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SPECIAL FUNCTIONS OF MATRIX ARGUMENT. I: 
ALGEBRAIC INDUCTION, ZONAL POLYNOMIALS, 

AND HYPERGEOMETRIC FUNCTIONS 

KENNETH 1. GROSS AND DONALD ST. P. RICHARDS 

ABSTRACT. Hypergeometric functions of matrix argument arise in a diverse 
range of applications in harmonic analysis, multivariate statistics, quantum 
physics, molecular chemistry, and number theory. This paper presents a gen-
eral theory of such functions for real division algebras. These functions, which 
generalize the classical hypergeometric functions, are defined by infinite series 
on the space S = S(n, F) of all n x n Hermitian matrices over the division 
algebra F. The theory depends intrinsically upon the representation theory 
of the general linear group G = GL(n, F) of invertible n x n matrices over F, 
and the theme of this work is the full exploitation of the inherent group the-
ory. The main technique is the use of the method of "algebraic induction" to 
realize explicitly the appropriate representations of G, to decompose the space 
of polynomial functions on S, and to describe the "zonal polynomials" from 
which the hypergeometric functions are constructed. Detailed descriptions of 
the convergence properties of the series expansions are given, and integral rep-
resentations are provided. Future papers in this series will develop the fine 
structure of these functions. 

o. Introduction. We begin a series of articles in which we develop the fine 
structure of generalized hypergeometric functions of matrix argument. By "fine 
structure" , we allude to the analogues of such classical results as series expansions, 
integral formulas, asymptotics, differential equations, summation formulas, addi-
tion theorems, composition formulas, and recurrence relations. This first paper, 
in which we simultaneously treat real, complex, and quaternionic analysis, is the 
result of our desire to present a complete theory of hypergeometric functions of 
matrix argument over real division algebras, not only as a framework for the body 
of detailed results to follow in later papers, but also to clarify the representation-
theoretic foundation for such a theory. 

Although these hypergeometric functions are of interest on purely analytic 
grounds, they arise in a wide range of applications. Indeed, various classes of 
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782 K. 1. GROSS AND D. ST. P. RICHARDS 

generalized special functions of matrix argument that are derived from the hyper-
geometric functions described here, have been studied independently by researchers 
in harmonic analysis, multivariate statistics, quantum mechanics, and number the-
ory. 

In the context of harmonic analysis but motivated by questions in analytic num-
ber theory, Bessel functions of a real matrix argument were first introduced by 
Bochner [1]. Subsequently, Herz [15] treated those Bessel functions in greater 
detail and also defined hypergeometric functions of matrix argument inductively 
through iterative applications of Laplace and inverse Laplace transforms. Number-
theoretic investigations of Siegel [28] and Selberg [26], led Gindikin [6] to intro-
duce generalizations of the Gaussian hyper geometric functions, defined by Euler-
type integrals, associated with homogeneous cones and analysis on Siegel domains. 
Number-theoretic applications continue, for example, in recent work of Terras [31] 
and Shimura [27]. In multivariate statistical theory, series expansions of Herz' hy-
pergeometric functions were developed by James, Constantine, and others to study 
certain invariant statistical distributions. We refer to James [19], Muirhead [23] 
and Takemura [29] for extensive surveys of the statistical literature. Although series 
expansions for hypergeometric functions appear in the literature for both the real 
and complex fields [19], there seem to be no analogous results in the quaternionic 
case. 

In the study of infinite-dimensional representation theory, .Gross and Kunze [8, 9] 
developed a theory of operator-valued Bessel functions of matrix argument over real 
division algebras, which included as special cases the Bessel functions considered by 
Herz and James. These operator-valued Bessel functions arose group-theoretically 
from the Peter-Weyl theory applied to compact group actions on Euclidean spaces. 
In the context of quantum mechanics, Louck and Biedenharn [22] investigated a 
generalization of Gauss' 2Fl hypergeometric function that coincides with a spe-
cial case of James' hypergeometric functions [19]. By means of the "contraction 
principle" utilized in quantum physics, Holman [16] derived series expansions for 
the above-mentioned operator-valued Bessel functions on complex 2 x 2 matrix 
space. More recently, it has been shown by Richards [24] that integrals arising in 
Eichinger's work [4] in molecular chemistry are related to the Bessel functions of 
Herz. 

The above remarks, while illustrating the widespread applicability of the hy-
pergeometric functions of matrix argument, also speak to an isolation whereby 
researchers in various fields are essentially unaware of each other's work. In part, 
that accounts for the fact that-except for analogues of Gauss' summation formula 
in [6] and [19]-the literature fails to address the fine structure of these functions. 

The primary thrust of our work in this paper is the full exploitation of the 
inherent symmetries in order to blend earlier approaches into a general theory. The 
key idea is to use the method of algebraic induction [10] to construct explicitly the 
appropriate representations. 

The hybrid nature of this work is manifested in our presentation. For example, 
whereas some aspects of our approach will be readily recognizable to statisticians, 
other components will be familiar to harmonic analysts. With this in mind, we 
have adopted an informal expository style, while still adhering to mathematical 
rigor. This formulation will allow the statistician or physical scientist to restrict 
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SPECIAL FUNCTIONS OF MATRIX ARGUMENT 783 

the context to the real or complex field, as appropriate, and to suppress the detail 
of proofs if desired. On the other hand, the reader familiar with Lie theory will see 
that our methods have more general applicability to symmetric spaces. 

With the above as background and motivation, we give an overview of our results. 
Let F denote a real finite-dimensional division algebra, equipped with its usual 

conjugation, let G = GL(n, F) be the group of all invertible n x n matrices over 
F, and let S = S(n,F) be the space of all Hermitian n x n matrices s over F 
under the action s ----+ a* sa of G. Hypergeometric functions of matrix argument are 
certain real-analytic functions on S which are invariant under the maximal compact 
subgroup K of G. The study of any K-invariant real-analytic function on S, and 
the hyper geometric functions in particular, rests intrinsically on the representation 
theory of G. In fact, the definition of such functions as power series requires the 
decomposition of the algebra P(S) of all polynomial functions on S under the action 
of G. The importance of this problem, especially for complex analysis in several 
variables, has attracted the attention of many authors. Hua [18] showed that the 
decomposition of P (S) is multiplicity free, and he determined which irreducible 
representations of G appear. Hua's work was later formulated Lie theoretically and 
extended by Schmid [25], Takeuchi [30], and Johnson [20]. 

Our contribution here is to provide a simple, intrinsic, global construction of 
the irreducible subspaces of P(S). There are two main ingredients. First, for each 
n-tuple m = (mi,." ,mn ) of integers such that 

(1) 

we utilize the method of algebraic induction [10] to construct an irreducible poly-
nomial representation 7l"2m of G with signature 2m given by (2.6.1), acting by right 
translation in a space p2m (G) of "covariantly transforming" polynomials on G 
(cf. (2.8)). Secondly, we apply Weyl's classical invariant theory [34] to show that 
the spherical transform ¢ ----+ P defined by 

(2) p(x*x) = [ ¢(kx)dk 

is a bijection of p2m(G) with an irreducible subspace pm(s), of polynomial func-
tions on S homogeneous of degree Iml = mi + ... + m n . Now, Hua's results can be 
formulated as the explicit multiplicity-free decomposition 

(3) P(S) = L EB pm(s). 
m 

Our methodology emphasizes a positivity condition on representations, in terms 
of which (3) has a different interpretation. We say that an irreducible polynomial 
representation of G is totally positive if there exists a nonzero real-valued matrix 
entry that is nonnegative. Let 7l" be an irreducible polynomial representation of G. 
Then the following are equivalent: 

(i) 7l" is totally positive. 
(ii) 7l" has a K-invariant vector. 
(iii) 7l" has signature 2m of the form (2.6.1). 
(iv) 7l" is equivalent to 7l"2m for some m. 
(v) 7l" appears in P(S). 
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784 K. I. GROSS AND D. ST. P. RICHARDS 

The decomposition (3) implies the existence of the required K-invariant poly-
nomials. In each irreducible subspace pm(s) there is a nonzero polynomial Zm, 
unique up to scalar multiples, that is K-invariant. Thus, the algebra P(S)K of all 
K-invariant polynomials on S is spanned by the polynomials Zm, and any real-
analytic K-invariant function f has a power series expansion 

(4) 
m 

We refer to Zm as the zonal polynomial on S of weight m. The normalization of 
Zm is fixed by the condition (Lemma 5.2) 

(5) 

or equivalently, 

(6) 

(trs)d = L Zm(S) 
Iml=d 

etrs = f ~! L Zm(s). 
d=O Iml=d 

With the above machinery in place, we can now describe the hypergeometric 
functions. Let v denote the real dimension of F. Fix complex numbers 0:1, ... , O:p 

and {31, ... ,{3q, and for alII ~ i ~ q and 1 ~ j ~ n do not allow -(3i + U - l)v/2 
to be a nonnegative integer. Then the hypergeometric function pFq is defined to 
be the real-analytic function on S given by the series 

When n = 1 and F is the real field, this reduces to the classical hypergeometric 
series. The coefficients in (7) are defined in terms of a generalization [o:lm of the 
classical Pochhammer symbol appropriate to the division algebra F and the weight 
m. More specifically, the generalized gamma function of weight m for the space S 
is defined by 

(8) r n(O:, m) = L e-trr ~(r)<>qm(r)d*r 

where P is the cone of positive matrices in S, ~ is essentially the determinant 
(cf. (1.2)), qm is the highest weight vector in Pm(S), and d*r is invariant measure 
on P. Then in analogy to the functional equation for the classical gamma function, 

(9) 

where r n(O:) is the special case of (8) in which m = (0, ... ,0) corresponds to the 
identity representation of G, and (O:)J = 0:(0: + 1)··· (0: + j - 1) is the standard 
Pochhammer symbol. We give a complete description of the convergence of the 
series (7), and we obtain integral representations for the hypergeometric functions. 

We conclude this introduction with a summary of the organization of the paper. 
In §1 we compile the properties of the group G that enter into this work. 
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SPECIAL FUNCTIONS OF MATRIX ARGUMENT 785 

§2 is devoted to the construction of the irreducible representations 7r2m and the 
structure of the spaces P 2m ( G). These are the representations of G that appear in 
P(S). 

The decomposition of the space J(G) of left K-invariant polynomials on G ap-
pears in §3. 

In §4 we convert the results of the preceding section into the decomposition of 
P(S), and we define the zonal polynomials. 

In §5 we derive a number of properties of the zonal polynomials that are needed 
for the study of the hypergeometric functions. These include a Laplace transform 
formula (Theorem 5.9) and an Euler-type integral for Zm (Corollary 5.10). The 
generalized gamma function also appears in this section. 

§6 contains our treatment of the generalized hypergeometric functions. We give 
the convergence properties of the hypergeometric series in Theorem 6.3. Integral 
representations appear in Proposition 6.11 and Theorem 6.13. 

Throughout the paper, we utilize script P to indicate an algebra of polynomial 
functions. Subscripts such as d or 2d are reserved for degree of homogeneity, and 
superscripts such as m or 2m index irreducible subspaces. 

1. The general linear group G = GL(n, F). We consider the general linear 
group G = G L( n, F) of all n x n matrices over F, where F is either the real 
field R, the complex field C regarded as a two-dimensional real algebra, or the 
four-dimensional real (noncommutative) division algebra H of quaternions. In this 
section, which is ancillary in nature, we collect some basic structural properties 
of G. In particular, the standard bitriangular structure in (1.4) is central to the 
representation theory of the next section. 

1.1 The underlying field F. Throughout, F denotes a real finite dimensional 
division algebra. Thus, F is the real field R, the complex field C, or the quaternion 
algebra H. We equip F with its usual conjugation t ~ t, and set Re(t) = (t + t)/2 
and It I = (tf)1/2. Denote by v the real dimension of F; so v = 1,2, or 4 according 
as F = R, C, or H. 

We write complex numbers in the standard way as t = tl + t2i with hand t2 
real. For the quaternions, we realize the elements of H as 2 x 2 complex matrices 
of the form 

(1) t=( z_ ~). -w z 

Hence, H is a real subalgebra of C 2X2, and conjugation in H is the adjoint operation 
in C 2X2. That is, 

(2) 

for t E H. When H is viewed as a real vector space and it is necessary to introduce 
a basis (cf. (4.2.2)), we write a quaternion in the standard way as t = tl1 + t2i + 
t3j + t4k with h, ... ,t4 real, where 1 is the 2 x 2 identity matrix, 

. (i 0) 
Z = 0 -i ' 

. (0 1) 
J = -1 0 ' ( 0 i) and k = i 0 . 

Note that t E R means t = t, and we identify t with t1 E H. 
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786 K. I. GROSS AND D. ST. P. RICHARDS 

1.2 The function~. Throughout, we fix a positive integer n, and we set N = vn2 . 
Let Fnxn be the set of all n x n matrices over F, regarded as a real algebra with 
involution x --7 x*, where x* = xt. The dimension of Fnxn over R is N. In the 
quaternionic case, we stress that an n x n matrix over H is a 2n x 2n complex 
matrix. 

Let det denote the determinant function on Fnxn. The determinant of a quater-
nionic matrix is necessarily nonnegative (cf. (1.5)). Set 

(1) ry={ 
and define the function ~ by 

(2) 

1 
1/2 

if F = R or C, 
if F = H, 

~ ( x) = (det x) 1) 

for x E Fnxn. For our purposes it is more convenient to use the function ~ than 
the determinant. This function ~ is well defined and continuous on Fnxn, but it 
is a polynomial only when F = R or F = C. However, irrespective of the nature 
of F, the function 1~12 is a nonnegative real-valued polynomial on Fnxn. 

1.3 The general linear group G. Denote by G = GL(n, F) the group of all 
invertible elements of Fnxn. Alternatively, the group G can be characterized as all 
n x n matrices x over F such that ~(x) =I- O. 'We call G the n x n general linear 
group over F, and we regard it throughout as a real Lie group. 

In this paper we will treat the three cases of the real, complex, and quaternionic 
fields simultaneously without recourse to the specific nature of the field. However, 
a few observations concerning the nature of the individual cases are appropriate 
to keep in mind. First, we emphasize for the real field that G is the full general 
linear group GL(n, R), which is not connected. Next, since the complex general 
linear group GL(n, C) is regarded as a real group, we deal with real-analytic func-
tions on GL(n, C) rather than holomorphic functions, and with polynomials of real 
argument rather than complex argument. Finally, we note that the quaternionic 
general linear group GL(n, H) is a real Lie group of 2n x 2n complex matrices. 

Throughout, we fix Lebesgue measure dx on Fnxn, normalized such that the 
integral of the Gaussian x --7 exp [-tr (x* x) 1 is 7rN /2. Then, from §5 of [8], 

(1) 

is Haar measure on the group G. 
The maximal compact subgroup K of G consists of all matrices k in Fnxn such 

that kk* = 1. Thus, K is the real orthogonal group 0 (n), the unitary group U (n), 
or the compact symplectic group Sp(n) according as F = R, C, or H. 

We note in passing that Sp(l) = SU(2), the special unitary group of 2 x 2 unitary 
matrices of determinant 1, and the group HX =GL(l, H) of nonzero quaternions 
is the direct product of the group R+ of positive reals with SU(2). 

1.4 The standard bitriangular structure of G. Let C = Cn be the diagonal 
subgroup of G consisting of all n x n matrices c = diag(cl, ... , en) where Cj are 
invertible elements of F, j = 1, ... , n. Let U = Un be the subgroup of all upper 
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triangular matrices of the form 

(1) 

U12 
1 
o 

o o 

787 

with UiJ E F for 1 ::; i < j ::; n; and let V = Vn be the opposed lower triangular 
subgroup V = Ut . Note that ifF = R or C then C is abelian (the Cartan subgroup 
of C), and U and V are the full upper and lower triangular unipotent subgroups 
of C, respectively. When F = H, however, Cis nonabelian (and isomorphic to the 
direct product of n copies of HX). We refer to the triple (U, C, V) as the standard 
bitriangular structure for C. It is a bitriangular structure for C in the sense of [10]. 
In particular, C normalizes both U and V, and the product (u,c,v) -> vcu is a 
bianalytic map of U x C x V onto the dense open subset of C consisting of all 
matrices x such that 

n 
(2) IT ~j(x) i- 0 

j=i 
where 

(XU X:j) (3) ~j(x) = ~ : 
Xji x·· JJ 

with ~ given by (1.2.2). 
1.5 REMARK. Note that for the quaternionic case, the standard bitriangular 

structure for CL(n,H) yields the fact that detx 2: 0 for all x E Hnxn. Indeed, 
if x E C is of the form x = vcu, as above, then det x = ICi ... cn l 2 > o. As such 
elements are dense in Fn x n, the determinant is nonnegative for all x E Fn x n . 

1.6 The cone P = P(n, F). Let P = P(n, F) be the cone of positive n x n 
matrices rover F. Thus, P consists of all matrices r = x*x with x in C. Let B 
be the subgroup of C consisting of upper triangular matrices with positive entries 
on the diagonal. That is, B = UC+ where U is given by (1.4.1) and C+ = en P 
is the subgroup of C composed of diagonal matrices c = diag(ci, ... , cn) with the 
entries Cj being real and positive. We write elements of B as b = UC, where u E U 
and C E C+. Then the mapping b -> r = b*b is a diffeomorphism of B with P. 
Let d*r denote the measure on P invariant under the action r -> a*ra of C. We 
normalize this measure as follows. Let 

n 

(1) du = IT dUij and d*c = IT ciidci 
i<j i=i 

be Lebesgue measure on U and invariant measure on C+, respectively. Then 

(2) 

(3) 

The normalizing factor 2n arises as follows. Let 

ds = IT dSiJ 
i::;i::;j::;n 
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788 K. 1. GROSS AND D. ST. P. RICHARDS 

be Lebesgue measure on S in Cartesian coordinates, and set 

(4) () = ~[(n - 1)v + 2]. 
The straightforward calculation of the Jacobian for the coordinate change (c, u) -+ 
r = c*u*uc, shows that 

(5) 

where dr is the restriction of Lebesgue measure on S to P. 
1.7 Polar coordinates on G. The homogeneous space K\G of right cosets Kx 

may be identified with P by means of the mapping kx -+ r = x* x that intertwines 
the (right) action of G on K\G with the action r -+ a*ra of G on P. Indeed, any 
matrix x E G has a unique decomposition x = kr 1/ 2 into polar coordinates where 
k E K and r 1/ 2 is the unique positive square root of r = x*x. From §5 of [8], 
relative to polar coordinates, Haar measure on G splits as 

(1) 

where dk is Haar measure on K normalized by vol(K) = 1. Here, (3n is a positive 
constant which, as we will see in (5.8), has the exact value 

(2) ~n ~ ."n(n l 'l/'/ ill'(v(n -j + 1)/2). 

2. Totally positive representations. This section contains the represen-
tation theoretic basis for the analysis to follow. Rather than give a systematic 
exposition of the representation theory of G, our goal is to develop the theory only 
to the extent necessary to give a unified and systematic presentation of our work on 
zonal polynomials and hypergeometric function on Fnxn. In particular, our analy-
sis requires only a certain set of irreducible representations, denoted 7r27n, that are 
polynomial and totally positive. 

2.1 Polynomials on G. A polynomial function on G is just the restriction of a 
polynomial on the real vector space FnXn. Since G is an open subset of Fnxn, 
a polynomial function on G extends uniquely to a polynomial on Fnxn, and con-
versely a polynomial on Fn x n has a unique restriction to a polynomial on G. Let 
P (G) denote the algebra of all polynomials on G, graded by degree, and let Pd (G) 
be the subspace of polynomials homogeneous of degree d. We let G act from the 
right, and define the right regular representation of G on P (G) by 

(1) (R(a)¢)(x) = ¢(xa) 

for all a E G and ¢ E P (G). The subspaces Pd (G) are all finite-dimensional and 
invariant under R, and 

(2) . (N+d-1) dlmPd(G) = N -1 . 

2.2 The differentiation inner product on P(G). The inner product on P(G) to 
be defined below is well known for real Euclidean spaces, so we rega.rd Fn x n as 
RN. Thus, a polynomial on Fnxn is a complex-valued function of the N = vn2 

real coordinates Xl, ... X N . Specifically, each of these coordinate functions is of 
the form (Xi)), where x E Fnxn and we enumerate (i,j, <;) lexicographically as i 
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and j vary from 1 to n and ~ from 1 to v. We write X = (Xl, ... ,XN ) ERN. For 
a multi-index a = (al, ... , aN) we set 

(1) 

and we put ¢ E P (G) in the standard form 

(2) 

where the aa are complex coefficients. Define if; E P(G) by replacing aa in (2) by its 
complex conjugate lia . The mapping ¢ --t if; is a conjugate-linear automorphism of 
P( G) that preserves homogeneity degree and is the identity on real-valued functions. 
Next, for any polynomial ¢ the corresponding differential operator D( ¢) is obtained 
by replacing each coordinate function Xi by the corresponding partial derivative 
3j3Xi . Then the formula 

(3) (¢I7/!) = (D(~)¢)(O) 
defines an inner product on P (G). Indeed, if ¢ and 7/! are written in standard form 
(2) with coefficients aa and ba, respectively, then 

(4) 

Note that the subspaces Pd(G) are mutually orthogonal and span P(G). 
We relate the inner product to the representation theory. For each a E G 

(5) 
for all ¢ and 7/! in P ( G), where 

(6) 

Property (5) can be rephrased as follows. Relative to this inner product on P(G), 
(7) R(a*) = R(a)* 

for all a E G. The proof of (5) follows immediately from (3) together with the 
property 

(8) 

for a E G and ¢ E P(G). This last formula is proved in [33] for the case F = R. 
It follows for general F by the observation that the mapping x --t xa* on Fnxn 
corresponds to the linear transformation X --t XAt on R N , where A is the N x N 
real matrix corresponding to the n x n matrix a over F. 

As a special case of (5), 

(9) (R(k)¢IR(k)7/!) = (¢I7/!) 
for all k in the subgroup K, so the restriction of R to the maximal compact subgroup 
is unitary. 

2.3 Representations. For the remainder of this section, we use the term rep-
resentation to mean a finite-dimensional representation of G which is rational in 
that all the matrix entries are quotients of polynomials in the N = vn2 real entry 
functions of Fnxn. For the reader who is less familiar with representation theory, 
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we remark that the rational structure of such a representation is quite rigidly deter-
mined. (See, e.g., [9, §3] or [10, (6.18)].) A representation is said to be polynomial 
if the matrix entries are all polynomials in the N real matrix entries. Then for any 
representation T of C, rational according to the preceding definition, there exist 
nonnegative integers kl' k2 such that the representation x -+ (det x)k 1 (det x)k 2 T(x) 
is polynomial. Of course, when F = R or H we may take k2 = O. In particular, 
all representations of C are determined from the polynomial representations. Since 
representations are assumed rational, they are completely reducible. We are led, 
therefore, to study the irreducible representations of C. 

2.4 The signature of an irreducible representation. Let 1f denote the generic 
irreducible representation of C. 

(1) Let F = R. The representations 1f = 1fm of CL(n, R) are parametrized by 
n-tuples m = (mb ... ,mn ) of integers such that ml 2: ... 2: m n . 

(2) Let F = C. The representations 1f = 1fmxl of CL(n, C) are parametrized by 
n-tuples m = (ml' ... ,mn ) and l = (h, ... ,in) of integers such that ml 2: ... 2: mn 
and h 2: . . . 2: In· 

(3) Let F = H. The representations 1f = 1fM of CL(n, H) are parametrized by 
2n-tuples M = (M1 , ... ,M2n ) of integers such that Ml 2: ... 2: M 2n . 

We refer to the index m, m x l, or M as the signature of the corresponding rep-
resentation 1fm , 1fmx l, or 1fM respectively. Our interest lies in the irreducible repre-
sentations that are polynomial. The irreducible representation 1fm of CL(n, R) is 
polynomial if and only if mn 2: 0; the irreducible representation 1fmxl of CL(n, C) 
is polynomial if and only if both mn 2: 0 and in 2: 0; and the irreducible represen-
tation 1fM of CL(n, H) is polynomial if and only if M2n 2: O. 

2.5 REMARK. In the remainder of this section we construct irreducible repre-
sentations of C in spaces of polynomials on C. We do this, not for all the irreducible 
representations, but only those irreducible representations that enter into the study 
of zonal polynomials and hypergeometric functions. For more detail concerning sig-
natures see §3 of [9]. 

2.6 The signatures 2m. Certain signatures are fundamental to this work. We 
denote them by 

(1) { 
(2ml, ... ,2mn) 

2m= (ml, ... ,mn ) x (ml, ... ,mn ) 
(ml,ml,m2,m2,'" ,mn,mn ) 

when F = R, 
when F = C, 
when F = H, 

where m = (ml, ... , m n ) is an n-tuple of integers such that 

(2) 

The representations 1f2m are all polynomials. 
2.7 DEFINITION. An irreducible polynomial representation of C is said to be 

totally positive if there exists a nonzero real-valued matrix entry that is nonnegative. 
Note that if a representation 1f in a space V is totally positive, then there exists an 
open convex cone in V, which is invariant under 1f. In (2.10) the representations 
1f2m are shown to be totally positive. In the next section we will see that these are 
all the totitlly positive representations of C. 

2.8 Covariantly transforming polynomials. Let (U, C, V) be the standard bitri-
angular structure given in (1.4). For each n-tuple m = (ml, ... ,mn ) of integers 
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satisfying (2.6.2), denote by JL2m the character of C defined by 
(1) JL2m(C) = IC112mlic212m2 .. 'lcn l2mn 

for c = diag(c1, ... , cn) E C. Let p2m(G) be the subspace of P(G) consisting of all 
polynomials <P such that 
(2) <p(vcx) = JL2m(C)<P(x) 
for all (v,c,x) E V x C x Fnxn. Set 

(3) Iml = m1 + ... + m n · 

Functions satisfying (2) are obviously homogeneous of degree 21ml, so 
(4) p2m(G) C Pd(G), d = 21ml. 
The polynomial <P2m defined for x E G by 

n-1 
(5) <P2m(X) = 1~(xWmn IT l~j(x)12(mj-mi+d 

j=1 

is nonzero and easily seen to be in p2m (G). It is important to note that <P2m is 
nonnegative; in particular, it is positive on the dense open set VCU. 

2.9 The irreducible representations 7r2m. Clearly, the space p2m(G) is invariant 
under right translation by G. From the results in [10], it follows that this right 
action is irreducible and realizes the representation 7r2m of G with signature 2m. 
Thus, for a E G and <P E p2m(G) 
(1) (7r2m( a)<p )(x) = <p(xa) 
for all x E Fnxn. In short, the irreducible representation 7r2m of G with signature 
2m is the subrepresentation of R on the subspace p2m(G). 

The function <P2m has a group theoretic definition as the highest weight vector of 
7r2m. That is to say, <P2m is that element of p2m(G), unique up to scalar multiples, 
for which 
(2) 
for all (c, u) E C x U. In general, an irreducible representation of G is uniquely 
determined, up to equivalence, by its highest weight vector. 

From the irreducibility of 7r2m, we see that p2m(G) is the span of the right 
translates of <P2m under the group G. That is an alternative, but less explicit, 
characterization of p2m (G). 

2.10 REMARK. Note that 7r2m is totally positive, for the evaluation map e: <P ----t 

<p(I) is a linear functional on p2m(G). Thus, there exists <Pe E p2m(G) such that 

(1) <p(I) = (<PI<Pe) 
for all <P E p2m(G), and the matrix entry x ----t (7r2m(X)<P2ml<Pe) = <P2m(X) is 
nonnegative. 

2.11 Inner products. As a subspace of P(G), the representation space p2m(G) of 
7r2m inherits the inner product (2.2.3). From (2.2.9), the irreducible representation 
7r2m on the space p2m(G) is unitary when restricted to the maximal compact 
subgroup K. More generally, from (2.2.5) 
(1) 7r2m(a*) = (7r2m(a))* 
for all a E G. 
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3. Invariant polynomials on G. The object of this section is to give an 
explicit description of the decomposition of the space I(G) = P(G)K of left K-
invariant polynomials on G under the right action of G. From remarkable calcula-
tions by Hua [18] of character sums, it is known exactly which representations of G 
appear in 1 ( G); namely, those having signatures of the form 2m. Our main contri-
bution is a simple and direct construction of the irreducible subspaces by means of 
an integral transform, called the spherical transform, on the spaces P 2m ( G). Our 
approach is based on the principle that an irreducible representation appears in 
1 (G) if and only if it is totally positive. Consequently, a representation is totally 
positive if and only if its signature is of the form 2m. 

3.1 Invariants. Denote by I(G) the sub algebra of P(G) of all left K-invariant 
polynomials; i.e., polynomials p such that p(kx) = p(x) for all (k, x) in K x G. Since 
-1 E K, there are no nonzero left K-invariant polynomials that are homogeneous 
of an odd degree, so 

(Xl 

I(G) = L EB I(Ghd 
d=O 

where 1 (Ghd denotes the subspace of 1 (G) of polynomials homogeneous of degree 
2d. Let p denote the subrepresentation of R on the subspace I(G) of P(G). Thus, 
p is the right regular representation of G on 1 ( G). By means of fundamental results 
of Hua and of Weyl, we describe the decomposition of p. We state Weyl's theorem 
[34] on polynomial invariants as a lemma. 

3.2 LEMMA. Define real-valued polynomials Pi for 1 :S i :S n by 

(1) 

and Pij, for 1 :S i < j :S nand 1 :S ~ :S v by 

(2) Pij,(X) = (xixj), 
when Xi is the i th column of x E G. Then the algebra 1 (G) is generated by the 
w = n[(n - l)v + 2]/2 polynomials Pi and Pi),. 

3.3 The spherical transform. For ¢ E P (G) define the polynomial ¢# by 

(1) ¢#(x) = L ¢(kx)dk 

for all x E G. We refer to the map 3: ¢ ---> ¢# as the spherical transform for 
the pair (G, K). It is the orthogonal projection of P (G) onto 1 ( G). Evidently, 3 
commutes with the right action of G; that is, 3 intertwines R with p. 

3.4 THEOREM. Let d 2: 0 and m = (ml,'" ,mn ) with ml 2: ... 2: mn 2: 0 and 
Iml = d. Then the restriction 3 2m of 3 to p2m(G) is an isomorphism of p2m(G) 
onto a subspace ]2m(G) of I(G), and 

(1) I(Ghd = L EB 12m(G) 
Iml=d 

is the decompositon of 1 (Ghd into irreducible subspaces. 

PROOF. Clearly, 3 maps p2m (G) into 1 (Ghd, and by Schur's lemma 3 is 
either injective or else is identically zero. Since ¢2m E p2m( G) is nonnegative, 3 2m 
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must be injective. Thus, each space ]2m(G) = B(p2m(G)) is an irreducible right 
invariant subspace of 1 (G). 

From Lemma 3.2, the dimension of the space 1 (G) is the binomial coefficient 

(W:~~l) 

where w = n[(n - l)v + 2]/2. Theorem 3.4 now follows from Hua's formulas [18, 
(1.3.2)-(1.3.5)] which we rewrite as 

(2) ( W+d-1) "" w - 1 = ~ deg 1T2m' 
Iml=d 

3.5 COROLLARY. The representation p of G on 1 (G) is multiplicity free, and 
an irreducible representation of G appears in p if and only if it is totally positive. 
In particular, an irreducible polynomial representation of G is totally positive if and 
only if its signature is of the form 2m given by (2.6.1). 

PROOF. It suffices to show that a representation which is totally positive must 
appear in 1 (Ghd for some d. Therefore, suppose 1T is an irreducible polynomial 
representation of G on a space 'V having a nonnegative matrix entry f: x -+ 

(1T( x)u I w) with u and w nonzero elements of 'V. Fix wand define the map A 
from 'V into P(G) by (A(v))(x) = (1T(X)V I w) for v E 'V and x E G. Since 1T is 
irreducible, it acts by scalars on scalar matrices; that is, there exists an integer l 
such that 1T( t1) = tl I for all t E R where I is the identity on 'V. Moreover, the 
function f = A(u) is a nonzero element of A('V). Then A intertwines 1T with the 
right action of G on the subspace A('V) of A(G),A('V) =I- 0, and by Schur's Lemma 
A is injective. Thus, by taking an equivalent representation, if necessary, we may 
assume that 1T acts by right translation on an irreducible subspace 'V of A (G) and 
that there exists a nonzero function in 'V that is nonnegative. Now apply the map-
ping B to 'V. Then B('V) is a nonzero subspace of 1 (G) on which the right regular 
representation of G is equivalent to 1T. Of course, l must be even. 

3.6 REMARK. The decomposition in the above corollary can be written in 
symbols as 

(1) 
m 

where 

(2) 
is the irreducible representation of signature 2m acting by right translation on the 
space 12m(G). 

4. Polynomials on the Hermitian matrices. We translate the preceding 
decomposition of I(G) into the decomposition of P(S) under the action s -+ a*sa 
of G, where S denotes the space of Hermitian matrices in Fnxn. In each irreducible 
subspace there exists a K-invariant vector, unique up to constant multiples, called 
a zonal polynomial. In the language of harmonic analysis, the zonal polynomials 
are spherical functions for the Gelfand pair (G, K). The essential point is that any 
K-invariant polynomial, or more generally a K-invariant analytic function, on S 
can be expanded in terms of the zonal polynomials. 
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4.1 The space S = S(n, F). Denote by S = S(n, F) the real vector space of all 
x E Fnxn such that x = x*, on which the group G acts by s ---+ a* sa for s E Sand 
a E C. The cone P = P(n, F) defined in (1.6) is an open subset of S. Over the real 
field, S consists of symmetric matrices; over the complex field, Hermitian matrices, 
and over the quaternions, quaternionic Hermitian matrices. For convenience, we 
refer to elements of S as Hermitian matrices, irrespective of the nature of F. The 
dimension of S over R is 

(1) w = n[(n - 1)v + 2]/2. 

4.2 Polynomials on S. Let P(S) denote the algebra of all polynomial functions 
on S, and Pd ( S) the subspace of polynomials homogeneous of degree d. We reserve 
the symbol q for the generic element of P(S). In analogy to (2.2.3), we endow P(S) 
with the inner product 

(1) 
for q1 and q2 in P(S). Define the natural representation T of G on P(S) by 

(2) (T(a)q)(s) = q(a*sa) 
for a E G and q E P(S). As in (2.2.5) 

(3) (T(a)q1 I T(aV )q2) = (q1 I q2) 
for all a E G and q1, q2 E P(S). In particular, T is unitary upon restriction to the 
maximal compact subgroup K. 

4.3 The restriction of ~ to S. Recall from (1.2) that ~ is the determinant 
on Fnxn when F is the real or complex field, but ~ is the square root of the 
determinant when F is the quaternionic division algebra. Nonetheless, the following 
result shows that the restriction of ~ to S is a polynomial on S, irrespective of the 
nature of F. 

4.4 PROPOSITION. Let S = Sn = S(n,H) and P = Pn = P(n,H). Then there 
exists a unique polynomial ~ on S, homogeneous of degree n, such that ~(S)2 = 
dets for all s E S and ~(s) > 0 for s E P. 

PROOF. We apply induction on n. When n = 1, Sl is isomorphic to R, and an 
element of Sl has the form s = ~1 with ~ E R. In this case, ~(s) = ~ and the result 
is obvious. As induction hypothesis, assume that there exists a polynomial q = qn-l 
on Sn-1 such that q(t)2 = dett for all t E Sn-1, and such that q(t) > 0 on Pn- 1. 
Now suppose s E Sn and set Sl1 = ~111 with ~11 E R. Multiply the first column 
of s on the left by ([/ Slj and subtract from the jth column (j = 2, ... , n). Then 
multiply the first row of the resulting matrix on the left by ~1/ Sij and subtract 
from the jth row (j = 2, ... , n). This yields 

* ( cu 1 u = e se = I" 0 ~) 
with det e = 1 and t E Sn-1 given by 

t c-1 * ij = Sij - 1,,11 SljSli, i :::; j. 

Clearly, t E Pn - 1 when s E Pn- By the induction hypothesis 

dets = detu = ~ilq(t)2 = ~112(n-2)q(~USij - sljsii)2 
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for all s E Sn. Note that ~~12 divides the polynomial s -+ q(~l1Si) -S1)Sii). Thus, 

A(s) = qn(s) = ~11(n-2)qn_l(~l1Si) - s1)sii) 

defines a polynomial A on S, dets = A(s)2, and A(s) > 0 for all s E Pn . This 
completes the proof by induction. 

4.5 REMARKS. From (1.7), recall polar coordinates x = kr 1/ 2 on G. Since 
P is open in S, any polynomial on S is uniquely determined by its restriction to 
P; and conversely, any polynomial on P extends uniquely to a polynomial on S. 
We observe that the dimension (4.1.1) of S is the same number w that appears 
in Lemma 3.2. Indeed, if Xi denotes the ith column of x, then the ijth entry of 
r = x'x is ri) = Xix), and (3.2.1) and (3.2.2) can be rewritten as 

Pi(X) = qi(r) = rii and Pi),(X) = %,(r) = (ri)),. 
More generally, for any polynomial p in I (G) the formula 

(1) q(x'x) = p(x) 

is well defined and yields a polynomial q on S. Thus, the map 
(2) 0: p -+ q 

takes I(G) isomorphically onto P(S), and intertwines the representations p and 1". 

That is, 

(3) Op(a) = 7(a)0 

for all a E G. Clearly, for any d, 0 takes hd(G) to Pd(S). By means of the 
isomorphism 0 we can restate the decomposition of I (G) in terms of polynomials 
on S. 

4.6 THEOREM. Fix d ~ 0 and let m be as in Theorem 3.4. Denote by 02m the 
restriction of 0 to I2m(G), and set 

(1) pm(s) = 02m(I2m(G)) and 72m(-) = 02mP2m(-)02;' 

where P2m is given by (3.6.2). Then 72m is the irreducible representation of G with 
signature 2m acting in the subspace pm(s) of Pd(S); Pd(S) decomposes as 

(2) Pd(S) = L EB pm(s) 
Iml=d 

and the representation 7 of G on P(S) is multiplicity free with decomposition 

(3) 
m 

4.7 Highest weight vectors. Let Iml = d and set 
n-1 

(1) qm(s) = A(s)mn II A)(s)mj-mi+l 
)=1 

for s E S, A) being given by (1.4.3). Then qm is a homogeneous polynomial of 
degree d, and 
(2) 
for all (c, u) E C x U, where /-L2m is the character of C given by (2.8.1). It follows 
from (2.9) that qm is in pm(s) and qm is the highest weight vector of 72m. 
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4.8 THEOREM. In each irreducible subspace pm(s) of P(S) there is a nonzero 
K -invariant function fm which is unique up to constant multiples. That is, there 
exists a nonzero function fm in pm(s), unique up to constant multiples, such that 

for all s E Sand k E K. 

PROOF. There is certainly some nonzero K-invariant polynomial in pm(s). For 
example, the polynomial fm defined for s E S by 

(2) 

is in pm(s), is K-invariant, and is positive on the positive cone P. That such a 
polynomial is unique can be seen directly as follows. Fix d 2 0 and suppose Iml = d. 
Since any Hermitian matrix s can be diagonalized by a matrix in K, it follows from 
(1) that f m is uniquely determined by its restriction to the diagonal matrices in 
S. Thus, as a polynomial in the n (real) diagonal entries which is homogeneous of 
degree d, fm is invariant under the action ofthe symmetric group on n letters. The 
dimension of the space of such polynomials is precisely the number of partitions 
m of the positive integer d, which shows that there can be at most one linearly 
independent K-invariant element in pm(s). 

4.9 Zonal polynomials. A nonzero K-invariant polynomial in pm(s) is called 
a zonal polynomial on S of weight m. The collection of all zonal polynomials, 
constant multiples identified, is in one-to-one correspondence with the collection 
of irreducible representations of C which are totally positive. Clearly, the algebra 
P(S)K of all K-invariant polynomials on S is spanned by the zonal polynomials; 
that is, 

(1) 
m 

In particular, zonal polynomials corresponding to different signatures are orthogo-
nal. 

4.10 Complexification and compact forms. There is an alternative representation-
theoretic proof of Theorem 4.8 that illustrates the connection between the noncom-
pact space K\C and its compact counterpart. Let CC be the complexification of 
C, K C the complexification of K in CC, and L the maximal compact subgroup 
(compact real form) of CC. The group CC is the collection of all invertible el-
ements of the complexification of the algebra Fnxn. The specific structures are 
given below. 

F FC GC L K\L K\G 

R C GL(n, C) U(n) O(n)\U(n) O(n)\GL(n,R) 
C C6:)C GL(n, C) x GL(n, C) U(n) x U(n) diagU(n)\U(n) x U(n) U(n)\GL(n, C) 
H C2X2 GL(2n,C) U(2n) Sp(n)\U(2n) Sp(n)\GL(n, H) 

The chain of mappings 

(1) pm(s) ---> ]2m(c) ---> ]2m(cC) ---> pm(K\L) 
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that results from complexification of a K-invariant polynomial on G to a K C _ 
invariant polynomial on GC and then restriction of that polynomial to K\L, pro-
vides an isomorphism of pm(s) with a subspace pm(K\L) of continuous functions 
on K\L that is invariant and irreducible for the action of L. Then the decomposi-
tion 

(2) P(S) = L EB pm(s) 
m 

of the space of polynomials on S corresponds to the multiplicity free decomposition 

(3) 
m 

of the square-integrable functions on the compact form K\L of K\G. The fact 
that each space pm(K\L) has an essentially unique K-invariant function is a con-
sequence of Frobenius reciprocity for compact groups [7J. Theorem 4.8 then follows 
by lifting this result from pm(K\L) to pm(s) via the above maps. In this context, 
the multiplicity free nature of P(S) is a reflection of the fact that K\L is a com-
pact Riemannian symmetric space [13J. Note that in the complex case, K\L is the 
symmetric space for the compact group U(n), and (3) is precisely the Peter-Weyl 
theorem for L2(U(n)). This has the following obvious consequence. 

4 .11 PROPOSITION. Let F = C and Am = 7l"mxO be the holomorphic represen-
tation of GL(n, C) with signature m X 0 (cf. (2.4.2)). Then the zonal polynomial 
f m is given by the formula 

f m ( s) = (deg Am) -1 tr (Am ( S ) ) 

for all s E S. 

In other words, in the complex case the zonal polynomials are the restriction to 
S of the (normalized) irreducible holomorphic characters of GL(n, C). 

5. Properties of zonal polynomials. In this section we derive a number of 
properties of the zonal polynomials. We do not develop the theory in fine detail, 
but rather focus on those results necessary for our treatment of hypergeometric 
functions on S. In particular, we normalize the zonal polynomial Zm of weight 
m in such a way as to reduce to unity all the coefficients in the expansion of the 
powers of the trace. We also derive a Laplace transform formula and an Euler-type 
integral for the zonal polynomials, the latter being in the spirit of [6J and [19J. 
Our approach highlights the significance for analysis on S of a generalization of the 
classical gamma function. This generalized gamma function is scalar-valued, but 
it is intimately related to an operator-valued version, defined previously in [9J in 
connection with Fourier analysis on Fnxn. 

5.1 Normalization. The zonal polynomial fm of weight m defined by (4.8.2) is 
specified by the normalization 

(1) fm(l) = 1. 

However, a more convenient normalization relates the zonal polynomials of weight 
m to the K-invariant polynomial s ----t (trs)d where Iml = d. 
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5.2 LEMMA. For any d ~ 0 

(trs)d = L O'.mfm(s) 
Iml=d 

where O'.m = (d!)llfmll-2 > 0 for all m. 

PROOF. Set et(s) = exp(trst) for s,t E S. By straightforward differentiation, 

(2) 

and hence 

(3) 

Now, since el is K-invariant, it has an expansion of the form 

(4) 
m 

with coefficients 13m that are determined by substitution into (3). Thus, by (4.2.1) 

m' m' 

and since the polynomials fm and fm' are orthogonal it follows that 13m = Ilfmll-2 

> O. Finally, evaluate both sides of (4) at ~s, where ~ E Rand s E S, to obtain 

~ e(~:s)d ~ ~e (~/mfm(s)) 

from which the lemma follows by equating like coefficients of ~d. 
5.3 DEFINITION. We define the normalized zonal polynomial Zm of weight m 

by 

(1) 

where d = Iml, in terms of which 

(2) (trs)d = L Zm(s) 
Iml=d 

for all s E S. In particular, (1) implies that 

(3) 

This formula for Zm (1) is sufficient for our needs. However, the value of Zm (1) 
has been computed explicitly in both the real and complex cases [19]. For the 
quaternionic case, there appears to be no literature on Zm(1); however, Zm(1) will 
be computed from techniques to appear in a future paper [12]. We remark that in 
the statistical literature [19, 23] the symbol em is used, rather than Zm, for the 
zonal polynomial normalized by (2). 

5.4 REMARKS. Let Z = Zm. Recall from (4.5) that 0 is an isomorphism of 
J(G) with P(S). Denote by pz the inverse image of Z under 0; that is, 

(1) Z(x*x) = pz(x) 
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for all x E G. Then pz spans the unique one-dimensional subspace of J(G)2m 
consisting of right K -invariant polynomials. As all functions in J ( G) 2m are left 
K-invariant, 

(2) 
for all kI, k2 E K and x E G. Any x E G can be decomposed as x = k 1ck2 with 
h, k2 E K and c E C+, where C+ is the subgroup defined in (2.1) of positive 
diagonal matrices. Hence, the polynomial pz on G is uniquely determined by 
restriction to the positive diagonal matrices. Consequently, 

(3) pz(x*) = pz(x) 

for all x E G, and 

(4) pz(xy*) = pz(yx*) 

for all x, y E G. Rewriting pz(xy*) as (P2m(y*)pZ)(x), we see that pz(xy*) lies in 
J(G)2m, as a function of either x or y. By means of (1), the above properties of 
p z translate into the following properties of Z. 

The value of Z at s E S is uniquely determined by the eigenvalues of s; that is, 

(5) Z(s) = Z(A) 

where A is a diagonal matrix, the diagonal entries of which are the eigenvalues of 
s. If we set s = x*x and t = y*y, then (4) becomes 

(6) Z(ysy*) = Z(xtx*) 

and from polar coordinates (1.7) and the K-invariance of Z 

(7) Z(t 1/ 2st1/ 2) = Z(Sl/2tsl/2). 

The formula in (7), as a function of sand t, extends uniquely from P X P to a 
polynomial on S X S which lies in pm(s) as a function of either s or t. Moreover, 
the matrices st, ts, sl/2ts1/ 2, and t 1/ 2 st 1/ 2 all have the same eigenvalues. Thus, 
we opt for convenience of notation rather than strict adherence to rigor, and write 
Z(st) or Z(ts) in place of Z(t 1/ 2st 1/ 2), even though st or ts need not lie in S. Note 
that 

(8) 
for all s, t E Sand rEP. The following functional equation for zonal polynomials is 
a mean-value theorem that, in the general theory [14], is characteristic of spherical 
functions. 

5.5 PROPOSITION. For any s, t E S, 

(1) 

where dk is normalized Haar measure on K. 

PROOF. Set Z = Zm and p = pz and let s = x*x and t = y*y for X,y E G. By 
(5.4), it is sufficient to prove that 

(2) r (kx*)dk = p(x)p(y) iK P Y p(l) . 
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The left side of (2) defines a polynomial on G X G which, as a function of y, is 
a right K-invariant element of J(G)2m. Hence, there exists a polynomial 'ljJ on G 
such that the left side of (2) is equal to 'ljJ(x)p(y). As a function of x, the left side 
of (2) is again a right K-invariant element of J( G)2m, from which we conclude that 
'ljJ(x) = o:p(x) for some constant 0:. However, when x = y = 1 the left side of (2) is 
equal to p(1), from which it follows that 0: = 1/p(1). 

5.6 The gamma function for P. Let qm E pm(s) be the highest weight vector 
( 4. 7.1) for T2m, and let 0: be a complex variable. Set 

(1) r n(O:, m, F) = r n(O:, m) = L e- tr r A(r)Qqm(r) d*r 

whenever the integral converges. We refer to the function r as the generalized 
gamma function for the cone P = P(n, F). For fixed m = (ml, ... , m n ), the 
function 0: -t r n (0:, m) is said to be the gamma function of weight m for the cone 
P. When m = (0, ... ,0), which corresponds to the identity representation of G, 
we drop the dependence upon m and set 

(2) r n(O:, F) = r n(O:) = L e- trr A(rY'd*r. 

Define the generalized Pochhammer symbol of weight m by 

(3) [o:;FJm = [o:Jm = IT (0: - ~(j -1)V) 
j=l mj 

where 
(4) (O:)j = 0:(0: + 1)··· (0: + j - 1) 
is the standard Pochhammer symbol. 

5.7 THEOREM. The integral (5.6.1) defining r n (0:, m) converges if and only if 
(1) Reo: > ~(n - 1)v - m n . 

In this half-plane 

(2) r n(O:, m) = 7rn (n-1)vj4 IT r (0: + mj - ~(j - 1)V) 
J=l 

where r is the ordinary gamma function, and for any m the mapping 0: -t r n (0:, m)-l 
extends to an entire function of 0:. In particular, 

(3) r n(O:) = 7rn (n-1)vj4 IT r (0:- ~(j - 1)V) 
J=l 

and 
(4) 

PROOF. From (1.6.2) and (4.7.2) 

r n (0:, m) = 2n ! r e- tr (cu·uc) A( C )2Q qm (cu* uc) du d*c 
ulc+ 

= 2n ! r e-tr(cu·uc) A(c)2Q(T2m(UC)qm)(1) dud*c 
ulc+ 

= 2n ! r e-tr (cu·uc) A(C)2Q 1l2m(C) du d*c. 
ulc+ 
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Let W denote the vector space of all upper triangular nilpotent n x n matrices w 
over F, and let u = 1 + w for any u E U. Since w is nilpotent and c is diagonal, 

r n(a, m) = 2n 10+ (/w e-tr(CW'WC)dW) e- tr (c 2
) A(c)2QfL2m (C) d*c 

= 2n1l'n(n-1)1I/4 r e-tr(c2)A(c)2QfL2m(C)J(c-1)d*c 
Jc+ 

where J(c) = (C2C~'" C~-l)1I is the Jacobian of the transformation w ----+ wc. From 
(1.6.1) 

which is finite if and only if a lies in the half-plane defined by (1), and in this 
domain 

r n(a, m) = 1l'n(n-1)1I/4 IT r (a + mJ - ~(j - l)V) . 
J=l 

Formula (3) is the special case in which m = (0, ... ,0), and (4) follows by means 
of the functional equation for the ordinary gamma function. 

5.8 REMARKS. (1) From (5.6.2) and (5.7.3), it is now straightforward to verify 
formula (1. 7.2) for the constant f3n that enters integration over G in polar coordi-
nates. One integrates the function 

x ----+ IA(x)llIn/2 e-tr(x·x). 

The left side of (1. 7.2) becomes 1l'IIn 2/2 , and the right side becomes 

f3n1l'n(n-1)1I/4 J1 r ((n - J~ + l)V) . 

(2) The calculation of the integral (5.6.1) is implicit in §4 of [9] in connection 
with the absolute convergence of a certain operator-valued gamma function that 
relates to analysis of vector-valued functions on Fnxn. 

(3) We close this section by deriving a Laplace transform formula and an Euler-
type integral for the zonal polynomials. We utilize the complexification SC = S +is 
of S. That is, SC consists of all matrices x E (FC)nxn of the form z = x + iy with 
x, yES. We refer to x = Re z and y = 1m z as the real and imaginary parts of 
z, respectively. The (generalized) right half-plane cJ> = P + is in SC consists of all 
z E SC such that Rez E P. 

5.9 THEOREM. Let a and m satisfy (5.7.1). Then 

for all 8 E Sand z in the generalized right half-plane cJ>. 
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PROOF. Denote the left side of (1) by 1(s,z). By (4.8.2), (5.3), an interchange 
of order of integration, and (5.7.4) 

1(1,1) = l e-trr ~(r)a Zm(r) d.r 

= Zm(1) l e-trr ~(r)a ([ qm(k-Irk) dk) d.r 

= Zm(1) l e-trr ~(r)aqm(r)d.r 

= Zm(1)f n(a, m) = Zm(1)[a]mf n(a). 

Next, since the function s ----> 1(8,1) is K-invariant and in pm(s), there exists a 
constant c such that 1(8,1) = CZm(8), 8 E S. Clearly, c = 1(1, l)/Zm(l) so 

1(8,1) = [a]mf n(a)Zm(8). 

Now, let z E P and make the change of variable r ----> Z-I/2rz-I/2 in the integral 
defining 1(8, z). Then by (5.4.8) 

1(8,z) = ~(z)-a1(z-I/28Z-I/2, 1) 

and hence 
1(8, z) = [a]mf n (a)~(z)-a Z:m(Z-I/2 8Z- I/2). 

Thus, for z E P and 8 E S 

1(8, z) = [a]mf n(a)~(z)-a Zm(8Z- I). 

The result now follows by analytic continuation in z from P to cI> = P + is. 

5.10 COROLLARY. Let Re(a) > (n-1)v/2 and Re(,B-a) > (n-1)v/2. 

(1) r A( )a A(l _ )f3-a-(}Z ( )d = f n(a)f n(,B - a) [a]m Z ( ) 
iO<r<1 u r u r m rz .r f n(,B) [,B]m m Z 

for all z E SC = S + is, where () i8 given by (1.6.4). 

Then 

PROOF. From our proof of Theorem 5.7, Jo<r<1 ~(r)ad.r < 00 if and only if 
Re a > (n - l)v /2. Therefore, the conditions on a and ,B in the statement of the 
corollary are precisely those for which the integral in (1) converges absolutely. 

Denote the integral in (1) by 1(z). For the moment, let z E S. From the K-
invariance of the measure d.r on the set PI of all 0 < r < 1, it follows that I is a 
K-invariant polynomial which is clearly in pm(s). Hence, I is a constant multiple 
of Zm; explicitly, 

(2) 1(z) = 1(l)Zm(z)/Zm(l) 

for all z E S. By analytic continuation, (2) is valid for all z ESe. Therefore, it 
remains to compute 1(1). We proceed as follows. By Theorem 5.9 and (2), 

f n(,B)[,B]m1(l) = (l e-tr(r) ~(r)f3 Zm(r) d.r) ;~~L 

= l e-tr(r)~(r)l31(r)d.r. 
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Substituting for I (r) in this last integral, we obtain 

[,8]m f n(,8)I(1) = L (L1 e-tr(r) ~(r)i3 ~(t)O(1 - t)i3-o- 0 Zm(tr) d.t) d.r. 

Next, make the substitution t ~ r- 1/2tc1/2 in one integral, followed by r ~ r + t 
in the other. Then 

[,8]m f n(,8)I(1) = L L e-tr(rH) ~(t)O~(r)i3-o Zm(t) dAd.r 

= (L e-tr(r)~(r)i3-0d.r) (L e-tr(t)~(t)OZrrt(t)d.t) 
= [a]rrt f n(a)f n(,8 - a)Zrrt(1), 

which yields the desired result. 

6. Hypergeometric functions on S. In the previous sections we have as-
sembled all the machinery required to introduce hypergeometric series on S. These 
series are natural generalizations of the classical hypergeometric series, and are 
appropriate to analysis on S. Over the real field, the generalized hypergeometric 
functions of matrix argument were defined by Herz [15], and more generally for cer-
tain symmetric spaces by Gindikin [6]. The former adopts the approach in which 
the hypergeometric functions are defined inductively by means of the Laplace trans-
form and inverse Laplace transform, while the latter generalizes the Gaussian 2F1 
by means of Euler integrals. Neither develops series expansions. Our approach here 
is more direct. In analogy to the familiar classical case in which hypergeometric 
functions are given by power series expansions, we define (generalized) hypergeo-
metric functions on S as infinite series of zonal polynomials, and subsequently we 
prove Laplace transform formulas and Euler-type integrals to make the connection 
with the earlier methods. Over the real field, this approach was pioneered by the 
statisticians James [19] and Constantine [2]. Although our methods differ, our 
results reduce to theirs for the real field. However, our proof of convergence in 
Theorem 6.3 fills an apparent gap in the statistics literature. 

Throughout, we let Ilsll = max{IAil: i = 1, ... ,n} where A1, ... ,An are the 
eigenvalues of s E S. 

6.1 DEFINITION. Let a1, ... ,ap ,,81, ... ,,8q E C such that -,8i + (j -1)///2 
(1 :::; i :::; q, 1:::; j :::; n) is not a nonnegative integer. The hypergeometric function 
with argument s E S and parameters a1, ... , a p and ,81, ... ,,8q is defined by the 
senes 

6.2 EXAMPLES. First, from (5.3.2) 

(1) 1:' ( ) = ~ " Zrrt(s) = ~ (trs)d = trs 
oro S ~ ~ d! ~ d! e 

d=O Irrtl=d d=O 

Note that the hypergeometric series oFo converges absolutely for all s E S; indeed, 
for all s in the complexification Se of S. This is characteristic of the general 
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situation when p ::; q. Next, we sum the hypergeometric series lFo. If Re 0: > 
(n - 1)///2 and Ilsll < 1, then by Theorem 5.9 and Fubini's theorem 

~(1- s)-Q = _1_ r e-tr((1-8)r)~(r)Qd*r 
rn(o:)Jp 

= r n~O:) 1 e-trr oFo(rs)~(rt d.r 

= ~( ) f L d1, r e-trr ~(r)Q Zm(rs) d.r 
rnO: .Jp 

d=O Iml=d 
= ~ ~ [o:lmZm(s) = D ( • ) 
~ ~ d! 1£0 0:, s . 
d=O Iml=d 

Thus, 

(2) 
gives the full analytic continuation of lFo(o:;') to any simply-connected domain in 
Se. The right side of (2) is determined by the principal branch of the argument. 
The fact that the hypergeometric series lFo has {s E S: Ilsll < 1} as its domain of 
convergence is characteristic of p+1Fp for all p 2 O. 

6.3 THEOREM (CONVERGENCE OF HYPERGEOMETRIC FUNCTIONS). (1) If 
p ::; q then the hypergeometric series (6.1.1) converges absolutely for all s E S. 

(2) If p = q + 1 then the series (6.1.1) converges absolutely for Ilsll < 1 and 
diverges for Ilsll > 1. 

(3) If p > q then the series (6.1.1) diverges unless it terminates. 

6.4 Outline of proof. The strategy is to reduce the proof of convergence of (6.1.1) 
to comparison with the classical hypergeometric series 

(1) ~ (o:dd'" (0: )d ~d 
plq (0:1, ... , O:p; f31, ... , f3q; ~) = ~ (f3t}d'" (/)d d! 

d=O q 

which is an entire function of ~ when p ::; q, has radius of convergence 1 when 
p = q+ 1, and (unless a denominator coefficient is a negative integer), diverges for all 
~ # 0 if p > q. For this purpose we first prove a coarse estimate (6.5.1) from which 
part (1) of the theorem is an easy corollary. We also make an exact calculation 
(6.8.1) from which part (3) and the divergence in part (2) are straightforward 
consequences. However, our proof of (2) is more involved, resulting from the fact 
that the estimate (6.5.1), as it applies when p = q + 1, yields convergence only in 
a smaller domain {s E S: Ilsll < lin}. Here, and throughout this section, n = nlrt 
with rt given by (1.2.1); that is, n = n over R or C, and n = 2n over H. To 
complete part (2), we give a second representation (6.11.1) of p+1Fp as an Euler-
type integral from which the convergence on the larger domain {s E S: Ilsll < 1} 
follows by an abstract extension theorem (Lemma 6.10). In this connection we wish 
to thank J. Polking and H. Rossi for sharing with us their expertise on the subject 
of domains of holomorphy. 

6.5 LEMMA. Let Iml = d. Then 

(1) IZm(s)1 ::; ndllslld 
for all s E S. 
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PROOF. This inequality follows from the Binet-Cauchy theorem, the integral 
representation (4.8.2) for the highest weight vector qm E pm(s), and the definition 
(5.3.1) of Zm. Let D denote the determinant of a matrix, and recall that ~ = DTJ 
is a polynomial on S. For j = 1, ... , n we set J = j /",. If x is any complex 
ii x ii matrix, form the J x J minor D:::~~~::; (x) from rows it, ... , iJ and columns 
h, ... , lJ of x, where 1 :::; i1 < i2 < ... < iJ :::; ii and 1 :::; h < l2 < ... < lJ :::; ii. 
We set 

DJ(x) = D1,2, ... ,J (x). 1,2, ... ,J 

The Binet-Cauchy theorem states that for any matrices x and y 

In particular, if k E K, so kk* = 1, then 

" ID 1 , ... ,J (k)1 2 = 1 
~ 11, ... ,IJ 

11<··-<IJ 

for all j = 1, ... , n. Clearly, for a diagonal ii x ii complex matrix A 
Di1 , ... ,iJ (A) = 0 

11, ... ,lJ 

if(i1, ... ,iJ) f. (h, ... ,lJ). Thus, 

/DJ(k* Ak)/ = I" "D1, ... ,J (k*)D i1 , ... ,iJ (A)Dh, ... ,I J (k)1 
~ ~ 21, ... ,'tJ h, ... ,lJ 1, ... ,J 

il <··-<iJ h <··-<IJ 

= I " D1, ... ,J (k*)Di1 , ... ,iJ (k)Ai ... Ai I 
~ tl, ... ,'l.J 1, ... ,J 1 J 

il <··-<iJ 

:::; /lA/lJ L ID;;::::~)k)12 = /lAf 
il <···<iJ 

and 

for all j = 1, ... ,n. If we diagonalize S E Sass = k* Ak, then by (4.8.2) 

/fm(S)/ = 1£ qm(k* Ak)dkl :::; £ /qm(k* Ak)/dk 

n-1 
= ! I~(k* Ak)/mn IT I~J(k* Ak)lmj -mj+1dk 

K j=1 
:::; p/ld = /ls/ld. 

By (5.3.1) and (5.3.3), Zm(s) = Zm(1)fm(s) and 

0< Zm(l) < L Zm(1) = (tr l)d = iid 
)m)=d 

which establishes inequality (1). 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



806 K. l. GROSS AND D. ST. P. RICHARDS 

6.6 The comparison test for convergence. Let 

(1) 

and set 

(2) 

aij = ai - (j - 1)v/2, 
fJij = fJi - (j - 1)v/2, 

i = 1, ... ,p, 

j = 1, ... ,q, 

for ~ E C and J. = 1, ... ,no With d = Iml, we have 

(3) 

and by (6.5.1) 

f 2: I [atlm··· [ap]m Zm(s) I 
d=O Iml=d [fJ1]m··· [fJq]m d! 

< ~ '" I [a1]m··· [ap]m I ndllslld 
- f::o I~d [fJtlm··· [fJq]m m1!··· m n ! 

~ IT { f I (a1J)mj (a2J)mj ... (apj)mj I (nllsll)m j } 
j=l mj=O (fJ1j )mj (fJ2j )mj ... (fJqj )mj m J ! 

which compares the absolute convergence of pFq(s) with that of I1j=l p1,?)(~) for 
~ = nllsll. Thus, for p ~ q the series pFq(s) converges absolutely for all s E S; and 
for p = q + 1, the series p+1Fp(s) converges for Ilsll < l/n. 

6.7 REMARKS. We will consider the hypergeometric series (6.1.1) as a function 
of the parameters as well as the argument. To minimize the number of variables in-
volved, note that a K-invariant real-analytic function on S is determined uniquely 
by restriction to the positive diagonal matrices. Similarly, a KC-invariant holomor-
phic function on SC is determined by restriction to the complex diagonal matrices. 
More formally, let Wn be the symmetric group on n letters. Then the algebra of 
KC-invariant holomorphic functions on SC is isomorphic (by restriction to the di-
agonal) to the algebra of Wn-invariant holomorphic functions on cn [3, 21]. In 
particular, pFq(s) = pFq(A) where A is the diagonal matrix in Fnxn, the diagonal 
entries of which are the eigenvalues of s. Thus, we can, and frequently shall, view 
the hypergeometric function as a symmetric function of the eigenvalues AI, ... , An. 
A fortiori, by analytic continuation in these variables, the hypergeometric function 
becomes a function of n complex variables AI"'" An. When F = H, we must 
remember that each eigenvalue Ai of s E S appears with multiplicity two. Thus, 
A = diag(A1,A1,A2,A2, ... ,An,An) when F = H, whereas A = diag(Ai, ... ,An) 
when F = R or F = C. We will choose convenience over precision of expression, 
and by an abuse of notation write 

(1) 

for both a variable in C n as well as a diagonal matrix with n = n/'f/ diagonal 
entries AI, ... , An each counted with multiplicity 1/'f/. Thus, the argument in (6.6) 
shows that when we normalize the hypergeometric function to avoid poles of the 
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coefficients, we obtain a mapping 

(2) (at, ... , ap; Ih,· .. , ,8q; A) f-+ [IT r n(,8i)]-1 pFq(at, ... , a p ;,8t, ... , ,8q; A) 
t=l 

that for p :::; q is an entire holomorphic function on C p+q X Cn , and for p = q + 1 
is a holomorphic function on C2p- 1 X DI / n , where Dc denotes the polydisc in Cn 

of radius c. 

6.8 LEMMA. For any nonnegative integer d, let (d) be the n-tuple (d) = 
(d,O, ... ,O). 

(i) If s E S has eigenvalues A1"'" An then 

d! n (v/2rJ)ijA~j 
Z(d)(S) = (V/2)d. 2: II i! 

tl +···+t,,=d)=l ) 

(1) 

In (1), i 1 , ... , in are unordered, nonnegative integers which sum to d. 
(ii) For 1 :::; r :::; n, denote by 1r the n X n diagonal matrix with eigenvalues 

A1 = ... = Ar = 1 and Ar+l = ... = An = 0. Then 

(2) 

(3) 

Z (1) _ (vr/2rJ)d 
(d) r - (V/2)d . 

PROOF. From (6.2.2) and the convergence on Ilsll < 1/11" 

IFo(a; s) = f 2: [alm Z~~s) = ~(1- s)-a 
d=O Iml=d 

for all a E C. By (5.6.3) with a = v/2 and Iml = d, 

[~] = IT ((2 - j)V) = { (V/2)d, 
2 m j=l 2 mj 0, 

when m = (d), 
otherwise. 

Thus, substitute a = v/2 and s = 0 in (3), where ~ E R, >. = (>'I, ... ,An ) and 
II~>'II < 1/11,. We obtain 

(4) ~(1- ~>.)-v/2 = f (V/2)d~Z(d)(A). 
d=O 

But we also have 

(5) 

Then (1) follows on comparing the coefficient of ~d in (4) and (5). Finally, (2) 
follows as a special case of (1). 
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6.9 Comparison test for divergence. From the above lemma, if ~ E R, ~ i= 0, and 
1 ::; r ::; n, then 

f L I [al]m[~2]m··· [ap]m IIZm(Or)1 
d=O Iml=d [,81]m[,82]m··· [,8q]m d! 

> f I [al](d) ... [ap](d) 11~ld Z(d) (lr) 
- d=O [,8l](d)··· [,8q] (d) d! 

= f I (add··· (ap)d I (vr/2ry)d 1~ld 
d=O (,8l)d··· (,8q)d (V/2)d d! 

which compares the divergence of p+l!q+l (aI, ... ,ap, vr /2ry;,81, ... ,,8q, v /2; ~) 
with pFq(al, ... ,ap;,8l, ... ,,8q;~lr). Thus, when p > q the series (6.1.1) diverges 
for all nonzero s E S. Similarly, for p = q+ 1 the series (6.1.1) diverges for Ilsll > 1. 

The proof of Theorem 6.3 is nearly complete. All that remains is to prove the 
convergence of p+1Fp on the full domain Ilsll < 1. In fact, we prove a stronger 
version contained in Proposition 6.11 below. 

6.10 LEMMA. Let X = Xl X X 2 where Xl = C i and X 2 = c j for some 
dimensions i and j. Let 0 1 and O2 be the domains Xl X Da and U x Db in X, 
respectively, where U is a domain in Xl and Da, Db are polydiscs (about the origin 
as center) in X 2 with 0 < a < b. If f is a function holomorphic on 0 1 U O2 , then 
it extends to a function holomorphic on XIX Db. 

PROOF. If necessary, choose Xo E Xl such that Xo + U contains a poly disc Dc 
(about the origin as center) in Xl, and let h(xo + x, y) = f(x, y) for (x, y) in the 
domain of f. Then the union of 0 1 and Dc X Db is a Reinhardt domain, to which the 
extension theorem [17, Theorem 2.4.6] applies. Thus, h extends to a holomorphic 
function on the logarithmically convex hull of the union of 0 1 and Dc X Db, which 
in this case coincides with Xl x Db. Clearly, f also extends to Xl X ~. 

6.11 PROPOSITION. For p = q+ 1, the mapping (6.7.2) defines a function that 
is holomorphic on C2p- l x Dl . 

PROOF. We argue by induction on p. In general, we know that the function 

fp(al, ... , ap; ,81, ... , ,8p-l; A) 

= [IT r n(,8j )]_1 pFp-l (al, ... , a p; ,81, ... , ,8p-l; A) 
1=1 

is holomorphic on C 2p- l x Dl / n . Let p = 1. Then fo(a;A) = ~(1- A)-a, and fo 
is seen to be holomorphic on C X Dl . As induction hypothesis, assume that fp is 
holomorphic on C 2p-l X Dl . Consider fp+1. By (5.10) and Fubini's theorem 

{ ~(r )ap+1 ~(1 - r ),Bp-ap+1 -6 pFp-d aI, ... , a p;,81, ... ,,8p-l; r A)d* r 
JO<r<l 

(1) 
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for ReC8p ) > Re(ap+d + (n - 1)v/2 > (n - l)v and PII < 1. Thus, 

f p+1(a1, ... , ap+1; (31, ... , (3p;).) 

= [f n(ap+1)f n((3p - ap+d]-l r ~(r)O:P+l ~(1 - r),Bp-O:p+l-1i JO<r<l 

is holomorphic on a domain of the form U X 01 in e2p+1 x en, where U is a domain 
in e 2p+1 . By Lemma 6.lD, fp is then holomorphic on e 2p+1 x 01 . This completes 
the induction and also the proof of Theorem 6.3. 

6. 12 EXAMPLE. The special case p = 2 in Proposition 6.11 describes the 
analogue 

(1) F ( b . . ) = ~ ~ [a]m[b]m Zm(s) 
2 1 a, ,c, s L" L" [C]m d! 

d=O Iml=d 

of the classical Gaussian hypergeometric function. In the complex case this has 
also been studied by Louck and Biedenharn [22]. By (6.11.1), we have the Euler 
formula 

for Re c > Re b + (n - l)v /2 > (n - l)v and Ilsll < 1, where () is given by (1.6.4). 

6.13 THEOREM (LAPLACE TRANSFORMS OF HYPERGEOMETRIC FUNC-
TIONS). Suppose p::::; q and Re(ap+d > (n - 1)v/2. Then 

(1) 
f (1 ) r e-tr(rz)pFq(a1, ... ,ap;(31, ... ,(3q;r)~(r)O:p+ld*r 

n ap+1 J p 

= ~(z) -O:p+l P+1Fq( a1, ... , a p+1; (31, ... ,(3q; Z-l). 

When p < q, the integral in (1) converges absolutely for all z in the right half-
plane~. When p = q, the integral converges absolutely for all z E Se such that 
0< (Rez)-l < 1. 

PROOF. To simplify notation, write ap+1 = a, Re(a) = a, Z = x + iy with 
x,y E S, and let Cm be the coefficient of Zm in pFq. We assume a > (n - 1)v/2 
and x E P. The integrand in (1) is 

(2) 
m 

Formal term by term integration, based upon Theorem 5.9, yields formula (1). 
Therefore, it suffices to verify the hypotheses of Fubini's theorem; namely, the series 
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in (2) is absolutely integrable. By (5.9) and the monotone convergence theorem, 

1 L !crne-tr(rz) ~(r)Q Zrn(r)! d*r 
P rn 

= l {~lcrnle-tr(rx)~(r)aZrn(r)}d*r 
= L icrn1l e-tr(rx) ~(r)a Zrn(r)d*r 

rn P 

= r n(a)~(x)-a L icrnl[alrnZrn(x- 1 ). 

rn 
We recognize this latter series as expressing the absolute convergence of p+lFq(x-1). 
When p < q, this series is finite for all x-I; hence, when p < q, (1) holds for all 
z E P + is = <1>. When p = q, the above series converges only when Ilx- 111 < 1; 
hence, for p = q, (1) is valid for all z E P + is = <1> such that II(Rez)-111 < 1, or 
equivalently 0 < (Re z) -1 < 1. 
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