
SPECIAL HERMITIAN METRICS ON OELJEKLAUS-TOMA MANIFOLDS

ALEXANDRA OTIMAN

Abstract. Oeljeklaus-Toma (OT) manifolds are higher dimensional analogues of Inoue-Bombieri
surfaces and their construction is associated to a finite extension K of Q and a subgroup of units
U . We characterize the existence of pluriclosed metrics (also known as strongly Kähler with torsion
(SKT) metrics) on any OT manifold X(K,U) purely in terms of number-theoretical conditions,

yielding restrictions on the third Betti number b3 and the Dolbeault cohomology group H2,1

∂
.

Combined with the main result in [D20], these numerical conditions render explicit examples of
pluriclosed OT manifolds in arbitrary complex dimension. We prove that in complex dimension 4
and type (2, 2), the existence of a pluriclosed metric on X(K,U) is entirely topological, namely, it
is equivalent to b3 = 2. Moreover, we provide an explicit example of an OT manifold of complex
dimension 4 carrying a pluriclosed metric. Finally, we show that no OT manifold admits balanced
metrics, but all of them carry instead locally conformally balanced metrics.

1. Introduction

Oeljeklaus-Toma (OT) manifolds were introduced in [OT05], as a generalization in any complex
dimension of Inoue-Bombieri surfaces. Their construction arises from number theory and they
possess remarkable cohomological and metric properties: they are non-Kähler compact complex
manifolds, satisfying Hodge decomposition ([OT19]), with de Rham and Dolbeault cohomology
describable in terms of number-theoretical invariants ([IO19], [OT19], [K20]) and carrying a solv-
manifold structure Γ\G as shown in [K13].

OT manifolds have been intensively studied especially in light of locally conformally Kähler (lcK)
geometry, since a large subclass was shown to carry locally conformally Kähler metrics. Moreover,
they provided examples that disproved a conjecture of Vaisman, according to which a compact lcK
manifold whose Betti numbers obey the same restrictions as for a compact Kähler manifold must
carry a Kähler metric. The existence of lcK metrics on OT manifolds has been translated in a
number-theoretical condition, interesting per se, as we shall briefly recall in the sequel. Since the
study of the Hermitian geometry of OT manifolds has been mostly reduced to the lcK condition,
we shall be interested in investigating the existence of other special metrics of non-Kähler type
(pluriclosed (strongly Kähler with torsion or briefly SKT), balanced and locally conformally balanced
metrics) and to give an arithmetic or topological interpretation of these metric properties. The
dictionary between the geometry of these manifolds and independent number-theoretical problems
is part of the motivation for the problem we consider. On the other hand, the study of special
Hermitian metrics has shed light on numerous interesting examples of non-Kähler manifolds and
posed also the question of compatibility between different structures of non-Kähler type. In this
direction, we recall a conjecture of Fino-Vezzoni according to which a compact complex manifold
admitting both a pluriclosed and a balanced metric is Kähler. This has been already proven in
specific cases in the works of Verbitsky, Chiose, Fino-Vezzoni and Fu-Li-Yau (see [Ve14], [C14],
[FV16], [FLY12]). We give a complete description of the existence of pluriclosed and balanced
metrics on OT manifolds and give further evidence supporting this conjecture. Before presenting
the main results, we briefly recall the construction.
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1.1. Definition of OT manifolds. Let Q ⊆ K be an algebraic number field and take the [K :
Q] = s+ 2t embeddings of the field K in C: the s real embeddings σ1, . . . , σs : K ↪→ R, and the 2t
complex embeddings σs+1, . . . , σs+t, σs+t+1 = σs+1, . . . , σs+2t = σs+t : K ↪→ C, that come in pairs.
We shall always consider only the case when s, t ≥ 1.

Let OK be the ring of algebraic integers of K and O∗,+K the group of totally positive units. Let
H := {z ∈ C | Imz > 0} denote the upper half-plane. On Hs×Ct, consider the action OK 	 Hs×Ct
given by translations,

Ta(w1, . . . , ws, z1, . . . , zt) := (w1 + σ1(a), . . . , zt + σs+t(a)),

and the action O∗,+K 	 Hs × Ct given by rotations,

Ru(w1, . . . , ws, z1, . . . , zt) := (w1 · σ1(u), . . . , zt · σs+t(u)).

Let
l : O∗,+K → Rs+t

l(u) = (log σ1(u), . . . , log σs(u), 2log |σs+1(u)|, . . . , 2log |σs+t(u)|) .
Since u is a unit, Im l ⊆ H := {(x1, . . . , xs+t) ∈ Rs+t |

∑s+t
i=1 xi = 0}. Oeljeklaus and Toma proved

in [OT05] there exists U a free subgroup of rank s of O∗,+K such that prRs ◦ l(U) is a lattice of rank
s in Rs, where prRs : Rs+t → Rs is the projection on the first s coordinates. Therefore, the action
of U nOK 	 Hs × Ct is fixed-point-free, properly discontinuous, and co-compact.

The OT manifold associated to the algebraic number field K and to the admissible subgroup U
of O∗,+K is

X(K,U) := Hs × Ct
/
U nOK

and we shall often refer to it as of type (s, t). It is a compact complex manifold of dimension
n := s+ t and in the case n = 2, the construction gives the Inoue-Bombieri surfaces.

1.2. Non-Kähler metrics on OT manifolds. OT manifolds have provided very interesting
examples for locally conformally Kähler geometry, as they represent among the very few examples
of non-Vaisman type in complex dimension > 2, along with Kato manifolds and non-diagonal Hopf
manifolds. We recall that a locally conformally Kähler metric (lcK) Ω is a Hermitian metric which
satisfies dΩ = θ ∧ Ω for a closed one-form θ. Equivalently, it can be described as a Hermitian
metric for which there exists a covering of the manifold with open sets (Ui)i and smooth functions
fi on Ui such that e−fiΩ is a Kähler metric on Ui. It was proven in [OT05] and [D14, Appendix]
that the existence of an lcK metric on a generic X(K,U) is equivalent to the following arithmetic
condition:

(1) |σs+1(u)| = . . . = |σs+t(u)|, ∀u ∈ U,
which can independently be studied as a number theory problem (see for instance [D14], [Vu14])
and automatically reveals that all X(K,U) of type (s, 1) carry an lcK metric. As a matter of fact,
the translation of geometrical properties of X(K,U) in a number-theoretical language has been
a recurrent theme in various instances of their study (see also [B15] and [APV16]). In this short
note will shall diversify this study towards finding special Hermitian metrics of non-Kähler type
and the corresponding arithmetic interpretation. Namely, we prove the following results:

Theorem 1.1. The following are equivalent:

• X(K,U) admits a pluriclosed metric
• s ≤ t and after possibly relabeling the embeddings,

(2) |σs+i(u)|2σi(u) = 1, ∀u ∈ U, ∀i ∈ {1, . . . , s}, and |σs+i(u)| = 1, ∀u ∈ U, ∀i > s.

Theorem 1.2. There are no balanced metrics on any OT manifold X(K,U).

Theorem 1.3. Any OT manifold X(K,U) carries a locally conformally balanced metric.
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In Section 3 we shall present the cohomological implications of Theorem 1.1, as well as the
particular case of complex dimension 4, where the two equivalent statements in Theorem 1.1 can be
reformulated as a topological condition. Moreover, in Subsection (3.1), we give an explicit example
of OT manifold of complex dimension 4 carrying a pluriclosed metric, which was communicated
to me by Matei Toma. The recent work [D20] shows that in arbitrary complex dimension, there
exists an admissible pair (K,U) satisfying condition (2), thus providing examples of pluriclosed OT
manifolds in any even complex dimension. They represent rather exotic examples, expanding the
list of examples known so far in the literature, which are specific cases of nilmanifolds (see [FPS04]),
solvmanifolds in complex dimension 3 (see [FOU15]), connected sum of certain product of spheres
(see [GGP08]), compact Lie groups (see [SST88] and [MS10] for a detailed proof) and simply
connected examples in arbitrary complex dimension arising from A. Swann’s twist construction
(see [Sw10]). A crucial part of our proofs will be played by the solvmanifold structure that all OT
manifolds carry and we present it in the next section.

2. Preliminaries: The solvmanifold structure

In [K13], H. Kasuya showed that all OT manifolds X(K,U) can be organized as solvmanifolds,
meaning they are quotients of a solvable Lie group G to a discrete subgroup of maximal rank Γ
acting on G by left multiplications. Moreover, G is endowed with a complex structure J which is
left-invariant (i. e. invariant to left multiplications with any element g ∈ G). We briefly present
Kasuya’s construction, which consists of organizing Hs ×Ct as a solvable Lie group and regarding
U nOK as a discrete subgroup.

Since prRs ◦ l(U) is a lattice of rank s in Rs, there exist real numbers bki, 1 ≤ k ≤ s, 1 ≤ i ≤ t
such that for any u ∈ U :

2log |σs+i(u)| =
s∑

k=1

bki log σk(u),

or equivalently,

|σs+i(u)|2 =
s∏

k=1

(σk(u))bki .

Moreover, there exist real numbers cki for any 1 ≤ k ≤ s and 1 ≤ i ≤ t such that

σs+i(u) =

(
s∏

k=1

(σk(u))
bki
2

)
ei

∑s
k=1 ckilog σk(u)

We shall endow Hs × Ct with a group structure. To this aim we define for every 1 ≤ i ≤ t the
following one-dimensional representation of Rs+:

ρi : Rs+ → C

ρi(x1, . . . , xs) := x
b1i
2

1 . . . x
bsi
2
s ei

∑s
k=1 ckilogxk .

Then we define for any two elements in Hs × Ct, (w, z) = (w1, . . . , ws, z1, . . . zt) and (w′, z′) =
(w′1, . . . , w

′
s, z
′
1, . . . z

′
t):

(w, z) ∗ (w′, z′) = (w1, . . . , ws, z1, . . . , zt),

where

wi = Rewi + Imwi · Rew′i + i Imwi · Imw′i, 1 ≤ i ≤ s
zi = zi + ρi(Imw1, . . . , Imws)z

′
i, 1 ≤ i ≤ t.

It is clear that left multiplication with any (w, z) is a biholomorphism with respect to the stan-
dard complex structure of Hs × Ct and that U n OK is a discrete subgroup of Hs × Ct by the
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correspondence:

(u, a) 7→ (σ1(a) + iσ1(u), . . . , σs(a) + iσs(u), σs+1(a), . . . , σs+t(a)) .

One can easily verify that the following (1, 0) forms are left-invariant and represent a co-frame for
g1,0:  ωk := dwk

Imwk
, 1 ≤ k ≤ s

γi :=

(∏s
k=1 (Imwk)

− bki
2

)
e−i

∑s
k=1 ckilog(Imwk)dzi, 1 ≤ i ≤ t.

Moreover, a straightforward computation gives the following equations satisfied by the co-frame:

(3)

{
dωk = i

2ωk ∧ ωk, 1 ≤ k ≤ s
dγi =

∑s
k=1

(
i
4bki −

1
2cki

)
ωk ∧ γi +

∑s
k=1

(
− i

4bki + 1
2cki

)
ωk ∧ γi, 1 ≤ i ≤ t.

3. Pluriclosed metrics

A Hermitian metric Ω is called pluriclosed (strongly Kähler with torsion) if ddcΩ = 0 (see
[Bis89]), where our convention is dc := −J−1dJ . Equivalently, Ω is pluriclosed if ∂∂Ω = 0. In
[FKV15], it was shown that OT manifolds of type (s, 1) do not carry pluriclosed metrics. We
shall prove a general statement for all OT manifolds and characterize numerically the existence of
pluriclosed metrics. The result of Fino-Kasuya-Vezzoni can then easily be obtained as a corollary.
We need first the following lemma due to Ugarte:

Lemma 3.1. If X(K,U) admits a pluriclosed metric, then it also carries a left- invariant pluri-
closed metric.

Proof. Following a classical result of Milnor ([Mil76]), if G is a simply connected Lie group admit-
ting a co-compact discrete subgroup, then it admits also a bi-invariant volume form dµ. Building
on the same ideas as in [Bel00], by an averaging procedure using the bi-invariant volume form,
the proof of [U07, Proposition 4.1] concludes that once a compact solvmanifold Γ\G carries a
pluriclosed metric, it also admits a left-invariant pluriclosed metric. �

Theorem 3.2. Let X(K, U) be any OT manifold of type (s, t). The following are equivalent:

(1) X(K,U) admits a pluriclosed metric
(2) s ≤ t and after possibly relabeling the embeddings, |σs+i(u)|2σi(u) = 1, for any u ∈ U , and

for any 1 ≤ i ≤ s and |σs+i(u)| = 1, for any u ∈ U , and any i > s.

Proof. For the implication (2)⇒ (1), we consider the following metric on Hs × Ct:

(4) Ω̃ :=
s∑
i=1

i
dwi ∧ dwi
(Imwi)

2 + Imwiidzi ∧ dzi +
∑
i>s

idzi ∧ dzi,

which can easily be verified as being ddc-closed and U n OK-invariant, therefore it descends to
X(K,U). For (1) ⇒ (2), by Lemma 3.1 we can assume Ω is a left-invariant pluriclosed metric on
X(K,U). Then we can write

Ω = Ω0 + Ω01 + Ω1,

where

Ω0 :=
s∑

i,j=1

aij iωi ∧ ωj

Ω01 :=
∑

1≤i≤s
1≤j≤t

ais+j iωi ∧ γj +
∑
1≤i≤t
1≤j≤s

as+ij iγi ∧ ωj

Ω1 :=

t∑
i,j=1

as+is+j iγi ∧ γj ,
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and
(
aij

)
1≤i,j≤n

is a positive Hermitian matrix. Using now the equations (3), we easily get that

for any 1 ≤ i ≤ t,

iγ∗i iγ∗i dJdΩ0 = 0,

iγ∗i iγ∗i dJdΩ01 = 0,

and therefore,

iγ∗i iγ∗i dJdΩ = iγ∗i iγ∗i dJdΩ1 = −as+is+i
s∑

k=1

bki(bki + 1)ωk ∧ ωk − as+is+i
s∑
k 6=l

bkibliωl ∧ ωk.

Since dJdΩ = 0 and as+is+i > 0, we deduce that for any 1 ≤ k ≤ s and 1 ≤ i ≤ t, we have
bki ∈ {0,−1} and bkibli = 0, for any k 6= l. However, by the construction of X(K,U), (bki)ki satisfy

(5)
t∑
i=1

bki = −1, ∀1 ≤ k ≤ s,

which combined with bki ∈ {0,−1} and bkibli = 0, for any k 6= l gives that for any 1 ≤ k ≤ s,
there exists 1 ≤ ik ≤ t such that bkik = −1, bki = 0, for i 6= ik, and ik 6= il for k 6= l. In terms of
embeddings, this translates in the following equality valid for any u ∈ U :

σk(u)|σs+ik(u)|2 = 1, 1 ≤ k ≤ s, |σs+j(u)| = 1,∀j 6= ik.

Finally, after a relabeling, we have σi(u)|σs+i(u)|2 = 1, for any 1 ≤ i ≤ s and |σs+i(u)| = 1, for
any i > s. �

Proposition 3.2.1. An Oeljeklaus-Toma manifold X(K,U) of type (s, s) admitting a pluriclosed
metric has the following topological and complex properties:

(1) The third Betti number b3(X(K,U)) =
(
s
3

)
+ s.

(2) dimCH
2,1

∂
(X) = s

Proof. (1) The third Betti number can be computed via Theorem 3.1 in [IO19], namely:

(6) b3 =

(
s

3

)
+ sρ2 + ρ3,

where ρ2 is the cardinal of the set {1 ≤ i1 6= i2 ≤ s+ 2t | σi1(u)σi2(u) = 1, ∀u ∈ U} and ρ3 is the
cardinal of the set

{1 ≤ i1, i2, i3 ≤ s+ 2t, i1 6= i2, i2 6= i3, i3 6= i1 | σi1(u)σi2(u)σi3(u) = 1, ∀u ∈ U}.
Firstly we note that ρ2 = 0 (see also [APV16, Proposition 2.4]). Indeed, it is clearly impossible to
have σi1(u)σi2(u) = 1, for any u ∈ U , if 1 ≤ i1 ≤ s and s + 1 ≤ i2 ≤ 3s, or if 1 ≤ i1, i2 ≤ s. If
s+ 1 ≤ i1, i2 ≤ 3s, then also σi1(u)σi2(u) = 1. Using now the pluriclosed condition (2), we get

(7) σi1(u)σi2(u) = 1,∀u ∈ U,

where i1,2 = i1,2 − s, if i1,2 ≤ 2s and i1,2 = i1,2 − 2s, if i1,2 > 2s. But having a nontrivial relation
between σ1(u), . . . , σs(u) as (7) would imply is impossible, therefore, ρ2 has to vanish. Now we
prove that ρ3 = s. We clearly have ρ3 ≥ s, since for every 1 ≤ i ≤ s, σi(u)σs+i(u)σ2s+i(u) = 1, for
any u ∈ U . If there existed any triple i1 < i2 < i3 such that σi1(u)σi2(u)σi3(u) = 1 and (i2, i3) 6=
(i1 + s, i1 + 2s), using the pluriclosed condition and the fact that also σi1(u)σi2(u)σi3(u) = 1, we
obtain a non-trivial relation between σ1(u), . . . , σs(u), which is impossible. Consequently, ρ3 = s
and b3 =

(
s
3

)
+ s.

(2) By the proof of Theorem 4.5 in [OT19], we get that in general, for any X(K,U),

(8) dimCH
p,q

∂
=
∑
i+j=q

(
s

i

)
]{I ⊆ {1, . . . , s+ t}, J ⊆ {1, . . . , t} | |I| = p, |J | = j, σI(u)σJ(u) ≡ 1},
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where for a multi-index I = (i1, . . . , ik), we use the notation σI(u) := σi1(u) · . . . · σik(u) and by
σI(u) := σs+t+i1(u) · . . . · σs+t+ik(u). Using the pluriclosed condition and the fact that there is no

non-trivial relation between σ1(u), . . . , σs(u), we easily obtain dimCH
2,1

∂
(X) = s. �

Corollary 3.2.1. An Oeljeklaus-Toma manifolds X(K,U) admits both a pluriclosed and an lcK
metric if and only if it is an Inoue-Bombieri surface.

Proof. The pluriclosed and lcK conditions (see (2) and (1)) combined amount to

σ1(u) = . . . = σs(u), ∀u ∈ U,
which can be true only if s = 1. The existence of pluriclosed metrics implies s = t by Theorem
3.2, therefore dimCX(K,U) = 2. In this case the metric

Ω = i
dw ∧ dw
(Imw)2

+ Imwidz ∧ dz

is both lcK and pluriclosed, since on complex surfaces, the notions of pluriclosed and Gauduchon
metric coincide. �

Remark 3.2.1. We expect in general a compact complex manifold of dimension > 2, admitting
both a pluriclosed and an lcK metric, to be Kähler. In [OOS20] we proved this was the case for
complex compact nilmanifolds.

Proposition 3.2.2. Let X(K,U) be an OT manifold of complex dimension 4 of type (2, 2). Then
the following are equivalent:

(1) X(K,U) admits a pluriclosed metric
(2) b3(X(K,U)) = 2

(3) dimCH
2,1

∂
(X) = 2.

Proof. (1) ⇒ (2) and (1) ⇒ (3) are already discussed in Proposition 3.2.1. Assuming b2 = 2, by
(6) and the fact that ρ2 = 0 we get ρ3 = 2. This automatically implies s = t = 2 and taking into
account there are no trivial relations between σ1(u) and σ2(u), we easily get that σ1(u)|σ3(u)|2 ≡ 1
and σ3(u)|σ4(u)|2 ≡ 1, after possibly relabeling the embeddings. By Theorem 3.2, X(K,U) carries
a pluriclosed metric and this proves (2)⇒ (1). Using now (8) and recycling the same arguments,
we arrive again at σ1(u)|σ3(u)|2 ≡ 1 and σ3(u)|σ4(u)|2 ≡ 1, which yields the pluriclosed metric and
proves (3)⇒ (1). �

3.1. An example in complex dimension 4 of an OT manifold carrying a pluriclosed
metric. This example was communicated to me by Matei Toma. We consider the following 6-
degree polynomial irreducible over Z, f(x) = x6 + 2x3 − x2 − 2x+ 1, which decomposes as:

f(x) = (x3 −
√

2x2 + (1 +
√

2)x− 1)(x3 +
√

2x2 + (1−
√

2)x− 1).

By a straightfoward analysis of the two terms, we notice that both x3−
√

2x2 + (1 +
√

2)x− 1 and
x3 +

√
2x2 + (1 −

√
2)x − 1 have one real and two non-real complex conjugated roots, therefore

f has two real and 4 non-real complex roots. Moreover, both real roots are in the interval (12 , 1).

Let us denote the real roots by α and α1 and the complex roots by β, β, β1, β1 and take now the
number field K = Q(α), which is a 6-degree extension of Q. Then K has 6 embeddings given by
σ1(α) = α, σ2(α) = α1, σ3(α) = β, σ4(α) = β, σ5(α) = β1, σ6(α) = β1. We notice that since∏6
i=1 σi(α) = 1, α is a unit and moreover, σ1(α)σ3(α)σ4(α) = 1 and σ2(α)σ5(α)σ6(α) = 1. We

claim that 1 − α is a unit as well. Indeed, this is immediate since its norm is 1 by the following
reasoning:

6∏
i=1

(σi(1− α)) =

6∏
i=1

(1− σi(α)) = f(1) = 1.

Furthermore, (1− σ1(α))(1− σ3(α))(1− σ4(α)) = 1 and (1− σ2(α))(1− σ5(α))(1− σ6(α)) = 1.
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The group of positive units U generated by α and 1−α is admissible forK, since (log σ1(α), log σ2(α))
and (log (1− σ1(α)), log (1− σ2(α))) are linearly independent over R. Indeed, if they were not lin-
early independent, there would exist C ∈ R such that

C =
log (1− α)

logα
=

log (1− α1)

logα1
.

However, the function x 7→ log (1−x)
log x is strictly increasing on (0, 1), therefore, α = α1, but this is

not possible. Consequently, α and 1 − α generate a rank 2 subgroup U of O∗,+K , satisfying the
admissibility property for K and verifying also the pluriclosed condition. Thus, X(K,U) provides
the first example of OT manifold endowed with a pluriclosed metric.

Remark 3.2.2. In the recent work [D20] it was shown that for any s ≥ 2, there exists a number
field K of type (s, s) and an admissible positive units group U satisfying the pluriclosed condi-
tion. Therefore, OT manifolds provide examples of pluriclosed metrics in arbitrary even complex
dimension.

4. Balanced metrics

A Hermitian metric Ω is called balanced if dΩn−1 = 0 (see [Mic82]), or equivalently, if d∗Ω = 0,
where d∗ is the metric adjoint operator of d.

We shall need the following result due to A. Fino and G. Grantcharov (see [FG04, Theorem 2.2])
to prove the main result of the section:

Lemma 4.1. Let Γ\G be a compact solvmanifold. If it carries a balanced metric, then it also
admits a left-invariant balanced metric.

Theorem 4.2. There are no balanced metrics on any Oeljeklaus-Toma manifold X(K,U).

Proof. We shall prove there are no closed (n−1, n−1)-positive forms on X(K,U), which according
to [Mic82, Lemma 4.8], is the same with a balanced metric. Then, by Lemma 4.1, it is sufficient
to prove there are no closed left-invariant (n− 1, n− 1)-positive forms on X(K,U). Let us assume
Ω0 is a left-invariant (n− 1, n− 1)-positive form, then,

Ω0 = in−1
n∑

i,j=1

aijmij ,

where

(9) mij = α1 ∧ α1 ∧ . . . α̂i ∧ αi ∧ . . . ∧ αj ∧ α̂j ∧ . . . ∧ αn ∧ αn,
the coefficients aij are complex numbers, αi = ωi, for 1 ≤ i ≤ s and αs+i = γi, for 1 ≤ i ≤ t.
Moreover, we have aij = −aji for i 6= j and aii = aii > 0, for any 1 ≤ i ≤ n. The positivity of Ω0

implies the positive definiteness of the matrix
(
ãij

)
i,j

given by

ãij =

{
aij , if i ≤ j
−aij , if i > j

Let us now compute dΩ0. We have

dΩ0 =
n∑
i=1

cimi + cimi,

where
mi = in−1α1 ∧ α1 ∧ . . . ∧ α̂i ∧ αi ∧ . . . ∧ αn ∧ αn

and
mi = in−1α1 ∧ α1 ∧ . . . ∧ αi ∧ α̂i ∧ . . . ∧ αn ∧ αn.
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We note that mi = mi. In order to compute the coefficients ci, we shall employ the equations in
(3), as the following lemma shows:

Lemma 4.3. Let 1 ≤ i ≤ s. Then

dmij = 0, 1 ≤ i 6= j ≤ s
dmii = i

(
−1

2mi + 1
2mi

)
dmij = α ·mj , α ∈ C, s < j ≤ n.

Proof. For the first two relations, the key part is the following equality

d

(
t∧
i=1

γi ∧ γi

)
=

s∑
k=1

((
t∑
i=1

i
bki
2

)
ωk −

(
t∑
i=1

i
bki
2

)
ωk

)
∧

t∧
i=1

γi ∧ γi

Using again the relation between the coefficients bki, which is granted by the construction, namely∑t
i=1 bki = −1, for any 1 ≤ k ≤ s we get

d

(
t∧
i=1

γi ∧ γi

)
=

s∑
k=1

(
− i

2
ωk +

i

2
ωk

)
∧

t∧
i=1

γi ∧ γi,

which combined with dωi = i
2ω ∧ ωi, gives the first two equalities of the lemma. The last equality

simply follows by applying (3), the derivation rule and noticing that for any 1 ≤ i ≤ t:
iγ∗i dωj = 0, 1 ≤ j ≤ s
iγ∗i dγj = 0, 1 ≤ j ≤ t.

�

By the lemma above we conclude that

dΩ0 = − i

2

s∑
i=1

aiimi +
i

2

s∑
i=1

aiimi +

n∑
i=s+1

(cimi + cimi) .

If Ω0 was closed, then aii = 0, for any 1 ≤ i ≤ s, but this is impossible since Ω0 is positive. �

We shall prove however that OT manifolds carry some other type of special metric.

Definition 4.3.1. A metric Ω is called locally conformally balanced (lcb, shortly) if dΩn−1 =
θ ∧ Ωn−1 for a closed one form θ.

Note that in general, on any complex manifold and for any Hermitian metric Ω, there always
exists θ a real one-form such that dΩn−1 = θ ∧ Ωn−1. This is called the Lee form of Ω. In these
terms, an lcb metric is a Hermitian metric with closed Lee form. Equivalently, Ω is lcb if and only
if there exists a covering with open sets (Ui)i∈I of the manifold and smooth functions fi on each
Ui such that e−fiΩ is balanced.

Theorem 4.4. Any Oeljeklaus-Toma manifold X(K,U) admits a locally conformally balanced
metric.

Proof. We simply take the following (n− 1, n− 1)-positive form:

Ω0 := in−1
n∑
i=1

mii.

Then it is a straightforward computation to see that

dΩ0 = −
s∑
i=1

ωi − ωi
2i

∧ Ω0.
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Moreover, θ0 := −
∑s

i=1
ωi−ωi

2i is a left-invariant closed real one-form. By [Mic82, Lemma 4.8], we
conclude there exists a positive (1, 1)-form ω0 such that

dωn−10 = θ0 ∧ ωn−10 ,

which means precisely a locally conformally balanced metric. In the natural coordinates on Hs×Ct,
Ω0 can be written as:

Ω0 :=

(
s∑
i=1

in−1
∧
j 6=i dwj ∧ dwj∏
j 6=i Imw2

j

)
∧A+B ∧

t∑
i=1

in−1

(
s∏

k=1

(Imwk)
1+bki

)∧
j 6=i

dzj ∧ dzj

where A := (
∏s
i=1 Imwi)

∧t
i=1 dzi ∧ dzi and B =

∧s
i=1 dwi∧dwi∏s

i=1 Imw2
i

. Then Ω0 = ωn−10 , where

ω0 =

s∑
i=1

dwi ∧ dwi
(Imwi)2

+

t∑
i=1

s∏
k=1

(Imwk)
−bkidzi ∧ dzi,

and this is the lcb metric presented as a U nOK-invariant metric on Hs × Ct. �

Remark 4.4.1. It was shown in [Vu14] that if X(K,U) is such that s < t, it cannot support
lcK metrics. Nevertheless, these manifolds carry locally conformally balanced metrics instead via
Theorem 4.4.

Remark 4.4.2. Note that ω0 is also the Gauduchon metric of its conformal class. Moreover, in
case the pluriclosed (lcK, respectively) condition holds, it is also a pluriclosed (lcK, respectively)
metric.

Acknowledgement: I am very grateful to Matei Toma, both for providing me with the example
in Section 3.1 and for many useful suggestions and stimulating discussions that improved the paper.
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