called the program status word. The PSW contains
status information of interest to user programs-
whether interrupts are enabled or not, whether the
result of the previous instruction resulted in an
overflow or underflow, and so on. Half of the PSW
contains the address of the next instruction to be ex-
ecuted and hence plays the role of a program counter.
The S1370 uses a virtualmemory scheme which per-

mits programs to address up to 16Mbytes regardless
of the amount of physical memory present. Transla-
tion of virtual addresses to physical addresses is done
by the hardware, usingpage tables setupby operating
system software. To speed up the translation process,
a cache for page table entries-called the TLB, for
translation lookaside buffer-is present. In an MP
system, each processor has itsownmemory-mapping
hardware, and the programs runningon different pro-
cessors usually have different virtual address spaces.

Interrupts in the S/370 are grouped into five major
classes:

* program interrupts,
* I/O interrupts,
* external interrupts,
* machine check interrupts, and
* SVC-supervisor call-interrupts.
Program interrupts are caused by program-

originated conditions such as overflows, invalid ad-
dresses, and page faults. 1/0 interrupts are caused by
channels and signify the successful or unsuccessful
ending'of an I/O operation. Events such as timer in-
terrupts and operator intervention interrupts are
-classified as external interrupts. One external inter-
rupt that is of special interest in multiprocessing, and
which we shall discuss shortly, is an interprocessor
interrupt by means of which one processor can cause
an interrupt in another processor. An SVC interrupt
arises as the result of the execution of a processor in-
struction, the supervisor call, which is the primary
mechanism a program uses to communicate with the
operating system.

Regardless of the class, the hardware treats these
interrupts in a uniform manner. When an interrupt
occurs, the current PSW is stored in a predefined
location in mainmemory (called the old PSW location
for that class) and a new PSW is loaded from another
predefined location for the new interrupt class. By
virtue of this switch in PSWs, the program counter

May 1980 77

(which is part of the PSW) is set to a new value-i.e.,
that of the interrupt handling routine. Information
regarding the specific cause of each interrupt is
stored by the hardware at predefined locations in
memory. The interrupt handling routines use this in-
formation to decide on the course of further action.
External, I/O, and machine check interrupts can be

disabled by bit settings in the PSW. Interrupts aris-
ingwhen theprocessor is disabled for thecorrespond-
ing interrupt class remain pending until the pro-
cessor becomes enabled for that class. Within these
classes, individual interrupt types can be disabled,
e.g., individual I/O channels, specific types of exter-
nal interrupts. A subset of the program interrupts
can also be individually disabled. SVC interrupts can-
not, however, be disabled.
The interprocessor communication mechanism

mentioned earlier is based on a processor instruction
called SIGP, for signal processor. Each processor has
associated with it a unique, permanent 16-bit ad-
dress. The value of this address can be obtainedby an
instruction called SPAD, for store processor address.
The SIGP is a three-operand instruction. The first
operand specifies a GPR, the second the address of
the processor with which communication is desired,
and the third an opcode which signifies the nature of
the communication. The philosophy behind the SIGP
instruction is that a processor PA executing it should
be-able to play the role of a (human) operator with
respect to the processor PB with which communica-
tion is attempted. Consequently, most of the opcodes
serve to perform the functions provided at the
system console-e.g., system reset, start, stop, sense.
Analogous to information displayed on a console,
eight status bits are returned by PB in the GPR
specified by PA. Most of the order codes are acted
upon byPB without any ensuing interrupt; in fact, a
program running on PB will be totally unaware that a
SIGP instruction was executed with its processor as
the target. Two of the order codes do cause interrupts
on PB and are handled as external interrupts by PB.
The more commonly used of these is called external
call, and is meant to be the primary interprocessor in-
terrupt mechanism. The other, called emergency
alert, is generated by the failure recovery component
of the operating system only when that component
recognizes that recovery is impossible on a processor.
An interest-ing feature of the interprocessor com-
munication mechanism is the presence of a malfunc-
tion alert interrupt. A processor automatically
generates this interrupt when it encounters a hard-
ware error too severe to execute even error recovery
routines. In such a catastrophe, the processor halts
and sends a malfunction alert signal to all processors
in the system, causing an external interrupt in all of
them.
One feature present in the S/370, but-not in any of

the other systems surveyed here, is a mechanism
called "prefixing." The real address range 0-4K is of
special significance to the Sf370 hardware because
the interrupt-related, I/O-related, and error-handling-
related storage areas are in this address range.
Rather than having such a 4K block held in common

for all processors in the system, the S/370 designers
chose to have a separate block for each-processor in
the MP configuration. As a result, real addresses
0-4K have to be mapped to different physical storage
locations for each processor. To do this, a register
called the prefix register is associated with each pro-
cessor, and special instructions are provided to read
and write it. The contents of a prefix register specify
the physical address of a 4K block of memory into
which the address 0-4K is to be mapped. Conversely,
real addresses within this 4K range are mapped to
physical addresses 0-4K. Since each processor has its
own prefix register, it follows thatby suitably setting
each such register, the real address range 0-4K can be
made to correspond in each case to a different
physical storage block.

Protection in the S/370 is achieved through two in-
dependent but complementary mechanisms. Sen-
sitive instructions such as those relating to I/O are
classified as privileged instructions. A bit in the PSW
determines whether these instructions may be ex-
ecuted. Memory protection is achieved by comparing
a four-bit key in the PSW to a four-bit lock settable
only by a privileged instruction and associated with
each 2K block of memory; if a mismatch occurs, ac-
cess is denied.
Each processor has three clocks for timing pur-

poses. Two are run independently of their counter-
parts in other processors. The third clock, called the
time-of-day clock, is synchronized so that all time-of-
day clocks in an MP environment run in step, thus
guaranteeing a unique time stamp for the system.

Channels and I/O. As was mentioned earlier, I/O in
the S/370 is performed via channels, which execute
commands set up in main memory by the CPU but
run asynchronously with the latter. The commands
executed by a channel are referred to as channel com-
mand words. A number of CCWs may be con-
catenated to form a channel program; a channel pro-
gram specifies a sequence of operations to be carried
out on one device. To perform I/O on a device, the
CPU sets up a. channel program in main storage,
places a pointer to it in a predefinedmemory location,
and issues a start I/O instruction. The channel then
fetches CCWs from the channel program and carries
out the desired operations on the device. When the
channel program terminates, or when an error is en-
countered, the channel delivers an I/O interrupt to
the CPU and places status information in a prede-
fined memory location. The CPU's I/O interrupt
routine handles the termination of this I/O request
and initiates the next I/O operation on the device.
Since channels are associated with a specific CPU,

it is clear that in anMP situation, oneCPU cannot do
I/O on channels associated with other CPUs. To
eliminate this asymmetry, a mechanism called a two-
channel switch can be attached to a peripheral device.
This permits the device to be attached to two dif-
ferent channels, possibly on different CPUs. A
specialCCW permits a data path to be set up between
one of the channels and the device; once set up, this
path is retained until explicitly released. Thus both

COMPUTER78

channels can communicate with the device, though
only one can do so at a time. In a true MP configura-
tion, two-channel switches can be used to allow both
CPUs to have access to shared devices.

I/O interrupts are always handled by the CPU
which initiated the corresponding I/O operation. This
is true even if the interrupting device is connected via
a two-channel switch in an MP configuration-i.e.,
there is no passing of interrupts between CPUs.
Another important point is that only CPUs have
channels associated with them; APUs do not. In an
AP environment, therefore, all I/O has to be handled
by the CPU.

The operating system. Multiprocessing in the
S/370 is supported by one of IBM's operating
systems called OSIVS2 Multiple Virtual Systems-
MVS, for short. UnderMVS, each user operates in his
own 16M-byte virtual address space independent of
all other users in the system. Userprograms are total-
ly unaware of the number of processors in the system
and of the system configuration-i.e., whether it is a
uniprocessing, AP, or true MP configuration. There
is one copy of the operating system, part of it resident
in real memory and the rest paged in on demand. The
operating system occupies a part of every user's ad-
dress space and manages that space completely-one
page table-per user is maintained for that purpose.
User programs request operating system services

by executing an SVC instruction specifying an eight-
bit number as an operand. Memory protection is
achieved by ensuring that a given page frame is in no
more than one user's address space at a time. The
hardware lock and key protection mechanism
described earlier is used within the operating system
to ensure that failure in one component will not con-
taminate other components.
To perform I/O on a device, auserprogram setsup a

control block containing necessary information and
issues an SVC. The interrupt handlingroutine checks
to see if there is a path from the issuing CPU to the
device; if so, the CPU queues the I/O request for ex-
ecution. If a path to the device is not available, the
,user ta§k is marked as being dispatchable only by the
otherCU (a condition called "CPU affinity") and is
then suspended. At some future time the other CPU
will activate this task and handle its I/O request. On
termination of the I/O request, the task is marked as
being once again dispatchable on either processor.
CPU affinity may also become necessary if a task
needs hardware features found only on one processor.
User tasks may create subtasks, and this process

may be recursively repeated. Subtasks of a user's job'
compete for resources with each other, and two sub-
tasks belonging to a user may be running at the same
time on two processors, thus reducing the overall ex-
ecution time of the job.
There are extensive software and hardware error

recovery mechanisms specially designed to make use
of the inherent redundancy available in MP con-
figurations. When an error is detected on a processor,
a machine check interrupt is generated on that pro-
cessor and the corresponding interrupt handler tries

to perform whatever recovery it can. Forexample, if a
memory bank fails, the page tables'can be adjusted so
that that memory bank is not used any more. If the
machine check interrupt handler realizes that
recovery is impossible, it issues a SIGP instruction
specifying an emergency alert as the order code. The
target processor's interrupt handling routine then
tries to salvage the job that was running on the failed
processor. Sometimes the hardware error is so severe
that even the machine check interrupt handler can-
not be successfully executed. In that case, the hard-
ware automatically ge'nerates a SIGP instruction to
all other processors in the system, specifying a mal-
function alert as the order code.
The operating system uses a simple linear ordering

scheme8 to avoid deadlock. This scheme works on the
assumption that all tasks holding locks proceed at a
non-zero speed. If a task holdinglocks is executing on
a processor when the processor fails, a deadlock may
exist. The error recovery software is clever enough to
incrementally execute all tasks holding locks, in a
suitable order, until a sufficient number of locks are
released to remove the threat of deadlock.6
Certain parts of MVS code must wait for a lock

while in a disabled state; i.e., they will have all inter-
rupts masked. As a result, a processor running that
piece of MVS code will not respond to emergency or
malfunction alert signals, once again leading to a
possible deadlock in the case of processor failure. To
avoid this, every part of MVS'using a disabled wait
periodically enables emergency and malfunction
alert interrupts for a brief period, guaranteeing that a
failing processor's cry for help will not go unheeded.

Reconfiguration of the system is possible, but only
with operator intervention. A trueMP system can be
partitioned into two totally independent unipro-
cessor systems. In that case, there is no sharing of
memory, but part of the memory associated with one
CPU can be used by the other CPU. AP configura-
tions cannot be partitioned. Failure of the APU is
noncritical, but failure of the CPU results in the
failure of the'entire system, since APUs cannot do
I/O.

The CDC Cyber 170

The Cyber 170 series is a descendant of the CDC
6600, one of the first systems to embody the principle
of functional partitioning. By the latter term I mean
the splittingup ofcomputing activities intoa number
of functions and the assigning of different processors
to different functions. Such a partitioning usually
(but not necessarily) results in significant asym-
metry among the processors---the Cyber 170 is no ex-
ception to this.
The Cyber 170 series consists of a number of dif-

ferent models, architecturally and structurally
similar to each other but differing in performance.
The organization of the series' high-end machine, the
Cyber 176, differs slightly from that of the rest of the
series. The differences, however, do not affect those
aspects of the system that are of interest to us, and

May 1980 7979

hence, for explanatory purposes, we will ignore these
differences.

Overview. A Cyber 170 system can best be visual-
ized as two processing subsystems-the central pro-
cessing subsystem and the peripheral processing
subsystem.lThese subsystems function relatively in-
dependently of each other and have access to a com-
mon central memory. In addition to the central
memory, there is an optional secondary memory
called extended core storage, which is a low-speed
random-access memory used in conjunction with the
central memory to form a two-level memory hierar-
chy. All these components are connected via a central
memory controller, essentially a high-speed cross-bar
switch. I/O devices are attached to the peripheral pro-
cessor subsystem. Figure 4 illustrates these inter-
connections.

The central processing subsystem. This sub-
system consists of one or two central processors, each
with its own bus to the central memory controller.
There is no interconnection or communication
mechanism between the central processors. Each is a
powerful processor with a 60-bit word length and
operand, index, and address registers. Memory pro-
tection is achieved by having two base-limit register
pairs in each central processor (one for the central
memory and the other for the extended core storage).
All addresses generated during instruction execu-
tion are checked for validity against the corre-
sponding limit register and, if valid, are relocated by
the contents of the base register. There is a program
counter, an error-exit register (used to mask or enable
program or hardware error exits), and a monitor ad-
dress register whose function will be described short-
ly. The instruction set of the central processor is, for
the most part, quite conventional and oriented
toward numerical computation. There are no I/O in-
structions and all I/O is handled by the peripheral
processor subsystem.
One instruction, the central exchange jump, is

worth studying in some detail. The CEJ is essentially

F----PS-7-

EC EXTENDED CORE STORAGE
CMC = CENTRAL MEMORY CONTROLLER
CM' CENTRAL MEMORY
PPS PERNTPERAL PROCESSING SUBSYSTEM

Figure 4. A Cyber 170 configuration with two central pro-
cessors.

a context-switching instruction and its execution
results in the current context being saved and re-
placed by one taken from an area in memory called
the exchange package. The EP is a 16-word area
located anywhere in memory. Corresponding to each
central processor register, and at a predefined offset
from the start of the EP, is a save area for that
register. When a CEJ is executed, the contents of
each register are exchanged with the contents of the
corresponding save area in the EP. Thus, by ex-
ecuting a single instruction, all the registers can be
saved and loaded with appropriate new values. The
location of the EP depends on the mode of the central
processor when the CEJ is issued. The central pro-
cessor executes in one of two modes, depending on
the state of an internal flag called the monitor flag.
When theMF is set, the central processor executes in
monitor mode; otherwise it executes in user mode.
The MF automatically gets set or reset by the CEJ in-
struction and is not under program control. When the
central processor is in user mode, the hardware uses
the contents of the monitor address register as a
pointer to the E P; at the end of the exchange, theMF
automatically gets set. In monitor mode, the operand
specified as part of the CEJ instruction is used as a
pointer to the EP; at the end of the instruction, the
MF gets reset. Thus the CEJ is a very fast
mechanism for switching back and forth between
user and monitor modes.

The peripheral processing system. This subsystem
comprises 20 peripheral processors, each essentially
a minicomputer with an instruction set made up
primarily of I/O, logical, and data transfer in-
structions with a few arithmetic instructions. Each
peripheral processor has a local memory of 4K 12-bit
words, accessible only to that peripheral processor.
There are peripheral processor instructions to
transfer data between the central memory and the
local memory. Every peripheral processor can use
every I/O device in the system, though at any given
time one peripheral processor can be in communica-
tion with at most one I/O device. There are no inter-
rupts: all I/O is done by the software polling of an I/O
device until it indicates that it is ready to re-
ceive/transmit data. Data is transferred from an I/O
device to a peripheral processor's local memory and
then, ifnecessary, by software to the central memory.
There is a 12-bit real-time clock with a resolution of
one microsecond. Since there are no timer interrupts,
peripheral processors poll the clock to check if a given
time interval has elapsed.
The main communication mechanism between the

peripheral processors and the central processors is
the exchange jump. This instruction comes in two
flavors-the EJ, unconditional exchange jump, and
the MEJ, monitorexchange jump. Both are similarto
the CEJ instruction in that they specify anEP whose
contents are exchanged with those of the central pro-
cessor's registers. In the EJ, the address of the EP is
assumed to reside in a peripheral processor register.
In the MEJ, the EP address is taken either from a
peripheral processor register or from the central pro-
cessor's monitor address register, depending on the

COMPUTER80

MEJ's opcode. The MEJ causes an exchange only if
the central processor is in user mode; in monitor mode
the MEJ is treated as a no-op.
When more than one central processor exists, the

one to be interrupted is specified as part of the in-
struction. If, in a dual-processor configuration, one
central processor is executing in monitor mode, a
CEJ will remain pending until both processors are in
user mode. Under the same circumstances, an MEJ
by a peripheral processor to either central processor
is treated as a no-op. An unconditional EJ executed at
the same time as anMEJ or CEJ can cause both cen-
tral processors to enter monitor state, and hence can
cause them to deadlock. Though a peripheral pro-
cessor can interrupt either central processor using an
EJ, it cannot reset the MF on either. Consequently,
once deadlocked, both central processors are doomed
to execute in monitor mode unless the system is
manually restarted.

The operating system. Three CDC/Cyber operating
systems have evolved over the last 15 years-Scope,
Kronos, and Nos. The description below pertains to
Kronos.
One peripheral processor, designated PPO, is

dedicated to the operating system and spends all its
time handling supervisor requests from user pro-
grams. Another peripheral processor is dedicated to
communication with the operator's display console.
The remaining peripheral processors form a pool and
handle I/O requests. User programs run on the cen-
tral processors and do not refer directly to the
peripheral processors-they are in fact unaware of
their presence.
A part of the operating system which does schedul-

ing of central processors and peripheral processors
resides in the central memory and is executed by
either central processor in monitor mode. Much of the
operating system's control information resides in
central memory and is used either by a central pro-
cessor in monitor mode, or by a peripheral processor
which transfers it to its local memory before use.
Communication among the various operating sys-

tem components residing in different central or
peripheral processors is done by a message handling
system resident in the central memory. Each
peripheral processor has an I/O buffer pair per-
manently assigned to it in central memory. Messages
to it are placed in its input buffer and it, in turn,
places outward messages in its output buffer. PPO
periodically examines all output buffers to see if any
peripheral processors have requested its services.
Since there are no interrupts, all I/O is done via soft-

ware polling. Direct communication among peripher-
al processors is done by simulating a peripheral pro-
cessor-to-I/O device transaction: the responding pe-
ripheral processor behaves like an I/O device and
transfers data between its local memory and the I/O
channel connecting it with the peripheral processor
that initiated the conversation.

Performance. The central processor's 60-bit word
length and arithmetic instructions make the Cyber

170 eminently suited for scientific computation,
where numerical accuracy is vital. The fast context-
switching capability makes it good for situations
where frequent task switching occurs.
Quantitative performance measures are hard to

come by in the literature. One source9 states that the
performance of the Cyber 170 series varies from 0.8
MIPs for the Cyber 171 to 15 MIPs for the Cyber 176.
Symmetric dual-processor configurations are stated
to have about 1.5 times the MIPs of corresponding
single-processor systems.

The Honeywell Series 60:Level 66

The Honeywell Series 60 does not represent one
computer system or a family of systems. Rather, it
represents a set of families, each referred to as a level,
with members ofa family referred to as models ofthat
family. There are broad architectural differences
among the various levels; however, models of a given
level are architecturally similar and differ only in im-
plementation and performance. The level chosen here
is Level 66, close to the top of the Series 60 line.
For convenience, we shall refer to the Honeywell

Series 60 Level 66 system as the 60/66 throughout
the rest of this section.

Overview. The basic structure of a uniprocessor
60/66 system consists of a central processor, an I/O
multiplexer with peripherals attached, and a system
controller connecting a pair of memory modules to
the rest of the system (Figure 5). The system control-
ler acts as a coordinator and plays a crucial role in the
routing of memory accesses, interrupts, and other
communications among the various system com-
ponents.
A multiprocessor 60/66 can be visualized as a num-

ber of uniprocessor systems connected to each other
via their system controllers (Figure 6). As the figure
indicates, the connections form a hetwork in which
every central processor and every I/O multiplexer is
connected to every system controller. In such a
system, one central processor is nominated as pro-

Figure 5. A uniprocessor Honeywell 60166 system.

May 1980 81

Figure 6. A multiprocessor Honeywell 60/66 system.

cessor 0-CPO-and is distinguished from the others
in that all external interrupts are routed to it by the
hardware; this solves the problem of each peripheral
having to decide which central processor it should in-
terrupt. Up to a maximum of four central processors
(and the corresponding number of I/O multiplexers
and system controllers) can be included in a multi-
processor system.
Since it plays such a pivotal role in the system

organization, we should begin our examination with
the system controller.

The system controller. This component has two
main functions: it acts as a storage controller for a
specific pair of memory modules, and it acts as an in-
telligent switch for the various components con-
nected to it.
Each system controller has eight ports to which are

connected two memory modules, three central pro-
cessors, and three I/O multiplexers, one to a port.
Every system element attached to a port can access
the memory associated with that port's system con-
troller. When more than one element tries to access
the same memory module, the corresponding system
controller resolves the conflict.
Each system controller has 32 interrupt cells

associated with it, each ofwhich may be set by an ele-
ment attached to a port. When an interrupt cell is set,
the system controller causes an interrupt in CPO.
Associated with every interrupt cell is a unique pair
of locations in main memory used as the interrupt
vector when the corresponding interrupt occurs.
The system controller also has a calendar clock

with a period of 142 years and a resolution of one
microsecond; this clock may be read or set by
privileged central processor instructions.

Central processor. The 60/66 processor has a 36-bit
word length and a fairly commonplace set of
arithmetic, logical, character, and data movement in-
structions. There is a quotient-accumulator register
as well as index and address registers. A fairly
sophisticated address modification scheme with in-
direction and two levels of indexing is present. An in-
dicator register contains all the relevant processor
status bits such as condition codes from the previous

instruction and what program events are enabled.
The processor can be in either master or slave

mode. In master mode, all instructions may be ex-
ecuted, whereas in slave mode an attempt to execute
certain instructions results in an illegal procedure
fault (faults and their processing are described
below). Address relocation procedures also differ in
the two modes.
Events that disrupt the normal sequence of in-

struction execution are classified in two catego-
ries-interrupts and faults. An interrupt is a request
by a system controller for service. A fault is a condi-
tion, usually arising in the processor itself, which re-
quires special handling. A signal from an I/O device
on completion of a previously requested I/O opera-
tion is an example of an interrupt, while overflow in
an arithmetic instruction is an instance of a
processor-originated fault requiring special process-
ing. Interrupts and faults are handled in an identical
manner by the central processor. Corresponding to
every type of interrupt or fault is a unique pair ofloca-
tions in main memory called the interrupt vector.
When an interrupt or fault occurs, the central pro-
cessor enters master mode and executes the instruc-
tions stored in the corresponding interrupt vector.
The program counter is not altered unless an explicit
transfer instruction is one of the instructions in the
interrupt vector. At the end of the interrupt se-
quence, execution resumes at the location pointed to
by the program counter. The central processor mode
remains what it was before the interrupt or fault oc-
curred, unless it was explicitly altered in the inter-
rupt sequence or a transfer was present in the inter-
rupt vector, in which case the central processor re-
mains in master mode. The above procedure is thus
equivalent to a hardware-initiated two-instruction
subroutine call in which one can examine an interrupt
or fault and decide whether further processing is
necessary.
Protection and isolation in the 60/66 are achieved

by a base/limit register mechanism. Though the 60/66
can have up to 1M words of physical memory, its
18-bit addressing structure allows only 256K of that
memory to be addressable at a time. The specific
256K "window" that is addressable is determined by
a base register whose contents are added to every ad-
dress generated by the processor. There are, in fact,
three base address registers-one for use in slave
mode and the othertwo for master mode, thus permit-
ting aprogram in master mode to access two different
256K windows.
In a multiprocessor configuration there is only one

contiguous, real address space for the entire system.
Each central processor has its own set of base ad-
dress registers. Thus programs executing on dif-
ferent central processors can refer to different ex-
tents ofthe real address space, or, if desired, share the
same (or overlapping) parts of it by appropriately set-
ting the respective base registers. Each system con-
troller has a different set of interrupt vectors corre-
sponding to it, thus ensuring that each interrupt cell
in a multiprocessor system is indeed associated with
a unique interrupt vector.

COMPUTER82

I/O operations are done using the CIOC-connect
I/O channel-instruction. A channel is a connection
between an I/O multiplexerand a peripheral device or
subsystem. Corresponding to every channel in the
system is a unique location in memory called-a chan-
nel mailbox. To initiate I/O on a channel, a central
processor first fills this mailbox with pertinent infor-
mation for the channel and then issues a CIOC for
that channel. The channel reads its mailbox, per-
forms the operations requested, and presents an in-
terrupt (via the I/O multiplex and system controller
to which it is connected) to CPO.
Communication between processors is possible in a

multiprocessor system since processors themselves
can be attached to channels. Consider two central
processors, P1 and P2, connected to channels C1 and
C2. If P1 wishes to pass a message to P2, it can place a
message in C2's mailbox and issue a CIOC for C2. The
hardware recognizes this as an interprocessor com-
munication and causes a special fault (connect fault)
to occur in P2. P2 now executes the corresponding
fault service routine and reads the message sent to it.
It can send a reply by a method symmetric to the
above.
Each central processor has an interval timer which

can be set in master mode and which causes a timer
fault when the specified time has elapsed. The fault
occurs only in slave mode; ifthe central processor is in
master mode, the fault remains pending until it
enters slave mode.

I/O multiplexer. This component is connected,
through I/O channels,* to every system controller
and to a variable number of peripherals or peripheral
subsystems. Eachmemory access requiredby a chan-
nel is performed via the I/O multiplexer, which routes
it to the appropriate memory module and performs
bounds checking on it.
The I/O multiplexer permits scatter-gather of da-

ta-i.e., the ability to read/write a block of data
from/to noncontiguous locations in memory. An I/O
multiplexer can set an interrupt cell in a system con-
troller and hence cause an I/O interrupt in CPO. In
short, the I/O multiplexer acts as an intelligent inter-
face between the I/O channels and the system con-
trollers.

Operating system. The 60/66's operating system is
called GCOS-General Comprehensive Operating
System. GCOS is a multiprogranuning operating
system and, on the 60/66, supports multiprocessing.
Under GCOS each job executes in its own address
space; the relocation ofa job's address space to its im-
age in real memory is done by the base address
register, as described before. GCOS gives a job a
uniprocessor view of the system, regardless of
whether the system is really a uniprocessor or
multiprocessor-i.e., a job will be unaware of the
number of central processors in the system on which

*These I/O channels are essentially direct memory access con-
trollers.

it is running. Scheduling is done on a time-sliced basis
using each central processor's interval timer.
User programs execute in slave mode. Requests for

operating system services are made by executing the
MME-master mode entry-instruction; MME is
very similar to the SVC instruction in the S/370 and
causes a program-generated fault to appear on the
central processor which executed the instruction.
The operating system'sMME fault handling routine
routes the request to the appropriate service routine,
which, on completion, returns control to the user pro-
gram in slave mode.

Resource management and scheduling are done on
a system-wide basis. There is one copy of the
operating system code resident in memory and rele-
vant parts of it are executed by any of the central pro-
cessors when needed. The asymmetry in hardware
(i.e., the fact that one central processor is the control
processor) is reflected in the software only in I/O
handling. I/O operations may be initiated by any cen-
tral processor. For each channel there exists a global
queue of I/O requests awaiting attention on that
channel. When a channel becomes free, the control
processor schedules a request from the queue and
issues a CIOC. When the channel completes the re-
quest and interrupts CPO, the latter fields the inter-
rupt and marks the request as satisfied; tasks
waiting for this event are enabled and will be sched-
uled in the usual manner the next time the dispatcher
is activated. The fact that only CPO can handle inter-
rupts does not significantly complicate'the operating
system code. There is, after all, only one copy of the
code, and asymmetry in hardware-will be reflected
only in the fact that certain parts of the code are
always executed by only one central processor (i.e.,
CP0) and not by the others. The routing of interrupts
to CPO applies only to (external) interrupts; faults are
handled on the processors on which they are
generated.
Mutual exclusion among critical sections of oper-

ating system code and data structures is obtained
through locks. Certain central processor instructions
are designed for this purpose: examples are the
LDAC, load accumulator and clear memory location;
the LQAC, load quotient and clear memory location;
and the SZNC, set zero and negative indicators and
clear location. All of these access and then clear a
memory location in one, indivisible sequence.
Communication among' various tasks is accom-

plished by an "intercom" system, a component of
GCOS that does virtual I/O between two tasks. A
task T1 wishing to send a message to a task T2 does a
write operation via intercom. When T2 issues a read
to intercom it receives the message sent by T1.

On-line reconfiguration of a 60/66 system is possi-
ble through operator commands. Central processors
(with their system controllers and I/O multiplexers)
can be added to or deleted from the system, and a
multiprocessor system can be partitioned into two or
more uniprocessor or multiprocessor systems. All
such reconfigurations require operator intervention;
the system cannot automatically reconfigure itself in
the event of a failing element. Such automatic recon-

May 1980 83

figuration would be especially difficult in this
system, since the control processor has to be manual-
ly designated and switches set accordingly.

Performance. A reasonably exhaustive search of
the literature failed to turn up any information on the
performance of the multiprocessor 60/66 systems.
However, a study for the Series 60's predecessor, the
Series 6000, does exist. The organization of the 6060
is similar to that of the 60/66. Although the absolute
measures of performance are likely to be different,
this similarity makes it possible to show the relative
improvement one might expect in going from a
uniprocessor to a multiprocessor system. The
study22 measured throughput as a function of the
number ofprocessors in the system, with and without
memory interleaving (Figures 7 and 8). The evalua-
tion was done using a synthetic job mix in which the
I/O-to-CPU time proportion for a job could be varied.
Thecurves clearly indicate the ineffectiveness of add-
ing more processors in I/O-bound situations, but the
value of such additions in CPU-bound cases. The
same study quotes the following (previously un-
published) Honeywell figures for relative
throughputs of 6060 multiprocessor systems:

No. ofCPUs Relative throughput

1 1.0
2 1.8
3 2.4

The Univac 1100 Model 80

The Univac 1100 series is a descendant of the
venerable 1106, 1107, and 1108 systems and, conse-
quently, retains most of their architectural features.
The survey by Borgerson et al.23 gives an excellent
description of Univac system evolution from the
1107 to the present-day 1100 series. This series com-
prises many models, architecturally identical but dif-
fering in performance. The Model 80, discussed here,
supports up to four central processors.

Overview. Figure 9 shows a maximally configured,
single-processor 1100/80 system. The system is
organized along fairly conventional lines, with a cen-
tral processor and an I/O unit attached to main
storage units through a storage interface unit. The
storage interface unit contains a cache to speed up
memory references. Peripherals are connected to the
storage interface unit through channels (similar to
IBM channels) housed in the I/O units.
The configuration shown in Figure 9 is called a lX 1

system, since there is one processor and one I/O unit.
In general, 1100/80 systems are designated asMXN
configurations, whereMis the number of processors
andN the number of I/O units. Configurations in the
range lXl to 4X4 are possible, though not all com-
binations ofMandN are permitted.
In a 2X2 system (Figure 10), two processors and

two I/O units are connected to a storage interface

COMPUTER

unit. There is still only one cache, common to both
processors and located in the storage interface unit.
Figure 11 depicts a 4 X4 system. A second storage

interface unit, with its own independent cache, isnow
present and connected to the two additional pro-
cessors and I/O units. The two storage interface units
have a cache invalidate interface which ensures that
if both caches contain copies of the same data, alter-
ing the copy in one cache will cause the corresponding
copy in the other to be marked as invalid.
As the figures show, main memory is a common

resource for all processors and I/O units and is ac-
cessed by them via the corresponding storage inter-
face units. There can beup to four main storage units,
each containing from 512K to 1M words of memory.
Each main storage unit is connected to both storage
interface units (if two exist) and can be two-way in-
terleaved.
Processors are connected to each other by inter-

processor interrupt interfaces, which permit a pro-
cessor to cause an interrupt in any other processor.
An I/O unit is electrically connected to only one
storage interface unit and to the processors on that
storage interface unit. As a result, a processor can
handle I/O only on I/O units connected to the same
storage interface unit as itself.
In addition to the components mentioned above is a

stand-alone unit (not shown in the figures) called the
system transition unit, which contains controls
necessary for system reconfiguration.

Central processor. The 1100/80 processor has a
36-bit word length and a reasonably rich repertoire of
fixed-point, floating-point, data movement, and
character manipulation instructions. The architec-
ture is essentially register-oriented, with separate in-
dex registers and accumulators. Most double-
operand instructions have one operand in a register
and one in memory.

Central to the architecture of this system is a set of
128 36-bit words called the GRS-general register
set. Programs canl address 16 index registers and 16
accumulators. There are two sets of each-one for use
by user programs (the user set) and the other for use
by the operating system (the EXEC set). There are
also two sets of miscellaneous registers used for
specifying masks, repeat counts, etc. Besides these
registers, the GRS contains a number of elements
used only by the operating system: a real-time clock,
pointers to descriptor tables (described later), and
areas used by the hardware to save information
during interrupts.
Included in the processor, but not as a part of the

GRS, is a register called theDR-designator register.
The DR is a collection of miscellaneous bits, some of
interest to user programs, others used only by the
operating system. In addition to condition code bits
(indicating the results of the previous instruction),
the DR contains a number of control bits indicating
certain program conditions such as overflow and
divide check, enabling or disabling interrupts, speci-
fying whether user or EXEC registers are to be used,
and so on. The DR may be loaded by a processor in-

Figure 9. A 1Xl Univac 1100/80 configuration.

Figure 10. A 2x2 Univac 1100180 configuration.

Figure 11. A 4X4 Univac 1100/80 configuration.

May 1980 85

struction, but the hardware prevents a user program
from setting certain bit combinations.
The processor can operate in either normal or guard

mode. In normal mode, all instructions are valid. In
guard mode, only a subset of the full instruction
repertoire is available, and an attempt to execute for-
bidden instructions will result in a program inter-
rupt. A bit in the DR specifies the mode; another bit
specifies which set of registers in the GRS is to be
used (user or EXEC). For obvious reasons, neither of
these bits may be set in guard mode.
Programs in normal mode have three clocks avail-

able to them for timing purposes. One of these, the
day clock, has a resolution of 200 microseconds and
generates an interrupt about every 6.5 seconds. In a
multiprocessor system this interrupt may be fielded
by any processor which has its interrupts enabled.
Unike other interrupts, this one is lost (i.e., does not
remain pending) if there is no processor to field the in-
terrupt. Further, in a multiprocessor system a hard-
ware interlock mechanism ensures that only one day
clock is in use at a time. The specific processor whose
day clock is thus used as the system's time standard
is selectable by a processor instruction. Besides the
day clock, there is a real-time clock and a quantum
timer, both oifwhich can be loaded to cause an inter-
rupt at the end of a desired interval. In multi-
processor configurations, each processor has its own
real-time clock and quantum timer; each of these
clocks runs independently of all other clocks in the
system and each can cause interrupts only on its own
processor.
The addressing structure of the 1100/80 resembles

that ofmany other machines described in this survey.
Instructions use 16-bit address displacements and an
18-bit index, thus yielding an 18-bit relative address.
One bit in the instruction specifies indirection.
Cascaded indirection is possible, since a word ac-
cessed by an indirect address is itself treated as an ad-
dress if a specific bit in the word is on. A 24-bit ab-
solute address is used to access physical memory;
these addresses are system-wide in the sense that all
processors and I/O units access a given memory loca-
tion by means of the same address. The mapping of
18-bit relative addresses to 24-bit physical addresses
is done by a relocation register mechanism.
The 1100/80's interrupt scheme is quite com-

prehensive. Program faults, traps, and asynchronous
interrupts are all handled in the same way by the
hardware. Interrupts fall into three categories:

* immediate storage checks, which arise when
hardware errors are detected in a storage inter-
face unit;

* guard mode interrupts, which are generated if a
program in guard mode violates some restric-
tion, such as trying to execute a forbidden in-
struction; and

* normal interrupts, which encompass all other
types of interrupts.

These classes of interrupts are all handled the same
way, except that for each class the hardware uses dif-
ferent locations in the GRS as save areas. A set of 56

contiguous storage locations is used in a special way
by the hardware; most are used as interrupt vectors,
one such vector being assigned to each type of inter-
rupt. The location of this special area of memory can
be specified by a processor instruction and by switch
settings on the system transition unit. In a multi-
processor system, there is only one such set for the en-
tire system, thus implying that all interrupt routines
must be reentrant or have locks ensuring mutual ex-
clusion. When an interrupt 'occurs, the DR, the cur-
rent value of the program counter, and the status
word giving details specific to each type of interrupt
are stored by the hardware in predefined locations in
the GRS. All DR bits are set to zero, except those
specifying relocation suppression and EXEC
register use in the GRS. An unconditional branch to
the interrupt vector corresponding to this interrupt
is then made. The (single) instruction at this location
is usually a branch to the appropriate interrupt ser-
vice routine. All further interrupts are disabled until
explicitly enabled. The interrupt service routine uses
the interrupt status (saved in the GRS) to obtain in-
formation needed to process the interrupt. Control is
returned to the interrupted program by a single in-
struction, which loads the DR and branches to the
point of-interruption.
Communication between processors is achieved by

an interprocessor interrupt scheme. A processor
number from 0 to 3 is associated with each processor
to uniquely identify it. This number is defined in
hardware and may be obtained by software by ex-
ecuting a store processor ID-SPID-instruction. A
processor PA wishing to interrupt processor PB can
issue an initiate interprocessor interrupt instruction
specifying B as the operand. An interrupt on pro-
cessor PB is then generated and, when enabled,
causes PB to execute the corresponding service
routine. PB can determine the identity of the pro-
cessor causing the interrupt from the interrupt
status word saved in the GRS. If a processor has
more than one interprocessor interrupt outstanding
at any time, the order in which such interrupts are
serviced is determined by a hardware-defined static
priority scheme.

Storage interface unit. As the name implies, this
component acts as an interface between storage units
on the one hand and processors and I/O units on the
other. Each storage interface unit can connect to up
to two processors and two I/O units. Hence, in a fully
configured (4 X4) system two storage interface units
are present (Figure 11). Each storage interface unit
contains its own four-way, set-associative, store-
though cache, whose size can vary from 4K words to
16K words. As mentioned before, a cache invalidate
interface exists between storage interface units to en-
sure consistency. In contrast to most other systems,
the I/O unit in the 1100/80 is connecteL to cache
rather than directly to main memory. Moreover,
cache is associated with a storage interface unit
rather than with a processor, resulting in cache being
shared by two processors.

COMPUTER86

Input/output. I/O in the 1100/80 is done through
asynchronous channels, similar to those in the IBM
S/370. As in the S/370, there are byte-multiplexer and
block-multiplexer channels.*
An I/O unit has a control section, which interfaces

with a storage interface unit, and a channel section,
where up to eight channels may exist. The channels
themselves are connected to peripheral devices and
peripheral subsystems via bidirectional links.
For each processor in the system, there are three

words reserved in main storage for use in I/O: a chan-
nel address word-CAW, an interrupt address
word-IAW, and a channel status word-CSW. To
start an I/O operation, a processor sets up a channel
program in main storage and writes into its CAW a
word containing an opcode, channel address, and
device address. This initiates the specified operation.
On completion of the I/O request, a channel makes an
interrupt request via its I/O unit. Either processor
connected to the same storage interface unit as this
I/O unit may respond, with hardware interlocks
guaranteeing that no more than one processor
responds. The I/O unit now writes into the respond-
ing processor's CSW and IAW. The IAW identifies
the interrupting channel and device, and the CSW
contains status information for the interrupt. In case
both processors have disabled interrupts, the inter-
rupt remains pending until a processor accepts it.

The system transition unit and reconfiguration.
The system transition unit is a stand-alone unit con-
taining all controls pertaining to system configura-
tion and partitioning. An 1100/80 installation with
more than one processor and I/O unit can be split into
two totally independent computer systems (called
"applications" in Univac terminology). If only one
storage interface unit exists, as in a 2X2 system, each
application uses one half of that storage interface
unit, with the cache equally divided between the
halves. The reconfiguration of a one-application
system into a two-application system, or vice versa,
has to be done manually. Software running on an ap-
plication can obtain information about the configura-
tion of that application by issuing processor instruc-
tions, which elicit this information from the system
transition unit. Attaching a peripheral to one applica-
tion or the other is done by manual switch setting,
though in some cases it can be done by software com-
mands.
The system transition unit also plays a crucial role

in error recovery. Two separate initial load paths,
specifying the processor, I/O unit, channel, and
device to be used in the initial loading of the system,
may be set up on the system transition unit; either of
them can be chosen at load time. In addition, there is
an auto-recovery option that can be used to auto-
matically recover from system software crashes and
transient hardware problems. When this option is
enabled, a special timer called the ART-auto

*A third type of channel-called the word channel-exists mainly for
compatibility with earlier Univac systems. We shall not discuss
word channels here.

recovery timer-counts down continuously from a
preset initial value. The system software must
periodically reset the ART before it goes to zero. If
the ART does go to zero, a system error is assumed to
exist and a reloading of the system is attempted
using one of the load paths. If this fails, reloading is
attempted using the other load path. If two such at-
tempts on each load path fail, a permanent error is
assumed to exist and the system halts.

The operating system. EXEC, the 1100/80's
operating system, is a typical example of an
operating system which was developed for a third-
generation computer in the mid-60's and which has
evolved over the years. It supports multiprogram-
ming and multiprocessing. User programs run in
guard mode and, unless explicit sharing is requested,
user memory areas are mutually exclusive. The
specific configuration on which a user program runs
(i.e., the number of processors, the number of I/O
units, etc.) is transparent to the program. User re-
quests to EXEC are made by executing an "ex-
ecutive request interrupt" instruction. This causes
an interrupt on the processor on which the instruc-
tion was executed; the operating system's interrupt
service routine handles the request and returns to the
user.
To request an I/O operation, a user program ex-

ecutes an executive request interrupt with suitable
operands. If the request is to an I/O unit on the same
storage interface unit as the processor running the
user program, that processor initiates I/O on the ap-
propriate channel and device. Otherwise, it signals a
processor on the other storage interface unit (by the
interprocessor interrupt mechanism) to initiate the
I/O operation. As described earlier, the interrupt, on
completion of this I/O request, is handled by one of
the processors on the same storage interface unit as
the interrupting I/O unit.
Only one copy ofEXEC resides in main store. Most

parts of the code are reentrant; the few that are not
use locks to ensure mutual exclusion. Indivisible in-
structions, such as test and set, test and clear, etc.,
are available for implementing such locks. Schedul-
ing ofuser tasks is done using a single ready list for all
processors. Error recovery is handled by the
operating system, using the hardware auto-recovery
feature described above.

The Burroughs B7700

The announcement of the Burroughs B5000 in
1961 was a major landmark in the evolution of com-
puter architecture, for it signified the first major
system exclusively designed to support a high-level
language (in this case, Algol-60). The B7700 displays
many of the distinctive features of the B5000.
Organick31 presents a lucid, though somewhat
abstract, explanation ofhow Algol and Algol-like pro-
grams are run on the Burroughs machines; I recom-
mend it to those unfamiliar with stack-oriented ar-
chitectures.

May 1980 87

Figure 12. B7700 configuration with minimum number of
requesters.

Figure 13. B7700 configuration with one CPU and two 1/0
modules.

Figure 14. Maximally configured B7700 system.

Overview. A simple B7700 system comprises three
major units-the central processor, the input-output
module, and the memory module (Figure 12). There
can be one to eight memory modules, each containing
its own control unit and either 128K words or 256K
words of memory (up to a system maximum of 1M
words). Peripheral devices are connected to the
system via an I/O module.
The system in Figure 13 has one CPU but two I/O

modules. Each I/O module and CPU is connected to
every memory module by a separate memory bus.
There is a single interrupt bus, to which are con-
nected both I/O modules and the CPU. Since both
CPUs and I/O modules can access memory, Bur-
roughs refers to them collectively as "requesters of
memory." Note, in Figure 13, the presence of an ex-
change, essentially a circuit switching unit which
sets up data and control paths between any of the I/O
modules and any of the devices connected to the ex-
change. The exchange thus permits sharing of
devices across I/O modules. Obviously, at any given
instant a peripheral can be operated only under the
control of one I/O module.
Figure 14 shows a maximally configured B7700

system. Up to eight requesters of memory (with at
least one CPU and one I/O module) may be present,
each connected to every memory module. However,
there is still only one interrupt bus. This bus is sym-
metric; i.e., any requester can interrupt any other re-
quester.
Unlike some of the other multiprocessor systems

examined here, there is no central facility for routing
memory requests to the appropriate memory module.
Such routing is doneby each requester, with conflicts
resolved at the memory modules.

Central processor. The B7700 is based on a 48-bit
word size, subdivided into six eight-bit bytes. Op-
codes* are of variable length (from one to 12 bytes),
with each byte referred to as a program "syllable."
Every word in main memory is associated with a
three-bit tag identifying the generic type of the con-
tents of that word.-These tagbits are not present just
for use by software, but are interpreted and implicitly
used by the hardware during program execution.
Program execution in the B7700 uses stacks exten-

sively. At any instant there is a unique stack
associated with the job being executed on a pro-
cessor. This stack consists of three sections,**
physically disjoint in memory but forming a single
logical entity (Figure 15). The lowest of these sec-
tions, common to all jobs in the system, is called the
MCP stack since its contents are used by the
operating system. (MCP, for Master Control Pro-
gram, is the name Burroughs applies to its various
operating systems.) The second section contains a
descriptor (called a segment descriptor) for every seg-
ment that will ever be used by the currently ex-
ecuting program and is therefore called the "descrip-

*"Operators" in Burroughs terminology.
**This statement and the corresponding discussion are strictly valid
only as long as the job does not do multitasking. If multitasking is
done, the stack structure will resemble a "cactus stack."30

COMPUTER88

tor segment." A segment descriptor is a word con-
taining the size and the address, in main or auxiliary
storage, of the segment it refers to, and information
as to whether this segment is in main memory.
References to this segment are routed through the
descriptor. The hardware automatically alerts MCP
if the segment is not in main memory when an access
is attempted; MCP then brings the segment into
main memory and resumes the original program.
This mechanism is similar to a paging scheme, except
that segments are of variable length. If two or more
jobs are executing the same program, they share the
same descriptor segment, thus ensuring the presence
of only one copy of the program code. This descrip-
tion of descriptor segments and program sharing is
necessarily superficial; Organick31 presents a good,
detailed discussion of these aspects. The third stack
section is unique to each job and consists of the ac-
tivation records of all procedures and blocks which
the job has entered but not yet exited. The first word
of each activation record is a special word called an
MSCW-mark stack control word-and is identified
by a special tag value. This stack section grows and
shrinks dynamically during program execution as
procedures are entered and exited.
During program execution, most memory refer-

ences are made to locations at or close to the stack
top. To take advantage of this locality of references,
the CPU contains a set of 32 locations, called the
stack buffer, which are in one-to-one correspondence
with the top 32 stack locations in memory. This stack
buffer is totally transparent to software, and its
management is completely handled by hardware-all
that the software "notices" is that stack operations
are much faster than if the stack top was in main
memory. Besides the stack buffer, the CPU has a
16-word associative memory buffer. This buffer
holds copies of data which are not at the stack top,
but which have been frequently accessed. As in the
case of the stack buffer, the management of the
associative buffer is done wholly by hardware; the
software is unaware of the buffer's presence. The
stack buffer and the associative buffer thus con-
stitute what would be called a cache in more conven-
tional architectures.
Elements on the stack are addressed using two-

dimensional addresses of the form <lexicographic
level of element, offset of element within its activa-
tion record>. A set of 32 registers called display
registers resolves these two-dimensional addresses.
These registers are set up so that the ith register con-
tains the starting address of the activation record at
lexicographic level i. Translation of two-dimensional
addresses into physical memory addresses is done by
the hardware, using the display registers.
In the B7700, program code never contains explicit

references to absolute memory addresses. The CPU
contains two registers called top-of-stack locations.
These locations are loaded by popping the stack, and
storedby pushing onto the stack. Many operators im-
plicitly assume that their operands are in the top-of-
stack locations. References to stack items below the
stack top are made via IRWs-indirect reference

words-previously pushed onto the stack. An IRW is
essentially a relative pointer, giving the display
register number and offset of its target. An IRW can
point to another IRW, the latter to yet another, and
so on. When an access is made using an IRW, the
hardware follows the chain of IRWs and retrieves the
operand at the end of the list. To access operands in
stacks other than the currently active one, a modified
form of the IRW-the stuffed IRW-is used.
Program references to data items not on a stack are

always through descriptors similar to the segment
descriptor described above. On the first access via
these descriptors, the corresponding data item is
loaded into main storage and its absolute address is
stored in the descriptor. Future accesses via this
descriptor are efficient, since the absolute address of
the data item is available. Because descriptors are
specially tagged, user programs cannot manipulate
them to obtain absolute addresses. This fact is vital
in enforcing protection.
Addressing in the B7700 can be done, therefore, in

three ways:
* implicitly, to the stack top,
* explicitly, using IRWs and SIRWs, to all other

locations on stacks, and
* via descriptors to areas of memory not part of
any stack.

The B7700's instruction repertoire includes most
of the operations possible on contemporary com-
puters: fixed- and floating-point arithmetic, data
transfer from and to stacks and between operands
not on stacks, editing and data conversion, program
control, and so on. The presence of tag bits makes it
easy for the hardware to detect invalid opera-
tions-the use of uninitialized operands, for example.

Figure 15. Stack structure and display registers in the
Burroughs B7700.

May 1980 89

Procedure entry and exit are extremely efficient. To
enter a procedure, a user program pushes onto the
stack an MSCW, the identity and starting address of
the procedure being called, and any parameters to be
passed. An ENTER operator is then executed. The
hardware uses the contents of the stack top to per-
form procedure linkages and sets up the display
registers appropriately. Procedure exit is ac-
complished by reversing these steps.
A variety of mechanisms provide protection. First

of all, a limit-of-stack register and base-of-stack
register are set for the currently active stack, to pre-
vent stack overflow and underflow. Every descriptor
contains the size of the data item it refers to; each
memory access via the descriptor is checked to en-
sure that only memory locations within the cor-
responding data item are being accessed. Tag bits at-
tached to each word provide a third dimension of pro-
tection, since invalid operations can then be detected.
As in all other computer systems discussed in this
survey, the B7700 has two states of operation-nor-
mal (in which user programs execute and in which cer-
tain operators cannot be executed) and control (in
which all operators are valid).
The B7700 has a comprehensive interrupt scheme

which fits in neatly with its stack-oriented architec-
ture. Interrupts fall into four categories, listed below
in descending order of priority:

* Alarm, e.g., memory parity errors, processor hard-
ware errors;

* Syllable, e.g., invalid program operations, arith-
metic overflows;

* Special, e.g., timer interrupts, stack overflow;
and.

* External, e.g., interrupts by I/O modules or other
CPUs.

The first two categories are always enabled,
whereas the other two can be disabled. A CPU treats
an interrupt as an unexpected procedure call. The
hardware pushes onto the current stack an MSCW, a
pointer to the interrupt handling routine, and
parameters identifying the type of and reason for the
interrupt. The hardware then executes an implicit
ENTER, as a result of which the interrupt handling
routine is entered. Exit from this routine causes the
resumption of the interrupted program. Since pro-
cedure entry and exit are efficiently handled in this
system, interrupt handling is also (potentially) effi-
cient.An external interrupt, called channel interrupt,
permits a CPU to interrupt any other CPU or I/O
module. This feature is used to implementMCP inter-
processor communication facilities. Interrupts may
be nested to a depth of four. The level of interrupt
nesting is maintained as part of the processor state,
and at level i, a processor is said tobe in control mode i.
There is one interval timer per CPU, with a resolu-

tion of 512 microseconds and a maximum period of
one second. It can be loaded with a value and will
cause an interrupt on itsCPU when this time interval
has elapsed.
In all the cases described above, the CPU to be in-

terrupted is decided by the originator of the inter-

rupt. There is no competition among CPUs for inter-
rupt servicing, as is the case in the Univac 1100/80,
for example.

Memory modules. The memory modules in the
37700 not only physically house memory but also
contain logic to perform the functions of storage con-
trol and conflict resolution. There are eight ports per
memory module, and one requester can be connected
to each port. Each port is assigned a priority level,
which is used by the memory module to resolve
memory request conflicts. I/O modules are given the
highest priority so that latency times can be mini-
mized for I/O devices trying to access memory. The
conflict resolution algorithm used by the memory
module guarantees starvation-free service to all re-
questers.
Each memory module can be two- or four-way in-

terleaved. The address range corresponding to each
memory module is set in memory limit registers in
that memory module. These registers can be set
under program control. Each requester's- main
memory interface has the contents of all limit
registers available to it; this information is used to
decide which memory module a memory request
should be routed to.
A request inhibit register is present in every

memory module and has a bit corresponding to each
requester. The register can be read or written under
program control by all CPUs. If bit i is set to 1,
memory requests from requester i are ignored by that
memory module. This feature is useful in error
recovery, where a requester suspected of being faulty
can be isolated under program control.

I/O modules. The I/O module in the B7700 per-
forms a function that can best be described as being
midway between that of a peripheral processor (as in
the Cyber 170) and that of a channel (as in the IBM
370). Like the latter, the I/O module is not program-
mable and executes commands set up by a CPU.
However, it does not have to interrupt a CPU after
completion of an I/O operation; like a peripheral pro-
cessor, it can service a number of requests before
signaling its completion.
Crucial to the I/O scheme is a data structure located

in main memory called the I/O subsystem map. This
map's location and substructures are defined for all
I/O modules at system initialization. All requesters
in the system share this single map, which contains
information such as device status, paths available to
each device, etc.
When MCP receives a program's I/O request, a

data structure called an IOCB-input-output control
block-is created and linked onto the I/O queue for
the appropriate device. If an I/O module is currently
servicing this queue, nothing more needs to be done
by the CPU. Otherwise, when a reasonable number of
requests have accumulated in the queue, a CPU
writes a start I/O command for the device into the I/O
map and interrupts the device. The I/O module then
reads the command and begins processing the first
IOCB on the queue. On completion, the IOCB is de-

COMPUTER90

linked from the original list and placed in a queue
called the status queue. The I1O module then begins
processing the second request and continues in this
manner until it exhausts the queue, encounters. a
fatal error, or is interrupted by a CPU. The removal of
IOCBs from the status queue can be done by any
CPU at any time. Concurrent manipulation of dif-
ferent parts of the I/O map by different requesters is
possible; each substructure has lock bits to. ensure
mutual exclusion in critical regions.

I/O errors, unless internal to an I/O module, do not
cause the I/O module to signal an interrupt. An IOCB
for whichan I/O error has occurred is treated just as if
it were successful-it is delinked and placed in the
status queue. However, the I/O module does place
diagnostic information specifying the nature and
cause of the error in the offending IOCB.
When more than one path is available to a device,

an I/O module uses information from the I/O map to
choose an appropriate path and to try alternate paths
if the first is busy. Besides the standard method of
performning I/O (described above), special I/O com-
mands are available and are used, for instance, in
system initialization, error recovery, and other such
situations. I/O can also be done on an interrupt-
driven rather than a queue-driven basis if a CPU so
desires.

The master control program. MCP for the B7700 is
a compatible version of MCPs for earlier Burroughs
machines and supports both multiprogramming and
multiprocessing. Jobsexecute in a segmented virtual
address space and share programs with other jobs.
Multitasking is possible; each time a job creates a
subtask, a new branch of the current task's stack is
created. The original task and subtask share the
stack contents up to this point, but have individual,
non-shared branches above. Logically, however, each
sees a monolithic stack. This procedure may be
repeated recursively, yielding a "cactus stack"
(Figure 16).

User programs use MCP facilities via procedure
calls to appropriate routines located in the MCP
stack section. Unlikemost other systems, which have
to execute a special trap instruction for calls to the
operating system (e.g., the SVC instruction in the
S/370), the B7700 uses the sameENTER operator for
calling both user and MCP routines.
Communication facilities between tasks are im-

plemented by means of software interrupts. A task
may ask to be interrupted byMCP if a certain event,
usually caused by some other task, occurs. This
feature is extremely useful in synchronization and
coordination of subtasks within a job. Software inter-
rupts appear as unexpected procedure calls to the cor-
responding interrupt service routines. While
awaiting an event, a task may choose to either con-
tinue processing or enter a blocked state-MCP pro-
vides both options.
MCP has extensive error recovery facilities.

Dynamic system reconfiguration is possible without
reinitialization. I/O modules or CPUs can be effec-
tively isolated by setting the requester inhibit
registers appropriately. The possibility of recovery
from software errors withinMCP is greatly enhanced
because each control mode (from CM1 to CM3) has a
different MCP stack section and hence different in-
terrupt handling routines (the hardware being aware
of the location of each such stack section). If an error
occurs in an MCP interrupt handling routine, the en-
suing interrupt can be routed to a different interrupt
handling procedure, even if this interrupt is of the
same type as the first one. This can be recursively
repeated up to three times. Hence MCP can limit the
propagation of software errors, since different inter-
rupt handling procedures are used in each control
mode. The presence of multiple paths to a device per-
mits MCP to continue operations on that device even
if one of the paths becomes unusable.
MCP is written almost entirely in a high-level

language called Espol, a Burroughs dialect of Algol.
All user programs are also written in high-level

Figure 16. The "cactus-stack," a shared stack structure in the Burroughs B7700.

May 1980

languages. Since code generated by the compilers
does not contain sensitive or potentially malignant
operators, such operators do not need tobe marked as

privileged. This accounts for the B7700's extremely
small privileged instruction set. As mentioned
earlier, all programs are reentrant, and code sharing
is done as much as possible.

General observations

Having studied five multiprocessing systems in
detail, we can now look back and see ifwe can find any
common threads running through the designs of
these systems. Although multiprocessing systems
give rise to many problems, they also offer many op-

portunities which, if successfully exploited, canmake
multiprocessing worthwhile.

Interconnections in a multiprocessor. There are

two basic perceptions of the relationship between
uniprocessors and multiprocessors. One views a

multiprocessor as a number of connected uni-
processors. The other thinks of a uniprocessor as a

degenerate case of a multiprocessor. In a simple
sense, the first is the worm's eye view-and the sec-

ond the bird's eye view-of multiprocessing. It is not
surprising that the designer's choice of a connecting
scheme depends greatly on which of the two views he
takes. The IBM 370/168 and the Honeywell 60/66 are

examples of the first viewpoint, while the Burroughs
B7700 and C.mmp36'37 are instances of the second.
The most important connections in a multi-

processor are those between the individual pro-

cessors and the shared memory. The conceptually
simplest way to make these connections (though cer-

tainly not the most common) is to use a crossbar
switch as in the C.mmp. This requires the switch to
have one connection from every processor and
memory module. The total number of such connec-

tions will therefore vary linearly according to the
number of processors and memory modules.* An
alternate way to connect memory to processors is ex-
emplified by the Honeywell 60/66. Here, each ad-
ditional processor has its own share of global
memory, and so every such processor has to be con-

nected to every other processor in the system. This
gives rise to an 0(N2) number of connections, where
N is the number of processors. A third alternative is
seen in the B7700, where the number of memory

modules is independent of the number of processors.
Each additional processor has to be connected only to
a fixed number of memory modules. The number of
connections in this case is 0(N). Multiprocessors
with a single shared bus have been built,34 but the
amount of processor-memory traffic in such a struc-
ture makes it unattractive for large multiprocessor
systems.

*Thenumber ofconnections within the switch will obviously vary as
O(N2). But all these connections could be placed on a chip, or on a

single board, and so the number of external connections would be on-

ly 0(N).

Besides connections to shared memory, a multi-
processing system usually has two other types of con-
nections. One is a connection among processors to
facilitate interprocessor communication. The Univac
1100/80 and the Honeywell 60/66 have one such con-
nection between every pair of processors, giving an
O(N2) number of connections. The B7700, however,
has a single interrequester interrupt bus for the en-
tire system. Every requester is connected to this bus
and shares it with every other requester. While bus
sharing does introduce problems such as contention
and delays due to bus arbitration logic, the frequency
of interprocessor communications is usually low
enough to make the single shared bus feasible.
Most of the systems studied here have a cache

associated with each processor. In order to ensure the
consistency of (possibly) multiple copies of data in
the different caches, every cache must communicate
with every other cache. Systems such as the Univac
1100/80 and the Honeywell 60/66 have a cache in-
validate interface between every pair of caches, thus
requiring an O(N2) number of connections. A shared
cache invalidate bus could reduce the number of in-
terconnections, although the high bandwidth such a
bus would require probably explains why no multi-
processing system uses such an approach.
To correctly route memory accesses to the ap-

propriate memory modules, a number of systems
have one or more coordinating elements. The cross-
bar switch in the C.mmp, the system controller in the
Honeywell 60/66, the system interface unit in the
Univac 1100/80, and the multisystem control i4nit in
the IBM 370/168 are examples of this. However, such
coordinating elements are not essential, as
demonstrated by the B7700, where each requester
does its own routing of memory and interrupt re-
quests.

Symmetry. The processors used in a multiprocess-
ing system may or may not be identical. The
Honeywell 60/66, the Univac 1100/80, and the true
multiprocessor 370/168 are systems having identical
(symmetric) processors. The Cyber 170 (in which
peripheral processors and central processors are very
different from each other) and the attached processor
370/168 are systems with asymmetric processors.
Except in a few cases (as in the ability of a user to
specify "task affinity" to the 370/168 MVS operating
system), the symmetry or asymmetry among pro-
cessors is of interest only to the operating system-and
is usually transparent to user programs. From an er-
ror recovery point of view, the symmetric situation is
preferable.

I/O structure. Most third generation architectures
handle I/O via highly specialized auxiliary pro-
cessors, such as channels in the S/370 and I/O
modules in the B7700. In multiprocessing systems
based on these architectures, these auxiliary pro-
cessors differ mainly in the amount of symmetry
present in the connections between them and the cen-
tral processor.

COMPUTER92

In a fully symmetric situation, there is no a priori
correspondence between the central processor(s) and
the auxiliary processors. Each auxiliary processor
can communicate with any central processor, and
each central processor can do I/O via any auxiliary
processor. Such a structure is found in the B7700, in
which central processors and I/O modules are treated
equally as "requesters of memory," with every re-
quester able to communicate with every other re-
quester.
The diametrically opposite approach is found in

systems where there is a permanent correspondence
between auxiliary processors and central processors.
In the 370/168, for example, every channel is per-
manently associated with a CPU, and a CPU cannot
do I1/0 via a channel attached to another CPU.
Between these-extremes, one can have I/O struc-

tures with varying degrees of symmetry. The max-
imally configured Univac 1100/80, for example, has
two storage interface units, each attached to two cen-
tral processors and two I/O modules. An I/O module
attached to one storage interface unit cannot com-
municate with a CPU attached to the other storage
interface unit. BothCPUs attached to a storage inter-
face unit can, however, communicate with and per-
form I/O on both the I/O modules connected to the
same storage interface unit.
For numerous reasons, the fully symmetric situa-

tion is the most desirable. First, a system with a fully
symmetric I/O structure can continue operating in
spite of failure in a central or auxiliary processor. In
an asymmetric situation, failure in a central pro-
cessor disables the auxiliary processors associated
with that central processor. Second, interrupt laten-
cy times (i.e., the time between the sending of an in-
terrupt signal by an auxiliary processor and its being
accepted by some central processor) are likely to be
less in the fully symmetric case, mainly because the
probability of all central processors being disabled
forinterrupts is much less than the probability ofany
one central processor being disabled. Finally, task
switching and interprocessor communication
overheads are likely to be much smaller in a fully-sym-
metric situation. In an asymmetric situation, a pro-
gram's request to do I/O via an auxiliary processor
can only be handled by the central processor
associated with that auxiliary processor. This can
cause significant overheads in task switching and in
communications between the central processor run-
ning the program and the central processor servicing
the I/O request.

Interrupts. Interrupts can be classed into two
types: internal interrupts, such as arithmetic
overflows, divide checks, and protection violations;
and external interrupts, such as I/O interrupts and
timer interrupts. In all the systems discussed here,
internal interrupts are handled on the processor on
which they originated. The systems vary, however, in
their handling of external interrupts, the major dif-
ference being the extent to which interrupts are
shared by the processors. In the Honeywell 60/66, all
-interrupts are routed to one processor labeled the

"control processor." While probably the simplest to
implement in hardware, this scheme suffers from
poor recoverability and long latency times, as
discussed earlier.
In the Univac 1100/80, all external interrupts (ex-

cept I/O interrupts) are shared by all the processors.
Each interrupt is given to every processor, one after
the other, for a predefined time period. The first pro-
cessor to respond during its time slot gets the inter-
rupt. Such a scheme obviously will have excellent
recoverability and short latency times.
A variation of the previous scheme is to let the in-

terrupter choose which processor it wishes to inter-
rupt. The SIGP interrupt in the S/370 and the inter-
rupt mechanism used by the I/O modules in -the
B7700 fall within this category. To overcome the pro-
blem of long latency times, the interrupter could
change its target if the original target did not respond
within a reasonable time. From a recoverability point
of view, this scheme is as good as the previous one.

Interprocessor communication mechanisms. There
are a number of reasons why a hardware interproces-
sor mechanism is necessary in a multiprocessing sys-
tem. If the structure of the system is asymmetric,
there will be frequent service requests exchanged
between the different processors. A hardware inter-
processor communication mechanism, to draw the at-
tention of the target processor, would be very useful
in such cases. The mechanism also facilitates syn-
chronization between processors. For instance,
during a checkpoint all processors except the one ex-
ecuting the checkpoint task could be halted. An inter-
processor communication facility'would permit such
information to be easily and quickly broadcast
throughout the system. Also, in the event of failure, a
hardware-initiated signal to all functioning proces-
sors would inform them of the failure.
Since processors share memory, it is clearly possi-

ble to have software communication without explicit
hardware assistance. Doing that, however, intro-
duces a number of problems. First, all processors will
have to periodically check to see if there is a message
for them. Second, since a processor only recognizes
requests when it does its next polling of messages,
response times to requests can become intolerably
long. Further, if a processor fails when a job holding
locks is running on it, and if there is no way for other
processors to be aware of this, a deadlock can occur.

Interprocessor communication mechanisms have
various' levels of sophistication. The Cyber 170
doesn't have such a mechanism at all. The Univac
1100/80 and the Honeywell 60/66 have a simple,
software-initiated interprocessor interrupt. The
S/370 has a more sophisticated mechanism, the
SIGP, which enables one processor to act virtually as
an operator for another processor. The SIGP also has
the unique, hardware-initiated emergency malfunc-
tion, discussed earlier.

Reserved storage areas. In most of the architec-
tures discussed here, certain areas of main storage
are reserved for special use by the hardware. In the

May 1980 93

S1370, for instance, addresses 0-4K contain data
areas related to I/O, the interrupt vectors (i.e., the old
and new program status words for all- interrupt
classes), and areas used by the hardware to record
diagnostic information when- failure occurs. In a
multiprocessing-situation, there are a number of pro-
cessors, each with a set of reserved addresses; this
leads to a potential clash of reserved areas, one which
can be resolved in three ways.
One method-used in the Univac 1100/80-makes

the physical storage areas corresponding to the
reserved addresses the same in all the processors.
The Univac 1100/80 allows this because the reserved
area mainly contains interrupt vectors; each inter-
rupt handling routine therefore has to either be reen-
trant or have locks that ensure mutual exclusion.
The Honeywell 60166 solves the problem in a dif-

ferent way: the address of the reserved storage area is
different for each processor. As a result, the physical
storage locations corresponding to the reserved
storage addresses is different in each case.
In the S/370, the processors treat addresses 0-4K as

reserved addresses. However, the physical storage
corresponding to this address range is different for
each processor. This is accomplished by the previous-
ly mentioned "prefixing" mechanism.
The last two techniques achieve the same effect,

and consequently there is really little to choose be-
tween them.

The operating system. Surprisingly, in spite of the
large differences in architecture and system
organization, the operating systems discussed here
are similar in the way they handle multiprocessing.
In all cases, the operating system screens users from
the specific hardware configuration-as far as they
are concerned, the system is a uniprocessor whether
there are in fact two, three, or more processors. Each
user task can create independently schedulable sub-
tasks, which compete for resources with the parent
task. The operating system normally provides the
user with software mechanisms to synchronize tasks
and to permit communication between them. Lock-
ing mechanisms (built using indivisible hardware in-
structions such as the test-and-set or compare-and-
swap) are provided to permit strictly serial access to
critical sections of shared code and data. There is
usually only one copy of the operating system, with
different parts reentrant or serially reusable. Since all
these operating systems support multiprocessing,
the usual issues arising in a multiprogramming con-
text are also present: address space management,
scheduling, protection, etc.
Probably the two greatest sources of variation

among the operating systems are their locations and
the relationships they set up between the processors.
In the Cyber 170, for example, the operating system
is executed by one peripheral processor, P0. All the
other processors, whether central or peripheral, are
treated as slaves to P0. A similar situation, involving
symmetric rather than asymmetric processors, is
found in the DECsystem-10.33 Here, there are two
identical central processors, one designated as

master and the other as slave. The operating system
runs only on the master, with the slave treated just as
a schedulable resource. The most common approach,
however, is a distributed operating system, in which
all processors may execute parts of the operating
system as necessary. MVS35 on the S/370 and
Hydra37 on the C.mmp are examples. This approach
is certainly the-most symmetric, the most immune to
individual processor failure, and the most aesthet-
ically pleasing.

Error recovery. In the introduction I mentioned
that one advantage of a multiprocessing system is its
superior error recovery capability. Note that
recoverability is not synonymous with reliability.
Because of the interconnections and extra units pres-
ent, the probability of failure may in fact be higher on
a multiprocessor than on a uniprocessor. On the other
hand, the inherent redundancy of a multiprocessor
probably increases its ability to carry on in spite of
failure. The mechanisms assisting error recovery
span a wide range. The S/370 has a hardware-
generated malfunction alert, which informs all other
processors of a failure in one processor. The Univac
1100/80's auto recovery timer assists in recovery
from software crashes and transient hardware
failures. The B7700's requester inhibit registers per-
mit recovery software to logically isolate faulty re-
questers.
Even with such features, software for error recov-

ery is likely to be complex. For example, saving a pro-
gram on a failed processor involves backtracking the
execution of the program to a point before in-
termediate results were corrupted by the failure, and
continuing execution from there. This can be dif-
ficult, especially in a processor with a pipelined ex-
ecution unit. Another problem is that the program on
the failed processor may be holding some locks. The
error recovery procedure has to be smart enough to
ensure that deadlocks are not introduced as a result
of the recovery process itself!

Performance. As stated earlier, there is little quan-
titative data on the performance of the computer
systems surveyed. However, one can make some
general statements about the performance of multi-
processing systems.

Invariably, the scaling in performance of a multi-
processing system is sublinear. That is, using an
N-processor multiprocessing system always yields
less than N times the performance of the corre-
sponding single-processor-based system.*
Contention among processors for memory and

delays involved in ensuring cache validity are two

*This statement is strictly true only if "performance" means "max-
iinum performance." All parameters other than the number of pro-
cessors (amount of storage, I/O configuration, etc.) should be ad-
justed in each case for optimal performance. Not doing so can yield
anomalous results, indicating that a multiprocessor does indeed
have better performance than the sum of theperformances ofits pro-
cessors running as uniprocessors. Stated more accurately, therefore,
a multiprocessor's maximum performance is always less than the
sum of the maximum performances of its corresponding uni-
processors.

COMPUTER94

major factors in this performance degradation.
Besides these hardware overheads, a multiprocessor
has certain unique software overheads. Scheduling is
more complex because of the presence of more than
one processor, and this can contribute significantly
to the extra overheads. Locks are required in a multi-
processor, although they can be avoided in a
uniprocessor by disabling interrupts whenever
critical sections of the operating system are being ex-
ecuted. The time spent waiting at these locks con-
tributes to the loss in performance. Finally, the
greater computational power of a multiprocessor im-
plies a correspondingly higher level of multiprogram-
ming. At high levels of multiprogramming, certain
"large system effects" are felt-queues get longer,
hash tables become fuller, certain data structures
become too large to be stored in main memory, etc.
All these factors cause multiprocessor performance
to obey the law of diminishing marginal utility-i.e.,
each added processor contributes relatively less to
overall performance.U

Bibliography

IBM 370 Model 168

1. Arnold, J. S., et al., "Design of Tightly-Coupled Multi-
processing Programming," IBM Systems J., Vol. 13,
No. 1, 1974, pp. 60-87. A good description of the com-
ponents of MVS that play a role in multiprocessing.
The sections on alternate CPU recovery, CPU affinity,
and locking are particularly interesting. This paper is
worth reading, at least to gain an appreciation of the
difficulties involved in designing an operating system
for multiprocessor environments.

2. Case, R. P., and A. Padegs, "Architecture of the IBM
System /370," Comm. ACM, Vol. 21, No. 1, Jan. 1978,
pp. 73-96. A readable account of the architecture of the
S/370 and of its evolution from its predecessor, the
S/360. Includes a section on multiprocessing. Highly
recommended.

3. Brinch Hansen, P., Operating System Principles,
Prentice-Hall, Englewood Cliffs, N.J., 1973. Section
3.5 discusses deadlocks and their prevention. MYS
uses the linear ordering technique described in that
section.

4. IBM Corp., IBM System/370 Principles of Operation,
Form no. GA22-7000-5, Aug. 1976. The definitive
work on the S/370 architecture. Reads at times like a
legal document, but is unsurpassed in its precision and
unambiguity. Includes a separate chapter on multi-
processing.

5. IBM Corp., IBM System/370 Model 168 Functional
Characteristics, Form no. GA22-22-7010-4, Jan. 1976.
Gives information specific to the 370/168. Details such
as processor speed, channel data rates, and maximum
memory available can be found here. Appendix E, ex-
clusively devoted to multiprocessing, describes re-
configuration controls.

6. MacKinnon, R. A., "Advanced Function Extended
with Tightly-Coupled Multiprocessing," IBM
Systems J., Vol. 13, No. 1, 1974, pp. 32-59. Describes
the S/370 hardware features used in multiprocessing.
Includes comparison of past and present multi-
processor systems supported by IBM.

7. Scherr, A. L., "OS/VS2-2 Concepts and Philosophies,"
IBM Systems J., Vol. 12, No. 4, 1973, pp. 368-381.
Discusses the structure and design of MVS.

Control Data Cyber 170 Series

8. Atwood, J. W., "Concurrency in Operating Systems,"
Computer, Vol. 9, No: 10, Oct. 1976, pp. 18-26. Has a
good description of Kronos. The structure of the
operating system and the implementation of various
functions are explained well. Quite readable.

9. Auerbach Publishers Inc., "CONTROL DATA
CORP. CYBER 170 Series," Auerbach Computer
Technology Reports, 1977.

10. Control Data Corp., Cyber 170 Hardware Reference
Manual; Form no. 60420000F, Apr. 1977. Describes
the hardware details of the Cyber machines.

11. Control Data Corp., 6000 Series Reference Manual,
Form no. 60100000W, Jan. 1973. Describes the CDC
6000 series, the predecessor of the Cyber 170.

12. Control Data Corp. SCOPE General Information
Manual. An overview of Scope, CDC's earliest
operating system.

13. Control Data Corp., SCOPE 2 Reference Manual;
Form no. 60342600D, Aug. 1973. Treats Scope in
greater detail than the above;

14. Control Data Corp., KRONOS 2.1 Reference Manual;
Vol. I, Form no. 60407000D, June 1975. Describes
CDC's second operating system.

15. Control Data Corp., NOS1.OReferenceManuals Vol. I,
Form no. 60435400A, June 1975. Describes CDC's
latest operating system, which supports networking.

16. Thornton, J. E., Design of a Computer: The Control
Data 6600, Scott, Foresman and Co., Glenview, Ill.,
1970. Has an illuminating discussion of the design
principles involved in the CDC 6600, much of which is
relevant to the Cyber 170. The sections on technology
and physical construction are obsolete, but the rest of
the book makes good (and worthwhile) reading.

Honeywell Series 60 Level 66

17. Honeywell Inc., General Comprehensive Operation
Supervisor (GCOS), Order no. DD19, Apr. 1974.
Describes GCOS and its functions. Section I is par-
ticularly relevant to our discussion.

18. Honeywell Inc., Series 60 Level 66Summary Descrip-
tion, Order no. DC64, 1975. Gives an overview of the
60/66 and a description of its major hardware and soft-
ware components. Chapters 1,2,4,8,9,10 are par-
ticularly informative.

19. Honeywell Inc., Macro Assembler Program (GMAP),
Order no. DD08, July 1974. Section I gives an over-
view of the hardware. Sections IV and VIII describe
the instruction set; Section V details the address
modification scheme.

20. Honeywell Inc., System Operation Techniques, Order
no. DD50 Rev. 1, Oct. 1976. Section VIII describes
system reconfiguration techniques.

21. Honeywell Inc., System Startup, Order no. DD33 Rev.
2, July 1976. Sections I and II describe the bootstrap
loading techniques. Section VI describes the system
recovery facilities. Appendix C gives information on
hardware reconfiguration.

May 1980 95

22. Mitre Corp., WWMCCSH6000MultiprocessorPerfor-
mance Evaluation, NTIS report no. ADA 039111
(Vols. I & II), National Technical Information Service,
Springfield, Va., Feb. 1977. A study of H6000
multiprocessor systems conducted for the Air Force;
gives the performance figures and graphs cited in this
survey.

Univac 1100 Model 80

23. Borgerson, B.R., et al., "The Evolution of the Sperry
Univac 1100 Series: A History, Analysis, and Projec-
tion," Comm. ACM, Vol. 21, No. 1, Jan. 1978, pp.
25-43. Excellent description of the evolution of the
110.0 series. Gives a broader and more generalperspec-
tive of the Univac 1100 series than this survey; also
covers a number of details, such as application soft-
ware, which have been ignored here since they are not
germane to multiprocessing. Highly recommended.

24. Sperry Univac, 1100/80 Systems: Processor and Stbr-
age, Form no. UP-8492. Gives a detailed description of
the processor, main storage unit, and storage interface
unit; discusses the instruction set, addressing and in-
terrupt schemes, and other hardware details.

25. Sperry Univac, 1100/80 System Hardware (4x4 Capa-
bility) System Description, Form no. UP-8568. An
overview of the 1100/80 system, its hardware com-
ponents, its interconnection scheme, etc. Less detailed
level than the above.

26. Sperry Univac, 1100/80 System: System Transition
Unit. Programmers 'Reference, Form no. UP-8409. A
detailed description of the system transition unit and
the program commands available to interrogate and
control it. The auto recovery mechanism and the
system transition unit's role in it are also discussed.

27. Sperry Univac, 1100 Series Executive, Volume 2,
EXEC Level 33R1, Programmer Reference, Form no.
UP-4144.21. Part of a four-volume reference on the
EXEC operating system, this volume describes the
overall control of the 1100 series byEXEC and is valid
for all models of the 1100 series (1100/10 to 1100/80). In
refreshing contrast to most computer manuals, this
one gives a readable account of EXEC's design
philosophy and internal details.

Burroughs B7700

28. Burroughs Corp., B7700 Information Processing
Systems: Characteristics Manual, Form no. 1059979,
1973. An elementary description of the B7700, its com-
ponents, and their interrelationships. Includes details
such as maximum memory capacity, device speeds,
and processor cycle times.

29. Burroughs Corp., B7700 Information Processing
Systems: Reference Manual, Form no. 1060233, 1973.
Encyclopedic description of the B7700. Extremely
detailed descriptions of each component. This is one
computer manual with too much information rather
than too little-one can easily get lost in the details.

30. Chu, Y., High Level Language Computer Architec-
ture, Academic Press, New York, 1975. Contains
papers on those aspects of computer architecture per-
tinent to high-level languages. Chapter 4 is particular-
ly relevant, since it discusses stack architectures. This
chapter also includes a discussion of tagged memory
and of stack structures when parts of the stack are
shared (i.e., the "cactus stack").

31. Organick, E. I., Computer System Organization: The
B5700/6700 Series, Academic Press, New York, 1973.
Excellent explanation of how programs are run on the
Burroughs architecture. Deals with the predecessors
of the B7700, but the material discussed is equally
valid for the B7700. Organick's inimitable style makes
this book well worth reading.

32. Wegner, P., Programming Languages, Information
Structures and Machine Organization, McGraw-Hill,
New York, 1968. Chapter 4 contains a good discussion
of block-structured languages and the run-time sup-
port they require.

General observations

33. Digital Equipment Corp., DECsystem-10 Technical
Summary, Maynard, Mass., 1977.

34. Kraley, M. F., "The Pluribus Multiprocessor," Digest
of Papers-1975 Int'l Symp. Fault-Tolerant Com-
puting, June 1975, p. 251.*

35. Scherr, A. L., "OS/VS-2 Concepts and Philosophies,"
IBM Systems J., Vol. 12, No. 4, 1973, pp. 368-381.

36. Wulf, W. A. and C. G. Bell, "C.mmp-A Multi-Mini-
Processor," AFIPS Conf. Proc., Vol. 41, Part II, 1972
FJCC,.pp. 765-777.

37. Wulf, W. A. et al., "Hydra: The Kernel of a Multipro-
cessor Operating System," Comm. ACM, Vol. 17, No.
6, June 1974, pp. 387-345.

*This digest is available from the IEEE Computer Society Publica-
tions Office, 5855 Naples Plaza, Suite 301, Long Beach, CA 90803.

RI- M. Satyanarayanan is currently at
Carnegie-Mellon University, working
towards a doctorate in computer
science. His research interests include
computer architecture, operating
systems, and the hardware and soft-
ware of parallel processing systems. A
member of the ACM, he has worked for
IBM and Digital Equipment Corpora-
tion. He graduated with a bachelor's

degree in electrical engineering from the Indian Institute of
Technology, Madras. He also holds master's degrees in
computer science from the Indian Institute of Technology,
Madras, and Carnegie-Mellon University.

COMPUTER

