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Stroke is one of the greatest medical threats to human health and quality of life in
modern society. This disease regularly ranks as one of the top causes of the general
mortality of the population [1–3]. Stroke is an example of a multifactorial disease, which
is still characterized by an acute shortage of effective methods of diagnosis, prevention
and treatment. The genomic approaches to the problem of stroke are one of the most
significant and are aimed at personifying solutions. Considering the parameters of genomic
architecture and activity inherent in an individual or population, much more effective
recommendations for measures to prevent events and negative outcomes of stroke can
be formed.

Stroke genomic studies are being actively carried out in several directions at once.
First, the search for genomic markers of stroke is carried out depending on the ethnic group
of the patient and the etiology of the disease. Second, the regulation of gene expression
under conditions of ischemia (including experimental models) and corrective (therapeutic)
influence is being studied. Third, translational studies are being carried out to ensure the
application of the genomic approach to practical medicine. Started in 2021, this Special
Issue (SI), entitled “Genomics of Stroke”, provides a platform for papers related to all major
directions of the genomic study of stroke.

In 2022, this SI collection was continued. Thus, this editorial prefaces the second
part of the SI «Genomics of Stroke». This part of the SI includes one review and five
research articles.

The results and prospects for stroke genomics were systematized and discussed in a
substantial review entitled “Stroke and Etiopathogenesis: What Is Known?” by Ciaram-
bino et al. [4]. In this review, the authors summarized the latest evidence until February
2022 of ischemic stroke genetics that may be of interest to the physician and useful for
day-to-day clinical work in terms of both the prevention and treatment of ischemic stroke.
The authors elaborate on the topic of the association between genetic alterations and risk
factors of both monogenic and polygenic cerebrovascular diseases [4]. A significant part of
the review is devoted to epigenetic causes of stroke, including DNA methylation, histone
modifications, as well as non-coding RNA functioning [4]. The authors concluded that the
knowledge of stroke-risk loci increases the possibility of obtaining new drug targets for
antithrombotic therapy, thus highlighting the potential of stroke genetics in the field of
drug discovery and laying the foundations for an understanding, in a more concrete way,
of the intimate relationship that exists between the genetic characteristics of each individual
and stroke [4].

The research articles in the 2022 collection of our SI are focused on genomic and
post-genomic studies of stroke, using patients and model animals.

First, a paper entitled “Insight into Glyproline Peptides’ Activity through the Mod-
ulation of the Inflammatory and Neurosignaling Genetic Response Following Cerebral
Ischemia–Reperfusion”, by Stavchansky et al. [5], refers to pharmacogenomic research.
In this study, the authors use three Pro-Gly-Pro (PGP)-containing peptides (Met-Glu-His-
Phe-Pro-Gly-Pro, named by Semax; PGP; and Pro-Gly-Pro-Leu (PGPL)) to differentiate

Genes 2023, 14, 514. https://doi.org/10.3390/genes14020514 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes14020514
https://doi.org/10.3390/genes14020514
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0002-1697-6820
https://orcid.org/0000-0002-6964-3405
https://doi.org/10.3390/genes14020514
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes14020514?type=check_update&version=2


Genes 2023, 14, 514 2 of 4

their effects in a rat transient middle cerebral artery occlusion (tMCAO) model [5]. It
should be noted that biologically active natural and synthetic peptides represent potential
drugs for reducing the damage that occurs after ischemia [6,7]. The PGP tripeptide that is
produced by the intra- and extracellular catabolism of collagen, elastin, and related proteins
is an active factor of resistance to the biodegradation of peptide drugs [8]. In a paper by
Stavchansky et al., using real-time reverse transcription PCR, the effect of peptides on the
expression of a number of genes in the inflammatory cluster (IC) and a neurotransmitter
cluster (NC) was studied 24 h after tMCAO. Furthermore, a gene enrichment analysis was
carried out, and a regulatory gene network was constructed. As a result, the comparison of
glyproline peptides allowed the authors to determine their general and individual effects
on gene expression under cerebral ischemia [5]. The study can be significant for the creation
of peptide drugs that are even more effective than those currently available.

The two following articles use large model animals (a monkey and a pig). These
studies are extremely interesting from the standpoint of translating the results to the
clinical level.

A paper entitled “Expression of Transcription Factor ZBTB20 in the Adult Primate
Neurogenic Niche under Physiological Conditions or after Ischemia”, by Stoyanov et al. [9],
is related to the study of regeneration processes in the brain, which are significant in
ischemia. Namely, the authors studied the expression pattern of transcription factor ZBTB20
in the adult primate anterior subventricular zone (SVZa) and rostral migratory stream
(RMS) of a macaque monkey by means of immunofluorescence, as well as through the
analysis of images derived from a public database of gene expression [9]. Ischemia is known
to be a strong promoter of progenitor proliferation in the monkey SVZa [10]. Stoyanov et al.
demonstrated enhanced postischemic ZBTB20 mRNA levels in parallel with an increased
percentage of ZBTB20 co-expression with Ki67 and DCX markers. These data suggest that
ZBTB20 is a candidate regulator of primate SVZa precursor cell proliferation [9].

Moreover, Fedulova et al. presented their paper entitled “Proteomic Markers in the
Muscles and Brain of Pigs Recovered from Hemorrhagic Stroke” [11]. The authors used a
model of left-sided intracerebral hematoma in pigs. It should be noted that the use of pigs
as a model for studying stroke is due to the similarity of their neurophysiological processes
with humans [12]. Fedulova et al. carried out trypsinolysis of tissue proteins and chromato-
mass-spectrometric analysis (HPLC-MC) of the obtained peptides [11]. As a result, proteins
were identified that are expressed during the recovery period after traumatic injury. Based
on proteomic results, a regulatory network was constructed for proteins involved in the
regulation of some biological processes in studied tissues under intracerebral hematoma
model conditions [11]. The results obtained are significant to establish postgenomic and
biochemical relationships, in order to understand the biological mechanisms associated
with recovery after hemorrhagic stroke.

Fusco et al. presented their paper entitled “Transcriptome Analysis Reveals Altered
Expression of Genes Involved in Hypoxia, Inflammation and Immune Regulation in Pdcd10-
Depleted Mouse Endothelial Cells” [13]. The authors carried out genome-wide RNA
sequencing (RNA-Seq) and a quantitative polymerase chain reaction (Q-PCR) validation
analysis in Pdcd10-silenced and wild-type mouse endothelial cells, in order to better
elucidate cerebral cavernous malformations (CCM) molecular pathogenesis [13]. It should
be noted that CCMs are common vascular malformations derived from capillaries and
small vessels of the central nervous system and are often present with stroke [13,14].
Moreover, alterations of PDCD10 are the rarest genetic cause of family CCM and tend
to associate with a more aggressive phenotype with an earlier age of onset [15]. Among
differentially expressed genes, Fusco et al. revealed the major cluster fell in signaling
related to inflammation and pathogen recognition, including HIF1α and Nos2 signaling
and immune regulation [13]. Thus, the study by Fusco et al. allowed novel Pdcd10-
controlled molecular pathways to be identified and offered the possibility of providing
novel insights into family CCM pathogenesis and therapeutic targets [13].
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Finally, we consider a paper entitled “Genotype-Phenotype Correlation and Functional
Insights for Two Monoallelic TREX1 Missense Variants Affecting the Catalytic Core” by
Amico et al. [16]. The authors reported the clinical–neuroradiological features of two
patients with Aicardi–Goutières Syndrome (AGS)-like (Patient A: White female at the age
of 2 years and 7 months) and cerebral autosomal dominant arteriopathy with subcortical
infarcts and leukoencephalopathy (CADASIL)-like (Patient B: White male at the age of
55 years) phenotypes carrying the heterozygous p.A136V and p.R174G variants of the three-
prime repair exonuclease 1 (TREX1) gene, respectively [16]. Previously, it was shown that
in mammalian cells, TREX1 exonuclease degrades DNA to prevent aberrant nucleic-acid
sensing [17,18]. Moreover, excessive activation of the cGAS-STING pathway in patients
affected by TREX1 mutations leads to the abnormal secretion of type-I interferon (IFN) and
nucleic-acid driven inflammation [19,20]. Moreover, heterozygous missense or frameshift
TREX1 mutations have been shown to be attributed to cerebrovascular diseases. In the
present study, Amico et al. showed that while the p.A136V variant was unlikely to be
causative for AGS in Patient A, Patient B’s phenotype was potentially related to the p.R174G
variant. Concomitantly, Amico et al. clarified that further functional investigations of
TREX1 variants found in CADASIL-like patients are warranted to determine any causal
link and interrogate the molecular disease mechanism(s) [16].

In conclusion, the diversity and quality of the works presented in this SI indicate the
constant advancement of knowledge in the field of stroke genomics.

We hope that the second (2022) part of our SI will be useful and interesting for readers.
Further development of the field of stroke genomics will move society closer to improving
diagnostic, prognostic, and therapeutic measures to combat stroke and related pathologies.
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