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Foreword

I t is our pleasure to welcome Jean Pierre Boon and Constantino
Tsallis as guests Editors for the present Special Issue of

Europhysics News on “Nonextensive Statistical Mechanics”. They
did a great job not only in selecting an impressive set of distin-
guished authors but also in writing the introductory Editorial and
in each being a co-author of one of the contributions. The subject
is difficult and could not go without a higher proportion of equa-
tions than usual in EPN: our thanks go to the EPN designer who
had to face a heavier task than usual. It is sometimes necessary to
address arduous developments to cover recent progress in Physics.
This time, EPN will ask its readers to make an effort. It is always
rewarding. The guests Editors were so efficient that the collected
material passes largely the size of a standard EPN issue. We are
grateful to the Publisher for accepting to accommodate all the
articles in a single volume. It will make of this Special Issue the gen-
eral reference work on “nonextensive statistical mechanics”. Back to
the usual mix of wide-ranging Features and News next time! 
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Boltzmann-Gibbs (BG) statistical mechanics is one of the mon-
uments of contemporary physics. It establishes a remarkably

useful bridge between the mechanical microscopic laws and classi-
cal thermodynamics. It does so by advancing a specific connection,

SBG = -k∑W
i=1 pi ln pi in its discrete version, of the entropy a la Clau-

sius with the microscopic states of the system. However, the BG
theory is not universal. It has a delimited domain of applicability,
as any other human intellectual construct. Outside this domain, its
predictions can be slightly or even strongly inadequate. No surprise
about that. That theory centrally addresses the very special station-
ary state denominated thermal equilibrium. This macroscopic state
has remarkable and ubiquitous properties, hence its fundamental
importance. The deep foundation of this state and of 27-year-old
Boltzmann’s famous Stosszahlansatz (“molecular chaos hypothe-
sis”) in 1871 lie on nonlinear dynamics, more specifically on strong
chaos, hence mixing, hence ergodicity. However many important
phenomena in natural, artificial, and even social systems do not
accomodate with this simplifying hypothesis. This is particularly
frequent in physical sciences as well as in biology and economics,
where non-equlibrium stationary states are the common rule. Then,
at the microscopic dynamical level, strong chaos is typically replaced
by its weak version, when the sensitivity to the initial conditions
grows not exponentially with time, but rather like a power-law.

A question then arises naturally, namely: Is it possible to address
some of these important - though anomalous in the BG sense - situa-
tions with concepts and methods similar to those of BG statistical
mechanics? Many theoretical, experimental and observational indi-
cations are nowadays available that point towards the affirmative
answer. A theory which appears to satisfactorily play that role is
nonextensive statistical mechanics and its subsequent developments.
This approach, first proposed in 1988, is based on the generaliza-
tion of the BG entropy by the expression 

Sq = 

with index q ∈ and S1 = SBG, i.e. the BG theory is contained as the
particular case q = 1 (see the Box). Sq shares with SBG a variety of
thermodynamically and dynamically important properties.Among
these we have concavity (relevant for the thermodynamical stability
of the system), experimental robustness (technically known as
Lesche-stability, and relevant for the experimental reproducibility of
the results), extensivity (relevant for having a natural matching
with the entropy as introduced in classical thermodynamics), and
finiteness of the entropy production per unit time (relevant for a vari-
ety of real situations where the system is striving to explore its
microscopic phase space in order to ultimately approach some kind
of stationary state). This is quite important because it is not easy to
find entropic functionals that simultaneously and generically satis-
fy these four properties. Renyi entropy, for instance, is known to be
an interesting form for characterizing multifractals. But it seems
inadequate for thermodynamical purposes. Indeed, Renyi entropy
satisfies concavity only in the interval 0 < q ≤ 1, and violates, for q
≠ 1, all the other three properties mentioned above. The extensivi-
ty of Sq deserves a special mention. Indeed, if we compose
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b Box: The two basic functions that appear
in Nonextensive Statistical Mechanics are the
q-exponential and the q- logarithm with
lnq(expq x) = expq(lnq x) = x.They are simple
generalizations of the usual exponential and
logarithmic functions which are retrieved by
performing a |1 - q| << 1 expansion. Similarly
the q-entropy generalizes the standard
Boltzmann-Gibbs entropy.The escort
distribution is a generalization of the usual
ensemble averaging function to which it
reduces for q = 1.
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subsystems that are (explicitly or tacitly) probabilistically indepen-
dent, then SBG is extensive whereas Sq is, for q ≠ 1, nonextensive. This
fact led to its current denomination as “nonextensive entropy”.
However, if what we compose are subsystems that generate a non-
trivial (strictly or asymptotically) scale-invariant system (in other
words, with important global correlations), then it is generically Sq

for a particular value of q ≠ 1, and not SBG, which is extensive. Ask-
ing whether the entropy of a system is or is not extensive without
indicating the composition law of its elements, is like asking whether
some body is or is not in movement without indicating the referen-
tial with regard to which we are observing the velocity.

The overall picture which emerges is that Clausius thermody-
namical entropy is a concept which can accomodate with more
than one connection with the set of probabilities of the microscop-
ic states. SBG is of course one such possibility, Sq is another one, and
it seems plausible that there might be others. The specific one to be
used appears to be univocally determined by the microscopic
dynamics of the system. This point is quite important in practice. If
the microscopic dynamics of the system is known, we can in prin-
ciple determine the corresponding value of q from first principles.
As it happens, this precise dynamics is most frequently unknown
for many natural systems. In this case, a way out that is currently
used is to check the functional forms of various properties associ-
ated with the system and then determine the appropriate values of
q by fitting. This has been occasionally a point of – understandable
but nevertheless mistaken – criticism against nonextensive theory,
but it is in fact common practice in the analysis of many physical
systems. Consider for instance the determination of the eccentrici-
ties of the orbits of the planets. If we knew all the initial conditions
of all the masses of the planetary system and had access to a colos-
sal computer, we could in principle, by using Newtonian mechanics,
determine a priori the eccentricities of the orbits. Since we lack that
(gigantic) knowledge and tool, astronomers determine those eccen-
tricities through fitting. More explicitly, astronomers adopt the
mathematical form of a Keplerian ellipse as a first approximation,
and then determine the radius and eccentricity of the orbit through
their observations. Analogously, there are many complex systems
for which one may reasonably argue that they belong to the class
that is addressed by nonextensive statistical concepts, but whose
microscopic (sometimes even mesoscopic) dynamics is inaccessible.
For such systems, it appears as a sensible attitude to adopt the math-
ematical forms that emerge in the theory, e.g. q-exponentials, and
then obtain through fitting the corresponding value of q and of
similar characteristic quantities.

Coming back to names that are commonly used in the literature,
we have seen above that the expression “nonextensive entropy” can
be misleading. Not really so the expression “nonextensive statistical
mechanics”. Indeed, the many-body mechanical systems that are
primarily addressed within this theory include long-range interac-
tions, i.e., interactions that are not integrable at infinity. Such
systems clearly have a total energy which increases quicker than N,
where N is the number of its microscopic elements. This is to say a
total energy which indeed is nonextensive.
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In 1865 Clausius introduced the concept of entropy, S, in the
context of classical thermodynamics. This was done, as is well

known, without any reference to the microscopic world. The first
connection between these two levels of understanding was pro-
posed and initially explored one decade later by Boltzmann and
then by Gibbs. One of the properties that appear naturally within
the Clausius conception of entropy is the extensivity of S, i.e., its
proportionality to the amount of matter involved, which we inter-
pret, in our present microscopic understanding, as being
proportional to the number N of elements of the system. The
Boltzmann-Gibbs entropy SBG ≡ -k∑W

i=1 pi ln pi (discrete version,
where W is the total number of microscopic states, with proba-
bilities {pi}, and where k is a positive constant, usually taken to be
kB). SBG satisfies the Clausius prescription under certain condi-
tions. For example, if the N elements (or subsystems) of the
system are probabilistically independent, i.e., pi1,i2,…,iN =
pi1pi2…piN , we immediately verify that SBG(N) = NSBG(1). If the
correlations within the system are close to this ideal situation (e.g.,
local interactions), extensivity is still verified, in the sense that
SBG(N) ∝ N in the limit N → ∞. There are however more com-
plex situations (that we illustrate later on) for which SBG is not
extensive. The question then arises: Is it possible, in such complex
cases, to have an extensive expression for the entropy in terms of the
microscopic probabilities? The general answer to this question still
eludes us. However, for an important class of systems (e.g., asymp-
totically scale-invariant), one such entropic connection is known,
namely    

(1) 
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m Table: Left: Most general set of joint probabilities for N equal
and distinguishable binary subsystems for which only the
number of states 1 and of states 2 matters, not their ordering.
Right: Triangle with e = 0.5 and d = 2 constructed by
modifying the Leibnitz-triangle. In general qsen = 1-(1/d).
For N = 5, 6, … a full triangle emerges (on the right side) all
the elements of which vanish. For any finite N, the Leibnitz
rule is not exactly satisfied, but it becomes asymptotically
satisfied for N → ∞. See details in [3].


