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The importance of gut barrier integrity in intestinal homeostasis and the consequences
of its alteration in the etiology of human pathologies have been subjects of exponentially
growing interest during the last decade. The gut barrier is a complex functional unit in
which several actors cooperate through direct or indirect interactions. This Special Issue,
“Regulation and Physiology of the Gut Barrier”, was an opportunity to highlight emerging
and overlooked aspects of the physiological regulation of the intestinal barrier function
in addition to their links with various pathologies, including new findings on potential
therapeutic strategies. In this editorial, the original articles and reviews of this Special
Issue are briefly presented in the general context of the current knowledge on gut barrier
function (Figure 1).
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Figure 1. Actors and regulation of gut barrier function. The central actor of the intestinal barrier
is a single-monolayer epithelium, which undergoes a rapid renewal from stem cells (located at the
bottom of crypts) followed by the differentiation of proliferating cells into several specialized cell
types. Cells of the absorptive lineage (enterocytes/colonocytes) ensure nutrient absorption, whereas
the secretory lineage comprises several cell types involved in other gut functions, including its barrier
function: Paneth cells (in the small intestine but not the colon) synthesize antimicrobial peptides, and
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goblet cells secrete mucins and other proteins that comprise the mucus layer. The role of enteroen-
docrine cells, secreting a large variety of enteric hormones, in the barrier function is discussed by
Osinski et al. [1]. At the villus apex in the small intestine (or at the surface epithelium in the colon),
cells are shed in the lumen and die by anoikis. How the barrier integrity is maintained despite
constant cell extrusion is discussed by Ngo et al. [2]. A major actor in the epithelial barrier function
is the apical junctional complex, consisting of tight junctions (TJs), adherens junctions (AJs), and
desmosomes (D). TJs control the paracellular permeability by differentially regulating the flux of
ions (pore pathway) or macromolecules (leak pathway described here by Monaco et al. [3]); the
deregulation of the latter pathway promotes the passage of potentially harmful molecules, which can
trigger exacerbated immune responses. Many TJ proteins, associated cytoskeletons, and signaling
pathways are targeted by intestinal pathogens, weakening the barrier function through mechanisms
described by Paradis et al. [4]. Gut homeostasis relies on tripartite crosstalk between the epithelial
cells, the microbiota, and the intestinal immune system. The gut mucosa harbors innate and adaptive
immune cells, which cooperate to tolerate dietary antigens and the commensal microbiota while being
capable to eliminate invading pathogens. In inflammatory bowel disease, dysbiosis and activated
immune cells secreting proinflammatory cytokines exert harmful effects on epithelial cells and may
generate a vicious circle of barrier disruption and inflammation. Endogenous opioid peptides locally
secreted by T cells could have beneficial effects on epithelial integrity in this inflammatory environ-
ment as shown by Mas-Orea et al. [5]. Dramatic epithelial destruction can occur in the intestine
upon accidental radiation or during radiotherapy. Metformin, a widely used anti-diabetic drug, was
shown by Jang et al. [6] to protect epithelial barrier function in a mouse model of radiation-induced
enteropathy. Gut microbiota are key actors in the intestinal barrier. Commensal species compete with
pathogens for intestinal niches and nutrients, and release antibacterial molecules as well as many
metabolites that exert beneficial effects on host cells. Imbalanced nutrition and inflammation can
lead to dysbiotic microbiota and the loss of beneficial metabolites. Strategies to restore microbiota
diversity include a balanced diet, probiotic administration, or a fecal microbiota transplantation.
In Crohn’s disease, enteral nutrition has several beneficial effects: it promotes the healing of the
mucosa and also modulates the composition of the microbiota, as discussed by Boumessid et al. [7].
AJ: adherens junctions; D: desmosomes; TJ: tight junctions; and sIgA: secretory IgA. Numbers in blue
circles correspond to the cited references. Created with BioRender.com (accessed on 30 July 2022).

1. Cooperation of Different Actors of the Intestinal Barrier during Gut Homeostasis

The gut barrier function encompasses (i) actors in the luminal compartment host-
ing the microbiota separated from the mucosa by a mucus layer, (ii) a highly polarized
epithelial monolayer, which controls paracellular permeability through the integrity of
cell–cell junctions (especially tight junctions), and (iii) the lamina propria as well as the
gut-associated lymphoid tissue (GALT), which harbors a large number and variety of
immune cells.

In the intestinal lumen, commensal bacteria and a mucus layer both contribute to the
integrity of the gut barrier by establishing protection against pathogen invasion and by
educating immune cells [8]. Indeed, studies in germ-free animals revealed that the absence
of microbiota is associated with a thinner mucus layer [9,10], which can be restored by
providing microbiota-derived products such as lipopolysaccharides (LPS) or peptidogly-
cans [9]. Reciprocally, mice deficient in the expression of Muc2, the main mucin composing
the intestinal mucus layer, spontaneously display bacterial overgrowth and susceptibility
to inflammation, with some characteristics close to those of human ulcerative colitis [11,12].
Intricate interactions between mucus and microbiota were reported. Several bacterial
species are known to promote the synthesis of mucus or its degradation [13]. Changes in
microbiota composition may also influence mucus properties through the modification
of mucin glycosylation [13]. Thanks to the mucus layer, along with the luminal release
of secreted IgA arising from plasma cells in the lamina propria and transcytosis, direct
interactions between commensal bacteria and the intestinal epithelium do not take place in
physiological conditions, with the exception of segmented filamentous bacteria (SFB), which
play a crucial role in the education of the intestinal immune system [14]. Furthermore, gut
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microbiota exert a profound influence on epithelial cells’ properties through the production
of metabolites such as bile acids, short-chain fatty acids, tryptophan-metabolism-derived
products, and quorum sensing molecules [15–18].

The intestinal epithelium located at the interface between the intestinal lumen and
the lamina propria is a monolayer composed of several cell types [19,20]. The enterocytes
(in the small intestine) or colonocytes (in the colon) represent about 90% of the cells
of the epithelium cell monolayer. These cells are involved in nutrient absorption and
antimicrobial defense. Goblet cells, representing about 20% of intestinal epithelial cells,
with a higher proportion in the colon, are responsible for the secretion of mucus into the
intestinal lumen. Enteroendocrine cells represent 1% of the intestinal epithelial cells and
are sparsely dispersed along the intestine. They secrete several enterohormones, such as
glucagon-like peptide-1 (GLP-1) and GLP-2, which are involved in epithelium homeostasis
and energetic metabolism. In this Special Issue, Osinski et al. [1] provide an update on the
knowledge of the enteroendocrine system and its impact on the function of other organs.
The authors stress that little is known about the impact of enterohormones on gut barrier
function; however, they highlight a link between GLP-2 and the integrity of the intestinal
epithelial barrier. Other differentiated cell types, such as tuft cells, Paneth cells, and M-cells,
contribute to gut homeostasis and host defense by secreting the parasite-induced cytokine
IL-25, antimicrobial peptides, and by presenting bacterial or dietary antigens to immune
cells, respectively [21].

The intestinal epithelium undergoes a constant and rapid renewal through coordinated
cell proliferation, migration, differentiation, and extrusion processes [22]. During this
highly dynamic turnover, the integrity of the epithelial barrier must be maintained. The
shedding of intestinal epithelial cells is one of the critical points, as its disturbance can lead
to vulnerable penetrable sites, disrupting the barrier. Here, Ngo et al. [2] detail the various
mechanisms involved in cell extrusion and cell death, which differ during gut epithelium
physiological turnover and in pathological conditions such as inflammation and cancer. In
particular, the authors underline the importance of cell–cell junction remodeling during
these processes.

Cell–cell junctions, and tight junctions (TJs) in particular, are essential in maintaining
the integrity of the intestinal epithelial barrier. TJs control the paracellular flux of ions and
molecules on either side of the epithelium with both size and charge selectivity [23,24].
Two distinct paracellular fluxes, called “pore” and “leak” pathways, have been defined [25].
The pore pathway refers to a high-capacity flux depending on the sizes and charges of
molecules, whereas the leak pathway is a low-capacity route with limited selectivity. The
review of Monaco et al. [3] in this Special Issue recapitulates the characteristics of the leak
pathway, which remains less understood and still more debated than the pore pathway. As
a dysregulated passage of macromolecules through the intestinal epithelium has distinct
pathophysiological consequences from the disturbance of ionic fluxes, a thorough knowl-
edge of this specific paracellular pathway is required to determine if it could be specifically
targeted in therapeutic strategies.

At the interface between the intestinal lumen and circulation, the intestinal epithelial
cell monolayer is sensitive to signals from both compartments and mediates the crosstalk
between gut microbes and host immunity [21,26]. Intestinal epithelial cells participate
in the fine-tuning of the immune response to enable efficient defense against pathogens
while maintaining tolerance to innocuous stimuli [24,26]. Innate and adaptive immunity
recognition receptors expressed by epithelial cells are responsive to microbe-associated
molecular patterns (MAMPs) and mediate this dialogue [27]. The intestinal immune
system is composed of immune cells located either within the epithelium, dispersed in the
lamina propria, or organized in sub-epithelial structures called gut-associated lymphoid
tissue (GALT). As a whole, it harbors a large variety of innate and adaptive immune
cells, such as dendritic cells, macrophages, natural killer cells, and lymphocytes [28]. In
addition to “professional” immune cells, intestinal epithelial cells are also able to secrete
chemokines such as interleukin-8 (in response to MAMPs or to epithelial barrier leakage),
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which in turn leads to the recruitment and/or differentiation of immune cells [29,30]. The
maturation of the intestinal immune system is dependent on the microbiota. Indeed, the
absence of commensal bacteria in germ-free animals is associated with important defects in
intestinal lymphoid nodes’ architectures and functions [8]. Moreover, by promoting the
production via intestinal epithelial cells of several factors, such as transforming growth
factor beta (TGF-β) or indoleamine 2,3-dioxygenase, the colonization of germ-free mice
with Clostridium species increased the number of regulatory T lymphocytes [31], which are
essential for the tolerance of commensal bacteria and dietary antigens. Recently, quorum
sensing molecules produced during bacteria communication have been shown to directly
modulate cytokine secretion by immune cells [32]. On the other side, certain cytokines
secreted by immune cells contribute to maintaining the integrity of the epithelial barrier
and intestinal homeostasis [33,34], whereas others exert deleterious effects (see Section 2).

Recently, Rath and Haller [35] introduced the concept of the “metabolic injury” of
epithelial cells as a potential causing factor in the development of intestinal inflammation.
This concept places the metabolic changes in epithelial cells, in particular, the modification
of oxidative metabolism, at a central position in the dialogue between microbiota and
immune cells. Hypoxia- or microbiota-derived metabolites, such as aryl hydrocarbon
agonists or short-chain fatty acids known to alter glucose or energy metabolism [36–38],
can modulate several actors of the barrier, establishing a strong link between epithelial cell
metabolism and intestinal barrier function [39–42].

2. Intestinal Barrier Dysfunction in Pathologies

Many pathological conditions, such as graft versus host disease, and accidental radi-
ation exposures or radiotherapy [43,44], as well as several infectious diseases involving
bacterial, fungal, or viral pathogens, lead to the disruption of the intestinal barrier integrity,
with different degrees of severity. In this Special Issue, Paradis et al. [4] provide an overview
of the mechanisms used by pathogens to perturb the intestinal barrier through alterations
of tight junction integrity. Direct and indirect mechanisms are involved. Pathogens can di-
rectly alter TJ integrity by acting on the actin cytoskeleton, modifying intracellular calcium
levels, or changing the expression or the localization of TJ proteins. Pathogens can also
indirectly impact TJ integrity through the modulation of the inflammatory response during
the invasion.

In addition to the pathogenicity of certain living bacteria, bacterial fragments, such
as LPS, also play an important role in many chronic diseases via their ability to activate
inflammatory pathways in immune and epithelial cells [45]. The deleterious effects of
LPS depend on their nature as a function of bacteria species [46]. An increased passage of
microbiota-derived antigens through a damaged intestinal barrier activates immune cells,
contributing to intestinal and systemic inflammation, which in turn directly impairs TJ
integrity via secreted cytokines and creates a vicious circle.

In several pathologies, such as intestinal bowel disease (IBD), obesity, diabetes, and
possibly other metabolic or neurologic disorders, intestinal barrier defects are observed,
but their causal role is difficult to establish since they are intricately linked with gut
microbiota dysbiosis and with an exacerbated intestinal immune response [47–49]. In such
pathologies, barrier impairment, including intestinal hyperpermeability, could intervene
early in the disease [50,51], and has been proposed as a second gastrointestinal hit after the
establishment of dysbiosis in metabolic disease [52]. Studies on mouse models of cell–cell
junction modification argue that a mild alteration of the intestinal barrier is not sufficient
per se to trigger disease, but rather induces subclinical mucosal immune responses, which
sensitize mice to intestinal injuries leading to inflammation [25,53,54]. Therefore, the
relevance of targeting actors of the epithelial barrier function, such as the integrity of
cell–cell junctions in therapeutic approaches, remains an open question that requires more
in-depth knowledge [55].

A direct harmful effect of several proinflammatory cytokines on intestinal epithelial
monolayer integrity, and, in particular, on cell–cell junctions, has been demonstrated. The
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molecular mechanisms involved in the alteration of the intestinal epithelial barrier by the
proinflammatory cytokine tumor necrosis factor-α (TNF-α) have been well-described. High
levels of TNF-α are found in the intestinal mucosa of patients with IBD or obesity [56,57].
After the binding on its receptor at the surface of intestinal epithelial cells, TNF-α activates
a signaling cascade that leads to the stimulation of the nuclear factor-kappa B (NF-κB)
pathway, which in turn increases the expression of myosin light-chain kinase (MLCK), an
important regulator of the actin–myosin belt at the level of tight junctions [25,58]. The ex-
cessive contraction of the actin cytoskeleton via MLCK results in an increase in paracellular
permeability [25]. Moreover, TNF-α induces intestinal epithelial cell death through mecha-
nisms involving the NF-κB pathway, protein kinases, and caspase activation [59]. Currently,
treatment with anti-TNF-α antibodies or TNF-α inhibitors constitutes an important ther-
apeutic approach in IBD, particularly for patients with Crohn’s disease [60]. However,
due to the side effects of long-term treatments with TNF-α inhibitors, new strategies to
restore gut barrier function and mitigate inflammation are currently under investigation.
Some of them evaluate the effects of existing drugs already used in other contexts to treat
several pathologies.

The activation of opioid receptors has gained attention for their anti-inflammatory
effects in various diseases, including IBD. It has been observed that immune cells in the
periphery can secrete opioid peptides, which act on neurons to decrease nociception. The
secretion of opioid peptides can be observed locally at the site of tissue inflammation after
the recruitment of immune cells [61]. In this Special Issue, Mas-Orea et al. [5] studied the
importance of opioid receptors in the gut barrier and inflammation in a mouse model of
colitis. Using an antagonist of peripheral opioid receptors, the authors showed that an en-
dogenous opioid tone contributes to maintaining gut barrier integrity and to controlling the
immune response. Contrary to endogenous opioids, exogenous opioids, such as morphine,
have detrimental effects on the gut barrier [62]. Targeting endogenous opioid receptor
stimulation could represent a promising approach to treating gut barrier dysfunction and
inflammation, taking into account the potential dual face of such molecules.

Metformin, widely used in the treatment of diabetes, is known to exert other various
effects, including the modulation of the immune response and gut microbiota compo-
sition [63,64]. Recent studies have highlighted the protective role of metformin in the
gut barrier [65,66] through the activation of adenosine-monophosphate-activated protein
kinase (AMPK), a protein known to regulate cell energy metabolism but also tight junction
assembly [67]. In this Special Issue, Jang et al. [6] studied the effect of metformin on a
mouse model of radiation-induced enteropathy, on gut organoids, and on an epithelial cell
culture model. The authors observed that metformin treatment stimulates epithelial cell
proliferation, associated with an increased expression of stem cell markers and increased
goblet cell number in an irradiated epithelium. Such a treatment alleviates epithelial
damage and inflammation in irradiated animals.

Along with pharmacological interventions, nutrient modulation represents a strategy
for modulating intestinal barrier function [68–70]. Enteral nutrition is currently used to treat
young patients suffering from gastrointestinal diseases, particularly Crohn’s disease [71].
Several mechanisms involved in the beneficial effect of enteral nutrition have been pro-
posed [72]. First, the defined composition of delivered nutrients excludes antigens that
can activate immune cells and induce inflammation while providing beneficial nutrients.
Secondly, changes in microbiota composition have been observed following enteral nutri-
tion, which may modulate dysbiosis and enhance the production of beneficial gut-derived
metabolites. The reduction in systemic markers of inflammation observed in patients
treated with enteral nutrition may be the result of these two actions. In this Special Issue,
Boumessid et al. [7] provide an overview of the use of the Modulen® formula for enteral
nutrition. The authors discuss the importance of the composition of this formula, stressing
the beneficial effect of its high TGF-β2 content. This cytokine is known to prevent goblet
cell depletion, reinforce cell–cell junctions, and to exert an anti-inflammatory effect [73].
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Other approaches to restoring gut homeostasis aim at modifying the composition of
gut microbiota. Several studies have shown that Lactobacillus plantarum or Lactobacillus
rhammnosus exert protective effects in cell culture models mimicking intestinal epithelial
barrier alteration. Multiple mechanisms, including the reinforcement of the expression
or localization of TJ proteins at cell–cell junctions in human epithelial cells, have been de-
scribed [74,75]. Other studies have reported a beneficial effect of Akkermansia muciniphila on
gut barrier function [76]. The abundance of this bacterium is reduced in patients with IBD
or obesity [76]. A protective effect of A. muciniphila administration on gut barrier function
and mucosal inflammation in a mouse model of colitis was observed [77,78]. Part of the
effect occurs through the increase in short-chain fatty acid production, known to participate
in the integrity of the epithelial barrier, and through an increased secretion of mucus [76].
However, the clinical efficiency of such probiotic treatments remains modest. Manipulating
gut microbiota via a fecal microbiota transplantation represents a promising approach
for the treatment of pathologies associated with dysbiosis. Such a treatment provides an
important beneficial effect for patients with a Clostridioides difficile infection [79,80]. The
efficiency of a fecal microbiota transplantation for other pathologies is under evaluation [81].
The standardization of the procedure is still ongoing. Specifically, the characteristics of
donors and recipients need to be better defined to improve the efficiency and safety of fecal
microbiota transplantations [82,83].

3. Concluding Remarks

The intestinal barrier function is controlled by many factors and actors originating
(i) from the intestinal lumen, such as microbes, microbiota metabolism-derived metabolites,
the mucus layer, or nutrients; (ii) from the epithelial cell monolayer, such as cell–cell
junction integrity, the secretion of antimicrobial peptides, or cell metabolism; and (iii) the
mucosal adaptive and innate immune cells as well as their secreted mediators, such as
secretory IgA and cytokines.

Despite the tremendous number of publications on intestinal barrier regulation in
health and diseases during this last decade, this Special Issue shows that numerous fields
remain to be explored. In particular, whether and how the intestinal epithelium could
represent a direct target for the development of new therapeutic strategies is still an open
question. In addition, disentangling the multiple crosstalks between the actors of gut barrier
function will take advantage of emerging models, such as human-microbiota-associated
mouse models, gut-on-chip, or dynamic simulators of the human digestion system [84],
which better recapitulate this fascinating and complex functional unit.
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Abbreviations
AMPK adenosine monophosphate-activated protein kinase
GALT gut-associated lymphoid tissue
GLP-1 glucagon-like peptide-1
GLP-2 glucagon-like peptide-2
IBD intestinal bowel disease
LPS lipopolysaccharides
MLCK myosin light-chain kinase
NF-κB nuclear factor-kappa B
TGF-β transforming growth factor-beta
TJ tight junction
TNF-α Tumor necrosis factor-α
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