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SUMMARY

Transactional memory is a promising technique for enforcing disciplined access to shared data in a multi-
processor system. Transactional memory simplifies the implementation of a variety of concurrent data
structures. In this paper, we study the benefits of a modest, real-time aware, hardware implementation of
transactional memory that we call micro-transactions. In particular, we argue that hardware support for
micro-transactions allows us to efficiently implement certain data structures. Those data structures are
difficult to realize with the atomic operations provided by stock hardware and provide real-time guaran-
tees for those operations. Our main implementation platform is the Java Optimized Processor system, a
field-programmable gate array (FPGA) implementation of the Java virtual machine, optimized for real-time
Java. We report on the performance of data structures implemented with locks, atomic instructions, and
micro-transactions. Our results suggest that transactional memory is an interesting alternative to traditional
concurrency control mechanisms. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A key challenge in multicore systems is to have efficient synchronization amongst tasks executing

concurrently on the system. The challenge becomes even harder on embedded systems because of

their real-time requirements. In a real-time system, every task is associated with a deadline. Some

of these deadlines, like for a controller of the airbags in a car, have to be met, whereas others may be

occasionally missed. Nonblocking algorithms are able to ensure the real-time guarantees required

by an embedded system.

Lock-free algorithms are nonblocking algorithms with a system-wide progress guarantee.

Dedicated lock-free data structures have been proposed in the literature [1–3]. These algorithms

are usually based on dedicated hardware instructions such as compare-and-swap (CAS). The CAS

atomic operation instruction is available in current multiprocessor systems. The main limitation of

this operation is that it operates on a single memory location, whereas some algorithms require

a multiword atomic operation [3, 4]. Although many designs have been proposed for multiword

CAS (MCAS), they are not available in commodity hardware. Transactional memory (TM) is

an alternative concurrency control mechanism that attempts to simplify parallel programming. A

transaction is a nonblocking, serializable group of operations performed atomically. A transac-

tion modifies shared-data structures regardless of the other threads, while keeping a log of the

read/write operations. Upon commit (at the end of the transaction), all read operations are checked

against writes from other threads. In case of a conflict between transactions, one transaction is
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aborted and its memory modifications are undone. We employed different variants concerning

how eagerly the checks are made, how the read/write logs are maintained, or how the caches

are restored.

Transactional memory has been explored both in hardware (HTM) [5–7] and in software (STM)

[8, 9]. An HTM implementation handles the logging and the checks in the hardware, which is

usually faster but not scalable. Most HTM systems are based on cache coherence protocols to detect

conflicts upon write back. If the transaction scales beyond the cache size, all transaction blocks will

be retrieved back to the cache for checking. An STM implementation does not require any hardware

support except for atomic operations. It performs all the logging and checks in software, allowing

very large transactions at the expense of the software overhead. For some problems, TM can provide

a straightforward programming model that can provide fine-grained synchronization. However, both

STM and HTM come with their problems. STM systems have not been able to exhibit acceptable

performance, and HTM requires programmers to be aware of cache sizes.

The purpose of this paper is to show that HTM can serve as a basis for implementing nonblocking

algorithms in real-time systems. Nonblocking data structures are currently limited to a subset of the

data structures that can be implemented using single-word atomic operations. Their implementation

depends on translating a fine-grained locking implementation into a nonblocking implementation by

replacing the locks with an atomic operation. If the lock is modifying more than a single memory

location at a time, then a direct transformation fails. An example is the attempt to atomically

modify the next and tail pointers in a singly linked queue. Some techniques can be used for

memory locations [10], which depend on modifying one, then the other, but that only works for

pointers. Other techniques sacrifice the consistency of some of the pointers and restore them when

they are being accessed [11, 12], causing an extra overhead on the access of those pointers. Not all

data structures can be coded using those techniques. As the complexity of the structure increases,

the number of memory locations that needs to be updated atomically also increases.

The main issue is the inability to modify multiple values atomically in a nonblocking manner

without an MCAS operation. Transactions have the ability to do that, because each transaction

can perform a set of operations atomically. The size of the transaction depends on the number of

words intended for the MCAS, which can vary from 2 to 11 depending on the algorithm. For such

small transactions, in an STM system, the logging/checking overhead will be dominant, and it will

require at least double that number of memory read and writes. HTM on the other hand is a perfect

candidate for this situation. Because the transactions are small, the logs will be maintained in the

cache or in special registers, and all the checks will be performed by the hardware. We call those

small transactions micro-transactions.

In this paper, we show efficient lock-free implementations of concurrent first-in, first-out (FIFO)

bounded and double-ended dynamically growing queues based on micro-transactions and compare

them with lock implementations. We also compare with CAS implementations or explain why CAS

is infeasible in some situations. Similar to Schoeberl et al. [13], bounding the number of retries

on each transaction allows us to guarantee that all tasks will meet their deadlines. For example,

if four identical tasks are running concurrently with a single atomic section each, and if the non-

atomic section for each task is three times the size of the atomic section, then each transaction

will abort three times at the most. If we can guarantee that all tasks will meet their deadlines, then

we guarantee that our system satisfies the real-time requirements. We evaluate the performance of

the queue implementations against their lock counterparts, while describing why CAS is infeasible

or inefficient in each case. For our experiments, we use the real-time TM (RTTM) infrastructure

available on the Java Optimized Processor (JOP) [14], an FPGA implementation of a multicore Java

processor system.

To evaluate the scalability of our work, we ran our experiments on an Azul (Sunnyvale, CA, USA)

machine using a large number of cores. The Azul processor has a runtime feature called specula-

tive multi-address atomicity (SMA) that attempts to run small synchronized blocks transactionally.

Because our implementations use micro-transactions, we wrap those transactions with locks, and the

Azul virtual machine (VM) restores them to transactions. For the Azul system, we cannot provide

any real-time guarantee, but we are able to measure the behavior of nonblocking data structures on

a large number of cores.
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Our experiments show that the TM-based lock-free queue implementations perform better than

lock-based queue implementation when contention increases and atomic sections grow in size,

making TM an ideal synchronization platform for lock-free algorithms.

This paper is an extension of our previous work [15] and is organized as follows. Section 2

presents background and motivation for our work. Section 3 introduces JOP and RTTM. Imple-

mentation of wait-free queues is explained in Section 4. Section 5 presents the experimentation

and evaluation of the queues on JOP. Section 6 describes experimentation and results on the Azul

machine. The paper is concluded in Section 7.

2. BACKGROUND

From the early days of the TM, Herlihy and Moss [7] suggested that lock-free data structures can

be implemented using HTM. Because of the delay of a realization of an HTM and the presence of

atomic operations (such as CAS), lock-free data structures using atomic operations emerged. Work

on lock-free queues using atomic operations started a couple of decades ago [16, 17]. The Michael

and Scott FIFO queue [10] is considered efficient and scalable with two CAS operations for node

insertions and one for node removal. Insertions can be reduced to a single CAS [11] by maintaining

a doubly linked structure and reversing the direction of insert/remove operations. However, this

comes at the cost of occasional O(n) queue traversals to patch inconsistencies, which is an issue for

providing real-time guarantees.

Kogan and Petrank [18] proposed a wait-free implementation where higher priority threads help

the lower priority peers to complete execution. However, their solution is designed for singly linked

list-based queues. Most CAS-based wait-free queues are unbounded. Bounded queues require two

atomic operations, one for the queue’s end and the other for its size.

We did not find literature on nonblocking implementations of dynamically growing bounded

queues. Many other nonblocking algorithms and data structures such as concurrent hash tables and

graph structures need MCAS [3,4]. Bounded wait-free queues are usually implemented using locks

and are optimized either for reads or for writes. A WaitFreeReadQueue has the write operations

guarded with locks, whereas the read operation is wait-free. A WaitFreeWriteQueue has

the read operations guarded with locks, whereas the write operation is wait-free [19]. The latter

implementation is offered as part of the Real-Time Specification of Java [20]. Sundell and Tsigas

[12] provided a lock-free implementation of deques using CAS, but their implementation requires

fixing the queue in case of inconsistencies.

3. THE HARDWARE PLATFORM JOP

The JOP is a hardware implementation of the Java Virtual Machine [21]. It is a time-predictable

bytecode processor with real-time garbage collection (GC) capabilities. JOP is optimized to support

static worst-case execution time (WCET) analysis [22]. It is a reduced instruction-set computing-

based stack computer that is capable of dynamically translating Java bytecodes into a stack-based

microcode. It features a four-stage pipeline with the first stage performing the bytecode to microcode

translation. The following pipeline stages are microcode fetch, decode and stack address generation,

and execute. There are no pipeline dependencies, which simplifies the low-level timing model for the

WCET analysis. Memory load and store instructions use an explicit microcode wait instruction to

avoid sharing the state of the memory controller between bytecodes. JOP features a time-predictable

instruction cache and stack caches allowing accurate low-level WCET analysis. JOP is implemented

as a soft-core in an FPGA. The time-predictable properties and the availability of RTTM infrastruc-

ture made JOP the processor of choice for our experiments. GC support for the multicore version of

JOP is under development [23], so we did not rely on a GC for the queue implementations. All the

experiments were designed to fit in memory with no GC; we reused the objects to extend the size of

the experiment.

We used the multicore version of JOP [24] with four JOP cores for our experiments. JOP uses a

preemptive scheduler with fixed priorities. Each thread has a unique priority to avoid managing a

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
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FIFO list for each priority level. On a multicore version of JOP, each core executes its own scheduler

and threads are bound to individual cores.

3.1. RTTM on JOP

Real-time TM on JOP [14] is a time-predictable hardware implementation of TM that aims at low

WCET instead of a high average-case throughput. It supports small atomic sections in concurrent

threads with a few read and write operations. The RTTM infrastructure contains a fully associative

buffer, local for each core, that caches changed (write operations) data during a transaction. A set

of tag memories (local to the core) maintain the read locations (the read data is not cached). The

processor state is saved before starting a transaction. On a commit, the changed data in the local

cache is copied atomically to the shared memory. A global lock ensures the atomicity of the commit.

A conflict is said to occur if the read set of one transaction interferes with the write set of another

transaction.

Conflict detection happens only during the commit when all n � 1 cores (on an n-core multi-

processor) listen to the core that commits the transaction and not during local read/writes, thus

saving valuable CPU cycles. A committing transaction will finish its commit. The other, listening,

transactions will abort and restart when a conflict is detected.

We assume a multithreaded real-time application that consists of periodic threads. Within each

period, a thread executes a bounded number of transactions. A thread executing a transaction is

not preempted by a thread on the same processor core. Threads running on different cores may

execute conflicting transactions. With this model of computation, minimal time distances between

transactions can be guaranteed and therefore the maximum number of transaction retries bounded.

The real-time behavior of such transactions is established by bounding the number of retries r to

n�1 on an n-core multiprocessor. With threads that execute a single transaction per period and that

have periods longer than the conflict resolution time, the maximum number of retries r is m�1 for m

conflicting transactions, where m can be higher than n when threads are switched during transaction

resolution. Additional transactions within a single period can be modeled by additional tasks. The

proof can be found in our previous work [13].

Assuming periodic threads, non-overlapping periods and execution deadline not exceeding the

period, the WCET of any thread � is given by the equation

WCET D tna C .r C 1/tamax (1)

where WCET is the worst-case execution time, tna is the execution time of the non-atomic section

of the thread, and tamax is the maximum of the execution times of the atomic sections of all the n

threads in the system. Because r is bounded, the WCET of any thread is bounded.

Atomic sections, the transactions, are represented by methods. The methods are annotated with

@atomic to mark atomic methods. The JOPizer tool manipulates the atomic methods to implement

saving of the local state (the method arguments) and the repeating loop for the restart, and emits code

to start and stop a transaction. An transaction abort from the RTTM hardware is signaled via an

interrupt, which itself is mapped to a Java exception. That exception is caught, local state reloaded,

and the transaction restarted.

4. IMPLEMENTATION

We have implemented dynamically growing bounded FIFO queues with supported primitives insert

at tail and remove from head. We have also implemented doubly linked double-ended queue that

supports the primitives insert at head and remove from tail together with the ones mentioned earlier.

We have simulated a stack using the double-ended queues by inserting and removing elements

from the same end of the queue. The queue implementations are concurrent, and synchronization is

achieved using two different synchronization techniques, locks and TM. The different variants are

explained in the following paragraphs. In our implementations, we use the Java synchronized

keyword to implement locks and the annotation @atomic for micro-transactions.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
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4.1. Bounded queue (bounded queue)

The bounded queue is a doubly linked queue with capacity constraints. This requires maintaining

the queue size as well as checking it against the capacity during insertions for a queue-full condition.

Also, the insertion and removal primitives now have to atomically increase and decrease the queue

size. This problem is usually solved by using a multiword CAS primitive or by limiting the queue

to a single reader or a single writer [19]. Hence, we do not present implementations for the CAS

variants. We implement only the lock and the TM variants. Figure 1 summarizes the implementation.

The queue insertion and removal methods are protected either by usage of synchronized

(as described in Figure 1) or by replacing the synchronized keyword with @atomic for the

TM alternative.

4.2. Double-ended queue (deque)

deque is a double-linked queue, which allows insertion or removal from either side. Unlike the

bounded queue, the deque has a CAS implementation, but the CAS implementation is inefficient.

Figure 1. Dynamically growing bounded queue.
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The reason for the inefficiency is that the implementation maintains consistency only of the next

pointer, and the previous pointer is adjusted in O(n) operations when used. The CAS implemen-

tation of the deque follows the Java class ConcurrentLinkedDeque,‡ which is a concurrent,

doubly linked, double-ended queue. The implementation is based on the technique described by

Martin [25]. The queue has separate head and tail nodes, and newly inserted nodes are either the

immediate successor of the head or the immediate predecessor of the tail. Our implementation

provides primitives to insert and remove both at the head and the tail. The CAS implementation

of deque assumes that queue inconsistencies happen rarely, and when they do, they are corrected

when required. In this implementation, the consistency of the next pointers of the queue nodes

is ensured by using CAS instructions, whereas the previous pointers are updated optimisti-

cally using store operations and may not be updated correctly. When necessary, the previous

pointers have to be reconstructed using the next pointers. Also, when nodes are deleted, node

pointers may not be updated correctly, resulting in valid nodes pointing to deleted nodes. When

necessary, the node pointers have to be updated to point to valid nodes. Some queue primitives

require that these inconsistencies be corrected and hence invoke correction routines. The following

summarizes the primitives:

� Insert Head: The new node X is inserted as a successor of the queue head. Pointer X.next

is updated to head.next (say N) using a CAS instruction only if the node head.next

is not already deleted. Pointers X.previous and N.previous are updated optimistically

using a store instruction to head and X, respectively. Note that this operation does not need to

reconstruct the previous pointers.

� Insert Tail: The new node X is inserted as a predecessor of the queue tail. This operation

requires that the pointer tail.previous points to a valid predecessor P to update P’s

next pointers. Because the previous pointers are optimistically updated using regular

store instructions, a correction routine is invoked to reconstruct the pointers before the node

is inserted. The next pointers are updated using CAS instructions, whereas the previous

pointers are updated optimistically.

� Remove Head: This operation removes a node that is an immediate successor of the head.

This requires that we find a valid (not already deleted) node X that is a successor of the head.

A correction routine is invoked that starts from the head and skips all deleted nodes to identify

the true successor of the head, node X. Again, the next pointers are updated atomically and

the previous pointers optimistically.

� Remove Tail: This operation removes the immediate predecessor of the tail. As in the case of

Insert Tail, a valid predecessor P of the tail has to be identified before its removal, requiring

an invocation of the previous pointer reconstruction routines.

On the other hand, the code for the lock and TM implementation is much simpler and straightfor-

ward; both previous and next pointers are updated together atomically. The listing in Figure 2

contains the implementation of the deque. In the case of TM, the methods takefirst_tr,

takelast_tr, putfirst_tr, and putlast_tr are annotated with @atomic instead of the

synchronized keyword that is used for the lock implementation.

The number of CAS instructions required per operation is not constant for the latter three opera-

tions as an arbitrary number of pointers may have to be atomically corrected when the reconstruction

routines (previous pointer correction and removing links to already deleted nodes) are invoked.

The reconstruction routines have a significant impact on the performance. JOP currently does not

provide native support for CAS. Therefore, each CAS will be simulated in our experiments with a

transaction. JOP transactions have very small overhead. That overhead is negligible compared with

the inefficiency of the algorithm itself. The lock and TM implementations of the deque are simple

and straightforward. To keep the lock and TM implementations consistent with the CAS versions,

the deque implementations have separate head and tail nodes, and insertions and removals

operate on the successor of the head and predecessor of the tail, respectively. They provide

‡http://g.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/jsr166x/ConcurrentLinkedDeque.java?view=co
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Figure 2. Dynamically growing deque.
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routines to insert and remove from both ends of the queue. As with other queues, the insert and

remove primitives are associated with synchronized or @atomic.

4.3. Stack (stack)

The stack is simulated using the deque by inserting and removing queue elements from a common

end of the queue. In our experiments, stack increases contention as multiple threads access the same

end of the queue. Push operation uses either Insert Head or Insert Tail, and the pop operation uses

Remove Head or Remove Tail, respectively. All threads agree on the same end.

5. EXPERIMENTATION AND EVALUATION

The experimentation environment is an FPGA programmed with a symmetric shared-memory

multiprocessor hardware system with four JOP cores. For the hardware platform, we use an Altera

DE2-70 Development board§ consisting of a Cyclone II EP2C70 FPGA (San Jose, CA, USA).

The Altera board contains 64-MB SDRAM, 2-MB SSRAM, and an 8-MB Flash memory and

I/O interfaces such as a USB 2.0, a RS232, and a ByteBlasterMV port. Each JOP core has a

core-local 4-KB instruction cache and 1-KB stack cache. The Cyclone FPGA is programmed to

implement a symmetric shared-memory multiprocessor environment. To evaluate and compare the

various synchronization primitives for concurrent lock-free queues, we conducted experiments using

a producer–consumer example on a four-core symmetric multicore system, each core executing

Java bytecode. Each of the four cores executed an independent shared-memory thread with one

of producer-only or consumer-only functionality. The queue nodes were exchanged among the

concurrent threads rendering the queue head and tail pointers and nodes contention points. Syn-

chronization is achieved through lock and TM primitives. We collected and compared the execution

times and other TM properties. The rest of the section explains the framework and the evaluation

in detail.

5.1. Producer–consumer example

The producer and the consumer functionality are performed by independent JOP threads referred

to as inserter and remover threads, each executing on a separate JOP core. The producer, in a

loop, inserts num queue nodes into Q, and similarly, the remover removes num nodes from Q. We

measured our experiments for four different variations; The first variation is single producer-single

consumer (1-1), allowing us to measure any overhead the TM system incurs as well as establishing

a baseline for the performance. The second and third variations are single producer-two consumers

(1-2) and two producers-single consumer (2-1), respectively. The purpose of these variations is

to create contention on only one of the two ends of the queue. And finally, with two producers-

two consumers (2-2), we create contention on both ends of the queue. In case there are more than

one producer or consumer, the number of nodes inserted or removed are divided equally among

the threads.

The queue insertion and removal operations are performed atomically using the synchronization

variants mentioned earlier.

All required synchronization is included in the queue methods; neither the producer nor the

consumer needs or has any extra synchronization. Such a system of threads, composed of atomic

and non-atomic sections, conforms with the thread model used to establish real-time bounds on the

number of retries, as in Schoeberl et al. [13]. In each experiment, we started all the threads simul-

taneously. The contention points in such an experimental setup are the head and tail pointers of

the queue and the pointers associated with the queue nodes exchanged among various threads.

5.2. Experimentation

We conducted experiments to record the execution time, number of commits and retries, and the

size of read and write sets of the different queue implementations.

§http://www.altera.com/education/univ/materials/boards/de2-70/unv-de2-70-board.html
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Table I. List of all experiments.

Insert at Remove from

Bounded queue Head Tail
Double-ended queue Head Tail

Head Random
Stack Head Head

Tail Tail

� bounded queue: In the bounded queue, for different capacities, we insert at one end (head)

and remove from the other end (tail). If capacity is reached, the thread spins until a spot is

available on the queue.

� deque: For the deque, we experimented many variations of insertions and deletions, such as

inserting at (tail) and removing from (head). We have also added a randomness factor, that

is, the insertion or removal can happen on either end of the queue randomly.

� stack: Using the deque, a stack is simulated by having all operations performed on one end; the

experiment is performed on each end.

For the evaluation of TM synchronization techniques, we are interested in the total number of

commits and retries, and the maximum size read/write sets of an experiment. The effect of workload

and transactional data size on the number of commits/retries and the read/write sets of an individual

core has been dealt in detail by Schoeberl et al. [13]. Table I lists the different implementations and

their variations that we used in this paper. The first column is the queue type, and the second and

third columns present the side of the queue where the queue insertion or removal is performed,

respectively. In bounded queue, only one configuration is feasible. For stack, both possible

configurations are covered. We have selected a representative subset of the possible combinations

for the deque. The deque and stack experiments were also conducted using the simulated CAS.

5.3. Evaluation

The graphs shown in this section are based on the average of three runs; the � for all nonrandom

experiments is less that 3 ms. The difference between two configurations at any data point is more

than 50 ms.

5.3.1. Bounded queue. In our implementation, a bounded queue is a doubly linked queue with

limited capacity. Such queues increase contention by forcing three operations, a check for queue

full, an increment of the current queue size, and the actual node insertion, to be executed in a single

atomic step. Experiments on the bounded queue were conducted using only the lock and TM variants

as, according to our knowledge, there is no single-word CAS-based bounded queue implementation.

Figure 3 shows the speedup percentage of the different implementations and configurations,

each compared to its equivalent locking counterpart. The single producer-single consumer lock

implementation is the slowest, not because of contention but due to low production/consumption

rate. At only 1% speedup from the 1-1 lock implementation, the corresponding TM implementation

comes as the second slowest for that experiment. With 30% speedup, the 2-2 TM implementation

is the fastest configuration. Locks are held longer by threads because of the additional check and

increment operations while inserting and a decrement operation during removal. This significantly

increases the execution time. The 1-2 lock configuration is 13% slower than the 2-1 lock implemen-

tation, whereas both TM configurations behaved comparably. Bounded queue suffers up to 13.5%

retries per operation ratio when there is more than one thread contending at the tail (for the 1-2

and 2-2 cases). There is no similar contention on the producer side, as it is more likely that both

consumers will be pending on an item to be removed from Q more than two producers waiting for a

spot in Q to fill.
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Figure 3. Bounded queue for transactional memory (TM) versus lock on Java Optimized Processor. (a) TM
speedup relative to locks and (b) overall execution time.
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Figure 4. Head–tail configuration for transactional memory (TM) versus lock on Java Optimized Processor.
(a) TM speedup relative to locks and (b) overall execution time.

5.3.2. deque. As mentioned earlier, we conducted two different experiments on double-ended

queues that varied in the queue ends at which insertions/removals were executed. In Figure 4, the

deque is used as an FIFO queue, insertions at the head and removal from the tail. With up to 20%

speedup, the 2-2 TM implementation outperformed the lock implementation. In the head–tail 1-1

configuration, the TM implementation suffers �1% slowdown. The difference in speedup between

the 1-2, 2-1 and 2-2 configurations is due to different contention loads on each. The 1-2 configu-

ration has the least contention, because the consumers are contending on an empty queue, which

results in small a contention (only the shared pointers are read to check if the queue is empty).

Whereas in the 2-1 configuration, the contention is more expensive as there is no check resulting in

a retry instead (which is better than busy waiting). In the 2-2 configuration, we observe a contention

similar to the 2-1 configuration contention on both ends, magnifying the effect. This might be

because a consumer waiting for a single producer takes less time than a consumer TM retry, or

it might be just noise. Similar results where achieved when randomly selecting the consumer end of

the queue at each consumption. The speedup for the random configuration is shown in Figure 5.

5.3.3. Stack. As discussed, a stack is simulated by inserting and removing queue nodes from a

common queue end. This creates more contention as all the threads operate on either the queue

head and its successor or the tail and its predecessor. The results of the stack-based experiments

are similar in nature to its deque counterparts. The speedups for the stack configurations are shown

in Figures 6 and 7.
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Figure 5. Head–random configuration for transactional memory (TM) versus lock on Java Optimized
Processor. a) TM speedup relative to locks and (b) overall execution time.
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Figure 6. Stack (simulated with deque, insertions, and deletions at the head) for transactional memory (TM)
versus lock on Java Optimized Processor. (a) TM speedup relative to locks and (b) overall execution time.
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Figure 7. Stack (simulated with deque, insertions, and deletions at the tail) for transactional memory (TM)
versus lock on Java Optimized Processor. (a) TM speedup relative to locks and (b) overall execution time.
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5.3.4. Comparing with CAS. Unlike bounded queue, deque has a CAS implementation, but we

argue that it is marginally slower than both TM and lock implementations. Because JOP does

not have a native CAS instruction, we simulated the CAS instruction with a transaction. The

added overhead of the simulation in this experiment is negligible compared with the time spent

in reconstructing the previous pointers. For the same reason, unlike the lock and TM imple-

mentations, the end from where the insertions and removals are performed affects the performance

of the CAS implementation largely. Figure 8 shows the CAS implementation slowdown for the

different deque configurations of a single producer-single consumer compared with the head–tail

lock configuration. It is worth noting that all other TM and lock configurations are within 1.5% of the

baseline. Increasing the number of threads increases the CAS implementation slowdown. The CAS

tail–head configuration is almost twice as slow as the CAS head–tail configuration due to running

the correction routines.

5.3.5. Transactional read–write sets. Table II shows the sizes of the read sets, write sets, and the

union of the read and write sets for the TM queues. The bounded queue is implemented as a doubly

linked list with a capacity parameter, which is reflected in its read, write, and read–write set. The

deque and stack have bigger sets as more shared pointers are read/modified per operation. As can

be seen, the size to the read and write sets fits very well for the concept of micro-transactions. This

data can be held with reasonable hardware effort in fully associative buffers.

The read and write set sizes for the CAS-based queues do not vary. The deque and stack

data structures use significantly more CAS instructions than a singly or a doubly linked queue.

Irrespective of the number of CAS instructions executed by the insertion and removal operations,

the transaction size of each CAS instruction is constant across all queues/stack as a CAS instruction

reads and modifies only a single pointer. Hence, the size of the read and write sets is the same for

all queue variants and stack.

5.3.6. Commits and retries. TM and CAS both depend on retires of failing commits. The CAS-

based implementation records more commits than the TM versions because CAS implementations
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Figure 8. Single producer-single consumer, compare-and-swap deque % slowdown versus lock head–tail
deque on Java Optimized Processor.

Table II. Read, write, and read–write sets of TM-based queues.

Read set Write set Read–write set

TM Bounded 7 2 7
Double-ended 11 4 12
Stack 11 5 12

TM, transactional memory.
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Table III. Retries.

Bounded queue (%)
deque Stack

Head–tail (%) Head–random (%) Head (%) Tail (%)

1-1 0.00 0.22 48.06 0.44 0.22
1-2 12.06 16.87 49.57 4.93 5.74
2-1 0.44 0.22 17.60 10.93 0.89
2-2 13.33 27.96 34.80 28.89 28.78

involve more transactions than the corresponding TM implementations. For example, the double-

ended queue implementation requires several CAS instructions to insert/remove nodes from a

doubly linked list. In the case of TM, an increase in queue node pointers will not increase the

number of commits because all the necessary pointer modifications are performed atomically by a

single transaction. However, as the number of processed nodes increases, the number of commits

increases. As the number of transactions increases, there is a high probability that the number of

retries also increases as transactions being committed may conflict with other transactions.

It can be noted from the figures that the TM-based queues perform better than their lock and

CAS-based counterparts, even under high contention, and the performance of TM does not degrade

on the basis of the choice of queue ends to insert and removal in most cases. Table III indicates the

average number of retries per queue operation for bounded queue, deque, and stack. The average is

calculated by dividing the total retries by the total number of queue operations (two operations per

queue node processed). In most cases, the retries increase with the increase of contention. The 1-2

configuration does not follow that rule, as it has the same amount of contention as 2-1, but it has a

much higher retries count. The retries in the 1-2 case are shorter (detected faster), but the contention

is the same, resulting in more retries.

5.4. Other experiments

We conducted other experiments on the various implementations of the queues. Three of these are

worth noting:

1. Change in capacity of a limited capacity queue: We conducted experiments on the limited

capacity queues by varying the capacity of the queue for a specified number of queue nodes

and measuring the execution time, retries, and commits. We did not notice any change in the

results with the change in queue capacity. We noticed a slight increase in the execution time

when the capacity is lowered to very small values. This is due to threads finding that the queue

is full. And we have noticed that the slowdown is consistent among all implementations.

2. We also conducted some experiments that introduced a mover. A mover consumes from a

queue and produces what was consumed to another queue. We experimented having a single

mover or two concurrent movers. Again, the results did not expose any different behavior from

the one described earlier and were therefore omitted.

3. We tested more configurations of deque, like random–random, random–tail, and tail–head.

The results did not differ from what is presented here in the paper.

5.5. Summary

Bounded queue, deque, and stack test the TM infrastructure and compare it with other synchroniza-

tion methods with increasing degrees of contention.

When contention and read/write set sizes increase as in the case of bounded queue, deque,

and stack, TM-based implementations outperform the lock-based implementations. Note that the

TM-based implementations make dynamically growing bounded buffer lock-free queues feasible,

which otherwise need multiword CAS instructions. Figure 3 shows that lock-based bounded buffer

queues are quite expensive. In our experiments, the TM-based implementation performs better

than locking by up to 30%. It is also noted that TM performance does not vary depending on the
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type of queue operations chosen unlike CAS-based implementations. The stack-based experiments

simulated the highest degree of contention with operations performed on the same end on a single

queue. Figures 6 and 7 suggest that the TM implementations outperform the lock implementations

by over than 20% and are significantly faster than CAS-based implementations.

6. EXPERIMENTS ON THE AZUL SYSTEM

We carried out the experiments described in Section 5 on the Azul machine, but with a higher

number of threads. The Azul environment does not provide a facility to explicitly specify the

intention to use micro-transaction support. Instead, it offers a runtime flag called SMA. With this

flag set, the Azul runtime attempts to run the synchronized parts (marked with the synchronized

keyword) transactionally using hardware transactional support. Azul is known to perform well for

small transactions. Unlike experimenting with JOP, because we do not have enough information

on how SMA works in Azul nor the number of retries for each transaction, we cannot provide any

guarantee on the real-time behavior of the algorithms. But it is interesting to observe experimentally

that the algorithm scales up to 64 cores. We experimented only with the lock and the TM versions

both with and without SMA support. In the rest of the text, NoSMA indicates that the SMA property

is disabled. We carried out experiments starting from 4K (K D 1024) queue nodes to 1024K nodes.

The Azul machine is an Azul Vega 3 3310B, with two 54-core processors and 48 GB of RAM. The

benchmark ran on top of the Azul Virtual Machine with the Concurrent Pauseless GC [26]. The

results discussed in these graphs are based on the average of 10 runs. Although the numbers are

consistent across the different runs, we have noticed a strange behavior at 16K nodes experiments

that we cannot explain (Azul is a black box with no available implementation details). We think it

might be an Azul optimization that gets utilized at that special case.

Given that the synchronized code is small in all experiments, the runs with the SMA flag set

performed better. Unfortunately, the number of commits and retries is not provided by the Azul

runtime for further analysis. Experiments were conducted starting for 4, 8, 16, 32, 64, and 128 total

threads with similar results. The results displayed are using 16 producer and 16 consumer threads

(16-16), up to 32 producer and 32 consumer threads (32-32). The latter configuration uses a total

of 64 threads, which is the maximum number of threads from our test series with no overflow

(108 cores available). The following figures are based on the average of three runs with the thread

configuration described above.

Figure 9 shows the results of the bounded queue experiments. The SMA implementation for

16-32 and 32-16 is strictly faster than its NoSMA counterpart for sizes >16K. The 32-32

configuration is faster starting from 256K nodes, and the 16-16 is faster starting from 512K nodes.

The 16-16 configuration is slower in most cases. Also, increasing the number of nodes operated on
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Figure 9. Bounded queue for SMA versus NoSMA on Azul. (a) SMA speedup relative to NoSMA and
(b) overall execution time.
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yields better performance for the SMA; therefore, it scales over the size of the data as well. It is

worth mentioning, that unlike the JOP experiments, where the least number of threads is the slowest

because of a slow production cycle, on Azul, the absolute performance is inversely proportional

with the thread count because of contention.
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Figure 10. deque head–tail configuration for SMA versus NoSMA on Azul.
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Figure 11. deque head–random configuration for SMA versus NoSMA on Azul.
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(b) Overall execution time

Figure 12. Stack (simulated with deque, insertions, and deletions at the head) for SMA versus NoSMA on
Azul. (a) SMA speedup relative to NoSMA and (b) overall execution time.
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Figure 13. Stack (simulated with deque, insertions, and deletions at the tail) for SMA versus NoSMA on
Azul. (a) SMA speedup relative to NoSMA and (b) overall execution time.

Similarly, we ran the deque implementation on Azul. Figure 10 shows the speedup % for deque

head–tail with similar configurations as described in bounded queue. The results are similar as well,

except for the 16-16 configuration. In the latter one, SMA is slower than NoSMA, but we expect it

to become faster with a larger number of nodes. The same results are observed for the head–random

configuration (Figure 11) and the simulated stacks (Figures 12 and 13).

7. CONCLUSION AND FUTURE WORK

This work considers TM as an alternative to CAS and lock-based synchronization primitives. We

showed that concurrent algorithms requiring multiword CAS primitives can be implemented using

TM in a straightforward way. Our JOP experiments suggest that the TM-based implementations of

concurrent nonblocking queue algorithms perform better than the CAS-based implementations. We

also showed that as atomic sections and contention grow, the TM-based implementations perform

better. The experiments on the Azul platform indicate that TM-based implementations are scalable.

Future work involves exploring more complex data structures, such as graph structures and hash

tables. Analyzing TM performance on larger systems with increased contention would also be

useful. A WCET analysis would state that in a given period, only a fixed number of transactions

is to be executed. Such a requirement raises questions such as which transactions to execute and on

what parameters (thread priority, deadlines, etc.) the decision is to be made. Those questions can be

explored from a scheduling theory perspective.
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