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Preface

This special issue of the Taiwanese Journal of Mathematics contains some
selected papers presented in 1999 International Conference on Nonlinear Anal-
ysis, held on October 16–20, 1999 at Academia Sinica, Taipei, Taiwan, in honor
of Fon-Che Liu who celebrates his sixtieth birthday in December 1999. In the
past three decades, Fon-Che Liu has made many distinguished contributions
to different areas of analysis, especially on Lusin properties of functions, sur-
face area formula, multiple Fourier series and convex or nonconvex analysis.
Over the years, he has supervised the Ph.D. theses of seven students, who in
turn carry on his mathematical ideas. As two-time director of the Institute of
Mathematics of Academia Sinica and also as president of the Mathematical
Society of the Republic of China, he is in a position to oversee and promote
the mathematical research activities of the post-Second-World-War generation
of mathematicians in Taiwan.

We congratulate him on his birthday and wish him continued success in
his scholarly endeavors.

His resumé, including the list of his Ph.D. students and his publications
together with a detailed description of his research work, is included in the
following pages.
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Fon-Che Liu

Born:

December 19, 1939, Taipei, Taiwan

Education:

B.Sc. (1962), National Taiwan University, Taipei, Taiwan

Ph.D. (1968), Purdue University, Lafayette, Indiana, U. S. A., supervised
by C. Goffman

Current Positions:

Director (1996–2000) and Research Fellow (1973– ), Institute of Mathe-
matics, Academia Sinica

Professor of Mathematics (1974– ), National Taiwan University

Positions:

Assistant Professor (1968–70), Wayne State University

Visiting Assistant Professor (1970–71), Purdue University

Associate Research Fellow (1971–73), Institute of Mathematics, Academia
Sinica

Acting Director (1971–72, 1973–76, 1977–78), Institute of Mathematics,
Academia Sinica

Visiting Professor (1978, Aug.–Oct.), Purdue University

Editor (1978–84), Bulletin of the Institute of Mathematics, Academia Sinica

Director (1984–86), Institute of Mathematics, Academia Sinica

Visiting Professor (Fall 1987), Wayne State University

Director (1988–91), Mathematics Research Promotion Center, National
Science Council

President (1990–92), The Mathematical Society of the Republic of China
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Ph.D. Students:

Narn-Ruey Hsieh, Inequalities of multiply indexed martingales and appli-
cations, National Taiwan University, June 1980.

Shiou-Yu Chang, On some properties of KKK-maps and their applications,
National Taiwan University, June 1987.

Chiun-Chuan Chen, Removability of singularities for minimizers, National
Taiwan University, June 1991.

Jin-Ron Lee, Asymptotic behavior of solutions of semi-linear elliptic partial
differential equations and a study on instability, National Taiwan University,
June 1993.

Huo-Yan Chen, Boundary value problem of nonlinear systems of second
order ordinary differential equations of divergence form, National Taiwan Nor-
mal University, June 1994.

Ting-Hsiung Chen, Multiplicity function and surface area of Sobolev map-
pings, National Taiwan Normal University, June 1996.

Mao-Sheng Chang, An isolated local minimizer of four-phase partition
problems in R2, National Central University, June 1999.

Publications:

1. Approximation-extension type property of continuous functions of bounded
variation, J. Math. Mech. 19 (1969), 207-218.

2. Discontinuous mappings and surface area, Proc. London Math. Soc.
(3) 20 (1970), 237–248 (with C. Goffman).

3. On the localization property of square partial sums for multiple Fourier
series, Studia Math. 44 (1972), 61–69 (with C. Goffman).

4. On the localization of rectangular partial sums for multiple Fourier
series, Proc. Amer. Math. Soc. 34 (1972), 90–96.

5. On uniform convergence of Fourier series after change of variable,
Tamkang J. Math. 3 (1972), 49–52.

6. On a theorem of Whitney, Bull. Inst. Math. Acad. Sinica 1 (1973),
63–70.

7. Area formula for Sobolev mappings, Indiana Univ. Math. J. 25 (1976),
871–876 (with C. Goffman).

8. Essential multiplicity function for a.e. approximately differentiable
mappings, in: C. K. S. Memor. Vol. Acad. Sinica, 1976, pp. 69–73.
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9. A Lusin type property of Sobolev functions, Indiana Univ. Math. J. 26
(1977), 645–651.

10. Approximately differentiable mappings and surface area, in: Studies
and Essays in Commemoration of the Golden Jubilee of Academia Sinica,
1978, pp. 103–111.

11. Hausdorff measures on topological groups, Rep. Math. Res. Center 6
(1978), 249–257 (with N.-R. Hsieh & M.-C. Hu).

12. A note on the von Neumann-Sion minimax principle, Bull. Inst. Math.
Acad. Sinica 6 (1978), 517–524.

13. Lusin type theorem for functions of bounded variation, Real Anal.
Exchange 5 (1979/80), 261–266 (with C. Goffman).

14. Derivative measures, Proc. Amer. Math. Soc. 78 (1980), 218–220
(with C. Goffman).

15. A remark on the spaces V p
λ,α, Proc. Amer. Math. Soc. 82 (1981),

366–368 (with C. Goffman & D. Waterman).

16. Approximation of nonparametric surfaces of finite area, Chinese J.
Math. 9 (1981), 25–35 (with N. K. Chen).

17. Representation of measurable functions by multiple series, Proc. Lon-
don Math. Soc. (3) 45 (1982), 131–132 (with C. Goffman & R. Zink).

18. A differentiable function for which localization for double Fourier series
fails, Real Anal. Exchange 8 (1982/83), 223–227 (with C. Goffman & D.
Waterman).

19. Embedding distributive lattices in vector lattices, Bull. Inst. Math.
Acad. Sinica 11 (1983), 459–462.

20. Remark on a theorem of Ky Fan concerning systems of inequalities,
Bull. Inst. Math. Acad. Sinica 11 (1983), 639–643 (with A. Granas).

21. Lusin property, Proc. SMS, Univ. Montreal on ”Méthodes topologiques
en analyse nonlinéaire” (1983).

22. Théorèmes de minimax, C. R. Acad. Sci. Paris Sér. I Math. 298
(1984), 329–332 (with A. Granas).

23. A general variational inequality and its applications to coincidence
theorems, in: Proc. Summer Colloq. Math. Res. Center, Taipei, 1984.

24. Some minimax theorems without convexity, Rep. Univ. Montreal,
Oct. 1985 (with A. Granas).
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25. Remarque sur une application de l’indicatrice de Banach au change-
ment de variables dans une intégrale, Rep. Univ. Montreal, Nov. 1985 (with
M. Frigon).

26. Quelques théorèmes de minimax sans convéxité, C. R. Acad. Sci.
Paris Sér. I Math. 300 (1985), 347–350 (with A. Granas).

27. Representation of lattices and extension of measures, Contemp. Math.
42 (1985), 113–117.

28. Coincidences for set-valued maps and minimax inequalities, J. Math.
Pures Appl. 65 (1986), 119–148 (with A. Granas).

29. Some minimax theorems without convexity, in: Nonlinear and Convex
Analysis, Proc. in honor of Ky Fan, B.-L. Lin & S. Simons, eds., 1987, pp.
61–75 (with A. Granas).

30. Comparison of linear combinations of systems of functions and appli-
cations, Chinese J. Math. 17 (1989), 207–220.

31. Approximation-extension properties of functions, in: Proc. Asian
Math. Conference – Hong Kong, 1990, pp. 296–303.

32. On a form of KKM principle and supinfsup inequalities of von Neu-
mann type and of Ky Fan type, J. Math. Anal. Appl. 155 (1991), 420–436.

33. Théorème de minimax sans topoloqie ni convéxité, Colloq. Math. 63
(1992), 141–144 (with A. Granas & J. R. Lee).

34. Measure solutions of systems of inequalities, Topol. Methods Nonlinear
Anal. 2 (1993), 317–331.

35. Approximate Taylor polynomials and differentiation of functions, Topol.
Methods Nonlinear Anal. 3 (1994), 189–196 (with W. S. Tai).

36. Maximal mean steepness and Lusin type properties, Ricerche Mat. 43
(1994), 365–384 (with W. S. Tai).

37. Equilibrium value and measure of systems of functions, Topol. Methods
Nonlinear Anal. 5 (1995), 255–259 (with Y. J. Chao).

38. Lusin properties and interpolation of Sobolev spaces, Topol. Methods
Nonlinear Anal. 9 (1997), 163–177 (with W. S. Tai).
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Description of work:

(A) Lusin properties of functions

This study originates with Lusin’s classical theorem for measurable func-
tions and Whitney’s theorem for approximately differentiable functions (Pa-
cific J. Math. 1, 143–159). Starting with [6] the question of introducing
approximate differentiability of general order and proving the corresponding
Lusin property is finally settled in [35]. In [35], a generalization of Rademacher-
Stepanoff-Federer theorem for differentiability of functions to that of differen-
tiability of higher order is answered and thus provides an answer to a question
raised by Federer in 3.1.17 of his book on geometric measure theory.

The following strong form of Lusin property is proved in [9] for Sobolev
functions: Let u ∈ W k

p (G), 1 ≤ p ≤ +∞. Then for any ε > 0, there is
v ∈ Ck(G) such that |{x ∈ G : u(x) 6= v(x)}| < ε and ‖u − v‖k,p < ε. If the
smallness of the Sobolev norm of u− v is not required , this result is included
in [6] and [35] and is first proved by Calderón and Zygmund (Studia Math.
20, 171-225).

The result and method of this work have been used by many authors in
various directions, e.g., by Acerbi-Fusco to lowersemicontinuity in calculus of
variations (Arch. Rational Mech. Anal. 86, 125-145), by Giaquinta-Modica-
Soucek to Dirichlet integrals for mappings and variational problems for map-
pings (Math. Ann. 294, 325-386; Ann. Scuola Norm. Sup. Pisa 16, 393–
485) and by Kinderlehrer-Pedregal to equilibrium configurations of crystalline
(Arch. Rational Mech. Anal. 115, 329–365). This work has been further
pursued by J. H. Michael and W. Ziemer and appears in the book Weakly
Differentiable Functions (Springer-Verlag, 1989) by Ziemer. A special case of
this work is also presented in the book Measure Theory and Fine Properties
of Functions (CRC Press, 1992) by L. C. Evans and R. F. Gariepy. Recently,
B. Bojarski and his students have started a systematic study of geometric
properties of Sobolev mappings which is also connected with this work (see
the survey article by Bojarski in Function Spaces, Differential Operators and
Non-linear Analysis (Paivarinta, ed., Pitman, 1989).

Closely related to this form of Lusin property are the Lusin properties
studied in [37] and [38] which together give quite complete picture of Lusin
properties for Sobolev functions and BV functions. In [38] a form of Lusin
property which is closely related to interpolations of function spaces is proved
for local Sobolev functions in terms of non-increasing rearrangement of func-
tions.

A remarkable Lusin property is established in [1] for continuous functions
of bounded variation of a real variable which resembles Lusin property for
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Sobolev functions but with Ck-functions replaced by functions whose graph
has continuously turning tangents. Although it is believed that this property
also holds in higher-dimensional case, but a lack of necessary tools prevents
from proving it.

(B) Surface area and area formula

In [2] a satisfactory theory of surface area is first provided for mappings
which may not be continuous. The mappings considered are from an oriented
cube I in Rm into Rn, n ≥ m, and are (m − 1)-continuous mappings; an
area functional A is defined for such mappings extending the Lebesgue area
functional for continuous mappings. A mapping T : I → Rn with coordinate
functions f1, . . . , fn is called a Sobolev mapping if each fi ∈ W 1

pi
such that∑

1/pik ≤ 1 for each 1 ≤ i1 < · · · < im ≤ n. If T is a Sobolev mapping, then
its Jacobian J(T ; x) is defined for almost all x ∈ I and is integrable. A natural
question is whether the area formula

A(T ) =
∫

I
J(T ;x)dx

holds for (m − 1)-continuous Sobolev mappings T . It is shown in [2] that
area formula always holds when m = 2. This includes a classical result of
C. B. Morrey for continuous Sobolev mappings from R2 into R3 (Amer. J.
Math. 55, 683-707; 56, 275-293). When m > 2 and each pi > m − 1, T is
(m− 1)-continuous. In this case, Goffman and Ziemer show that area formula
holds (Ann. Math. 92, 482-488). A strictly larger class of (m− 1)-continuous
Sobolev mappings is considered in [7] and area formula is proved for this class.
Mappings in this class are called regular Sobolev mappings. Roughly speaking,
a mapping is regular if it maps many boundaries of oriented cubes into sets of
small m-measure. The method in [7] is different from other methods in that a
delicate combination of methods of topological degree with measure theoretic
considerations is employed. This combination makes possible a transparent
proof of area formula even for C1 mappings.

In [8] (see also [38]) is constructed a multiplicity function m(T ; y), y ∈ Rn

for a.e. approximately differentiable mappings T and is shown the following
form of area formula:

∫
J(T ; x)dx =

∫
m(T ; y)dHm(y),

where the Jacobian is defined with approximate partial derivatives of coordi-
nate functions of T and Hm is the m-Hausdorff measure in Rn. This renders
possible even a simple proof of area formula for Lipschitz mappings.
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(C) Localization of multiple Fourier series

Functions considered are defined on n-torus. In contrast to the case n = 1,
localization for Fourier series is much more involved when n > 1. Indeed, for
n = 2, there is an everywhere differentiable function for which square sum
localization does not hold [18]. Historical developments of multiple Fourier
series lead to the consideration of localization for Fourier series of functions
in W 1

p . It is shown in [3] that square sum localization holds if p ≥ n − 1
and for each 1 ≤ p < n − 1 there is a function in W 1

p for which square sum
localization fails. It is also shown in [3] that when p = n−1 there is a function
in W 1

p for which rectangular sum localization does not hold, while the fact
that rectangular sum localization holds for W 1

p if p > n − 1 is established in
[4]. Thus the question of localization for multiple Fourier series is completely
settled with respect to Sobolev space W 1

p . In [4], the fact that Dini-Lipschitz
theorem for uniform convergence by rectangular sum holds for general n is
also obtained.

(D) Additive set function

S. Bochner and R. S. Phillips have shown that given a finitely additive set
function on an algebra L of sets one can represent L by sets in another space
so that the given additive set function becomes σ-additive on the new algebra
of sets (Ann. of Math. 42, 316–324). A method of embedding a distributive
lattice L with smallest and largest elements in the Banach lattice B of all
valuations of bounded variation on L is introduced in [19] and [27] with the
purpose of representing L by subsets of the extreme set of the positive face of
the unit ball of the second dual of B. It then follows from this representation of
L that all valuations of bounded variation on L can be extended to σ-additive
signed measures. In particular, any algebra L of sets can be represented by
subsets of a compact Hausdorff space so that all finitely additive probabilities
on L can be extended to σ-additive measures on the new algebra of sets. This
approach is more natural and gives stronger results than that of Bochner and
Phillips.

(E) Convex or nonconvex analysis

Some questions in convex or nonconvex analysis are considered by using
topological or non-topological methods. The topological methods are best
represented in [12], [28] and [32], while the non-topological methods are best
illustrated in [29], [30], [34] and [37]. It is worthwhile to point out that a useful
concept of measure solutions of systems of inequalities is introduced in [34] so
that Lagrange duality is put in a clearer perspective and can be treated more
systematically and generally.


