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We study the geometry of half lightlike submanifolds M of an indefinite cosymplectic manifold

M. First, we construct two types of half lightlike submanifolds according to the form of the

structure vector field of M, named by tangential and ascreen half lightlike submanifolds. Next,
we characterize the lightlike geometries of such two types of half lightlike submanifolds.

1. Introduction

The class of codimension 2 lightlike submanifolds of a semi-Riemannian manifold is
composed entirely of two classes by virtue of the rank of its radical distribution, called half
lightlike and coisotropic submanifolds [1–4]. Half lightlike submanifold is a special case of
r-lightlike submanifold [5, 6] such that r = 1 and its geometry is more general than that of
coisotropic submanifold. Moreover much of the works on half lightlike submanifolds will
be immediately generalized in a formal way to arbitrary r-lightlike submanifolds. Recently
several authors studied the geometry of lightlike submanifolds of indefinite cosymplectic
manifolds. Much of them have studied so-called CR-types (CR, SCR, GCR, QCR, etc) lightlike
submanifolds of indefinite cosymplectic manifolds. Unfortunately, an intrinsic study of
lightlike submanifolds of indefinite cosymplectic manifolds is slight as yet. Only there are
some limited papers on particular subcases recently studied [7–9].

The objective of this paper is to study the geometry of half lightlike submanifolds

M of an indefinite cosymplectic manifoldM. There are many different types of half lightlike

submanifolds of an indefinite cosymplectic manifoldM according to the form of the structure

vector field of M. We study two types of them here: tangential and ascreen half lightlike
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submanifolds. We provide several new results on each types by using the structure of M

induced by the contact metric structure ofM.

2. Half Lightlike Submanifolds

An odd dimensional smoothmanifold (M,g) is called a contact metric manifold if there exists
a contact metric structure (J, θ, ζ, g), where J is a (1, 1)-type tensor field, ζ a vector field which

is called the structure vector field of M and θ a 1-form satisfying

J2X = −X + θ(X)ζ, Jζ = 0, θ ◦ J = 0, θ(ζ) = 1,

g(ζ, ζ) = 1, g(JX, JY ) = g(X,Y ) − θ(X)θ(Y ),

θ(X) = g(ζ,X), dθ(X,Y ) = g(JX, Y ),

(2.1)

for any vector fieldsX, Y onM. We say thatM has a normal contact structure ifNJ+dθ⊗ζ = 0,
where NJ is the Nijenhuis tensor field of J . A normal contact metric manifold is called a
cosymplectic [10, 11] for which we have

∇Xθ = 0, ∇XJ = 0, (2.2)

for any vector field X on M, where ∇ is the Levi-Civita connection of M. A cosymplectic

manifold M = (M,J, ζ, θ, g) is called an indefinite cosymplectic manifold [7–9] if (M,g) is a
semi-Riemannian manifold of index µ(> 0).

For any indefinite cosymplectic manifold M, applying ∇X to Jζ = 0 and using (2.2),

we have J(∇Xζ) = 0. Applying J to this and using the fact θ(∇Xζ) = 0, we get

∇Xζ = 0. (2.3)

A submanifold M of a semi-Riemannian manifold M of codimension 2 is called a
half lightlike submanifold if the rank of the radical distribution Rad(TM) = TM ∩ TM⊥ is 1,
where TM and TM⊥ are the tangent and normal bundles ofM, respectively. Then there exist
complementary nondegenerate distributions S(TM) and S(TM⊥) of Rad(TM) in TM and
TM⊥, respectively, which are called the screen and coscreen distribution on M:

TM = Rad(TM) ⊕orth S(TM), TM⊥ = Rad(TM) ⊕orth S
(

TM⊥
)

, (2.4)

where the symbol ⊕orth denotes the orthogonal direct sum. We denote such a half lightlike
submanifold byM = (M,g, S(TM)). Denote by F(M) the algebra of smooth functions onM
and by Γ(E) the F(M)module of smooth sections of a vector bundle E overM. Choose L as a
unit vector field of S(TM⊥) such that g(L, L) = ±1. In this paper wemay assume that g(L, L) =
1 without loss of generality. Consider the orthogonal complementary distribution S(TM)⊥ to
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S(TM) in TM. Certainly Rad(TM) and S(TM⊥) are vector subbundles of S(TM)⊥. Thus we
have the following orthogonal decomposition:

S(TM)⊥ = S
(

TM⊥
)

⊕orth S
(

TM⊥
)⊥

, (2.5)

where S(TM⊥)⊥ is the orthogonal complementary to S(TM⊥) in S(TM)⊥. It is well-known
[1, 2] that, for any null section ξ of Rad(TM) on a coordinate neighborhood U ⊂ M, there
exists a uniquely defined null vector field N ∈ Γ(ltr(TM)) satisfying

g(ξ,N) = 1, g(N,N) = g(N,X) = g(N,L) = 0, ∀X ∈ Γ(S(TM)). (2.6)

Let tr(TM) = S(TM⊥) ⊕orth ltr(TM). We say that N, ltr(TM) and tr(TM) are the lightlike
transversal vector field, lightlike transversal vector bundle and transversal vector bundle of

M with respect to S(TM), respectively. Therefore TM is decomposed as

TM = TM ⊕ tr(TM) = {Rad(TM) ⊕ tr(TM)} ⊕orth S(TM)

= {Rad(TM) ⊕ ltr(TM)} ⊕orth S(TM) ⊕orth S
(

TM⊥
)

.
(2.7)

Let P be the projection morphism of TM on S(TM)with respect to the decomposition
(2.4). The local Gauss and Weingarten formulas forM and S(TM) are given by

∇XY = ∇XY + B(X,Y )N +D(X,Y )L, (2.8)

∇XN = −ANX + τ(X)N + ρ(X)L, (2.9)

∇XL = −ALX + φ(X)N; (2.10)

∇XPY = ∇∗
XPY + C(X, PY )ξ, (2.11)

∇Xξ = −A∗
ξX − τ(X)ξ, (2.12)

for all X, Y ∈ Γ(TM), where ∇ and ∇∗ are induced linear connections on TM and S(TM),
respectively, B and D are called the local second fundamental forms of M, C is called the local
second fundamental form on S(TM). AN , A∗

ξ
, and AL are linear operators on TM and τ , ρ,

and φ are 1-forms on TM. Since ∇ is torsion-free, ∇ is also torsion-free, and B and D are

symmetric. From the facts B(X,Y ) = g(∇XY, ξ) and D(X,Y ) = g(∇XY, L), we know that B
and D are independent of the choice of the screen distribution S(TM) and

B(X, ξ) = 0, D(X, ξ) = −φ(X), ∀X ∈ Γ(TM). (2.13)

We say that h(X,Y ) = B(X,Y )N+D(X,Y )L is the second fundamental tensor ofM. The induced
connection ∇ of M is not metric and satisfies

(

∇Xg
)

(Y,Z) = B(X,Y )η(Z) + B(X,Z)η(Y ), (2.14)



4 Journal of Function Spaces and Applications

for all X, Y , Z ∈ Γ(TM), where η is a 1-form on TM such that

η(X) = g(X,N), ∀X ∈ Γ(TM). (2.15)

But the connection ∇∗ on S(TM) is metric. The above three local second fundamental forms
ofM and S(TM) are related to their shape operators by

B(X,Y ) = g
(

A∗
ξX,Y

)

, g
(

A∗
ξX,N

)

= 0, (2.16)

C(X, PY ) = g(ANX, PY ), g(ANX,N) = 0, (2.17)

D(X, PY ) = g(ALX, PY ), g(ALX,N) = ρ(X), (2.18)

D(X,Y ) = g(ALX,Y ) − φ(X)η(Y ), ∀X,Y ∈ Γ(TM). (2.19)

By (2.16) and (2.17), we show that A∗
ξ
and AN are Γ(S(TM))-valued shape operators related

to B and C, respectively, and A∗
ξ
is self-adjoint on TM and

A∗
ξξ = 0. (2.20)

Replacing Y by ξ to (2.8) and using (2.12) and (2.13), we have

∇Xξ = −A∗
ξX − τ(X)ξ − φ(X)L, ∀X ∈ Γ(TM). (2.21)

3. Tangential Half Lightlike Submanifolds

Let M be a half lightlike submanifold of an indefinite cosymplectic manifold M. In general

the structure vector field ζ ofM, defined by (2.1), belongs to TM. Thus, from the decomposi-

tion (2.7) of TM, the structure vector field ζ is decomposed as follows:

ζ = ω + aξ + bN + eL, (3.1)

where ω is a smooth vector field on S(TM), and a = θ(N), b = θ(ξ), and e = θ(L) are smooth
functions on M. First of all, we introduce the following result.

Proposition 3.1 (see [3]). Let M be a half lightlike submanifold of an indefinite almost contact

metric manifoldM. Then there exists a screen distribution S(TM) such that

J
(

S(TM)⊥
)

⊂ S(TM). (3.2)

Note 1. Although, in general, S(TM) is not unique, it is canonically isomorphic to the
factor vector bundle S(TM)∗ = TM/Rad(TM) considered by Kupeli [12]. Thus all screen
distributions are mutually isomorphic. For this reason, we consider only half lightlike
submanifold M equipped with a screen distribution S(TM) such that J(S(TM)⊥) ⊂ S(TM),
such a screen distribution S(TM) is called a generic screen distribution [8] ofM.
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Proposition 3.2. Let M be a half lightlike submanifold of an indefinite cosymplectic manifold M.
Then the structure vector field ζ does not belong to Rad(TM) and ltr(TM).

Proof. Assume that ζ belongs to Rad(TM) (or ltr(TM)). Then (3.1) deduces to ζ = aξ and
a/= 0 (or ζ = bN and b /= 0). From this, we have

1 = g(ζ, ζ) = a2g(ξ, ξ) = 0
[

or 1 = g(ζ, ζ) = b2g(N,N) = 0
]

. (3.3)

It is a contradiction. Thus ζ does not belong to Rad(TM) and ltr(TM).

Note 2. If the structure vector field ζ is tangent toM, that is, b = e = 0, then ζ does not belong
to Rad(TM) by Proposition 3.2. This enables one to choose a screen distribution S(TM)

which contains ζ. This implies that if ζ is tangent to M, then it belongs to S(TM). Călin [13]
also proved this result which we assume in this section.

Definition 3.3. A half lightlike submanifold M of an indefinite cosymplectic manifold M is

said to be a tangential half lightlike submanifold [4] ofM if ζ is tangent toM.

For any tangential half lightlike submanifold M, we show that ζ belongs to S(TM),
that is, a = b = e = 0 by Note 2. Then there exists a nondegenerate almost complex distri-
bution Ho on M with respect to J , that is, J(Ho) = Ho, such that

S(TM) = {J(Rad(TM)) ⊕ J(ltr(TM))} ⊕orth J
(

S
(

TM⊥
))

⊕orth Ho. (3.4)

Thus the general decompositions (2.4) and (2.7) reduce, respectively, to

TM = H ⊕H ′, TM = H ⊕H ′ ⊕ tr(TM), (3.5)

where H and H ′ are 2- and 1-lightlike distributions on M such that

H = Rad(TM) ⊕orth J(Rad(TM)) ⊕orth Ho,

H ′ = J(ltr(TM)) ⊕orth J
(

S
(

TM⊥
))

.
(3.6)

H is an almost complex distribution of M with respect to J . Consider a pair of local null
vector fields {U,V } and a local nonnull vector fieldW on S(TM) defined by

U = −JN, V = −Jξ, W = −JL. (3.7)

Denote by S the projection morphism of TM on H with respect to the decomposition (3.5).
Then any vector field X on M and its action JX by J are expressed as follows:

X = SX + u(X)U +w(X)W, JX = FX + u(X)N +w(X)L, (3.8)
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where u, v, and w are 1-forms locally defined on M by

u(X) = g(X,V ), v(X) = g(X,U), w(X) = g(X,W) (3.9)

and F is a tensor field of type (1, 1) globally defined onM by F = J ◦S. Applying the operator

∇X to (3.7) and the second equation of (3.8) (denote (3.8)2) and using (2.2), (2.8), (2.9), (2.10),
(2.21), (3.7), (3.8) and (3.9), for all X,Y ∈ Γ(TM), we have

B(X,U) = C(X,V ), B(X,W) = D(X,V ), C(X,W) = D(X,U), (3.10)

∇XU = F(ANX) + τ(X)U + ρ(X)W, (3.11)

∇XV = F
(

A∗
ξX

)

− τ(X)V − φ(X)W, (3.12)

∇XW = F(ALX) + φ(X)U, (3.13)

(∇XF)(Y ) = u(Y )ANX +w(Y )ALX − B(X,Y )U −D(X,Y )W. (3.14)

Note 3. From now on, M = (R2m+1
q , J, ζ, θ, g) will denote the semi-Euclidean manifold R2m+1

q

equipped with its usual cosymplectic structure given by

θ = dz, ζ = ∂z,

g = θ ⊗ θ −
q/2
∑

i=1

(

dxi ⊗ dxi + dyi ⊗ dyi

)

+
m
∑

i=q+1

(

dxi ⊗ dxi + dyi ⊗ dyi

)

,

J

(

m
∑

i=1

(

Xi∂xi + Yi∂yi

)

+ Z∂z

)

=
m
∑

i=1

(

Yi∂xi −Xi∂yi

)

,

(3.15)

where (xi, yi, z) are the Cartesian coordinates and g is a semi-Euclidean metric of signature
(−,+, . . . ,+; −,+, . . . ,+; +)with respect to the canonical basis

{

∂x1, ∂x2, . . . , ∂xm; ∂y1, ∂y2, . . . , ∂ym; ∂z
}

. (3.16)

This construction will help in understanding how the indefinite cosymplectic structure is
recovered in examples of this paper.

Example 3.4. Consider a submanifold M of M = (R9
2, J, ζ, θ, g) given by the equations

x1 = y4, x2 =
√

1 − y2
2 , y2 /= ± 1. (3.17)
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Then a local frame fields of TM are given by

ξ = ∂x1 + ∂y4, U1 = ∂x4 − ∂y1,

U2 = ∂x3, U3 = ∂y3, U4 = −y2

x2
∂x2 + ∂y2,

U5 = ∂x4 + ∂y1, U6 = ζ = ∂z.

(3.18)

This implies Rad(TM) = Span{ξ}, Jξ = U1, and Rad(TM) ∩ J(Rad(TM)) = {0}. Next, JU2 =

−U3 implies that Ho = {U2, U3} invariant with respect to the almost contact structure tensor
J . By direct calculations, we have

S
(

TM⊥
)

= Span

{

L = ∂x2 +
y2

x2
∂y2

}

, ltr(TM) = Span

{

N =
1

2

(

−∂x1 + ∂y4

)

}

. (3.19)

We show that JL = −U4, JN = (1/2)U5, Jζ = 0 and ∇Xζ = 0 for all X ∈ Γ(TM). Therefore M
is a tangential half-lightlike submanifold of an indefinite cosymplectic manifold M.

Theorem 3.5. LetM be a tangential half lightlike submanifold of an indefinite cosymplectic manifold

M. Then the structure vector field ζ is parallel with respect to the connections∇ and∇∗. Furthermore,
ζ is conjugate to any vector field ofM with respect to h and C.

Proof. Replacing Y by ζ to (2.8) and using (2.3) and the fact ζ ∈ Γ(TM), we get

∇Xζ + B(X, ζ)N +D(X, ζ)L = 0, ∀X ∈ Γ(TM). (3.20)

Taking the scalar product with ξ and L to this equation by turns, we have

∇Xζ = 0, B(X, ζ) = 0, D(X, ζ) = 0, ∀X ∈ Γ(TM). (3.21)

From (3.21)1, we see that ζ is parallel with respect to the induced connection ∇. (3.21)2,3
implies that ζ is conjugate to any vector field on M with respect to the second fundamental
form h. Replacing PY by ζ to (2.11) and using (3.21)1 and the fact ζ ∈ Γ(S(TM)), we get

∇∗
Xζ + C(X, ζ)ξ = 0, ∀X ∈ Γ(TM). (3.22)

Taking the scalar product withN to this equation, we have

∇∗
Xζ = 0, C(X, ζ) = 0, ∀X ∈ Γ(TM). (3.23)

Thus ζ is also parallel with respect to the lieasr connection ∇∗ and conjugate to any vector
field on M with respect to C. Thus we have our assertions.
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Definition 3.6. A half lightlike submanifold M of M is totally umbilical [5] if there is a smooth
vector field H on tr(TM) on any coordinate neighborhood U such that

h(X,Y ) = Hg(X,Y ), ∀X,Y ∈ Γ(TM). (3.24)

In case H = 0, that is, h = 0 on U, we say that M is totally geodesic.

It is easy to see thatM is totally umbilical if and only if there exist smooth functions β
and δ on each coordinate neighborhood U such that

B(X,Y ) = βg(X,Y ), D(X,Y ) = δg(X,Y ), ∀X,Y ∈ Γ(TM). (3.25)

Theorem 3.7. Any totally umbilical tangential half lightlike submanifold M of an indefinite cosym-

plectic manifold M is totally geodesic.

Proof. Assume that M is totally umbilical. From (3.21) and (3.25), we have

βg(X, ζ) = 0, δg(X, ζ) = 0, ∀X ∈ Γ(TM). (3.26)

Replacing X by ζ in this equations and using the fact g(ζ, ζ) = 1, we have β = δ = 0, that is,
B = D = 0. Thus we have h = 0 and M is totally geodesic.

Definition 3.8. Ascreen distribution S(TM) is called totally umbilical [5] (in M) if there is a
smooth function γ on any coordinate neighborhood U in M such that

C(X, PY ) = γg(X,Y ), ∀X,Y ∈ Γ(TM). (3.27)

In case γ = 0 on U, we say that S(TM) is totally geodesic (in M).

Theorem 3.9. LetM be a tangential half lightlike submanifold of an indefinite cosymplectic manifold

M such that S(TM) is totally umbilical. Then S(TM) is totally geodesic.

Proof. Assume that S(TM) is totally umbilical in M. Replacing Y by ζ to (3.27) and using
(3.23), we have γg(X, ζ) = 0 for all X ∈ Γ(TM). Replacing X by ζ to this equation and using
the fact g(ζ, ζ) = 1, we obtain γ = 0. Thus S(TM) is totally geodesic in M.

Theorem 3.10. LetM be a tangential half lightlike submanifold of an indefinite cosymplectic manifold

M. ThenH is an integrable distribution on M if and only if

h(X,FY ) = h(FX, Y ), ∀X,Y ∈ Γ(H). (3.28)

Moreover, ifM is totally umbilical, thenH is a parallel distribution on M.
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Proof. Taking Y ∈ Γ(H), we show that FY = JY ∈ Γ(H). Applying ∇X to FY = JY and using
(2.3), (2.8), (3.7), (3.8)2, and (3.9), we have

B(X,FY ) = g(∇XY, V ), D(X,FY ) = g(∇XY,W), (3.29)

(∇XF)(Y ) = −B(X,Y )U −D(X,Y )W, ∀X ∈ Γ(TM). (3.30)

By direct calculations from two equations of (3.29), we have

h(X,FY ) − h(FX, Y ) = g([X,Y ], V )N + g([X,Y ],W)L. (3.31)

If H is integrable, then [X,Y ] ∈ Γ(H) for any X, Y ∈ Γ(H). This implies g([X,Y ], V ) =

g([X,Y ],W) = 0. Thus we get h(X,FY ) = h(FX, Y ) for all X, Y ∈ Γ(H). Conversely if
h(X,FY ) = h(FX, Y ) for all X, Y ∈ Γ(H), then we have g([X,Y ], V ) = g([X,Y ],W) = 0.
This imply [X,Y ] ∈ Γ(H) for all X,Y ∈ Γ(H). Thus H is an integrable distribution of M.

IfM is totally umbilical, from Theorem 3.7 and (3.29), we have

g(∇XY, V ) = g(∇XY,W) = 0, ∀X ∈ Γ(TM), ∀Y ∈ Γ(H). (3.32)

This imply ∇XY ∈ Γ(H) for all X, Y ∈ Γ(H), that is, H is a parallel distribution on M.

Theorem 3.11. LetM be a tangential half lightlike submanifold of an indefinite cosymplectic manifold

M. Then F is parallel onH with respect to the connection ∇ if and only ifH is a parallel distribution
onM.

Proof. Assume that F is parallel on H with respect to ∇. For any X, Y ∈ Γ(H), we have
(∇XF)Y = 0. Taking the scalar product with V and W to (3.30) with (∇XF)Y = 0, we
have B(X,Y ) = 0 and D(X,Y ) = 0 for all X, Y ∈ Γ(H), respectively. From (3.29), we have
g(∇XY, V ) = 0 and g(∇XY,W) = 0. This imply ∇XY ∈ Γ(H) for all X,Y ∈ Γ(H). Thus H is a
parallel distribution on M.

Conversely ifH is a parallel distribution on M, from (3.29) we have

B(X,FY ) = 0, D(X,FY ) = 0, ∀X,Y ∈ Γ(H). (3.33)

For any Y ∈ Γ(H), we show that F2Y = J2Y = −Y + θ(Y )ζ. Replacing Y by FY to (3.33) and
using (3.21), we have B(X,Y ) = 0 and D(X,Y ) = 0 for any X,Y ∈ Γ(H). Thus F is parallel on
H with respect to ∇ by (3.30).

Theorem 3.12. LetM be a tangential half lightlike submanifold of an indefinite cosymplectic manifold

M. If F is parallel with respect to the induced connection ∇, then H is a parallel distribution on M
and M is locally a product manifold LU × LW × MT , where LU and LW are null curves tangent to
J(ltr(TM)) and J(S(TM⊥)), respectively, and MT is a leaf of H.
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Proof. Assume that F is parallel on TMwith respect to∇. Then F is parallel onH with respect
to ∇. By Theorem 3.11, H is a parallel distribution on M. Applying the operator F to (3.14)
with (∇XF)Y = 0, we have

u(Y )F(ANX) +w(Y )F(ALX) = 0, ∀X,Y ∈ Γ(TM), (3.34)

due to FU = FW = 0. Replacing Y by U and W to this equation by turns and using (3.9), we
have F(ANX) = 0 and F(ALX) = 0. Taking the scalar product with W and N to (3.14) with

(∇XF)Y = 0 by turns, we have

D(X,Y ) = u(Y )w(ANX) +w(Y )w(ALX), (3.35)

w(Y )g(ALX,N) = 0, ∀X,Y ∈ Γ(TM). (3.36)

Replacing Y by ξ to (3.35), we get φ = 0 due to (2.13)2. Also replacing Y by W to (3.36), we
have ρ = 0 due to (2.18)2. From thess results, (3.11) and (3.13), we get ∇XU = τ(X)U and
∇XW = 0 for all X ∈ Γ(H ′). Thus J(ltr(TM)) and J(S(TM⊥)) are also parallel distributions
on M. By the decomposition theorem of de Rham [14], we show that M = LU × LW × MT ,
where LU and LW are null curves tangent to J(ltr(TM)) and J(S(TM⊥)), respectively, and
MT is a leaf of H.

Definition 3.13. A half lightlike submanifold M of a semi-Riemannian manifold M is said to

be irrotational [12] if ∇Xξ ∈ Γ(TM) for any X ∈ Γ(TM).

Note 4. From (2.21) we see that a necessary and sufficient condition for M to be irrotational
is D(X, ξ) = 0 = φ(X) for all X ∈ Γ(TM).

Theorem 3.14. LetM be a tangential half lightlike submanifold of an indefinite cosymplectic manifold

M. Then one has the following assertions.

(i) If V is parallel with respect to ∇, thenM is irrotational, τ = 0 and

A∗
ξX = u

(

A∗
ξX

)

U +w
(

A∗
ξX

)

W, ∀X ∈ Γ(TM). (3.37)

(ii) If U is parallel with respect to ∇, then one has τ = ρ = 0 and

ANX = u(ANX)U +w(ANX)W, ∀X ∈ Γ(TM). (3.38)

(iii) If W is parallel with respect to ∇, thenM is irrotational and

ALX = u(ALX)U +w(ALX)W, ∀X ∈ Γ(TM). (3.39)

Moreover, if all of V, U, andW are parallel on TM with respect to∇, then S(TM) is totally geodesic
in M and τ = φ = ρ = 0 on Γ(TM). In this case, the null transversal vector field N of M is a
constant on M.
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Proof. If V is parallel with respect to∇, then, taking the scalar product withU andW to (3.12)
by turns, we have τ = 0 and φ = 0 (M is irrotational), respectively. Thus we have F(A∗

ξ
X) = 0

for all X ∈ Γ(TM). From this result and (3.8), we obtain J(A∗
ξ
X) = u(A∗

ξ
X)N + w(A∗

ξ
X)L.

Applying J to this equation and using θ(A∗
ξ
X) = 0, we obtain (i). In a similar way, by using

(3.11), (3.13), (3.21), and (3.23), we have (ii) and (iii).
Assume that all of V ,U, andW are parallel on TM with respect to ∇. Substituting the

equation of (i) into (3.10)-1, we have

u(ANX) = v
(

A∗
ξX

)

= g
(

A∗
ξX,U

)

= 0, ∀X ∈ Γ(TM). (3.40)

Also, substituting the equation of (iii) into (3.10)-3, we have

w(ANX) = v(ALX) = g(ALX,U) = 0, ∀X ∈ Γ(TM). (3.41)

From the last two equations and the equation of (ii), we see that AN = 0. Thus S(TM) is
totally geodesic in M and the 1-forms τ , φ, and ρ, defined by (2.9) and (2.10), satisfy τ = φ =

ρ = 0 on Γ(TM). Using this results, we see that N is a constant onM.

Theorem 3.15. LetM be a totally umbilical tangential half lightlike submanifold of an indefinite cosy-

mplectic manifold M such that S(TM) is totally umbilical. Then M is locally a product manifold
M = M4 ×MTo , whereM4 and MTo are leaves of H⊥

o and Ho, respectively.

Proof. By Theorem 3.10, H is a parallel distribution M. Thus, for all X, Y ∈ Γ(Ho), we have
∇XY ∈ Γ(H). From (2.11) and (3.30), we have

C(X,FY ) = g(∇XFY,N) = g((∇XF)Y + F(∇XY ),N)

= g(F(∇XY ),N) = −g(∇XY, JN) = g(∇XY,U),
(3.42)

due to FY ∈ Γ(Ho). If S(TM) is totally umbilical in M, then we have C = 0 due to
Theorem 3.7. By (2.11) and (3.42), we get

g(∇XY,N) = 0, g(∇XY,U) = 0, ∀X ∈ Γ(TM), ∀Y ∈ Γ(Ho). (3.43)

These results and (3.29) imply ∇XY ∈ Γ(Ho) for all X, Y ∈ Γ(Ho). Thus Ho is a parallel
distribution on M and TM = Ho ⊕orth H⊥

o , where H⊥
o = Span{ξ, V,U,W}. By Theorems 3.5

and 3.7, we have B = D = AN = φ = 0 and ALX = ρ(X)ξ. Thus (2.12) and (3.11)∼(3.13)
deduce, respectively, to

∇Xξ = −τ(X)ξ, ∇XU = τ(X)U + ρ(X)W,

∇XV = −τ(X)V, ∇XW = −ρ(X)V, ∀X ∈ Γ
(

H⊥
o

)

.
(3.44)

Thus H⊥
o is also a parallel distribution on M. Thus we have M = M4 × MTo , where M4 is a

leaf of H⊥
o and MTo is a leaf of Ho.
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4. Ascreen Half Lightlike Submanifolds

Definition 4.1. A half lightlike submanifold M of an indefinite cosymplectic manifold M is

said to be an ascreen half lightlike submanifold [4] of M if the structure vector field ζ of M
belongs to the distribution Rad(TM) ⊕ ltr(TM).

For any ascreen half lightlike submanifold M, the vector field ζ is decomposed as

ζ = aξ + bN. (4.1)

In this case, we show that a/= 0 and b /= 0 by Proposition 3.2.

Definition 4.2. A half lightlike submanifold M is called screen conformal [2, 3] if there exists a
nonvanishing smooth function ϕ such that AN = ϕA∗

ξ
, or equivalently,

C(X, PY ) = ϕB(X,Y ), ∀X,Y ∈ Γ(TM). (4.2)

Theorem 4.3. Let M be an ascreen half lightlike submanifold of an indefinite cosymplectic manifold

M. ThenM is screen conformal.

Proof. Applying ∇X to (4.1) and using (2.3), (2.9), and (2.21), we have

aA∗
ξX + bANX = {Xa − aτ(X)}ξ + {Xb + bτ(X)}N +

{

bρ(X) − aφ(X)
}

L. (4.3)

Taking the product with ξ, N, and L by turns and using (2.16)2 and (2.17)2, we get

ANX = ϕA∗
ξX, Xa = aτ(X), Xb = −bτ(X), aφ(X) = bρ(X), (4.4)

for all X ∈ Γ(TM), where we set ϕ = −a/b. ThusM is screen conformal.

Substituting (4.1) into g(ζ, ζ) = 1, we have 2ab = 1. Consider the local unit timelike
vector field V ∗ on M and its 1-form v∗ defined by

V ∗ = − b−1Jξ, v∗(X) = − g(X,V ∗), ∀X ∈ Γ(TM). (4.5)

Let U∗ = − a−1JN. Then U∗ is a unit timelike vector field on S(TM) such that g(V ∗, U∗) = 1.
Applying J to (4.1) and using (2.1) and 2ab = 1, we have

0 = aJξ + bJN = −V
∗ +U∗

2
i.e., U∗ = − V ∗. (4.6)

From this we show that J(Rad(TM)) = J(ltr(TM)). Using this and Proposition 3.1, the tan-
gent bundle TM of M is decomposed as follows:

TM = Rad(TM) ⊕orth

{

J(Rad(TM)) ⊕orth J
(

S
(

TM⊥
))

⊕orth H∗
}

, (4.7)
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where H∗ is a nondegenerate and almost complex distribution on M with respect to the
indefinite cosymplectic structure tensor J , otherwise S(TM) is degenerate. Consider the local
unit spacelike vector fieldW∗ on S(TM) and its 1-form w∗ defined by

W∗ = −JL, w∗(X) = g(X,W∗), ∀X ∈ Γ(TM). (4.8)

Denote by S∗ the projection morphism of TM on H∗. Using (4.7), for any vector field X on
M, the vector field JX is expressed as follows:

JX = fX + av∗(X)ξ − bη(X)V ∗ − bv∗(X)N +w∗(X)L, (4.9)

because JV ∗ = aξ − bN, where f is a tensor field of type (1, 1) defined by

fX = JS∗X, ∀X ∈ Γ(TM). (4.10)

Applying J to (2.10) and (2.21) and using (2.2), (2.8) and (4.4)∼(4.9), we get

b∇XV
∗ = f

(

A∗
ξX

)

− aB(X,V ∗)ξ − φ(X)W∗, (4.11)

∇XW
∗ = f(A L

X) − aD(X,V ∗)ξ − 2aφ(X)V ∗, (4.12)

bD(X,V ∗) = B(X,W∗), ∀X ∈ Γ(TM). (4.13)

Example 4.4. Consider a submanifold M of M = (R5
2, J, ζ, θ, g) given by the equation

X(u1, u2, u3) =

(

u1, u2, u3, u2,
1√
2
(u1 + u3)

)

. (4.14)

By direct calculations we easily check that

TM = Span
{

ξ = ∂x1 + ∂y1 +
√
2∂z, U = ∂x1 − ∂y1, V = ∂x2 + ∂y2

}

,

TM⊥ = Span
{

ξ, L = ∂x2 − ∂y2

}

, Rad(TM) = Span{ξ}.
(4.15)

We obtain the lightlike transversal and transversal vector bundles

ltr(TM) = Span

{

N =
1

4

(

−∂x1 − ∂y1 +
√
2∂z

)

}

, tr(TM) = Span{N,L}. (4.16)

From this results, we show that Jξ = U, Rad(TM) ∩ J(Rad(TM)) = {0}, JN = −(1/4)U,
JL = −V , JN = −(1/4)Jξ and J(Rad(TM) = J(ltr(TM), ζ = (1/2

√
2)ξ +

√
2N and Jζ = 0.

Thus M is an ascreen half lightlike submanifold of an indefinite cosymplectic manifold M.

Theorem 4.5. Let M be an ascreen half lightlike submanifold of an indefinite cosymplectic manifold

M. IfM is totally umbilical, thenM and S(TM) are totally geodesic.



14 Journal of Function Spaces and Applications

Proof. Assume that M is totally umbilical. From (3.25) and (4.13), we have

bδg(X,V ∗) = βg(X,W∗), ∀X ∈ Γ(TM). (4.17)

Replacing X by W∗ and V ∗ to this equation by turns, we have β = 0 and δ = 0, respectively.
Thus we have h = 0 and M is totally geodesic. By (4.2), we also have C = 0. Thus S(TM) is
also totally geodesic inM.

Taking Y ∈ Γ(H∗). Then we have fY = JY ∈ Γ(H∗) due to (4.9). Applying ∇X to
JY = fY and using (2.2), (2.8), (4.2), (4.5), and (4.9), we have

B
(

X, fY
)

= bg(∇XY, V
∗), D

(

X, fY
)

= g(∇XY,W
∗), (4.18)

(

∇Xf
)

Y = −ag(∇XY, V
∗)ξ + 2aB(X,Y )V ∗ −D(X,Y )W∗, (4.19)

for all X ∈ Γ(TM). By the procedure same as the proofs of Theorem 3.10 and Theorem 3.11
and by using (4.18) and (4.19), instead of (3.29) and (3.30), and that S(TM) is integrable due
to (4.2), the following two theorems hold.

Theorem 4.6. Let M be an ascreen half lightlike submanifold of an indefinite cosymplectic manifold

M. H∗ is an integrable distribution onM if and only if one has

h
(

X, fY
)

= h
(

fX, Y
)

, ∀X,Y ∈ Γ(H∗). (4.20)

Moreover, ifM is totally umbilical, thenH∗ is a parallel distribution onM.

Theorem 4.7. Let M be an ascreen half lightlike submanifold of an indefinite cosymplectic manifold

M. Then f is parallel on H∗ with respect to the induced connection ∇ if and only if H∗ is a parallel
distribution on M.

Theorem 4.8. Let M be an ascreen half lightlike submanifold of an indefinite cosymplectic manifold

M. If M is totally umbilical, then M is locally a product manifold Lξ × LV ∗ × LW∗ × M∗, where
Lξ, LV ∗, and LW∗ are null, timelike, and spacelike curves tangent to Rad(TM), J(Rad(TM)), and
J(S(TM⊥)), respectively, and M∗ is a leaf of H∗.

Proof. If M is totally umbilical, then H∗ is a parallel distribution on M by Theorem 4.6 and
we have B = D = A∗

ξ
= φ = 0; ALX = ρ(X)ξ by Theorem 4.5. From (4.4)1, we also have

AN = 0. Using (2.12), (4.11), and (4.12), we have∇Xξ = −τ(X)ξ and∇XV
∗ = ∇XW

∗ = 0 due to
fξ = 0. This implies that all of the distributions Rad(TM), J(Rad(TM)), and J(S(TM⊥)) are
parallel onM. Thuswe haveM = Lξ×LV ∗×LW∗×M∗, where Lξ, LV ∗, and LW∗ are null, timelike,
and spacelike curves tangent to Rad(TM), J(Rad(TM)) and J(S(TM⊥)), respectively, and
M∗ is a leaf of H∗.

By straightforward calculations from (4.11) and (4.12) and the same method as the
proof of Theorem 3.14, the following theorem holds.
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Theorem 4.9. Let M be an ascreen half lightlike submanifold of an indefinite cosymplectic manifold

M. Then one has the following assertions.

(i) If V ∗ is parallel with respect to ∇ on M, thenM is irrotational and

A∗
ξX = B(X,W∗)W∗, B(X,V ∗) = 0, ρ(X) = 0, ∀X ∈ Γ(TM). (4.21)

(ii) IfW∗ is parallel with respect to ∇ on M, thenM is irrotational and

ALX = D(X,W∗)W∗, D(X,V ∗) = 0, ρ(X) = 0, ∀X ∈ Γ(TM). (4.22)

Moreover, if V ∗ and W∗ are parallel with respect to ∇, then one sees that A∗
ξ
= 0 and the screen

distribution S(TM) is totally geodesic inM.

Theorem 4.10. LetM be an ascreen half lightlike submanifold of an indefinite cosymplectic manifold

M. If V ∗ and W∗ are parallel with respect to ∇, then M is locally a product manifold Lξ × LV ∗ ×
LW∗ × M∗, where Lξ, LV ∗ , and LW∗ are null, timelike, and spacelike curves tangent to Rad(TM),
J( Rad(TM)), and J(S(TM⊥)), respectively, and M∗ is a leaf of H∗.

Proof. If V ∗ is parallel with respect to ∇, for any Y ∈ Γ(H∗), we have

B(X,Y ) = g
(

A∗
ξX,Y

)

= B(X,W∗)g(Y,W∗) = 0, ∀X ∈ Γ(TM). (4.23)

Thus we get g(∇XY, V
∗) = b−1B(X, fY ) = 0 because fY ∈ Γ(H∗). Also if W∗ is parallel with

respect to ∇, then, for any Y ∈ Γ(H∗), we have

D(X,Y ) = g(ALX,Y ) = D(X,W∗)g(Y,W∗) = 0, ∀X ∈ Γ(TM). (4.24)

From these results and (4.19), we show that f is parallel on H∗ with respect to ∇. Thus, by
Theorem 4.7, we see that H∗ is a parallel distribution on M. As V ∗ and W∗ are parallel with
respect to ∇ and ∇Xξ = −τ(X)ξ due to A∗

ξ
= 0, we have our theorem.
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